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Given a social network 𝐺 , a cost associated with each user, and an influence threshold 𝜂, the minimum cost
seed selection problem (MCSS) aims to find a set of seeds that minimizes the total cost to reach 𝜂 users. Existing
works are mainly devoted to providing an expected coverage guarantee on reaching 𝜂, classified as MCSS-ECG,
where their solutions either rely on an impractical influence oracle or cannot attain the expected influence
threshold. More importantly, due to the expected coverage guarantee, the actual influence in a campaign may
drift from the threshold evidently. Thus, the advertisers would like to request for a probability guarantee of
reaching 𝜂. This motivates us to further solve the MCSS problem with a probabilistic coverage guarantee,
termed MCSS-PCG.

In this paper, we first propose our algorithm CLEAR to solve MCSS-ECG, which reaches the expected
influence threshold without any influence oracle or influence shortfall but a practical approximation ratio.
However, the ratio involves an unknown term (i.e., the optimal cost). Thus, we further devise the STARmethod
to derive a lower bound of the optimal cost and then obtain the first explicit approximation ratio for MCSS-ECG.
In MCSS-PCG, it is necessary to estimate the probability that the current seeds reach 𝜂, to decide when to stop
seed selection. To achieve this, we design a new technique named MRR, which provides efficient probability
estimation with a theoretical guarantee. With MRR in hand, we propose our algorithm SCORE for MCSS-PCG,
whose performance guarantee is derived by measuring the gap between MCSS-ECG and MCSS-PCG, and
applying the theoretical results in MCSS-ECG. Finally, extensive experiments demonstrate that our algorithms
achieve up to two orders of magnitude speed-up compared to alternatives while meeting the requirement of
MCSS-PCG with the smallest cost.
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1 INTRODUCTION
Social networks are becoming increasingly prevalent for people to share their thoughts, ideas, and
opinions etc. Based on the social relationships among individuals, a piece of information could
quickly go viral via the “word-of-mouth” effect. With this effect, in social advertising, advertisers
could recruit only a subset of users (called seeds) as the sources to trigger a large cascade of influence
in the network. As the diffusion proceeds, the number of users engaged in the campaign may reach
some tipping point, from which the idea, trend, or behavior would spread like wildfire [15, 32, 41].
Thus, the advertisers would like to influence a target number of users to reap greater benefits.
Such demands give rise to the MCSS (i.e., Minimum Cost Seed Selection) problem, which aims to
find a set of seeds that minimizes the cost to achieve an influence threshold 𝜂. Existing works on
MCSS mainly focus on reaching the threshold in expectation [18, 20, 22, 27, 31, 47, 52], categorized
as MCSS-ECG (i.e., MCSS with Expected Coverage Guarantee). However, actually these works
cannot produce a seed set that reaches the influence threshold with an approximation guarantee in
practice. For examples, some works [31, 52] require an influence oracle to select the seeds, which
is not available in real campaigns, while other works [18, 20, 22, 27, 47] suffer from a shortfall in
reaching the influence threshold.
More importantly, since the attainment of 𝜂 is guaranteed in expectation, even if MCSS-ECG is

well settled, the selected seeds can only guarantee the coverage when the campaign is carried
out for plenty of times, while this is often not the case in practice. For example, in 2020, Dell
launched 15 influencer marketing campaigns on 8 social platforms (e.g., YouTube, Instagram,
and Snapchat) to promote its computers to the global market, finally reaching over 168 million
users in total [16]. Even if the 15 campaigns were performed on the same platform, the deviation
between the actual influence and the expected influence is as large as 0.4 times of the expectation
with a probability of 99%, by a simple calculation from the concentration bound. Alternatively,
the advertisers would request for a probability guarantee 𝑝 of the actual influence reaching the
threshold [26, 38], obtaining direct information on the likelihood of campaign success. To meet this
requirement, Zhang et al. take the head in solving the MCSS problem with a probability guarantee
on the influence spread, termed MCSS-PCG [50].

Although substantial contributions have been made by Zhang et al., their work cannot adapt to
the practice well. First, the estimation error on their influence spread is required to be a very small
value, inversely proportional to 𝜂 times the network scale, which is not realistic in practice. Second,
numerous Monte Carlo simulations are carried out after each seed selection to examine whether
the probability guarantee is satisfied, which are quite time-consuming. Finally, it is assumed that
the costs to engage different users into the campaign are the same, which however should be
different. In fact, it is widely reported that the cost is closely related to the number of followers of
an influencer. For example, on Instagram, typically a nano-influencer with 1k to 10k followers costs
$10–100, while a mega-influencer with at least 1 million followers usually charges over $10,000
for one post [8]. These shortcomings hinder the solution of [50] from being applied to real-world
commercial campaigns.

