
259

Scalable Approximate Butterfly and Bi-triangle Counting for
Large Bipartite Networks

FANGYUAN ZHANG, The Chinese University of Hong Kong, Hong Kong SAR

DECHUANG CHEN∗, The Chinese University of Hong Kong, Hong Kong SAR

SIBO WANG†, The Chinese University of Hong Kong, Hong Kong SAR

YIN YANG, Hamad Bin Khalifa University, Qatar

JUNHAO GAN, The University of Melbourne, Australia

A bipartite graph is a graph that consists of two disjoint sets of vertices and only edges between vertices

from different vertex sets. In this paper, we study the counting problems of two common types of motifs in
bipartite graphs: (i) butterflies (2× 2 bicliques) and (ii) bi-triangles (length-6 cycles). Unlike most of the existing

algorithms that aim to obtain exact counts, our goal is to obtain precise enough estimations of these counts in
bipartite graphs, as such estimations are already sufficient and of great usefulness in various applications.

While there exist approximate algorithms for butterfly counting, these algorithms are mainly based on the

techniques designed for general graphs, and hence, they are less effective on bipartite graphs. Not to mention

that there is still a lack of study on approximate bi-triangle counting.

Motivated by this, we first propose a novel butterfly counting algorithm, called one-sided weighted sampling,
which is tailored for bipartite graphs. The basic idea of this algorithm is to estimate the total butterfly count

with the number of butterflies containing two randomly sampled vertices from the same side of the two vertex

sets. We prove that our estimation is unbiased, and our technique can be further extended (non-trivially)

for bi-triangle count estimation. Theoretical analyses under a power-law random bipartite graph model and
extensive experiments on multiple large real datasets demonstrate that our proposed approximate counting

algorithms can reach high accuracy, yet achieve up to three orders (resp. four orders) of magnitude speed-up

over the state-of-the-art exact butterfly (resp. bi-triangle) counting algorithms. Additionally, we present an

approximate clustering coefficient estimation framework for bipartite graphs, which shows a similar speed-up

over the exact solutions with less than 1% relative error.

CCS Concepts: • Theory of computation→ Graph algorithms analysis.

Additional Key Words and Phrases: Graph Algorithms; Approximation Algorithms; Sampling

ACM Reference Format:
Fangyuan Zhang, Dechuang Chen, SiboWang, Yin Yang, and Junhao Gan. 2023. Scalable Approximate Butterfly

and Bi-triangle Counting for Large Bipartite Networks. Proc. ACM Manag. Data 1, 4 (SIGMOD), Article 259

(December 2023), 26 pages. https://doi.org/10.1145/3626753

∗
Part of the work was done while Dechuang Chen is at Xidian University.

†
Sibo Wang is the corresponding author.

Authors’ addresses: Fangyuan Zhang, fzhang@se.cuhk.edu.hk, The Chinese University of Hong Kong, Hong Kong SAR;

Dechuang Chen, dcchen@se.cuhk.edu.hk, The Chinese University of Hong Kong, Hong Kong SAR; Sibo Wang, swang@se.

cuhk.edu.hk, The Chinese University of Hong Kong, Hong Kong SAR; Yin Yang, yyang@hbku.edu.qa, Hamad Bin Khalifa

University, Qatar; Junhao Gan, junhao.gan@unimelb.edu.au, The University of Melbourne, Australia.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/12-ART259 $15.00

https://doi.org/10.1145/3626753

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

HTTPS://ORCID.ORG/0009-0004-3253-4661
HTTPS://ORCID.ORG/0009-0003-8148-3883
HTTPS://ORCID.ORG/0000-0003-1892-6971
HTTPS://ORCID.ORG/0000-0002-0549-3882
HTTPS://ORCID.ORG/0000-0001-9101-1503
https://doi.org/10.1145/3626753
https://orcid.org/0009-0004-3253-4661
https://orcid.org/0009-0003-8148-3883
https://orcid.org/0000-0003-1892-6971
https://orcid.org/0000-0002-0549-3882
https://orcid.org/0000-0001-9101-1503
https://doi.org/10.1145/3626753

259:2 Fangyuan Zhang et al.

1 INTRODUCTION
Bipartite graph, or network, is a commonly used data structure in practice, with numerous real-

world applications [10, 38]. Typically, such a graph represents the relationships between entities

from two disjoint groups. For instance, in biology [65], such two groups can be genes and functions

(i.e., each edge in the bipartite graph indicates a connection between a gene and a function), or

diseases and effective drugs (where an edge signifies that a drug is effective for treating a particular

disease). Similarly, in e-commerce, a bipartite graph can be constructed with two different sets

of vertices, for users and products respectively, with edges representing purchases. Other use

cases include user ratings [89], text [39] and authorship [63] networks, etc. Bipartite graphs are

commonly found in research: as evidence, more than half of the networks in the well-established

Konect network collection [36] are bipartite networks, which have been used in a plethora of

research works [11, 17, 18, 21, 26, 29, 45, 80] focusing on bipartite graphs in diverse fields.

As shown in the literature, counting the number of different kinds of motifs in a graph is an

important approach to deriving graph-level features, which can be used for graph level tasks like

graph classification [59] and community search/analysis [25, 30, 69]. Moreover, as shown in the

literature, deriving an approximate estimation of such a number of motifs is sufficient and existing

solutions generally adopt sampling to derive the estimations of the number of motifs [59]. Among

counting different motifs, one of the most important tasks is to count triangles (i.e., 3-cliques),
which is the smallest type of clique in general graphs and plays an important role in various

network analyses such as clustering coefficient computation [58], social network analysis [20, 34],

community detection [19, 30, 31], etc. Yet, these techniques are devised for general graphs and

discard the special properties of bipartite graphs.

This paper focuses on estimating the number of basic motifs in a large bipartite graph. For a

bipartite graph, the concept of butterfly is of significant importance, comparable to that of the

triangle in unipartite graphs. A butterfly is a 2 × 2 bi-clique, as illustrated in Fig. 1(a). It is among

the simplest motif types in a bipartite graph and has been used in definitions of graph metrics such

as bipartite clustering coefficient, a cohesiveness measure for bipartite networks. In particular, given

a bipartite graph 𝐺 , its bipartite clustering coefficient [5, 41, 48, 53] can be defined as 4 × 𝐺/ 𝐺 ,

where 𝐺 denotes the number of butterflies in𝐺 , and 𝐺 is the number of caterpillars (i.e., 3-paths)
in 𝐺 . A major bottleneck for bipartite clustering coefficient computation is counting the number of

butterflies. Apart from its use in computing bipartite clustering coefficients, the butterfly count

itself can be a meaningful metric that captures relationship statistics between vertices. For instance,

in a director-company bipartite network [49, 53], a butterfly means two directors meet on multiple

boards; hence, the larger the number of butterflies, the more intertwined the companies are.

Another popular bipartite motif is the bi-triangle [48, 84], shown in Fig. 1(b), which is a 6-cycle

containing three vertices in one vertex set 𝐿 of the bipartite graph 𝐺 , and another three vertices

in the other set 𝑅. Similar to the case of butterflies, bi-triangles have been used in an alternative

definition of bipartite clustering coefficient [48, 84]. One advantage of this alternative definition

is that it can be adapted to measure the cohesiveness of a specific side of the graph. In particular,

given a vertex set (say, 𝐿) in𝐺 , its corresponding one-sided clustering coefficient based on bi-triangle

can be defined as 3 × 𝐺/ 𝐺,𝐿 , where 𝐺 denotes the number of bi-triangles in 𝐺 , and 𝐺,𝐿 is

the number of 4-paths centered at a vertex in 𝐿. The other side of the clustering coefficient can

be defined similarly based on 𝑅. Note that it is unclear how (and whether) this can be done with

the butterfly-based definition since the latter involves 3-paths that do not have a center vertex. In

addition, as shown in previous work [84], the bi-triangle-based clustering coefficient can be used to

measure the quality of clustering/community results returned by a variety of community detection

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite Networks 259:3

(a) Example butterfly (b) Example bi-triangle

Fig. 1. Bipartite graph motifs: butterfly and bi-triangle

algorithms (e.g., (𝛼, 𝛽)-core [42], 𝑘-wing [77], and 𝑘-Ctruss [83]) and clustering methods (e.g., BLP

[6] and BRIM [43]).

Given the important applications of butterfly and bi-triangle counting, it is not surprising that

much research effort [72, 74, 84] has been devoted to performing such counting efficiently. However,

for sizable graphs, the cost of computing the exact counts of these motifs remains prohibitive.

Further, in real applications, butterfly or bi-triangle counting may be executed more than once

on different sub-graphs of the input bipartite graph [74, 84]. For example, the community results

returned by different algorithms might need to compute and compare the clustering coefficient

to measure the cohesiveness of the corresponding result [73, 84]. Luckily, according to existing

studies [59], obtaining an accurate estimate of such counts is sufficient in practice, which promises

far lower overhead. For example, an accurate estimate of such counts can be used to calculate

an accurate estimation of clustering coefficients. More discussion about the application scope of

approximate counting can be found in Sec. 8. A notable work in this direction is by Sanei et al. [55],

which investigates fast approximate butterfly counting via local sampling, e.g., vertex sampling,

edge sampling, and wedge sampling. As we explain in Sec. 2.2, all these algorithms share the same

design philosophy: adapting approximate triangle counting solutions on general graphs to the

new problem of butterfly counting. As we point out, none of these methods effectively utilizes

the properties of bipartite graphs, leading to missed opportunities for further cost reductions. In

addition, the methods [55] are limited to butterfly counting, and it is unclear how to adapt them

to bi-triangles. Consequently, practitioners are left with exact counting solutions for bi-triangles,

which incur hefty costs for large graphs.

Motivated by this, we propose effective and efficient algorithms for approximate butterflies and

bi-triangles counting, which exploit the special properties of bipartite graphs. In particular, for

butterfly counting, we present a one-sided local sampling algorithm, utilizing the property that a

bipartite graph is divided into two disjoint sets of vertices. Then, given two randomly sampled

vertices 𝑢 and 𝑣 from one side of the vertex set, say 𝐿, we count the number of common neighbors

of 𝑢 and 𝑣 and derive the number of butterflies that involve 𝑢 and 𝑣 accordingly. Counting common

neighbors is a simple and intuitive idea and has been applied to other contexts, e.g., [61, 72].

Our main contribution is that we apply this idea to the problems of approximate butterfly/bi-

triangle counting, with non-trivial algorithmic designs and analyses. First, we devise pair sampling
and show how to derive an unbiased estimator for butterfly counting with fine-grained variance

analysis. Second, based on the intuition that vertices with larger degrees generally form more

butterflies, which amplifies the efficiency gain of our one-sided sampling method, we devise a

refined weighted one-sided pair sampling algorithm that samples vertices proportionally to their

degrees. The estimation result is carefully normalized to maintain its unbiasedness. Moreover,

based on a power-law random graph model, we prove that the proposed solutions achieve lower

asymptotically costs compared to the state-of-the-art solution [55].

Going one step further, we present a non-trivial extension of our weighted one-sided sampling

algorithm to bi-triangle counting, with rigorous analysis of its effectiveness (in terms of unbiased-

ness and variance) and efficiency (costs under our power-law random graph model). Extensive

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

259:4 Fangyuan Zhang et al.

experiments conducted on multiple large-scale real bipartite networks validate the high accuracy

and efficiency of the proposed algorithms. With the proposed approximate butterfly and bi-triangle

counting algorithms, we further present an approximate clustering coefficient estimation framework

for bipartite graphs. Experimental results demonstrate that our framework achieves up to three

(resp. four) orders of magnitude speedup over the state-of-the-art exact algorithm that computes

the butterfly-based (resp. bi-triangle-based) clustering coefficient while providing high-quality

estimation with a relative error of less than 1%. In sum, the main contributions of this paper include:

• Anovel weighted, one-sided pair sampling algorithm for unbiased approximate butterfly counting

that exploits properties of the bipartite graph.

• Analysis of the proposed solution under a power-law random bipartite graph model, which

shows that our algorithm achieves a lower asymptotic time complexity compared to the current

state-of-the-art, under the same expected error.

• A non-trivial extension of our sampling scheme to bi-triangle counting, with rigorous analysis

of its unbiasedness, variance, and time complexity.

• An approximation framework for butterfly-based and bi-triangle-based clustering coefficient.

• Extensive experiments involving large real bipartite graphs, whose results confirm that the

proposed methods achieve significant performance gains in terms of running time compared to

existing solutions, under comparable levels of result accuracy.

2 BACKGROUND
2.1 Preliminaries
We consider an unweighted and undirected bipartite graph 𝐺 = ⟨𝑉 = (𝐿 ∪ 𝑅), 𝐸⟩, where each pair

of vertices can have at most one edge connecting them. A bipartite graph has the following special

properties: (i) The vertex set 𝑉 is partitioned into two disjoint subsets 𝐿 and 𝑅, i.e., 𝐿 ∩ 𝑅 = ∅; (ii)
The edge set 𝐸 ⊆ 𝐿 ×𝑅, where × means the Cartesian product, that is, the edges only exist between

vertices from different sets. An edge between two vertices 𝑢 and 𝑣 is denoted as (𝑢, 𝑣). We use

𝑁 [𝑣] = {𝑢 | (𝑣,𝑢) ∈ 𝐸} to denote the set of neighbors of vertex 𝑣 , and 𝑑𝑣 = |𝑁 [𝑣] | for the degree
of 𝑣 . In addition, we define 𝜉𝑢,𝑣 to denote the size of the intersection of the neighbors of 𝑢 and 𝑣 ,

i.e., 𝜉𝑢,𝑣 = |𝑁 [𝑢] ∩ 𝑁 [𝑣] |. Similarly, 𝜉𝑢,𝑣,𝑤 denotes the size of the intersection of the neighbors of 𝑢,

𝑣 , and 𝑤 . Let𝑚 and 𝑛 be the sizes of the edge set and the vertex set, respectively. We define the

butterfly motif as follows.

Definition 2.1 (Butterfly). Given a bipartite graph 𝐺 = ⟨𝑉 = (𝐿 ∪ 𝑅), 𝐸⟩ and four vertices

𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑉 where 𝑎, 𝑏 ∈ 𝐿 and 𝑐, 𝑑 ∈ 𝑅. When edges (𝑎, 𝑐), (𝑏, 𝑐), (𝑎, 𝑑), (𝑏, 𝑑) are all in 𝐸, the

induced subgraph of {𝑎, 𝑏, 𝑐, 𝑑} is a butterfly.
We use 𝐺 (when𝐺 is clear from the context) to denote the number of butterflies in𝐺 , and 𝑣 to

mean the number of butterflies containing vertex 𝑣 . Given a subgraph 𝑆 , 𝑆 represents the number

of butterflies that contain all vertices in 𝑆 . Next, we define another important motif: bi-triangle.

Definition 2.2 (Bi-triangle). Given a bipartite graph 𝐺 = ⟨𝑉 = (𝐿 ∪ 𝑅), 𝐸⟩, a bi-triangle is a cycle
containing 6 vertices 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ 𝑉 , where three of them are in 𝐿 and the other three are in 𝑅,

and edges (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑), (𝑑, 𝑒), (𝑒, 𝑓), (𝑓 , 𝑎) ∈ 𝐸. We use the notation 𝑎-𝑏-𝑐-𝑑-𝑒-𝑓 -𝑎 to represent

such a bi-triangle.

Similar to the case of butterflies, we use 𝐺 (or simply when 𝐺 is clear from the context) to

denote the bi-triangle count in 𝐺 , 𝑣 for the number of bi-triangles containing vertex 𝑣 , and 𝑆

for the number of bi-triangles covering all vertices in subgraph 𝑆 .

Definition 2.3 (Wedge). Given graph𝐺 = ⟨𝑉 , 𝐸⟩, a wedge is a 3-path consisting of three arbitrary

vertices 𝑎, 𝑏, 𝑐 ∈ 𝑉 and two edges (𝑎, 𝑏) and (𝑏, 𝑐) connecting them.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite Networks 259:5

u1 u2 u3

v1 v2 v3 v4 v5

u4 u5

v6

Fig. 2. An example of a bipartite graph

Example 2.4. As an example, Fig. 2 shows a bipartite graph𝐺 , in which 𝐿 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5} and
𝑅 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}. Vertices 𝑢1, 𝑣1, 𝑢2 form a wedge, and vertices 𝑢1, 𝑢2, 𝑣1, 𝑣2 form a butterfly.

Meanwhile, there are two bi-triangles, both containing the same set of vertices 𝑢1, 𝑢2, 𝑢3, 𝑣1, 𝑣2, 𝑣3:

𝑢1-𝑣1-𝑢2-𝑣2-𝑢3-𝑣3-𝑢1 and 𝑢1-𝑣1-𝑢2-𝑣3-𝑢3-𝑣2-𝑢1. For the whole bipartite graph 𝐺 , we have = 8 and

= 8. If we restrict our focus to a particular set of vertices, say, 𝑆 = {𝑢1, 𝑢2}, then 𝑢1,𝑢2
= 3.

Frequently used notations are summarized in Tab. 1. Following previous work [55], when

estimating the number of motifs, we aim to provide estimates that satisfy the following definition.

Such a definition is also widely used in other studies, like personalized PageRank [27, 78, 79], graph

clustering [54, 86], influence maximization [22, 23, 66], and data analytics [13, 14, 40, 46].

Definition 2.5 ((𝜖, 𝛿)−approximation). Given parameters 𝜖, 𝛿 ∈ [0, 1], an estimation𝑍 of a variable

𝑍 is an (𝜖, 𝛿)-approximation of 𝑍 if 𝑃𝑟 [|𝑍 − 𝑍 | > 𝜖 · |𝑍 |] ≤ 𝛿 .

2.2 State of the Art
Butterfly Counting. Since a butterfly is essentially a cycle of length 4, the total number of

butterflies in a bipartite graph 𝐺 can reach 𝑂 (𝑚2), where𝑚 denotes the number of edges in 𝐺 .

Consequently, when𝑚 is large, simply enumerating all possible butterflies in 𝐺 incurs prohibitive

costs. Wang et al. [72] present an optimized algorithm for exact butterfly counting that avoids the

exhaustive enumeration of all butterflies. However, this method still has a rather high computational

overhead, as shown in the previous work [72]. Wang et al. [76] propose a vertex-priority-based

exact butterfly counting method, which improves upon the previous layer-priority-based algorithm,

and further exploits a cache-aware policy to reduce costs. However, their algorithm still demands

𝑂 (𝑚1.5) running time and takes close to 1,000 seconds (i.e., 16 minutes) to complete on a large

graph of around half a billion edges according to their experiments. As a result, for massive graphs

and applications that do not necessitate exact counting values, approximate butterfly counting

algorithms are more suitable due to their higher efficiency.

Sanei et al. [55] propose to estimate the number of butterflies in a given 𝐺 = ⟨𝑉 = (𝐿, 𝑅), 𝐸⟩
through local sampling, which includes vertex sampling, edge sampling, and wedge (see Definition

2.3) sampling. Take vertex sampling for example. First, the method samples a vertex𝑢 ∈ 𝑉 uniformly

at random. Then, it computes the exact number of butterflies containing 𝑢, and subsequently

multiplies this count by 𝑛/4 to obtain an unbiased estimate of the total number of butterflies in 𝐺 .

Note that this method does not utilize the fact that 𝐺 is a bipartite graph. In particular, vertex 𝑢 is

sampled from the combined vertex set 𝑉 , regardless of whether 𝑢 comes from 𝐿 or 𝑅. Similarly, in

their edge sampling and wedge sampling approaches, the fact that the given graph 𝐺 is bipartite is

largely irrelevant. Their experiments show that a variant of edge sampling, referred to as FastEdge,
is the most performant among all their local sampling techniques.

Bi-triangle Counting. Yang et al. [84] investigate the problem of exact bi-triangle counting

on large bipartite networks. Among their solutions, the most efficient one is RSWJ-count, which

represents each bi-triangle as a so-called RSWJ-unit. In addition, they design two efficient algorithms,

V-LCount and E-LCount, for counting bi-triangles containing a given vertex or edge, respectively.

Unfortunately, RSWJ-count still takes over 10,000 seconds (i.e., 2.7 hours) on a large bipartite graph,

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

259:6 Fangyuan Zhang et al.

Table 1. Frequently used notations.

Notation Description
𝐺 = ⟨𝑉 , 𝐸⟩ a bipartite graph that consists of vertex set 𝑉 and edge set 𝐸

𝑛,𝑚 the number of nodes and edges, respectively

𝐿, 𝑅 two disjoint vertex subsets of 𝑉

𝑒 = (𝑢, 𝑣) an edge 𝑒 between vertices 𝑢 and 𝑣

𝑁 [𝑣], 𝑑𝑣 the set of neighbors of 𝑣 , the degree of 𝑣

𝜉𝑆 the intersection size of neighbors for each vertex in S

𝑆 the number of butterflies contain all vertices in 𝑆

𝐺 the number of butterflies in 𝐺

𝑆 the number of bi-triangles contain all vertices in 𝑆

𝐺 the number of bi-triangles in 𝐺

according to the experiments of previous work [84]. To our knowledge, there does not yet exist an

efficient and accurate solution for approximate bi-triangle counting.

3 APPROXIMATE BUTTERFLY COUNTING
This section presents our novel local sampling algorithms for approximate butterfly counting in a

bipartite graph 𝐺 . In general, the workflow of local sampling is as follows: (i) start with a set of

subgraphs of the same type, (ii) sample an element 𝑆 from this set, (iii) compute the number of

butterflies 𝑆 containing 𝑆 , and (iv) derive an unbiased estimator of the total number of butterflies

𝐺 , based on 𝑆 and the size of the subgraph set in Step (i). Observe that Step (iii) is key to the

overall efficiency of the above framework since it is this step that accesses the graph structure of

𝐺 and computes a butterfly count, which is usually the most time-consuming part of the above

workflow. Ideally, given a subgraph 𝑆 drawn in Step (ii), Step (iii) should quickly obtain the local

butterfly count 𝑆 , without enumerating the 𝑆 individual butterflies.
Regarding the accuracy of the local sampling algorithm, assuming that Step (iii) returns an exact

count 𝑆 , and Step (iv) successfully obtains an unbiased estimate for , then the main source of

error is sample variance, which depends on the type of the subgraph 𝑆 . For instance, intuitively

setting 𝑆 to be a single vertex (as is done in the vertex sampling approach [55]) is not a good idea

from the perspective of minimizing sample variance, since a “popular” vertex may form numerous

butterflies, whereas an isolated vertex may not form any butterfly at all, leading to high variance.

A larger sampling unit 𝑆 , such as an edge or a wedge, generally leads to a more stable local count,

as shown in the previous work [55].

Following the above intuitions, we design an effective and efficient solution one-sided pair
sampling, presented in Sec. 3.1, which performs fast local counting by capturing many butterflies

at once, and uses a larger sampling unit (i.e., a vertex pair) with relatively stable local counts. Then,

we further apply the heuristic that vertices with larger degrees generally form more butterflies,

which leads to an optimized weighted one-sided pair sampling algorithm, described in Sec. 3.2.

3.1 One-Sided Pair Sampling
Our proposed algorithm, one-sided pair sampling, exploits the fact that vertices in the input graph

𝐺 = ⟨𝑉 = (𝐿, 𝑅), 𝐸⟩ are split into two “sides”, i.e., 𝐿 and 𝑅. The sampling unit 𝑆 is a pair of vertices

𝑢, 𝑣 on the same side. Without loss of generality, in the following, we assume that 𝑢, 𝑣 ∈ 𝐿, and defer
the discussion on how to choose the appropriate sampling side to Sec. 7. An immediate benefit

of setting the sampling unit 𝑆 to a same-side vertex pair is that the corresponding local count 𝑆

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite Networks 259:7

Algorithm 1: One-Sided-Pair-Sampling(𝐺)

1 Sample a pair 𝑢, 𝑣 (𝑢 ≠ 𝑣) from 𝐿 uniformly at random;

2 𝑢,𝑣 ←−
(𝜉𝑢,𝑣

2

)
;

3 return
(|𝐿 |

2

)
· 𝑢,𝑣 ;

u1 u2

v1 v2 v3

u1 u2

v1 v2 v3

u3 u1 u2

v1 v2 v3 v4

(a) Type 1 (b) Type 2 (c) Type 3

Fig. 3. Three types of butterfly pairs

(which is 𝑢,𝑣 in our case) can be efficiently computed by the intersection of the neighbors of 𝑢 and

𝑣 , i.e., 𝑢,𝑣 =
(𝜉𝑢,𝑣

2

)
without enumerating individual butterflies [72].

According to the above method, the number of butterflies containing the pair 𝑢, 𝑣 is a quadratic

function of 𝜉𝑢,𝑣 . The set intersection 𝑁 [𝑢] ∩ 𝑁 [𝑣] can be performed, e.g., using a hash-based

algorithm. Therefore, with linear costs of computing 𝑁 [𝑢] ∩𝑁 [𝑣], pair sampling captures a quadratic
number of butterflies. Thus, our local counting step is highly efficient. Alg. 1 shows the pseudo-code

for pair sampling, which returns an unbiased estimation of . Here, we briefly explain the intuition

behind the scaling operation in Line 3 of Alg. 1. Assume that the butterflies in the input graph

𝐺 are numbered from 1 to . We use 𝑋𝑖 to indicate whether the 𝑖-th butterfly contains 𝑢 and 𝑣 ,

i.e., 𝑋𝑖 is 1 when the butterfly contains 𝑢 and 𝑣 , and 0 otherwise. Let 𝑋 = 𝑢,𝑣 =
∑

𝑖=1
𝑋𝑖 be the

random variable for the number of butterflies contain 𝑢 and 𝑣 . Because there are
(|𝐿 |

2

)
possible

vertex pairs of 𝑢, 𝑣 ∈ 𝐿, we have Pr[𝑋𝑖 = 1] = 1/
(|𝐿 |

2

)
. In more detail, any butterfly in a bipartite

graph must contain two vertices from side 𝐿. Consider the 𝑖-th butterfly, and assume that the left

side vertices of this butterfly are 𝑢 and 𝑣 . Then, the probability that the randomly sampled two

vertices from 𝐿 are exactly 𝑢 and 𝑣 is 1/
(|𝐿 |

2

)
. According to our sampling strategy, as long as both

𝑢 and 𝑣 are chosen, 𝑋𝑖 = 1 holds; otherwise, 𝑋𝑖 = 0. By the linearity of expectation, we have

E[𝑋] = ∑
𝑖=1
E[𝑋𝑖] = /

(|𝐿 |
2

)
. Hence, by multiplying our local count 𝑢,𝑣 by

(|𝐿 |
2

)
, we obtain an

unbiased estimator for . Let 𝑌𝑃 denote the estimation result of Alg. 1. Then, we arrive at the

following lemma:

Lemma 3.1. E[𝑌𝑃] = .