In this paper, we strive to design efficient approximation algorithms for the MCSS-PCG problem
under non-uniform user costs. Looking into MCSS-PCG, we find that the problem is NP-hard and
non-submodular. Thus, it is hard to directly solve it with a theoretical guarantee. Nevertheless, as
one may see, the seed set that solves MCSS-PCG will also achieve some expected influence spread
𝜂. Assume we select seeds for MCSS-PCG and MCSS-ECG with exactly the same criteria. Let the
upper bound (resp. lower bound) of 𝜂 be 𝜂⊤ (reps. 𝜂⊥). Then, by bounding the cost to reach an
expected influence of 𝜂⊤ from 𝜂⊥, and referring to the theoretical guarantee in MCSS-ECG to reach
𝜂⊥, we can derive an approximation ratio of solving MCSS-PCG. However, as aforementioned,
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MCSS-ECG has not been well solved yet. Thus, we first retrospect MCSS-ECG and devise the
algorithm CLEAR to solve it without any influence shortfall or influence oracle. After massive
analyses, we derive the approximation ratio of CLEAR, which however is found to be implicit, a
function of the optimal cost. Thus, we further come up with a method STAR to provide an explicit
approximation ratio for CLEAR.

To solve the MCSS-PCG problem, we have to address another major challenge, i.e., efficient and
accurate estimation of the probability that the current influence reaches 𝜂. Note that the idea of
Monte Carlo estimation is to collect numerous diffusion samples from the seeds [50]. To be efficient
in sampling, we attempt to borrow the idea of reverse sampling from the reverse reachable set
(RR-set) [4, 45], which is generated by initializing a stochastic BFS from a random user along the
reversed edge directions. However, naive application of RR-sets would result in evident estimation
bias, even if necessary modification is made. We find the main cause lies in the independency
among RR-sets. Specifically, when the RR-sets are independent, the states of an edge in different
reverse diffusion processes that produce the RR-sets may conflict with each other, and thus could
not form an overall diffusion sample. Thus, we require the reverse diffusion to be consistent with
each other, by prohibiting other reverse diffusion processes from revising the state of an edge
once it has been traversed. Accordingly, we develop the MRR technique, which provides accurate
probability estimation theoretically. Based on the above efforts, we propose our algorithm SCORE to
solve MCSS-PCG with a performance guarantee.

To summarize, we highlight our main contributions as follows.
• In this paper, we first revisit the MCSS-ECG problem to solve it without any influence shortfall

or influence oracle. On this basis, we make the initial attempt to solve the MCSS-PCG problem
efficiently under the more practical non-uniform costs setting.
• Specifically, we propose the CLEAR algorithm to tackle MCSS-ECG, which ensures the attain-

ment of 𝜂 with an approximation ratio related to the optimal cost. Since the optimal cost is unknown,
we invent the STAR method to derive its lower bound and obtain the first explicit approximation
ratio for an algorithm reaching 𝜂.
• Next, we devise the MRR technique to estimate the probability that the influence of a seed set

could reach 𝜂, accompanied with a theoretical guarantee for the estimation accuracy. Actually, MRR
is not restricted to the settings of MCSS, and thus provides a general tool for problems in need of
influence probability estimation.
• Equipped with the MRR, we design our algorithm SCORE for MCSS-PCG. Analytically, we

first bound the cost to solve MCSS-PCG based on MCSS-ECG. Then, by referring to the ratio in
MCSS-ECG, we derive the performance guarantee of SCORE.
• Finally, extensive experiments are conducted to evaluate our proposed algorithms. The results

show that our SCORE algorithm meets the requirement of MCSS-PCG with the smallest cost and up
to two orders of magnitude speed-up, compared with the state-of-the-art. Moreover, our CLEAR al-
gorithm could always reach the influence threshold with the least running time in MCSS-ECG.

In Table 1, we further compare CLEAR and SCORE to the state-of-the-art algorithms to show our
advantages over them, and the detailed description can be found in Appendix B of [1].

2 PRELIMINARIES
2.1 Problem Formulation
The social network is modeled as a directed graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of users and 𝐸
is the set of relationships with |𝑉 | = 𝑛 and |𝐸 | =𝑚. Each user 𝑢 ∈ 𝑉 is associated with some cost
𝑐 (𝑢) ∈ R+, and each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is associated with some probability 𝑝 (𝑒) ∈ [0, 1], called the
propagation probability. Especially, the cost of a set of users 𝑆 is defined as 𝑐 (𝑆) = ∑

𝑢∈𝑆 𝑐 (𝑢). For
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Table 1. Comparison with existing algorithms.