Next, we derive the variance of 𝑌𝑃 . Let 𝑃2,𝐿 be the number of butterfly pairs (i.e., two different

butterflies in 𝐺) that share two common vertices in 𝐿. For example, in Fig. 3, suppose that 𝐿 =

{𝑢1, 𝑢2, 𝑢3} and 𝑅 = {𝑣1, 𝑣2, 𝑣3}. Then, in Fig. 3(a), the two butterflies containing {𝑢1, 𝑢2, 𝑣1, 𝑣2} and
{𝑢1, 𝑢2, 𝑣2, 𝑣3} respectively share the same two vertices 𝑢1, 𝑢2 ∈ 𝐿. Similarly, the two butterflies in

Fig. 3(c), shown in solid and dashed lines, share the same two vertices 𝑢1, 𝑢2 ∈ 𝐿. Thus, these two
types of butterflies are counted towards 𝑃2,𝐿 . On the other hand, the same cannot be said for the

two butterflies in Fig. 3(b), with vertex sets {𝑢1, 𝑢2, 𝑣1, 𝑣2} and {𝑢2, 𝑢3, 𝑣2, 𝑣3} respectively, since they
only overlap on one vertex 𝑢2. We have the following result on the variance of pair sampling.

Lemma 3.2. Var[𝑌𝑃] ≤
(|𝐿 |

2

) (
+ 𝑝2,𝐿

)
.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

259:8 Fangyuan Zhang et al.

Proof. The variance of 𝑌𝑃 can be analyzed by the sum of 𝑋𝑖 , which can be written as follows:

Var[𝑌𝑃] = Var[
(|𝐿 |

2

) ∑︁
𝑖=1

𝑋𝑖] =
(|𝐿 |

2

)2

Var[
∑︁
𝑖=1

𝑋𝑖] =
(|𝐿 |

2

)2

(∑︁
𝑖=1

Var[𝑋𝑖] +
∑︁
𝑖≠𝑗

Cov

(
𝑋𝑖 , 𝑋 𝑗

))
=

(|𝐿 |
2

)2

((
E[𝑋 2

𝑖] − E[𝑋𝑖]2
)
+

∑︁
𝑖≠𝑗

(
E[𝑋𝑖𝑋 𝑗] − E[𝑋𝑖]E[𝑋 𝑗]

))
=

(|𝐿 |
2

)2 ©­« ©­« 1(|𝐿 |
2

) − 1(|𝐿 |
2

)2

ª®¬ +
∑︁
𝑖≠𝑗

(
E[𝑋𝑖𝑋 𝑗] − E[𝑋𝑖]E[𝑋 𝑗]

)ª®¬ .
Consider the butterfly pair (𝑖, 𝑗): If butterfly 𝑖 and 𝑗 do not share any vertex, it is impossible for 𝑢,𝑣

to compute butterfly 𝑖 and 𝑗 at the same time. In this case, E[𝑋𝑖𝑋 𝑗] = 0,Cov

(
𝑋𝑖 , 𝑋 𝑗

)
= −1/

(|𝐿 |
2

)2

.

For the case where 𝑖 and 𝑗 share only one vertex and one edge, the corresponding Cov

(
𝑋𝑖 , 𝑋 𝑗

)
is the

same as above. Next, we consider that butterfly 𝑖 and 𝑗 both contain 𝑢, 𝑣 (refer to Fig. 3(a)and(c)), in

which case the vertices on the other side may be three or four. In both cases, their covariances are the

same and can be computed as follows: E[𝑋𝑖𝑋 𝑗] = Pr[𝑋𝑖 = 1]Pr[𝑋 𝑗 = 1|𝑋𝑖 = 1] = 1/
(|𝐿 |

2

)
·1 = 1/

(|𝐿 |
2

)
,

Cov

(
𝑋𝑖 , 𝑋 𝑗

)
= 1/

(|𝐿 |
2

)
− 1/

(|𝐿 |
2

)2

. Let 𝑃2,𝐿 denote the number of butterfly pairs that share the same

two vertices in side 𝐿. Then, Var[𝑌𝑃] can be written as:(|𝐿 |
2

)2 ©­« ©­« 1(|𝐿 |
2

) − 1(|𝐿 |
2

)2

ª®¬ + 𝑃2,𝐿 ·
1(|𝐿 |
2

) − (
2

)
· 1(|𝐿 |

2

)2

ª®¬ ≤
(|𝐿 |

2

) (
+ 𝑃2,𝐿

)
−

(
2

)
≤

(|𝐿 |
2

) (
+ 𝑃2,𝐿

)
.

This finishes the proof. □

To reduce the variance of the estimate, we apply the standard approach of running the proposed

pair sampling algorithmmultiple times (say, 𝑡 runs), eachwith an independent sample, and averaging

their results. Let 𝑌𝑃 be the mean value of 𝑡 independent runs. By Chebyshev’s inequality, we have

Pr[|𝑌𝑃 − | ≥ 𝜖] ≤ Var[𝑌𝑃]
𝜖2 2

≤
(|𝐿 |

2

)
(+ 𝑝2,𝐿)
𝑡𝜖2 2

= 𝑝 𝑓 ,

where 𝜖 is a multiplicative error bound, and the failure probability 𝑝 𝑓 is defined as the right-hand

side of the above inequality. In practice, both 𝜖 and 𝑝 𝑓 are usually fixed to small constants. This

leads to the following result, in which𝑚 is the number of edges in 𝐺 , and 𝜖 , 𝑝 𝑓 are considered

constants in the big-𝑂 notation.

Lemma 3.3. By setting 𝑡 =
(|𝐿 |

2

)
(+𝑝2,𝐿)

𝑝𝑓 ·𝜖2
2

= 𝑂

(
|𝐿 |2

(
1 + 𝑃2,𝐿

))
, we obtain an 𝜖-error estimate for the

number of butterflies in 𝑂
(
|𝐿 |𝑚

(
1 + 𝑃2,𝐿

))
expected time with 1 − 𝑝 𝑓 probability.

Proof. We choose 𝐿 as the sampled side. First, calculate the size of the intersection of neighbors

of 𝑢 and neighbors of 𝑣 via hashing. The algorithm runs in 𝑂 (𝑑𝑢 + 𝑑𝑣). Hence, the expected time

for each sample is = 𝑂
(

¯𝑑𝐿
)
, where

¯𝑑𝐿 is the average degree of 𝐿, which equals
𝑚
|𝐿 | . Since we need

to sample 𝑡 =

(|𝐿 |
2

)
(+𝑃2,𝐿)

𝑝𝑓 𝜖
2

2
times, the total expected time complexity is 𝑂

(
|𝐿 |𝑚

(
1 + 𝑃2,𝐿

))
. □

To further reduce the failure probability 𝑝 𝑓 , we can apply the median trick [33], which runs 𝑐 sets

of sampling, each with 𝑡 independent samples as described above, and returns the median result

among the 𝑐 sets. It can be shown that this brings down 𝑝 𝑓 by a factor of 1/𝐶 with 𝑐 = 𝑂 (log𝐶). In

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite Networks 259:9

Algorithm 2:Weigted-One-Sided-Pair-Sampling(𝐺)

1 Sample a vertex 𝑢 ∈ 𝐿 with probability 𝑑𝑢/𝑚, and a vertex 𝑣 ∈ 𝐿 with probability 𝑑𝑣/𝑚;

2 if u == v then return 0;

3 𝑢,𝑣 ←−
(𝜉𝑢,𝑣

2

)
;

4 return 𝑚2

2𝑑𝑢𝑑𝑣
· 𝑢,𝑣 ;

practice, 𝑝 𝑓 is usually a pre-defined constant, e.g., 1/32 in [55], from which we obtain the values of

𝑐 and 𝑡 accordingly. We follow their setting of 𝑝 𝑓 .

3.2 Weighted One-Sided Pair Sampling
Recall from Sec. 3.1 that a main advantage of the pair sampling algorithm is that it captures

a quadratic number of butterflies (i.e., 𝑢,𝑣 =
(𝜉𝑢,𝑣

2

)
, for vertex pair 𝑢, 𝑣 ∈ 𝐿) in linear time (by

computing 𝜉𝑢,𝑣), leading to significant cost savings. Observe that the amount of cost savings here is

amplified by a large value of 𝜉𝑢,𝑣 , due to the quadratic relationship. This motivates us to sample

pairs of vertices with a large common neighbor set with higher probabilities, so as to capture an

even larger number of butterflies at once.

Yet, the size of the intersection set 𝜉𝑢,𝑣 is unknown in advance, and pre-computing their values

is clearly infeasible, which takes Ω(|𝐿 |2) time and space. Hence, we cannot sample a pair 𝑢, 𝑣

with probability based precisely on the unknown 𝜉𝑢,𝑣 . As a heuristic, we instead sample 𝑢 and 𝑣

independently, with probabilities proportional to 𝑑𝑢 = |𝑁 [𝑢] | and 𝑑𝑣 = |𝑁 [𝑣] |, respectively. This
leads to our weighted one-sided pair sampling algorithm, shown in Alg. 2. Specifically, the algorithm

assigns a sampling probability of
𝑑𝑢
𝑚

to each vertex 𝑢 ∈ 𝐿 (Line 1), where𝑚 is the number of edges

in 𝐺 . Note that since𝐺 is bipartite, the sum of all vertices degrees in 𝐿 equals𝑚, meaning that the

sampling probabilities of all vertices in 𝐿 sum up to 1. Then, the algorithm computes 𝑢,𝑣 in Lines

2-3. By multiplying a factor of𝑚2/(2𝑑𝑢𝑑𝑣), an unbiased estimation can be obtained (Line 4). Next,

we explain why this estimator is unbiased.

Let us focus on scaling the result to obtain an unbiased estimate of for the whole graph 𝐺 .

Similar to the analysis of the pair sampling algorithm in the previous subsection, we use 𝑋𝑖 to

indicate whether the 𝑖-th butterfly contains 𝑢 and 𝑣 . Specifically, 𝑋𝑖 =
1

𝑑𝑢𝑑𝑣
when the butterfly

contains both vertices𝑢 and 𝑣 , and 0 otherwise. Since𝑢, 𝑣 are sampled with probability proportional

to their degrees, we derive E[𝑋𝑖] = 1

𝑑𝑢𝑑𝑣
· 2𝑑𝑢𝑑𝑣

𝑚2
= 2

𝑚2
. Define random variable 𝑋 =

∑
𝑖=1

𝑋𝑖 . Clearly,

E[𝑋] = ∑
𝑖=1
E[𝑋𝑖] = 2 · /𝑚2

. Let 𝑌𝑊𝑃 be the random variable of the result of Alg. 2. Then, we

have 𝑌𝑊𝑃 = 𝑋 ·𝑚2/2, which leads to the following lemma.

Lemma 3.4. E[𝑌𝑊𝑃] = .

Example 3.5. Consider the bipartite graph 𝐺 in Fig. 2. Suppose we sample vertices from 𝐿 =

{𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}, where the degree of each vertex is 𝐿 is {4, 3, 4, 2, 2}, respectively. Assume that we

sampled 𝑢2 with a probability of 3/15 and another vertex 𝑢3 with a probability of 4/15. Then we

calculate 𝑢1,𝑢2
= 1. By multiplying a factor of 15

2/24, we get an estimation of which is 9.375. We

can get a more accurate estimation result by sampling multiple times.

The variance of 𝑌𝑊𝑃 can be derived in a similar way as that of 𝑌𝑃 in the previous subsection. In

particular, given the 𝑖-th butterfly, let 𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣 be the product of the degrees of its two vertices in 𝐿

(note that a butterfly always contains exactly two vertices from 𝐿). Let 𝑆𝑃2,𝐿 be the set of butterfly

pairs that share the same two vertices in 𝐿 (note that 𝑆𝑃2,𝐿 is a set rather than a count, as is the

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

259:10 Fangyuan Zhang et al.

case for 𝑃2,𝐿 in the previous subsection). Given a butterfly pair 𝑝 , we define 𝑑
(𝑝)
𝑢 𝑑

(𝑝)
𝑣 as the product

of the degrees of the shared two vertices on the left side of 𝑝 . Then, we derive an upper bound for

the variance of 𝑌𝑊𝑃 , as follows.

Lemma 3.6. Var[𝑌𝑊𝑃] ≤ 𝑚2

2

(∑
𝑖=1

1

𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣

+∑
𝑝∈𝑆𝑃2,𝐿

1

𝑑
(𝑝)
𝑢 𝑑

(𝑝)
𝑣

)
.

Proof. Var[𝑌𝑊𝑃] can be written as follows:(
𝑚4

4

)
Var[

∑︁
𝑖=1

𝑋𝑖] =
(
𝑚4

4

) (
2

𝑚2

(∑︁
𝑖=1

(
1

𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣

− 2

𝑚2

))
+

∑︁
𝑖≠𝑗

(
E[𝑋𝑖𝑋 𝑗] − E[𝑋𝑖]E[𝑋 𝑗]

))
.

In the last equality, 𝑢, 𝑣 are the left vertices of 𝑖-th butterfly. Let’s still consider the butterfly pair

(𝑖, 𝑗): if butterflies 𝑖 and 𝑗 share less than 2 vertices, it is impossible for 𝑢,𝑣 to count butterfly 𝑖

and 𝑗 at the same time. In this case, E[𝑋𝑖𝑋 𝑗] = 0,Cov

(
𝑋𝑖 , 𝑋 𝑗

)
= −4/𝑚4

. Next, we consider that

butterflies 𝑖 and 𝑗 both contain 𝑢, 𝑣 , in which case the vertices on 𝑅 may be three or four. In both

cases, their covariances are the same, so we consider them together. We have:

E[𝑋𝑖𝑋 𝑗] =
2𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣

𝑚2
·
(

1

𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣

)
2

,Cov

(
𝑋𝑖 , 𝑋 𝑗

)
=

2

𝑚2𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣

− 4

𝑚4
.

Let 𝑆𝑃2,𝐿 denote the set of butterfly pairs that share the same two vertices in side 𝐿. Then,Var[𝑌𝑊𝑃]
can be written as:

𝑚4

4

©­« 2

𝑚2

∑︁
𝑖=1

(
1

𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣

− 2

𝑚2

)
+

∑︁
𝑝∈𝑆𝑃2,𝐿

2

𝑚2𝑑
(𝑝)
𝑢 𝑑

(𝑝)
𝑣

−
(

2

)
· 4

𝑚4

ª®¬
=
𝑚2

2

©­«
∑︁
𝑖=1

1

𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣

+
∑︁

𝑝∈𝑆𝑃2,𝐿

1

𝑑
(𝑝)
𝑢 𝑑

(𝑝)
𝑣

ª®¬ − −
(

2

)
≤ 𝑚2

2

©­«
∑︁
𝑖=1

1

𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣

+
∑︁

𝑝∈𝑆𝑃2,𝐿

1

𝑑
(𝑝)
𝑢 𝑑

(𝑝)
𝑣

ª®¬ ,
which finishes our proof. □

To simplify our notations, we define 𝑡1 =
∑

𝑖=1

1

𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣

and 𝑡2 =
∑

𝑝∈𝑆𝑃2,𝐿

1

𝑑
(𝑝)
𝑢 𝑑

(𝑝)
𝑣

. Let 𝑌𝑊𝑃 be the

average of 𝑡 independent calculation of 𝑌𝑊𝑃 . By Chebyshev’s inequality, we have

Pr[|𝑌𝑊𝑃 − | ≥ 𝜖] ≤ Var[𝑌𝑊𝑃]
𝜖2 2

≤ 𝑚2 (𝑡1 + 𝑡2)
2𝑡𝜖2 2

= 𝑝 𝑓 .

This leads to the following lemma. Similar to the case of pair sampling described in the previous

subsection, 𝑝 𝑓 can be reduced via the median trick. We omit further details for brevity.

Lemma 3.7. With 𝑡 = 𝑂
(
𝑚2 (𝑡1 + 𝑡2)/ 2

)
, we obtain an 𝜖-error estimation for the number of

butterflies in 𝑂
(
𝑚(𝑡1 + 𝑡2)𝑑2

𝐿
/ 2

)
expected time with 1 − 𝑝 𝑓 probability, where 𝑑2

𝐿
=

∑
𝑖∈𝐿 𝑑

2

𝑖 .

Proof. Firstly, assume 𝐿 is the sampled side of the graph. Sampling two vertices can be conducted

by using the alias method [71] with𝑂 (1) sampling time or BUS structure [85] in dynamic scenario.

Note that since the probability of a vertex being sampled is greater with a larger degree, the expected

time for a single run of the algorithm is 𝑂

(∑
𝑣∈𝐿

𝑑𝑣
𝑚
· 𝑑𝑣

)
= 𝑂

(
𝑑2

𝐿

𝑚

)
, where 𝑑2

𝐿
=

∑
𝑖∈𝐿 𝑑

2

𝑖 . Since we

sample 𝑡 = 𝑂

(
𝑚2 (𝑡1+𝑡2)
𝑝𝑓 𝜖

2
2

)
times, the total expected time complexity is 𝑂

(
𝑚 (𝑡1 + 𝑡2) 𝑑2

𝐿
/ 2

)
. □

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite Networks 259:11

u1 u2

v1 v2 v3

u3 u1 u2

v1 v2 v3

u3

v4

u1 u2

v1 v2 v3

u3

v4 v5

u1 u2

v1 v2 v3

u3

v4 v5 v6

(a) Type 1 (b) Type 2 (c) Type 3 (d) Type 4

Fig. 4. Four types of bi-triangle pairs

Notice that the alias sampling structure [71] can be constructed in 𝑂 (|𝐿 |) time when loading

the input graph. The following theorem states that under a power-law random bipartite graph

model, to be detailed in Sec. 6.1, our main proposal, weighted pair sampling, is expected to be

more efficient than both the current state-of-the-art FastEdge [55] and the one-sided pair sampling

method described in Sec. 3.1, under comparable accuracy and failure probability levels.

Theorem 3.8. Under the power-law random bipartite graph model (refer to Sec. 6.1), with the same
error bound and failure probability for approximate butterfly counting, the ratio between the total
running time of FastEdge and weighted pair sampling is 𝑂 (𝑚/𝑛) with high probability; the ratio
between the running time of pair sampling and weighted pair sampling is 𝑂

(
|𝐿 |Δ2/𝑑2

𝐿

)
with high

probability.

All omitted proofs can be found in our technical report [2]. According to the above theorem,

since typically 𝑚 > 𝑛 and 𝑑2

𝐿
=

∑
𝑣∈𝐿 𝑑

2

𝑣 < |𝐿 |Δ2
(𝑑2

𝐿
is defined in Lem. 3.7, Δ is the maximum

degree of 𝐿 in the power-law random bipartite graph model), weighted pair sampling is expected

to outperform both FastEdge and pair sampling. The detailed derivations can be found in Sec. 6.

4 APPROXIMATE BI-TRIANGLE COUNTING
4.1 Baseline Methods
Although there is no known work that specifically studies the problem of approximate bi-triangle

counting, it is possible to combine local sampling schemes designed for approximate butterfly

counting with exact solutions for bi-triangle counting, both described in Sec. 2.2. Thus, we establish

a few baseline solutions with such combinations. The local sampling methods overviewed in Sec. 2.2

include vertex sampling, edge sampling, and wedge sampling. Unlike the case for butterfly counting,

however, computing the number of bi-triangles is rather expensive given a sampled vertex, edge,

or wedge. This issue can be mitigated via the specialized V-LCount (resp. E-LCount) algorithm

[84] for exact bi-triangle counting with a given vertex (resp. edge), with simple adaptations. For

wedge sampling, although neither V-LCount nor E-LCount applies, we can design an algorithm by

adapting WJ-Count [84] for this purpose.

Even with the help of these specialized counting algorithms, local sampling still incurs consider-

able computational overhead, especially with a large number of samples necessary for obtaining

high accuracy, as shown later in our experiments in Sec. 7. Similar to the case of butterfly counting,

the root cause is that the local sampling solutions of previous work [55] are direct adaptations

of methods designed for general, unipartite graphs, which fail to exploit the special properties of

bipartite graphs. Hence, we propose to extend our weighted pair sampling to bi-triangle counting,

which leads to a weighted triple sampling algorithm, presented next. Of course, it is also natural

to extend our unweighted pair sampling method to the unweighted triple sampling method. We

will compare such an extension as well in our experiment. For the interest of space, we omit the

discussion of the unweighted case.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

259:12 Fangyuan Zhang et al.

4.2 Weighted One-Sided Triple Sampling
Similar to weighted pair sampling described in Sec. 3.2, we sample vertices from one side (say,

𝐿) of the input bipartite graph 𝐺 , with probabilities proportional to their degrees. Here, a bi-

triangle involves three vertices on each side; hence, we sample three vertices 𝑢, 𝑣,𝑤 ∈ 𝐿. The

neighbor lists of these vertices form an intersection set 𝑁 [𝑢] ∩ 𝑁 [𝑣] ∩ 𝑁 [𝑤], as well as 3 pair-
wise intersections: 𝑁 [𝑢] ∩ 𝑁 [𝑣],𝑁 [𝑢] ∩ 𝑁 [𝑤], 𝑁 [𝑣] ∩ 𝑁 [𝑤]. Recap that 𝜉𝑢,𝑣 = |𝑁 [𝑢] ∩ 𝑁 [𝑣] |
and 𝜉𝑢,𝑣,𝑤 = |𝑁 [𝑢] ∩ 𝑁 [𝑣] ∩ 𝑁 [𝑤] |. The number of bi-triangles 𝑢,𝑣,𝑤 containing 𝑢, 𝑣,𝑤 can be

computed through the cardinalities of these intersection sets, as follows.

Lemma 4.1 ([84]). Given three vertices 𝑢, 𝑣,𝑤 ∈ 𝐿, the number of bi-triangles containing these
vertices 𝑢,𝑣,𝑤 can be computed by: 𝜉𝑢,𝑣 · 𝜉𝑣,𝑤 · 𝜉𝑤,𝑢 − (𝜉𝑢,𝑣 · 𝜉𝑣,𝑤 + 𝜉𝑢,𝑣 · 𝜉𝑤,𝑢 + 𝜉𝑣,𝑤 · 𝜉𝑤,𝑢 − 2)𝜉𝑢,𝑣,𝑤 .

Alg. 3 shows the pseudo-code for weighted triple sampling, which performs sampling in Line 1

and local counting in Lines 2-3. We focus on the scaling step in Line 4, which obtains an unbiased

estimate for the bi-triangle count in𝐺 . Assume that the bi-triangles are numbered from 1 to .

We define 𝑋𝑖 such that 𝑋𝑖 =
1

𝑑𝑢𝑑𝑣𝑑𝑤
when the 𝑖-th butterfly contains 𝑢, 𝑣,𝑤 , and 𝑋𝑖 = 0 otherwise.

Then, we derive that E[𝑋𝑖] = 1

𝑑𝑢𝑑𝑣𝑑𝑤
· (3!)𝑑𝑢𝑑𝑣𝑑𝑤

𝑚3
= 6

𝑚3
. Let 𝑋 = 𝑢,𝑣,𝑤 =

∑
𝑖=1

𝑋𝑖 be the sum of

random variables. We have E[𝑋] = ∑
𝑖=1
E[𝑋𝑖] = 6 ·

𝑚3
. Let 𝑌𝑊𝑇 denote the random variable

corresponding to the result of Alg. 3. Clearly, 𝑌𝑊𝑇 = 𝑋 · 𝑚3

6
, which leads to the following result.

Lemma 4.2. E[𝑌𝑊𝑇] = .

The variance of 𝑌𝑊𝑇 can be derived by the sum of 𝑋𝑖 . Let 𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣 𝑑

(𝑖)
𝑤 be the product of the

degrees of the three vertices in 𝐿 for the 𝑖-th bi-triangle. Let 𝑆𝑃3,𝐿 be the set of bi-triangle pairs

that share the same three vertices in 𝐿. Fig. 4 shows examples of bi-triangle pairs that share three

vertices in 𝐿 = {𝑢1, 𝑢2, 𝑢3}; in all 4 examples, one bi-triangle is 𝑢1-𝑣1-𝑢2-𝑣2-𝑢3-𝑣3-𝑢1, and the other is

shown in dashed lines. Given a pair 𝑝 ∈ 𝑆𝑃3,𝐿 , we define 𝑑
(𝑝)
𝑢 𝑑

(𝑝)
𝑣 𝑑

(𝑝)
𝑤 be the product of the degrees

of the three vertices in 𝐿 shared by the pair of bi-triangles in 𝑝 . Let 𝑡3 =
∑

𝑖=1
1/(𝑑 (𝑖)𝑢 𝑑

(𝑖)
𝑣 𝑑

(𝑖)
𝑤) and

𝑡4 =
∑

𝑝∈𝑆𝑃3,𝐿
1/(𝑑 (𝑝)𝑢 𝑑

(𝑝)
𝑣 𝑑

(𝑝)
𝑤), we have the following lemma.

Lemma 4.3. Var[𝑌𝑊𝑇] ≤ 𝑚3

6
(𝑡3 + 𝑡4).

Proof. We analyze the variance of 𝑌𝑊𝑇 by analyzing the pair composed of different bi-triangles.

Var[𝑌𝑊𝑇] can be written as follows:

Var[𝑚
3

6

∑︁
𝑖=1

𝑋𝑖] =
(
𝑚6

36

)
Var[

∑︁
𝑖=1

𝑋𝑖] =
(
𝑚6

36

) (
6

𝑚3

(∑︁
𝑖=1

(
1

𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣 𝑑

(𝑖)
𝑤

− 6

𝑚3

))
+

∑︁
𝑖≠𝑗

Cov

(
𝑋𝑖 , 𝑋 𝑗

))
.

For the last equation, 𝑢, 𝑣,𝑤 are left-side vertices of the 𝑖-th bi-triangle. Consider the bi-triangle pair

(𝑖, 𝑗): If bi-triangles 𝑖 and 𝑗 share less than three vertices on 𝐿, it is impossible for 𝑢,𝑣,𝑤 to compute

bi-triangle 𝑖 and 𝑗 at the same time. In this case, E[𝑋𝑖𝑋 𝑗] = 0,Cov

(
𝑋𝑖 , 𝑋 𝑗

)
= − 36

𝑚6
. If bi-triangles 𝑖

and 𝑗 contain 𝑢, 𝑣,𝑤 , in which case the vertices on the other side may be three to six. In both cases,

the covariances are the same. So we consider them together. The expectation of the product of 𝑋𝑖

and 𝑋 𝑗 is as follows.