E/PCG Algorithms Feasibility Different costs 𝜖 Approximation ratio

ECG
BCGC [20] (1 − 𝛼)𝜂 ✓ ≤ 𝛼

3 ≈ 1 + ln 3−𝛼
𝛼

TEGC [20] (1 − 𝛼)𝜂 ✓ ≤ 𝛼
3 ≈ 1 + ln 3−𝛼

𝛼
Our CLEAR ✓ ✓ ✓ 𝑐 (𝑆)/𝑐⊥ (𝑆𝑜 )

PCG
MinSeed [50] ✓ × ≤ 𝑜 ( 1

𝑛𝜂 ) ⌈
ln 2𝜂𝑛
𝑛−𝜂 ⌉𝑐 (𝑆𝑜 ) + (𝑐+𝑐

′ )𝑛
𝑛−𝜂−𝑐′ + 3

ASTI [43] ✓ × ✓
(1+ln𝜂 )2

(1−1/𝑒 ) (1−𝜖 )
Our SCORE ✓ ✓ ✓ 𝑐 (𝑆𝑙 )

𝑐⊥ (𝑆∗ ) 𝑐 (𝑆𝑜 ) +
(𝑎+𝑎′ )𝑛𝜌
𝑛−𝜂−𝑎′ + 2

each edge 𝑒 = (𝑢, 𝑣), user𝑢 is said to be the in-neighbor of 𝑣 and user 𝑣 is said to be the out-neighbor
of 𝑢. Further, the in-neighbors of user 𝑢 are denoted as the set 𝑁in (𝑢). Moreover, we say 𝑒 is the
out-edge of 𝑢 and the in-edge of 𝑣 .

To depict the diffusion process from seeds, we adopt the widely applied independent cascade (IC)
model for modeling, while our results could be easily extended to the other popular model named
linear threshold (LT) model. Specifically, in the IC model, given an arbitrary seed set 𝑆 , the influence
diffusion expands in discrete steps as follows. Initially, at time step 0, only users in 𝑆 are activated
while other users remain inactivated. Then, at each time step 𝑖 > 0, each user (e.g., 𝑢) that is newly
activated in the previous step has a single chance to activate its out-neighbors (e.g., 𝑣) via edge
𝑒 = (𝑢, 𝑣). Accordingly, user 𝑣 becomes activated with probability 𝑝 (𝑒). This process proceeds until
no user could be further activated. Note that the activation attempts of users are independent of
each other and each activated user would not turn back to be inactivated. Finally, the number of
users activated, a random variable w.r.t. the propagation process, is called the influence spread
of 𝑆 , denoted as 𝐼 (𝑆), where 𝐼 (·) is the influence function 𝐼 : 2𝑉 → R+ ∪ {0}. Then, the expected
influence spread could be written as I(𝑆) = E[𝐼 (𝑆)]. On this basis, the number of users required to
be influenced, in expectation I(·) or in random 𝐼 (·), is denoted as 𝜂. Further, we define the truncated
influence with regard to 𝜂 as Γ𝜂 (𝑆) = min{I(𝑆), 𝜂}, where the subscript 𝜂 is omitted when the
context is clear.

Lemma 2.1 indicates that the expected influence I(·) satisfies both monotonicity and submodular-
ity. Then, the truncated influence Γ(𝑆) is also monotone and submodular, since the two properties
would not be affected by truncation.

Lemma 2.1 ([25]). The expected influence function I(·) is both monotone and submodular. That is,
given an arbitrary set of users 𝑇 ⊆ 𝑉 ,

∀𝑆 ⊆ 𝑇, we have I(𝑆) ≤ I(𝑇 );
∀𝑆 ⊆ 𝑇,∀𝑢 ∈ 𝑉 \𝑇, we have I(𝑆 ∪ {𝑢}) − I(𝑆) ≥ I(𝑇 ∪ {𝑢}) − I(𝑇 ).

Next, we introduce an equivalent view of the diffusion process [25]. Before the diffusion starts,
the states of edges are claimed to be unknown, since none of them is probed. As the diffusion
proceeds, the edges are gradually probed by active users and the diffusion through an edge is
revealed to be either successful or not. Accordingly, the states of edges are declared to be live or
blocked, and encoded as “1” or “0” respectively. To realize the diffusion through an edge (𝑢, 𝑣), we
could flip a coin with bias 𝑝 (𝑢, 𝑣). From this view, it is clear that whether the coin is flipped at the
moment 𝑢 is activated or at the very beginning of diffusion would not affect the outcome. Thus, we
could flip a coin for each edge, store the result, and just reveal it when the in-neighbor is activated.
On this basis, we present the concept of realization in Definition 2.2.

Definition 2.2 (Realization). Given the network 𝐺 = (𝑉 , 𝐸) and the probability 𝑝 (𝑒) of each edge
𝑒 ∈ 𝐸, a realization 𝜙 is a function that maps each edge to its state, i.e., 𝜙 : 𝐸 → {0, 1}.
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Now we are ready to define the MCSS problems in Definition 2.3, where both MCSS-ECG and
MCSS-PCG are formalized. Note that the main difference between the two problems lies in their
constraints on the seed set 𝑆 . MCSS-ECG asks the expected influence spread I(𝑆) to reach 𝜂, while
MCSS-PCG requires the probability of a random influence spread 𝐼 (𝑆) reaching 𝜂 to be at least 𝑝 .

Definition 2.3. Given the social network 𝐺 = (𝑉 , 𝐸), costs of users 𝑐 (𝑢) (∀𝑢 ∈ 𝑉 ), propagation
probabilities 𝑝 (𝑒) (∀𝑒 ∈ 𝐸), the probability threshold 𝑝 , and the influence threshold 𝜂,
(1) MCSS-ECG aims to find a set of users 𝑆𝑜 ⊆ 𝑉 that could activate at least 𝜂 users in expectation
with the minimum cost. Formally,

𝑆𝑜 = argmin
𝑆 :I(𝑆 )≥𝜂

𝑐 (𝑆).

(2) MCSS-PCG aims to find a set of users 𝑆𝑜 ⊆ 𝑉 that activates at least 𝜂 users with probability at
least 𝑝 with the minimum cost, i.e.,

𝑆𝑜 = argmin
𝑆 :P[𝐼 (𝑆 )≥𝜂 ]≥𝑝

𝑐 (𝑆).

By reduction from the uniform cost case in [50] and the set cover problem [11], we can establish
Proposition 2.4, which shows that the two MCSS problems in Definition 2.3 are both NP-hard, and
are hard to be approximated within a ratio smaller than ln𝑛.

Proposition 2.4. Both MCSS-ECG and MCSS-PCG problems are NP-hard, and for any 𝜖 > 0,
MCSS problem cannot be approximated within a ratio of (1 − 𝜖) ln𝑛 unless NP has 𝑛𝑂 (log log𝑛) -time
deterministic algorithms.

2.2 Existing Solutions

MCSS-ECG. Early works on MCSS-ECG are only theoretically tractable or practically efficient.
Notably, Han et al. attempt to solve the problem with both theoretical guarantees and practical
efficiency [20]. To this end, they apply RR-sets in Definition 2.5 for efficient and analysable influence
estimation [4] [45]. Specifically, a random RR-set can be generated in two steps. First, we select a
user from 𝑉 as the root uniformly at random. Second, we initialize an influence propagation from
the root, along the reverse directions of edges, while the diffusion probability of each edge is still
the same as the original IC model. Finally, the users that are activated during the reverse diffusion
process comprise a random RR-set. Given a collection of RR-sets, the expected influence could be
estimated with a provable error. On this basis, they first propose their basic algorithm BCGC. Then,
TEGC is devised to generate RR-sets in a “trial-and-error” manner, aiming to terminate RR-set
generation in advance.
However, to derive the theoretical guarantee for their algorithms, Han et al. have to set aside

a shortfall 𝛼 by only reaching an expected influence of (1 − 𝛼)𝜂, where the shortfall 𝛼 must be
non-zero to ensure their approximation ratio (i.e., 1 + ln 3−𝛼

𝛼 ) is bounded. Thus, BCGC and TEGC
actually could not reach the influence threshold 𝜂 with any performance guarantee. The other
drawback lies in the number of RR-sets they need. In their analysis, the collection of RR-sets is
required to guarantee an estimation error of 𝛾 for all possible seed sets that fail to reach (1 − 𝛼)𝜂,
while the number of such seed sets is exponential w.r.t. 𝜂. And, to this end, the union bound is
applied to restrict the probability of estimation failure. Then, the resultant RR-sets number is
derived to be Θ(𝑛 ln 𝑛

𝜂 /𝛾2), where 𝛾 is required to be smaller than 𝛼 . To be close to 𝜂, the shortfall
𝛼 is often set to be a small value, and so is 𝛾 , resulting in huge computational cost.

Definition 2.5 (RR-set [4]). Given a realization 𝜙 of the network𝐺 and a root user 𝑣 , an RR-set for
𝑣 is the set of users that could reach 𝑣 in 𝐺 under 𝜙 . Accordingly, a random RR-set is an RR-set
generated from a random root under a random realization.
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MCSS-PCG. The MCSS-PCG problem is first explored by Zhang et al. in their work [50]. To derive
the performance guarantee, the authors first look into MCSS-ECG and derive the approximation
ratio of the seed number to reach the influence threshold 𝜂, by properly setting a shortfall and
compensating it. Then, the authors study the MCSS-PCG problem and propose the MinSeed
algorithm to reach the influence threshold with a probability at least 𝑝 . Especially, after selecting
a seed, the probability of current influence reaching 𝜂 is estimated by the Monte Carlo method.
Then, based on the analysis in MCSS-ECG, the authors derive an approximation ratio of MinSeed
and bound it with the variance of influence spread.