E[𝑋𝑖𝑋 𝑗] =
6𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣 𝑑

(𝑖)
𝑤

𝑚3
·
(

1

𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣 𝑑

(𝑖)
𝑤

)
2

=
6

𝑚3𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣 𝑑

(𝑖)
𝑤

.

We have the following result for the covariance of 𝑋𝑖 and 𝑋 𝑗 .

Cov

(
𝑋𝑖 , 𝑋 𝑗

)
= E[𝑋𝑖𝑋 𝑗] − E[𝑋𝑖]E[𝑋 𝑗] =

6

𝑚3𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣 𝑑

(𝑖)
𝑤

− 36

𝑚6
.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite Networks 259:13

Algorithm 3:Weighted-One-Sided-Triple-Sampling(𝐺)

1 Sample vertices 𝑢, 𝑣,𝑤 ∈ 𝐿 with probabilities
𝑑𝑢
𝑚
,
𝑑𝑣
𝑚
,
𝑑𝑤
𝑚
, respectively;

2 if u == v or v == w or u == w then return 0;

3 Compute 𝑢,𝑣,𝑤 according to Lemma 4.1;

4 return 𝑚3

6𝑑𝑢𝑑𝑣𝑑𝑤
· 𝑢,𝑣,𝑤 ;

Then let 𝑆𝑃3,𝐿 denote the set of bi-triangle pairs that share the same three vertices in side 𝐿. The

Var[𝑌𝑊𝑇] can be written as:

𝑚3

6

©­«
∑︁
𝑖=1

1

𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣 𝑑

(𝑖)
𝑤

+
∑︁

𝑝∈𝑆𝑃3,𝐿

1

𝑑
(𝑝)
𝑢 𝑑

(𝑝)
𝑣 𝑑

(𝑝)
𝑤

ª®¬ − −
(

2

)
≤ 𝑚3

6

©­«
∑︁
𝑖=1

1

𝑑
(𝑖)
𝑢 𝑑

(𝑖)
𝑣 𝑑

(𝑖)
𝑤

+
∑︁

𝑝∈𝑆𝑃3,𝐿

1

𝑑
(𝑝)
𝑢 𝑑

(𝑝)
𝑣 𝑑

(𝑝)
𝑤

ª®¬ .
This finishes the proof. □

Let 𝑌𝑊𝑇 be the average of 𝑡 independent calculation of 𝑌𝑊𝑇 . By Chebyshev’s inequality, we have

𝑃𝑟 [|𝑌𝑊𝑇 − | ≥ 𝜖] ≤ Var[𝑌𝑊𝑇]
𝜖2 2

≤ 𝑚3 (𝑡3 + 𝑡4)
6𝑡𝜖2 2

= 𝑝 𝑓 .

Hence, we arrive at the following lemma.

Lemma 4.4. With 𝑡 = 𝑂
(
𝑚3 (𝑡3 + 𝑡4)/ 2

)
, we obtain an 𝜖-error estimation for the number of

butterflies in 𝑂
(
𝑚2 (𝑡3 + 𝑡4)𝑑2

𝐿
/ 2

)
expected time with 1 − 𝑝 𝑓 probability, where 𝑑2

𝐿
=

∑
𝑖∈𝐿 𝑑

2

𝑖 .

Proof. By choosing 𝐿 as the sampled side, the operation of sampling three vertices can be

conducted by using the alias method. The expected time for a single run of the algorithm is

𝑂

(∑
𝑣∈𝐿

𝑑𝑣
𝑚
· 𝑑𝑣

)
= 𝑂

(
𝑑2

𝐿

𝑚

)
. Since we need sample 𝑡 = 𝑂

(
𝑚3 (𝑡3+𝑡4)
𝑝𝑓 𝜖

2
2

)
times, the total expected time

complexity is 𝑂

(
𝑚2 (𝑡3+𝑡4)𝑑2

𝐿
2

)
. □

The following theorem establishes the advantage of weighted triple sampling compared to triple

sampling, under the random graph model that is clarified in Sec. 6.

Theorem 4.5. Under the power-law random bipartite graph model in Sec. 6.1, with the same error
bound and failure probability parameters for approximate bi-triangle counting, the ratio between the
expected running time of triple sampling and weighted triple sampling is 𝑂

(
|𝐿 |2Δ3/𝑑2

𝐿
𝑚

)
with high

probability.

It is easy to verify that𝑚 < |𝐿 |Δ and 𝑑2

𝐿
=

∑
𝑣∈𝐿 𝑑

2

𝑣 < |𝐿 |Δ2
. Therefore, weighted triple sampling

is expected to be faster than triple sampling to reach comparable error levels.

5 APPROXIMATE CLUSTERING COEFFICIENT
Next, we show how to integrate our approximate butterfly counting and bi-triangle counting

algorithms for efficient estimation of clustering coefficients with high quality.

Butterfly-based clustering coefficient. The butterfly-based clustering coefficientC is defined

as 4 × 𝐺/ 𝐺 , where 𝐺 denotes the number of butterflies in 𝐺 , and 𝐺 represents the number of

3-paths in 𝐺 . We define (𝑢,𝑣) as the number of 3-paths with a central edge 𝑢, 𝑣 . It is important

to note that the central edge of a given 3-path is unique. For instance, in Fig. 5(a), the 3-path

(𝑢1, 𝑣1, 𝑢2, 𝑣2) has a central edge (𝑣1, 𝑢2). The number of 3-paths in which central edge is (𝑣1, 𝑢2)
can be easily obtained by multiplying the degrees of 𝑢2 and 𝑣1. To compute the total number of

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

259:14 Fangyuan Zhang et al.

u1 u2

v1 v2

u1 u2

v1 v2 v3

(a) Example 3-path (b) Example 4-path

Fig. 5. Bipartite graph motifs: 3-path and 4-path

3-paths in 𝐺 , one can enumerate each edge (𝑢, 𝑣) and accumulate the number of 3-paths with

(𝑢, 𝑣) as the central edge. Yet, this approach still involves traversing the entire graph. Hence, we

propose using sampling to estimate the number of 3-paths. Given the simple structure of 3-paths,

we employ edge sampling to estimate their count. One may use other local samplings to estimate

𝐺 . As 3-path is relatively simple and edge sampling is effective enough, we do not discuss other

estimators. In edge sampling, the sampling unit 𝑆 is an edge 𝑢, 𝑣 ∈ 𝐸. The overall estimation process

consists of uniformly and randomly sampling an edge (𝑢, 𝑣) from 𝐸, then computing the number of

3-paths (𝑢,𝑣) for which 𝑢, 𝑣 is the central edge. By multiplying the local count (𝑢,𝑣) with𝑚/3, we
obtain an unbiased estimator for 𝐺 . We then take the average over multiple samples to reduce

the variance. Then, the approximate butterfly-based clustering coefficient C̃ can be estimated as

C̃ = 4 ×˜𝐺/˜𝐺 , where˜𝐺 and˜𝐺 denote the approximate number of butterflies and 3-paths in𝐺 ,

respectively. ˜𝐺 can be estimated using Alg. 2. In practice, we could allocate equal elapsed time to

both butterfly and 3-path estimation, thereby obtaining estimates for both the numerator and the

denominator. In Sec. 7, we evaluate the performance of approximating the butterfly-based clustering

coefficient, where 3-paths are estimated using edge sampling, and the number of butterflies is

approximated through various local sampling methods.

Bi-triangle-based clustering coefficient. For the calculation of bi-triangle-based clustering

coefficient, we already have an efficient algorithm (Algorithm 3) to approximate the number of

bi-triangles. Based on previous work [84] for the calculation of the bi-triangle-based clustering

coefficient, the bottleneck now is how to quickly count the number of 4-paths centered on 𝐿 or

𝑅. Since the algorithm for calculating the exact number of 4-paths will take 𝑂 (|𝑉 | + 𝛼 |𝐸 |) time

[15], where 𝛼 is the arboricity of 𝐺 . We also developed the corresponding local sampling method

to approximate the number of 4-paths. As mentioned in Sec. 1, the bi-triangle-based clustering

coefficient is particularly concerned with the cohesiveness of a one-sided vertex set. Assume we

want to measure the clustering coefficient of 𝑅. In this case, we can apply the one-sided weighted

pair sampling by sampling two vertices 𝑢, 𝑣 from 𝐿. In this case, 𝑢, 𝑣 will correspond to (𝑢1, 𝑢2) in
Fig. 5(b), and the probability of each vertex being sampled is related to its degree. The number of

4-paths containing 𝑢, 𝑣 can be calculated by 𝜉𝑢,𝑣 ·
[
(𝑑𝑢 − 1) · (𝑑𝑣 − 1) − (𝜉𝑢,𝑣 − 1)

]
, where 𝜉𝑢,𝑣 is the

number of common neighbors of 𝑢 and 𝑣 . We can obtain an unbiased estimator for the 4-paths by

using a factor similar to the weighted one-sided pair sampling for butterfly counting to adjust.

6 THEORETICAL ANALYSIS
Sec. 6.1 presents a power-law random bipartite graph model for the analysis, and Sec. 6.2 presents

the proofs of previous sections.

6.1 Power-Law Random Bipartite Graph Model
Previous research [70] shows that many real bipartite graphs follow the power-law distribution,

similar to the case of unipartite graphs (commonly known as scale-free graphs). Thus, we adapt the

power-law random graph model [4] to bipartite graphs to analyze our algorithms, which allows

us to obtain a fine-grained estimate for certain values that depend upon the graph structure, e.g.,

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite Networks 259:15

𝑃2,𝐿 introduced in Lem. 3.2. With these, we derive more precise bounds on the running time of our

algorithms and that of our competitors.

Given a power-law bipartite graph 𝐺 = ⟨𝑉 = (𝐿, 𝑅) , 𝐸⟩, for any 𝑥 , 𝑦 such that 𝑦 is the number

of vertices with degree 𝑥 in 𝐿, we have log𝑦 = 𝛼 − 𝛽 log𝑥 , i.e., |{𝑣 : 𝑑𝑣 = 𝑥, 𝑣 ∈ 𝐿}| = 𝑦 = 𝑒𝛼

𝑥𝛽 . To

simplify the analysis, we only assume that one side 𝐿 follows the power law. Usually, 0 < 𝛽 < 2, and

𝛼 is the logarithm of the size of the graph. Then, we can construct a power-law random bipartite

graph. First, we generate a degree sequence for vertices in 𝐿 with the above degree distribution.

Next, we randomly connect vertices in 𝑅 based on the degree of each vertex. We let Δ2 > 𝑅 be used

to subsequently simplify our analysis, where Δ is the maximum degree of 𝐿. Almost all data from

real graphs satisfy this point, so this assumption is natural. Accordingly, we have

|𝐿 | =
Δ∑︁

𝑥=1

𝑒𝛼

𝑥𝛽
= 𝜁 (𝛽,Δ) 𝑒𝛼 , |𝐸 | =

Δ∑︁
𝑥=1

𝑒𝛼

𝑥𝛽
· 𝑥 = 𝜁 (𝛽 − 1,Δ) 𝑒𝛼 ,

where 𝜁 is a bivariate function: 𝜁 (𝑥,𝑦) = ∑𝑦

𝑖=1

1

𝑖𝑥
. In the following, we omit Δ and use 𝜁 (𝛽) to

denote 𝜁 (𝛽,Δ) if the context is clear.

Lemma 6.1. The 𝜁 function has the following useful properties:

𝜁 (𝛽,Δ) ≤ 𝑐𝛽 𝛽 > 1;

𝜁 (𝛽,Δ) → lnΔ 𝛽 = 1;

(Δ + 1)1−𝛽 − 1

1 − 𝛽 ≤𝜁 (𝛽,Δ) ≤ Δ1−𝛽

1 − 𝛽 0 < 𝛽 < 1;

Δ1−𝛽

1 − 𝛽 ≤𝜁 (𝛽,Δ) ≤
(Δ + 1)1−𝛽 − 1

1 − 𝛽 𝛽 ≤ 0.

6.2 Proofs
Due to limited space, we present a proof sketch of the theorems. Interested readers are referred to

our technical report [2] for details.

Proof sketch of Thm. 3.8. Let’s start by analyzing the variance of pair sampling. According to

Lem. 3.2, Var[𝑌𝑃] ≤
(|𝐿 |

2

) (
+ 𝑃2,𝐿

)
. Since in the random graph model, vertices in 𝐿 and those in

𝑅 are connected randomly. The number of butterflies containing 𝑢, 𝑣 ∈ 𝐿 is derived by common

neighbors of 𝑢, 𝑣 . For the number of common neighbors of 𝑢 and 𝑣 , clearly, 𝜇 = E[𝜉𝑢,𝑣] = 𝑑𝑢 ·𝑑𝑣/|𝑅 |.
We can find it follows a sampling process without replacement. Then we can use Hoeffding’s

inequality [7] (Equation 1) to bound the common neighbors of 𝑢 and 𝑣 with high probability. Let 𝑋

be the random variable of the common neighbors of 𝑢, 𝑣 . For all 𝜖 > 0, we have

Pr[𝑋 − 𝜇 ≥ 𝜖 · 𝑑𝑣] ≤ 𝑒𝑥𝑝
(
−2𝜖2 · 𝑑𝑣

)
. (1)

Let 𝜖 be 𝑐 · 𝑑𝑢/𝑅 with 𝑐 > 0 and take a large enough value for 𝑐 . It allows the common neighbors

of 𝑢, 𝑣 to be 𝑂 (𝑑𝑢𝑑𝑣/|𝑅 |) with high probability. Next, we use union bound so that the common

neighbors of any pair of vertices in 𝐿 are bounded in the corresponding upper value with high

probability. The following analyses are based on events occurring with high probability:

𝑢,𝑣 =
(𝜉𝑢,𝑣

2

)
= 𝑂

(
𝑑2

𝑢𝑑
2

𝑣

|𝑅 |2

)
.