The work of Zhang et al. provides the first solution to MCSS-PCG with a performance guarantee.
Significant advance as it is, their algorithm MinSeed is not that practical, since they require the
error of influence estimation to be smaller than 𝑛−𝜂

8𝑛2 (𝜂+1) = Ω( 1
8𝑛𝜂 ), which is quite stringent and hard

to be achieved in practice. Moreover, the Monte Carlo method is applied to estimate the probability
of reaching 𝜂 after selecting each seed. By Hoeffding’s inequality, hundreds of simulations have
to be performed each time, even for a moderate estimation error. By our experiments, to select
enough seeds, typically more than 105 simulations have to be conducted in total, which would take
large amounts of time. Further, the costs of users are assumed to be uniform. Then, the total cost
becomes simply the number of seed users, facilitating their analysis. However, this setting makes
their theoretical results deviate from real-world scenarios, where the costs to invite different users
are actually different, as reported in the Introduction.
Adaptive Seed Minimization (ASM). Tang et al. have made significant contributions to ASM in
their work [43], where seed users are iteratively selected based on the observation of the diffusion
from previous seeds. Due to the adaptive nature, the seed selection would not stop until the influence
spread is observed to reach 𝜂. Thus, the influence threshold will always be reached in ASM, and
the seed set of ASM is certainly a feasible solution to both MCSS-PCG and MCSS-ECG.

To conform with the theoretical results in [17], Tang et al. argue that in the adaptive setting, the
truncated influence should be considered, instead of the original influence function. Note that their
truncated influence is defined w.r.t. each realization, i.e., Γ(𝑆) = ∑

𝜙 min{𝐼𝜙 (𝑆), 𝜂}, where 𝐼𝜙 (𝑆) is
the influence of 𝑆 under realization 𝜙 . To estimate the truncated influence, Tang et al. propose the
multi-root reverse reachable (mRR) sets. Specifically, each mRR-set is generated by initializing a
reverse propagation from 𝑘 roots selected from 𝑉 uniformly at random. The set of users activated
by the 𝑘 roots together form an mRR-set 𝑅. Accordingly, the mRR-set 𝑅 is said to be covered by
𝑆 , if 𝑆 ∩ 𝑅 ≠ ∅. Then, the truncated influence of any seed set 𝑆 is estimated as its coverage times
𝑛 and divided by the number of mRR-sets, which is not an unbiased estimation but the error is
bounded. On this basis, Tang et al. develop the ASTI algorithm that achieves an approximation
ratio of (ln𝜂+1)2

(1−1/𝑒 ) (1−𝜖 ) , where 𝜖 ∈ (0, 1) is the estimation error.
ASTI is often shown to reach 𝜂 with fewer seed users. This advantage is mainly due to its adaptive

setting, which allows sensible seed selection based on previous diffusion results. However, it is
also the adaptivity that results in its inefficiency. To explain, the number of roots in an mRR-set
is required to be the quotient between 𝑛 − 𝐼 (𝑆𝑖 ) and 𝜂 − 𝐼 (𝑆𝑖 ) in [43]. After selecting a new seed,
the quotient will change due to the increased 𝐼 (𝑆𝑖 ). Thus, after each round of seed selection, all
mRR-sets must be regenerated from scratch, which takes much computation cost. Moreover, they
only consider the uniform cost setting, while in practice, users often demand different costs. It seems
that ASTI could adapt to non-uniform costs by selecting users with the maximum influence-to-cost
ratio. However, under this criterion, users with small costs yet moderate influence are more likely
to be selected, leading to an increased number of seed selection rounds and more regeneration of
new mRR-sets. Moreover, to ensure the estimation accuracy of small influence, more mRR-sets are
needed in each round, aggravating the scalability issue.
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2.3 Notations and Useful Tools
Before presenting our solutions, we would like to introduce some notations frequently used in
subsequent sections. To begin with, the seed set output by our algorithms is denoted as 𝑆 =

⋃𝑘
𝑗=1{𝑠𝑖 },

where 𝑠𝑖 is the 𝑖-th seed selected and 𝑘 is the number of seeds. Especially, the seed set 𝑆𝑖 =
⋃𝑖

𝑗=1{𝑠𝑖 }
is composed of the first 𝑖 seeds and 𝑆0 is defined as the empty set. The optimal seed set is denoted
as 𝑆𝑜 = {𝑠𝑜1 , 𝑠𝑜2 , · · · , 𝑠𝑜ℎ}. Further, the maximum (resp. minimum) cost of users is written as 𝑐max =
max{𝑐𝑖 } (resp. 𝑐min = min{𝑐𝑖 }) and their quotient is denoted as 𝜌 = 𝑐max/𝑐min.

Lemma 2.6. [45] Given a collection of reverse reachable sets 𝑅1, 𝑅2, · · · , 𝑅𝜃 and the seed set 𝑆 , for
any 𝜖 ≥ 0, we have

P[Λ(𝑆) ≥ (1 + 𝜖)I(𝑆)] ≤ exp
(
− 𝜖

2𝜃 I(𝑆)
2 + 2𝜖/3

)
, (1)

P[Λ(𝑆) ≤ (1 − 𝜖)I(𝑆)] ≤ exp
(
−𝜖

2𝜃 I(𝑆)
2

)
. (2)

For influence estimation, we also apply the RR-sets method in [45, 46]. Given a collection of
RR-sets R, an RR-set 𝑅 ∈ R is said to be covered by a seed set 𝑆 if 𝑆 ∩ 𝑅 ≠ ∅, and the coverage
Λ(𝑆) of the seed set 𝑆 is the number of RR-sets covered by 𝑆 . Then, we could estimate the expected
influence of 𝑆 by Î(𝑆) = 𝑛Λ(𝑆)/𝜃 , where 𝜃 is the number of RR-sets in R. It is easy to verify that Î(𝑆)
is an unbiased estimation of I(𝑆). Moreover, the estimation error could be bounded by Lemma 2.6
[45]. For ease of notation, we further denote 𝜂𝑖 = 𝜂 − Γ(𝑆𝑖 ) and its estimation 𝜂𝑖 = (1 + 𝜖)𝜂 − Γ̂(𝑆𝑖 ),
where Γ̂(𝑆𝑖 ) = min{Î(𝑆𝑖 ), (1 + 𝜖)𝜂} and 𝜖 is the estimation error of Î(𝑆𝑖 ). For more notations used
in this paper, please refer to Appendix A of [1].

3 MCSS-ECG
In this section, we solve the MCSS-ECG problem without the requirement of influence shortfall
or influence oracle. To this end, we first present the CLEAR algorithm, whose approximation ratio
is revealed to be a function of the optimal cost 𝑐 (𝑆𝑜 ). Since 𝑐 (𝑆𝑜 ) is unknown, we further devise
the method STAR to derive the lower bound of 𝑐 (𝑆𝑜 ), and then an explicit approximation ratio of
CLEAR is available by replacing 𝑐 (𝑆𝑜 ) with its lower bound. Due to space limitations, we omit the
proofs of all the theoretical results, while interested readers may refer to Appendix C in [1].

3.1 The CLEAR Algorithm
Specifically, we propose the CLEAR algorithm to solve MCSS-ECG, the details of which are shown in
Alg. 1. Different from previous works on MCSS-ECG, our algorithm CLEAR involves two collections
of RR-sets, R1 for seed selection, and R2 for influence verification. The new RR-set collection R2 is
introduced to verify whether the current seed set could reach the influence threshold 𝜂.

After initializing the seed set 𝑆 , R1, and R2, we determine the number of RR-sets needed by R1
and R2 with Lemma 3.1. To elaborate, we require the failure probabilities of R1 and R2 to be both
𝛿 , while the estimation error of R1 is 𝜖𝑒 and the verification error of R2 is 𝜖𝑣 . To guarantee the
verification quality, 𝜖𝑣 is often set to be a smaller value. However, the size of R2 (i.e., 𝜃𝑣) is still often
much smaller than that of R1 (i.e., 𝜃𝑒 ), since the minimum influence whose estimation accuracy
has to be guaranteed by R1 and R2, is different. To explain, R1 is applied to select the seeds based
on their influence. Thus, R1 should guarantee the estimation accuracy of seeds’ influence, whose
minimum value is the influence of the first seed, denoted as 𝜉 . While R2 only needs to guarantee the
estimation accuracy of the final influence 𝜂. Since 𝜂 is much larger than 𝜉 , we often have 𝜃𝑒 ≫ 𝜃𝑣 .
Thus, the generation of R2 would not incur much computation cost.
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Algorithm 1: CLEAR
Input: Graph 𝐺 = (𝑉 , 𝐸), user costs 𝑐 (·), diffusion probability 𝑝 (·), failure probability 𝛿 ,

estimation error 𝜖𝑒 , minimum influence 𝜉 , verification error 𝜖𝑣 .
Output: The seed set 𝑆 .