Analogously, we can perform a theoretical analysis of the terms , 𝑃2,𝐿 and obtain the expressions

of the variance of different sampling methods. Detailed analysis can be found in the technical report

[2]. Then, we can compare the running time of different methods with the same parameters for

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

259:16 Fangyuan Zhang et al.

Table 2. Summary of datasets
Dataset type |𝑳 | |𝑹 | |𝑬 | wedges butterflies bi-triangles
Wiki-de authorship 1.03 × 10

06
5.81 × 10

06
5.52 × 10

07
1.81 × 10

12
1.64 × 10

12
2.30 × 10

18

Reuters text 7.81 × 10
05

2.84 × 10
05

6.06 × 10
07

1.55 × 10
12

7.49 × 10
12

2.47 × 10
19

Delicious (Deli) interaction 8.33 × 10
05

4.51 × 10
06

8.20 × 10
07

1.45 × 10
12

2.67 × 10
13

1.76 × 10
20

Gottron text 5.52 × 10
05

1.17 × 10
06

8.36 × 10
07

1.60 × 10
12

1.94 × 10
13

1.07 × 10
20

LiveJournal (LJ) affiliation 3.20 × 10
06

7.49 × 10
06

1.12 × 10
08

2.70 × 10
12

3.30 × 10
12

6.11 × 10
18

Wiki-en authorship 8.12 × 10
06

4.25 × 10
07

2.56 × 10
08

3.37 × 10
13

2.13 × 10
13

1.03 × 10
20

Yahoo rating 1.00 × 10
06

6.25 × 10
05

2.57 × 10
08

4.63 × 10
12

1.01 × 10
14

1.01 × 10
21

Orkut affiliation 2.78 × 10
06

8.73 × 10
06

3.27 × 10
08

2.53 × 10
12

2.21 × 10
13

1.28 × 10
20

error guarantees and failure probabilities. Following the previous work [55], we set 𝑝 𝑓 to 1/32 and

𝜖 to the same value for all algorithms. Further, the ratio of running times costs for edge sampling,

pair sampling, and weighted pair sampling with the same parameters can be calculated as:

Var[𝑌𝐸]
𝑚Δ

𝑛
: Var[𝑌𝑃]

𝑚

|𝐿 | : Var[𝑌𝑊𝑃]
𝑑2

𝐿

𝑚
.

Omit the equation derivation, the ratio between edge sampling and weighted pair sampling is

Var[𝑌𝐸]
𝑚Δ

𝑛
: Var[𝑌𝑊𝑃]

𝑑2

𝐿

𝑚
= 𝑂

(𝑚
𝑛

)
.

The ratio between edge sampling and weighted pair sampling is

Var[𝑌𝑃]
𝑚

|𝐿 | : Var[𝑌𝑊𝑃]
𝑑2

𝐿

𝑚
= 𝑂

(
|𝐿 |Δ2

𝑑2

𝐿

)
.

As𝑚 > 𝑛,𝑑2

𝐿
=

∑
𝑣∈𝐿 𝑑

2

𝑣 ≤ |𝐿 | · Δ2
, we derive that weighted pair sampling should be better than

edge sampling and pair sampling.

7 EXPERIMENTS
We have implemented all proposed algorithms in C++ and conducted an extensive experimental

study comparing their performance in various aspects. The implementations of the competitors are

obtained from their respective authors, and we use hyperparameter settings consistent with those

in their respective papers. Our code is available at [2]. All experiments are conducted on a Linux

machine with an Intel Xeon CPU @ 2.30GHz and 384GB memory.

7.1 Experimental Settings
Datasets. In the experiments, we use eight real large bipartite networks (available in KONECT [1]),

commonly used in previous work [55, 84]. Among these, Reuters and Gottron are text networks;

Wiki-de and Wiki-en are authorship networks; LiveJournal and Orkut are affiliation networks;

Deli is an interaction network; Yahoo is a rating network. Following previous works [55, 84], we

perform the following preprocessing steps for each dataset: removing self-loops and duplicate

edges, converting to an undirected graph, relabeling vertex IDs to 1, 2, ..., 𝑛. Tab. 2 shows statistics

on these datasets.

Algorithms. We include the following algorithms in our experimental comparisons: (a) Pair

Sampling (Algorithm 1), Weighted Pair Sampling (Algorithm 2), and the current state-of-the-

art algorithm FastEdge [55] for approximate butterfly counting, which outperforms all other

methods of previous work [55] according to their experiments. (b) The local sampling algorithms

for approximate bi-triangle counting, described in Sec. 4, which include Vertex Sampling, Edge

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite Networks 259:17

Pair Sampling Weighted Pair SamplingFastEdge

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

(a) Wiki-de (b) Reuters (c) Delicious (d) Gottron

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

(e) LiveJournal (f) Wiki-en (g) Yahoo (h) Orkut

Fig. 6. Relative error vs running time, for approximate butterfly counting

BFC-VP++

RSWJ-Count

Weighted Pair SamplingWeighted Pair Sampling

Weighted Triple Sampling

0.01

0.1

1

10

10
2

10
3

10
4

10
5

wiki−de Reuters Deli Gottron LJ wiki−en Yahoo Orkut

running time (s)

Fig. 7. Time to calculate the number of motifs: exact algorithm and approximate algorithm to obtain 1%
relative error.

Sampling, Wedge Sampling, Triple Sampling, and Weighted Triple Sampling. (c) The state-of-the-

art exact butterfly counting algorithm (BFC-VP
++
) [76] and the state-of-the-art exact bi-triangle

counting algorithm (RSWJ-Count) [84]. The implementations of FastEdge, BFC-VP
++
, and RSWJ-

Count are provided by their respective inventors and are all implemented in C++. Following

FastEdge [55], we exclude graph loading time in the experimental results. Note that FastEdge

additionally incurs a high preprocessing cost as it needs to compute the sum of degrees of all

neighbors of each vertex in 𝑉 . In contrast, as mentioned in Sec. 3.2, our method only involves

building an alias structure [71] for one-sided vertex set for weighted sampling, which can be done

when loading the graph. In our experiment, we omit the preprocessing time of FastEdge and only

report their sampling performance for comparison.

EvaluationMetrics and Parameters. Following previouswork [55], for local samplingmethods,

each reported relative error is computed as the mean value of the results of multiple independent

runs of its corresponding algorithm, each drawing one sample. More runs lead to lower error

but increase the total running time. Thus, the result is presented as relative error over time. For

each algorithm and each setting, we report the median results of 𝑐 = 50 sets of experiments, each

with multiple independent runs as described above. For all proposed algorithms with one-sided

sampling, we choose the side corresponding to the smaller one of 𝑑2

𝐿
, 𝑑2

𝑅
as the sampling side, where

𝑑2

𝐿
=

∑
𝑣∈𝐿 𝑑

2

𝑣 and 𝑑
2

𝑅
=

∑
𝑣∈𝑅 𝑑

2

𝑣 . To explain, in Thm, 3.8 and Thm. 4.5, it is clear that the sampling

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

259:18 Fangyuan Zhang et al.

Pair Sampling Weighted Pair SamplingFastEdge

0.01

0.1

1

10

5 10 20 40 80

Time (s)

Density (%)

0.01

0.1

1

10

5 10 20 40 80

Time (s)

Density (%)

(a) Gottron (b) Orkut

Fig. 8. Density vs running time to obtain 1% relative error, for approximate butterfly counting

complexity depends on 𝑑2

𝐿
if 𝐿 is the sampling side. Hence, we choose the side with smaller value.

We also want to emphasize that the choice of the side to be sampled can be efficiently decided

during the graph loading process. In case the sampling is done on sub-graphs of the input graph,

e.g., sub-graphs returned by different community search algorithms, this still can be done when

outputting the sub-graphs.

7.2 Evaluation Results
Approximate butterfly counting. Fig. 6 plots the relative error (as a percentage) as a function of

total running time for all local sampling algorithms for approximate butterfly counting, FastEdge,

Pair Sampling, and Weighted Pair Sampling, on all datasets. The results demonstrate that the

proposedWeighted Pair Sampling consistently achieves the best performance among all competitors,

in all settings. In particular, with the same total sampling time, the error of Weighted Pair Sampling

is usually at least one order of magnitude smaller than that of FastEdge. To reach the same error,

the running time of Weighted Pair Sampling is usually two orders of magnitude smaller than that

of FastEdge. This confirms the highly competitive effectiveness and efficiency of the proposed

Weighted Pair Sampling approach. We observe that Pair Sampling does not always outperform

FastEdge, e.g., the two show similar performance on datasets Wiki-de and Yahoo. Manual inspection

reveals that the reason that Pair Sampling performs relatively poorly in these settings is exactly

the motivation for Weighted Pair Sampling. In particular, in these datasets, a large number of

butterflies contain high-degree vertices, which might be missed by Pair Sampling but are captured

by Weighted Pair Sampling with high probability. Our main proposal, Weighted Pair Sampling,

always demonstrates the best performance among all competitors. In Fig. 7, we also report the

running time of the state-of-the-art exact butterfly counting algorithm BFC-VP
++

as a comparison.

We report the running time of the Weighted Pair Sampling method in Fig. 7 when it has a relative

error of no more than 1% for each dataset. The results show that Weighted Pair Sampling achieves

up to three orders of magnitude speed-up over the exact algorithm while still maintaining high

accuracy with a relative error of less than 1%.

We further test the single-round running time and show the average variance for each local

sampling algorithm. We observe that our Weighted Pair Sampling has a similar average variance

as FastEdge, both of which are smaller than Pair Sampling. Yet, as we discussed in Sec. 3.2, the

sampling time depends on both the variance and the single-round sampling time. BothWeighted Pair

Sampling and Pair Sampling have far lower single-round running time than FastEdge, making them

more efficient than FastEdge when achieving the same accuracy. Due to limited space, interested

readers are referred to our technical report [2] for more details.

Impact of graph density. In this set of experiments, we examine the impact of graph density on

all local sampling methods. Due to limited space, we focus on butterfly counting and compare the

Weighted Pair Sampling, Pair Sampling, and FastEdge with varying graph density. We choose two

representative datasets, Gottron and Orkut, with different scales of edges, and randomly reduce the

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite Networks 259:19

Vertex SamplingVertex Sampling Wedge SamplingWedge Sampling Edge SamplingEdge Sampling Triple SamplingTriple Sampling Weighted Triple SamplingWeighted Triple Sampling

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

(a) Wiki-de (b) Reuters (c) Delicious (d) Gottron

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

(e) LiveJournal (f) Wiki-en (g) Yahoo (h) Orkut

Fig. 9. Relative error vs. running time for approximate bi-triangle counting

graph density by keeping each edge with probability 𝑝 ∈ {5%, 10%, 20%, 40%, 80%}. Fig. 8 shows the
sampling time by different algorithms to get 1% relative error on these two datasets with different

densities. The results show that Weighted Pair Sampling consistently outperforms alternatives in

different densities and is less sensitive to the graph density than Pair Sampling. This shows that our

Weighted Pair Sampling is the favorable choice under different datasets with different densities.

Approximate bi-triangle counting. Fig. 9 shows the performance of different local sampling

algorithms on all datasets, including Vertex Sampling, Edge Sampling, Wedge Sampling, Triple

Sampling, and Weighted Triple Sampling, for approximate bi-triangle counting. Since bi-triangle is

a more complex motif, local sampling algorithms for estimating bi-triangle counts generally require

longer running times than those for approximate butterfly counting to reach a comparable error

level. The results clearly demonstrate that the proposed Weighted Triple Sampling consistently

and significantly outperforms all other methods. In Fig. 7, we also report the running time of the

state-of-the-art exact bi-triangle counting algorithm RSWJ-Count as a comparison. We report the

running time of the Weighted Triple Sampling method when it achieves a relative error less than

1%. The results highlight that Weighted Triple Sampling demonstrates a remarkable speed-up, up

to four orders of magnitude, over the exact algorithm while ensuring high accuracy. We also test

the single-round running time of each sampling method. Due to limited space, interested readers

are referred to our technical report [2] for the details.

Approximate clustering coefficient. We use BFCC (resp. BTCC) to denote the butterfly-based

(resp. bi-triangle-based) clustering coefficient. Fig. 10 shows the performance of the proposed BFCC

estimation algorithm in Sec. 5 against alternatives. The experimental results show that our proposed

solution significantly outperforms alternatives for estimating BTCC on all tested datasets when

achieving the same accuracy. For the BTCC, we test the performance on the same side as that in

approximate bi-triangle counting (Fig. 7). Fig. 11 shows the performance of our proposed solution

for BTCC estimation against alternatives. This leads to similar conclusions as in the case of the

approximate BFCC.

For the exact BFCC, we use BFC-VP
++

to count the exact number of butterflies and spend 𝑂 (𝑚)
time to derive the exact number of 3-paths following [5]. For the exact BTCC, we use RSWJ-Count

to derive the exact number of bi-triangles and count the exact number of 4-paths using the method

of previous work [84], which takes𝑂 (|𝑉 | + 𝛼 |𝐸 |) time. As we can see, the proposed framework can

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

259:20 Fangyuan Zhang et al.