1 𝑆 ← ∅, R1 ← ∅, R2 ← ∅;
2 𝜃𝑒 ← ⌈(2 + 2𝜖𝑒

3 ) ln 2
𝛿𝑛

/ (𝜖2𝑒 𝜉)⌉;
3 𝜃𝑣 ← ⌈(2 + 2𝜖𝑣

3 ) ln 2
𝛿𝑛

/ (𝜖2𝑣𝜂)⌉;
4 while |R1 | < 𝜃𝑒 do
5 Generate a random RR-set and insert it into R1;
6 while |R2 | < 𝜃𝑣 do
7 Generate a random RR-set and insert it into R2;
8 while Γ̂2 (𝑆) < (1 + 𝜖𝑣)𝜂 do
9 𝑢∗ ← max Γ̂1 (𝑆∪{𝑢})−Γ̂1 (𝑆 )

𝑐 (𝑢 ) ;
10 𝑆 ← 𝑆 ∪ {𝑢∗};
11 return 𝑆 ;

Lemma 3.1. To estimate I(𝑆) ( I(𝑆) ≥ 𝜉) with estimation error 𝜖 and failure probability 𝛿 , the
number of RR-sets should satisfy

𝜃 ≥ (2 + 2𝜖
3 ) ln

2
𝛿
𝑛
/
𝜖2𝜉 . (3)

Given R1 and R2, we are ready to select the seeds iteratively. In each round 𝑖 , we select the user
𝑢∗ with the largest marginal influence-to-cost ratio estimated by R1 as the seed 𝑠𝑖 , forming seed set
𝑆𝑖 . The seed selection will not terminate until the influence estimated by R2, i.e., Γ̂2 (𝑆), is at least
(1 + 𝜖𝑣)𝜂. Since the validation error of R2 is at most 𝜖𝑣 , the expected influence of the final seed set
𝑆 would be at least 𝜂, satisfying the requirement of MCSS-ECG.

Next, we present theoretical analyses on our algorithm CLEAR. To begin with, we first measure
the estimation accuracy of Γ̂(𝑆) and 𝜂𝑖 by Lemmas 3.2 and 3.3 respectively.

Lemma 3.2. If (1−𝜖)I(𝑆) ≤ Î(𝑆) ≤ (1+𝜖)I(𝑆), we have the same estimation error for the truncated
influence, i.e.,

(1 − 𝜖)Γ(𝑆) ≤ Γ̂(𝑆) ≤ (1 + 𝜖)Γ(𝑆). (4)

Lemma 3.3. If (1 − 𝜖)Γ(𝑆𝑖 ) ≤ Γ̂(𝑆𝑖 ) ≤ (1 + 𝜖)Γ(𝑆𝑖 ), 𝜖 ∈ (0, 12 ), and 𝜖′ = 2𝜖
1−2𝜖 , then the estimation

accuracy of 𝜂𝑖 satisfies
(1 − 𝜖) [𝜂𝑖 − 𝜖′Γ̂(𝑆𝑖 )] ≤ 𝜂𝑖 ≤ (1 + 𝜖)𝜂𝑖 . (5)

On this basis, we could derive the approximation ratio of CLEAR by Theorem 3.4. Further, in
Proposition 3.5 we justify the rationale of the approximation ratio obtained in Theorem 3.4.

Theorem 3.4. Let 𝛽 = min
𝑖

Γ̂1 (𝑆𝑖 )−Γ̂1 (𝑆𝑖−1 )
𝑐 (𝑠𝑖 ) . When 𝜖 = 𝑜 ( 1

𝜂𝜌2 ), the total cost 𝑐 (𝑆) to reach the influence
threshold 𝜂 by Alg. 1 satisfies

𝑐 (𝑆) ≤ 𝑐 (𝑆𝑜 )
[
1 + 1

𝐵𝜖
ln (1 + 𝜖)𝜂
𝛽𝑐 (𝑆𝑜 ) − 𝑘𝐶𝜖

]
, (6)

where 𝐵𝜖 = (1+𝜖 ′ ) (1−𝜖 )
1+𝜖−2𝜌𝜖+𝜌𝜖 ′ (1−𝜖 ) and 𝐶𝜖 = 2𝜖 ′ (1−𝜖2 )𝜂𝜌

1+𝜖−2𝜌𝜖+𝜌𝜖 ′ (1−𝜖 ) .
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Algorithm 2: STAR
Input: RR-set collections R1, R2 with |R1 |=𝜃𝑒 , |R2 |=𝜃𝑣 .
Output: The seed set 𝑆 and approx. ratio 𝛼 .