Pair Sampling Weighted Pair SamplingFastEdge

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.0625 0.25 1 4 16

Error (%)

running time (s)

(a) Wiki-de (b) Reuters (c) Delicious (d) Gottron

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.0625 0.25 1 4 16

Error (%)

running time (s)

(e) LiveJournal (f) Wiki-en (g) Yahoo (h) Orkut

Fig. 10. Relative error vs. running time for BFCC

Vertex SamplingVertex Sampling Wedge SamplingWedge Sampling Edge SamplingEdge Sampling Triple SamplingTriple Sampling Weighted Triple SamplingWeighted Triple Sampling

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

(a) Wiki-de (b) Reuters (c) Delicious (d) Gottron

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

0.01

0.1

1

10

100

0.25 1 4 16

Error (%)

running time (s)

(e) LiveJournal (f) Wiki-en (g) Yahoo (h) Orkut

Fig. 11. Relative error vs. running time for BTCC

achieve up to three orders (resp. four orders) of magnitude speed-up over the exact algorithm that

computes the BFCC (resp. BTCC) while providing high accuracy with less than 1% relative error.

Scalability test. In this set of experiments, we test the scalability of the proposed algorithms.

We adapt the bipartite network model [9] to generate synthetic datasets, where the model is used

in the previous studies [84]. We fix the size of the left (resp. right) side vertex set 𝐿 (resp. 𝑅) to

four million and generate datasets with different edge set sizes. Fig. 13 (a) (resp. Fig. 13(b)) shows

the sampling time of different approximate butterfly (resp. bi-triangle) counting algorithms to get

1% relative error on the synthetic dataset with varying numbers of edges. The running time of an

algorithm that failed to achieve at most 1% error within one minute is marked as∞. The results
show that Weighted Pair Sampling (resp. Weighted Triple Sampling) is superior to other algorithms,

and all sampling algorithms are insensitive to the size of the graph. We have also done a scalability

test by varying the number of vertices. The conclusion is similar, and hence, the results are omitted

here. Interested readers are referred to our technical report [2] for more details.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite Networks 259:21

Exact BFCC

Exact BTCC

Approximate BFCCApproximate BFCC

Approximate BTCC

0.01

0.1

1

10

10
2

10
3

10
4

10
5

wiki−de Reuters Deli Gottron LJ wiki−en Yahoo Orkut

running time (s)

Fig. 12. Time to compute the clustering coefficient: exact algo. v.s. approx. algo. to obtain 1% relative error

Vertex Sampling Wedge Sampling Edge Sampling

Triple Sampling Weighted Triple Sampling

Weighted Pair Sampling

Pair SamplingFastEdge

0.01

0.1

1

10

∞

1 2 4 8

Time (s)

Edge set size (×10
8
)

0.01

0.1

1

10

∞

1 2 4 8

Time (s)

Edge set size (×10
8
)

(a) Butterfly (b) Bi-triangle

Fig. 13. Scalability test: Varying the number of edges

8 CASE STUDIES
In this section, we conduct several case studies to show that the proposed approximate solutions

can be applied to compelling real applications.

Graph classification. For the general graph, i.e., unipartite graph, graphlet kernel [51, 59] is
a popular method utilized in machine learning to measure the similarity between graphs. The

graphlet kernel maps these graphs into a high-dimensional feature space that denotes the frequency

of different graphlets. Then, a kernel function measures the similarity between these frequency

vectors of graphs within that space. In the literature, the ability of the graphlet kernel to perform

graph analysis on general graphs has been widely demonstrated. To investigate the effectiveness of

graphlet kernel on bipartite graphs, we collect over 200 real bipartite datasets of different classes

from Konect [1], where datasets belong to different categories. Details of the datasets can be found

in our repository [2]. For generating the features of bipartite graphs, we extend the graphlet kernel

method of general graphs to bipartite graphs, where the graphlet kernel focuses on four-node

graphlets. Fig. 14 shows the types of graphlets in bipartite graphs. We use the state-of-the-art exact

counting algorithm [76] to generate the exact feature vectors, i.e., graphlet counts. Meanwhile,

we also compute approximate feature vectors by using the proposed Weighted Pair Sampling in

Sec. 3.2 to estimate the number of butterflies and the approximate 3-path counting algorithm

in Sec. 5 to estimate the number of 3-paths. The other two types (Figs. 14(c)-(d)) can be easily

estimated by sampling a vertex to quickly derive an unbiased estimation. After obtaining the

features, we employ the popular SVM [16] and XGBoost [12] to train a classification model. Tab. 3

shows the results of different methods. We can see that feature generation is time-consuming and

the main bottleneck in the exact graphlet feature-based method. The approximate features with

the proposed algorithms achieve up to two orders of magnitude speedup over the exact feature

generation algorithm. Meanwhile, graph classification models based on approximate features and

exact features achieve nearly identical F1 scores. The result shows that the proposed solution can

significantly improve the efficiency of graphlet kernel classifiers while retaining the quality of the

trained model.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

259:22 Fangyuan Zhang et al.

Table 3. Graphlet kernel test results

Graphlet Feature Classifier Feature Generation Training F1-Score
Exact SVM 1476s <1s 0.974

XGBoost 1476s <1s 0.987

Approximate SVM <10s <1s 0.973

XGBoost <10s <1s 0.986

u1 u2

v1 v2

u1 u2

v1 v2

u1 u2

v2

u3 u1

v1 v2 v3

(a) (b) (c) (d)

Fig. 14. Features of bipartite graph

Graph clustering. In an existing study [84], the clustering coefficient is used to measure the

quality of clusters or communities obtained by different algorithms. In particular, they use the

bi-triangle-based clustering coefficient to show that BLP outperforms BRIM, both of which are

graph clustering algorithms. However, the algorithm RSWJ-Count used in [84] for calculating the

exact clustering coefficient of the clustering results is rather slow, which takes up to three hours

to count the number of bi-triangles to obtain the exact value of the clustering coefficients. To

put things in context, the clustering algorithms BRIM and BLP themselves obtain the resulting

clusters within five minutes on hundreds of millions of scale graphs. In our evaluation, the proposed

algorithm can calculate an approximate clustering coefficient in less than half a minute for clustered

subgraphs, with no more than 1% relative error. At the same time, using the approximate clustering

coefficient leads to the same conclusion as the exact clustering coefficient in Ref. [84]. This use

case shows that the approximate solution using the proposed algorithm can significantly reduce

the time to measure the quality of graph clustering results with accurate results.

Integrating to NetworkX library. NetworkX [37] is a popular Python library for graph and

network algorithms. To help users analyze the properties of bipartite graphs, this library provides

functions to compute the bipartite clustering coefficient. But the algorithm used by the network

library is relatively inefficient. For example, to examine the effectiveness of proposed algorithms,

we use the bipartite graph Reuters as adopted in the previous work [39]. The NetworkX library

takes about 50,000 seconds (i.e. 14 hours) to calculate the exact clustering coefficient. In contrast,

our Weighted Pair Sampling algorithm, which we implemented and integrated into NetworkX

package, spends only 1 second to estimate the clustering coefficient with a relative error of 1%.

9 OTHER RELATEDWORK
Motifs [47] are connected graphs consisting of a relatively small number of vertices. Motif counting

serves various graph analysis needs, with numerous applications in practice. As a result, motif

counting is a well-studied problem in graph data analysis and has received considerable attention

[52]. For general, unipartite graphs, the triangle is one of the most fundamental structures, and

there have been many studies on triangle counting [8, 24, 28, 32, 62, 64]. For approximate triangle

counting, the two most popular methodologies are local sampling and subgraph sampling. Local

sampling methods include vertex sampling [3], edge sampling [3], wedge sampling [35], and hybrid

sampling [68]. Notably, the Doulion algorithm [67] estimates the number of triangles by a strategy

of subgraph sampling, which samples each edge with probability 𝑝 such that each triangle is

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite Networks 259:23

retained with probability 𝑝−3
. Rasmus et al. [50] propose colorful sampling for subgraph sampling,

in which the probability of each triangle being retained increases to 𝑝−2
.

Bipartite graphs can be regarded as a special case of general graphs. Motif counting and enu-

meration on bipartite graphs have recently attracted significant research attention. Various studies

have explored distinct scenarios of butterfly counting, such as on GPU [81], data streaming [56, 60],

uncertain graphs [88], among others. Ref. [76] studies how to maintain the number of butterflies

in a batch-dynamic graph based on the previous work [74]. In [55] they also study how to adopt

existing subgraph sampling algorithms for approximate triangle counting to approximate butterfly

counting. This approach mainly limits the space consumption of the algorithm and is more suitable

for streaming scenarios for approximate counting. In the literature, the approximate counting

method[67] based on subgraph sampling was found to require sampling a large proportion of the

original graph to produce reasonable estimates. The intuitive reason is that subgraph sampling is a

more general technique. Compared to subgraph sampling algorithms, local sampling algorithms

find a wider range of real-world applications [55]. Hence, this paper focuses on the algorithm based

on local sampling. In addition to butterfly and bi-triangle counting, Ref. [82] also studies (𝑝, 𝑞)-
biclique counting and enumeration. Ref. [87] investigates how to enumerate all bicliques efficiently.

Ref. [44] studies how to enumerate maximum biclique. In the context of cohesive subgraph mining,

research has been conducted on butterfly-based bi-truss decomposition [75, 77]. Ref. [57] presents

a hierarchical structure for modeling dense subgraphs based on the butterfly motif.

10 CONCLUSIONS
In this paper, we propose novel one-sided weighted sampling algorithms for approximate butterfly

and bi-triangle counting, which are highly effective and efficient since they capture a large number

of motifs in one shot by exploiting the special properties of bipartite graphs. Furthermore, based on

a power-law random graph model, we theoretically analyze and show that the proposed solution

achieves lower asymptotic complexity compared to the state-of-the-art solution. Besides, we applied

the proposed algorithms to estimate clustering coefficients. The high accuracy and efficiency of the

proposed algorithm are verified by experiments conducted using several large-scale real bipartite

networks. As for future work, we plan to study other types of motif counting on bipartite graphs.

ACKNOWLEDGMENTS
Sibo Wang is supported by the NSFC grant (No. U1936205), the Hong Kong RGC ECS grant (No.

24203419), the RGC GRF grant (No. 14217322), RGC CRF grant (No. C4158-20G) and the Hong Kong

ITC ITF grant (No. MRP/071/20X). Junhao Gan is in part supported by ARC Discovery Early Career

Researcher Award (DECRA) DE190101118. Yin Yang is supported by the Qatar National Research

Fund, a member of the Qatar Foundation (No. NPRP11C-1229-170007). Any opinions, findings, and

conclusions, or recommendations expressed in this material are those of the authors and do not

reflect the views of the funding agencies.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

259:24 Fangyuan Zhang et al.

REFERENCES
[1] 2013. KONECT. http://konect.cc/networks/.

[2] 2023. Code and technical report. https://github.com/CUHK-DBGroup/SIGMOD24-Butterfly-Bi-Triangle-Counting.

[3] Nesreen K. Ahmed, Nick G. Duffield, Jennifer Neville, and Ramana Rao Kompella. 2014. Graph sample and hold: a

framework for big-graph analytics. In KDD. 1446–1455.
[4] William Aiello, Fan R. K. Chung, and Linyuan Lu. 2000. A random graph model for massive graphs. In STOC. 171–180.
[5] Sinan Aksoy, Tamara G. Kolda, and Ali Pinar. 2017. Measuring and modeling bipartite graphs with community structure.

J. Complex Networks 5, 4 (2017), 581–603.
[6] Michael J Barber. 2007. Modularity and community detection in bipartite networks. Physical Review E 76, 6 (2007),

066102.

[7] Rémi Bardenet and Odalric-Ambrym Maillard. 2015. Concentration inequalities for sampling without replacement.

Bernoulli 21, 3 (2015), 1361–1385.
[8] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2008. Efficient semi-streaming algorithms for local

triangle counting in massive graphs. In KDD. 16–24.
[9] Etienne Birmelé. 2009. A scale-free graph model based on bipartite graphs. Discret. Appl. Math. 157, 10 (2009),

2267–2284.

[10] Stephen P Borgatti and Martin G Everett. 1997. Network analysis of 2-mode data. Social networks 19, 3 (1997), 243–269.
[11] Sudarshan S. Chawathe and Hector Garcia-Molina. 1997. Meaningful Change Detection in Structured Data. In SIGMOD.

26–37.

[12] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In SIGKDD. 785–794.
[13] XingguangChen and SiboWang. 2021. Efficient Approximate Algorithms for Empirical Entropy andMutual Information.

In SIGMOD. 274–286.
[14] Xingguang Chen, Fangyuan Zhang, and Sibo Wang. 2022. Efficient Approximate Algorithms for Empirical Variance

with Hashed Block Sampling. In SIGKDD. 157–167.
[15] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and subgraph listing algorithms. SIAM Journal on computing

14, 1 (1985), 210–223.

[16] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Mach. Learn. 20, 3 (1995), 273–297.
[17] Hongbo Deng, Michael R. Lyu, and Irwin King. 2009. A generalized Co-HITS algorithm and its application to bipartite

graphs. In SIGKDD. 239–248.
[18] Inderjit S. Dhillon. 2001. Co-clustering documents and words using bipartite spectral graph partitioning. In SIGKDD.

269–274.

[19] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng, and Xuemin Lin. 2020. A survey of

community search over big graphs. VLDB J. 29, 1 (2020), 353–392.
[20] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks V. S. Lakshmanan, and Xuemin Lin. 2019. Efficient Algorithms for

Densest Subgraph Discovery. Proc. VLDB Endow. 12, 11 (2019), 1719–1732.
[21] Xiaoli Zhang Fern and Carla E. Brodley. 2004. Solving cluster ensemble problems by bipartite graph partitioning. In

ICML.
[22] Qintian Guo, Sibo Wang, Zhewei Wei, and Ming Chen. 2020. Influence Maximization Revisited: Efficient Reverse

Reachable Set Generation with Bound Tightened. In SIGMOD. 2167–2181.
[23] Qintian Guo, Sibo Wang, Zhewei Wei, Wenqing Lin, and Jing Tang. 2022. Influence Maximization Revisited: Efficient

Sampling with Bound Tightened. ACM Trans. Database Syst. 47, 3 (2022), 12:1–12:45.
[24] Mohammad Al Hasan and Vachik S. Dave. 2018. Triangle counting in large networks: a review. WIREs Data Mining

Knowl. Discov. 8, 2 (2018).
[25] Paul W Holland and Samuel Leinhardt. 1976. Local structure in social networks. Sociological methodology 7 (1976),

1–45.

[26] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos Faloutsos. 2016. FRAUDAR: Bounding

Graph Fraud in the Face of Camouflage. In SIGKDD. 895–904.
[27] Guanhao Hou, Qintian Guo, Fangyuan Zhang, Sibo Wang, and Zhewei Wei. 2023. Personalized PageRank on Evolving

Graphs with an Incremental Index-Update Scheme. Proc. ACM Manag. Data 1, 1 (2023), 25:1–25:26.
[28] Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. 2013. Massive graph triangulation. In SIGMOD. 325–336.
[29] Chu-Yi Huang, Yen-Shen Chen, Youn-Long Lin, and Yu-Chin Hsu. 1990. Data Path Allocation Based on Bipartite

Weighted Matching. In DAC. IEEE Computer Society Press, 499–504.

[30] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying k-truss community in large and

dynamic graphs. In SIGMOD. 1311–1322.
[31] Xin Huang, Wei Lu, and Laks V. S. Lakshmanan. 2016. Truss Decomposition of Probabilistic Graphs: Semantics and

Algorithms. In SIGMOD. 77–90.
[32] Alon Itai. 1977. Finding a Minimum Circuit in a Graph. In STOC. 1–10.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

http://konect.cc/networks/
https://github.com/CUHK-DBGroup/SIGMOD24-Butterfly-Bi-Triangle-Counting

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite Networks 259:25

[33] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. 1986. Random Generation of Combinatorial Structures from a

Uniform Distribution. Theor. Comput. Sci. 43 (1986), 169–188.
[34] Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, and Junzhou Huang. 2022. Query Driven-Graph Neural

Networks for Community Search: From Non-Attributed, Attributed, to Interactive Attributed. Proc. VLDB Endow. 15, 6
(2022), 1243–1255.

[35] Tamara G. Kolda, Ali Pinar, and C. Seshadhri. 2013. Triadic Measures on Graphs: The Power of Wedge Sampling. In

SDM. 10–18.

[36] Jérôme Kunegis. 2013. KONECT: the Koblenz network collection. In WWW. 1343–1350.

[37] Los Alamos National Laboratory. 2023. Networkx. https://networkx.org/.

[38] Matthieu Latapy, Clémence Magnien, and Nathalie Del Vecchio. 2008. Basic notions for the analysis of large two-mode

networks. Social networks 30, 1 (2008), 31–48.
[39] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. 2004. RCV1: A New Benchmark Collection for Text Catego-

rization Research. J. Mach. Learn. Res. 5 (2004), 361–397.
[40] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online Aggregation via Random Walks. In SIGMOD.

615–629.

[41] Pedro G Lind, Marta C González, and Hans J Herrmann. 2005. Cycles and clustering in bipartite networks. Physical
review E 72, 5 (2005), 056127.

[42] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou. 2019. Efficient (𝛼 ,𝛽)-core Computation:

an Index-based Approach. InWWW. 1130–1141.

[43] Xin Liu and Tsuyoshi Murata. 2009. Community Detection in Large-Scale Bipartite Networks. In Web Intelligence.
50–57.

[44] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren Zhou. 2020. Maximum Biclique Search

at Billion Scale. Proc. VLDB Endow. 13, 9 (2020), 1359–1372.
[45] Mohammad Mahdian and Qiqi Yan. 2011. Online bipartite matching with random arrivals: an approach based on

strongly factor-revealing LPs. In STOC. 597–606.
[46] Charles Masson, Jee E. Rim, and Homin K. Lee. 2019. DDSketch: A Fast and Fully-Mergeable Quantile Sketch with

Relative-Error Guarantees. Proc. VLDB Endow. 12, 12 (2019), 2195–2205.
[47] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. 2002. Network motifs:

simple building blocks of complex networks. Science 298, 5594 (2002), 824–827.
[48] Tore Opsahl. 2013. Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Soc.

Networks (2013), 159–167.
[49] Michael D Ornstein. 1982. Interlocking directorates in Canada: evidence from replacement patterns. Social Networks 4,

1 (1982), 3–25.

[50] Rasmus Pagh and Charalampos E. Tsourakakis. 2012. Colorful triangle counting and a MapReduce implementation.

Inf. Process. Lett. 112, 7 (2012), 277–281.
[51] Nataša Pržulj. 2007. Biological network comparison using graphlet degree distribution. Bioinformatics 23, 2 (2007),

e177–e183.

[52] Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando Silva. 2021. A survey on subgraph

counting: concepts, algorithms, and applications to network motifs and graphlets. ACM Computing Surveys (CSUR) 54,
2 (2021), 1–36.

[53] Garry Robins and Malcolm Alexander. 2004. Small Worlds Among Interlocking Directors: Network Structure and

Distance in Bipartite Graphs. Comput. Math. Organ. Theory 10, 1 (2004), 69–94.

[54] Boyu Ruan, Junhao Gan, Hao Wu, and Anthony Wirth. 2021. Dynamic Structural Clustering on Graphs. In SIGMOD.
1491–1503.

[55] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyüce, and Srikanta Tirthapura. 2018. Butterfly Counting in Bipartite

Networks. In SIGKDD. 2150–2159.
[56] Seyed-Vahid Sanei-Mehri, Yu Zhang, Ahmet Erdem Sariyüce, and Srikanta Tirthapura. 2019. FLEET: Butterfly

Estimation from a Bipartite Graph Stream. In CIKM. 1201–1210.

[57] Ahmet Erdem Sariyüce and Ali Pinar. 2018. Peeling Bipartite Networks for Dense Subgraph Discovery. In WSDM.

504–512.

[58] Thomas Schank and Dorothea Wagner. 2005. Approximating Clustering Coefficient and Transitivity. J. Graph
Algorithms Appl. 9, 2 (2005), 265–275.

[59] Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M. Borgwardt. 2009. Efficient

graphlet kernels for large graph comparison. In AISTATS (JMLR Proceedings, Vol. 5). 488–495.
[60] Aida Sheshbolouki and M. Tamer Özsu. 2022. sGrapp: Butterfly Approximation in Streaming Graphs. ACM Trans.

Knowl. Discov. Data 16, 4 (2022), 76:1–76:43.
[61] Jessica Shi and Julian Shun. 2020. Parallel Algorithms for Butterfly Computations. In APOCS. SIAM, 16–30.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

https://networkx.org/

259:26 Fangyuan Zhang et al.

[62] Julian Shun and Kanat Tangwongsan. 2015. Multicore triangle computations without tuning. In ICDE. 149–160.
[63] Jimeng Sun, Huiming Qu, Deepayan Chakrabarti, and Christos Faloutsos. 2005. Neighborhood Formation and Anomaly

Detection in Bipartite Graphs. In ICDM. 418–425.

[64] Siddharth Suri and Sergei Vassilvitskii. 2011. Counting triangles and the curse of the last reducer. In WWW. 607–614.

[65] Amos Tanay, Roded Sharan, and Ron Shamir. 2002. Discovering statistically significant biclusters in gene expression

data. Bioinformatics 18, suppl_1 (2002), S136–S144.
[66] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. Influence Maximization in Near-Linear Time: AMartingale Approach.

In SIGMOD. 1539–1554.
[67] Charalampos E. Tsourakakis, U Kang, Gary L. Miller, and Christos Faloutsos. 2009. DOULION: counting triangles in

massive graphs with a coin. In SIGKDD. 837–846.
[68] Duru Türkoglu and Ata Turk. 2017. Edge-Based Wedge Sampling to Estimate Triangle Counts in Very Large Graphs.

In ICDM. 455–464.

[69] Johan Ugander, Lars Backstrom, and Jon M. Kleinberg. 2013. Subgraph frequencies: mapping the empirical and extremal

geography of large graph collections. In WWW. 1307–1318.

[70] Demival Vasques Filho and Dion RJ O’Neale. 2018. Degree distributions of bipartite networks and their projections.

Physical Review E 98, 2 (2018), 022307.

[71] Alastair J. Walker. 1977. An Efficient Method for Generating Discrete Random Variables with General Distributions.

ACM Trans. Math. Softw. 3, 3 (1977), 253–256.
[72] JiaWang, AdaWai-Chee Fu, and James Cheng. 2014. Rectangle Counting in Large Bipartite Graphs. In IEEE International

Congress on Big Data. 17–24.
[73] Kai Wang, Yiheng Hu, Xuemin Lin, Wenjie Zhang, Lu Qin, and Ying Zhang. 2021. A Cohesive Structure Based Bipartite

Graph Analytics System. In CIKM. 4799–4803.

[74] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2019. Vertex Priority Based Butterfly Counting for

Large-scale Bipartite Networks. Proc. VLDB Endow. (2019), 1139–1152.
[75] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Efficient Bitruss Decomposition for Large-scale

Bipartite Graphs. In ICDE. 661–672.
[76] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2022. Accelerated butterfly counting with vertex

priority on bipartite graphs. VLDB J. (2022).
[77] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2022. Towards efficient solutions of bitruss decompo-

sition for large-scale bipartite graphs. VLDB J. 31, 2 (2022), 203–226.
[78] Sibo Wang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. 2016. HubPPR: Effective Indexing for Approximate

Personalized PageRank. Proc. VLDB Endow. 10, 3 (2016), 205–216.
[79] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA: Simple and Effective Approximate

Single-Source Personalized PageRank. In SIGKDD. 505–514.
[80] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural Graph Collaborative Filtering. In

SIGIR. 165–174.
[81] Qingyu Xu, Feng Zhang, Zhiming Yao, Lv Lu, Xiaoyong Du, Dong Deng, and Bingsheng He. 2022. Efficient Load-

Balanced Butterfly Counting on GPU. Proc. VLDB Endow. 15, 11 (2022), 2450–2462.
[82] Jianye Yang, Yun Peng, and Wenjie Zhang. 2021. (p, q)-biclique Counting and Enumeration for Large Sparse Bipartite

Graphs. Proc. VLDB Endow. 15, 2 (2021), 141–153.
[83] Yixing Yang, Yixiang Fang, Xuemin Lin, and Wenjie Zhang. 2020. Effective and Efficient Truss Computation over

Large Heterogeneous Information Networks. In ICDE. 901–912.
[84] Yixing Yang, Yixiang Fang, Maria E. Orlowska, Wenjie Zhang, and Xuemin Lin. 2021. Efficient Bi-triangle Counting

for Large Bipartite Networks. Proc. VLDB Endow. (2021), 984–996.
[85] Fangyuan Zhang, Mengxu Jiang, and Sibo Wang. 2023. Efficient Dynamic Weighted Set Sampling and Its Extension.

Proc. VLDB Endow. 17, 1 (2023), 15–27.
[86] Fangyuan Zhang and Sibo Wang. 2022. Effective Indexing for Dynamic Structural Graph Clustering. Proc. VLDB

Endow. 15, 11 (2022), 2908–2920.
[87] Yun Zhang, Charles A Phillips, Gary L Rogers, Erich J Baker, Elissa J Chesler, and Michael A Langston. 2014. On

finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data

types. BMC bioinformatics 15, 1 (2014), 1–18.
[88] Alexander Zhou, Yue Wang, and Lei Chen. 2021. Butterfly Counting on Uncertain Bipartite Networks. Proc. VLDB

Endow. 15, 2 (2021), 211–223.
[89] Tao Zhou, Jie Ren, Matúš Medo, and Yi-Cheng Zhang. 2007. Bipartite network projection and personal recommendation.

Physical review E 76, 4 (2007), 046115.

Received April 2023; revised July 2023; accepted August 2023

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 259. Publication date: December 2023.

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 State of the Art

	3 Approximate butterfly counting
	3.1 One-Sided Pair Sampling
	3.2 Weighted One-Sided Pair Sampling

	4 Approximate Bi-triangle Counting
	4.1 Baseline Methods
	4.2 Weighted One-Sided Triple Sampling

	5 Approximate clustering coefficient
	6 Theoretical analysis
	6.1 Power-Law Random Bipartite Graph Model
	6.2 Proofs

	7 Experiments
	7.1 Experimental Settings
	7.2 Evaluation Results

	8 Case studies
	9 Other Related Work
	10 Conclusions
	References