1 𝑆 ← ∅, 𝑐⊥ (𝑆𝑜 ) = 𝑐min, 𝑐 (𝑆) = 0;
2 while Γ̂2 (𝑆) < (1 + 𝜖𝑣)𝜂 do
3 𝑢∗ ← max Γ̂1 (𝑆∪{𝑢})−Γ̂1 (𝑆 )

𝑐 (𝑢 ) ;
4 𝑆 ← 𝑆 ∪ {𝑢∗};
5 Calculate 𝜖𝑖 with R1 by Lemma 3.6;
6 Calculate 𝑐⊥𝑖 (𝑆𝑜 ) with R2 and 𝜖𝑖 by Lemma 3.7;
7 𝑐⊥ (𝑆𝑜 ) ← max{𝑐⊥ (𝑆𝑜 ), 𝑐⊥𝑖 (𝑆𝑜 )};
8 𝑐 (𝑆) ← 𝑐 (𝑆) + 𝑐 (𝑢∗);
9 𝛼 = 𝑐 (𝑆)/𝑐⊥ (𝑆𝑜 );

10 return 𝑆, 𝛼 ;

Proposition 3.5. The approximation ratio
(
1 + 1

𝐵𝜖
ln (1+𝜖 )𝜂

𝛽𝑐 (𝑆𝑜 )−𝑘𝐶𝜖

)
in Theorem 3.4 is well defined,

since it always holds that

0 < 𝛽𝑐 (𝑆𝑜 ) − 𝑘𝐶𝜖 < (1 + 𝜖)𝜂.
Recall that the estimation error required by [50] in their Theorem 2 is 𝑛−𝜂

8𝑛2 (𝜂+1) . Under the same
setting of uniform costs, where 𝜌 = 𝑐max/𝑐min = 1, our restriction 𝜖 = 𝑜 ( 1𝜂 ) is much looser and thus
easier to be achieved, which is at least 𝑛 times larger than that required by [50]. Further, as can be
seen, our algorithm could reach the influence threshold without allowing a shortfall 𝛼 like [20].
Moreover, note that the number of RR-sets we need, dominated by 𝜃𝑒 , is also much smaller than
that in [20], which is of order Θ(𝑛 ln 𝑛

𝜂 /𝛾2), where 𝛾 is a constant smaller than 𝛼 .

3.2 Practical Guarantee of CLEAR
Although we have established Theorem 3.4 to demonstrate the performance guarantee of CLEAR,
the actual approximation ratio remains implicit due to the inclusion of the unknown term 𝑐 (𝑆𝑜 ).
To address this issue, we further propose a new method called STAR to derive the lower bound of
𝑐 (𝑆𝑜 ), and thus obtain an explicit approximation ratio for CLEAR.

The details of STAR are summarized in Alg. 2. To carry out the algorithm, we only need the two
RR-set collections R1 and R2 in CLEAR. Then, a seed set with an explicit approximation ratio could
be generated. Thus, STAR could be used to substitute the Lines 8-10 in CLEAR for seed selection.

To begin with, we initialize the seed set with the empty set, the optimal cost 𝑐 (𝑆𝑜 ) with 𝑐min, and
the cost of the selected seeds with 0. Then, we select seed users with the greedy idea, the same as
CLEAR. Specifically, in each round, we select the seed with the maximum influence-to-cost ratio
estimated by R1. Recall Lemma 3.1 that the estimation error of R1 is related to the influence I(𝑆𝑖 )
under estimation, which is increasing with seed selection. By transforming the concentration bound
in Lemma 2.6, we could further derive the estimation error 𝜖𝑖 of R1 in each round 𝑖 in Lemma 3.6.

Lemma 3.6. Given the RR-set collection R1, the seed set 𝑆𝑖 , and the estimator Î(𝑆)=𝑛Λ1 (𝑆𝑖 )/𝜃𝑒 . Let
𝑤 = ln(1/𝛿). If Λ1 (𝑆𝑖 ) > 2𝑤/3, then with probability at least 1 − 2𝛿 the estimation error 𝜖𝑖 is upper
bounded by

Λ1 (𝑆𝑖 )(√︃
Λ1 (𝑆𝑖 ) + 2𝑤

9 −
√︃

𝑤
2

)2
− 𝑤

18

− 1.
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Moreover, in each round, after selecting the seed 𝑢∗, we can immediately derive a lower bound
𝑐⊥𝑖 (𝑆𝑜 ) of the optimal cost 𝑐 (𝑆𝑜 ) by Lemma 3.7, based on the influence of the current seed set 𝑆𝑖 . To
tighten the lower bound, we further take the largest lower bound among all rounds as the final
bound 𝑐⊥ (𝑆𝑜 ). Meanwhile, we record the cost of the selected seeds 𝑐 (𝑆). Finally, the approximation
ratio of CLEAR can be explicitly calculated as 𝑐 (𝑆)/𝑐⊥ (𝑆𝑜 ), due to 𝑐 (𝑆)/𝑐 (𝑆𝑜 ) ≤𝑐 (𝑆)/𝑐⊥ (𝑆𝑜 ). Note
that, the ratio is enlarged in the inequality, since we are approximating a minimization problem.

Lemma 3.7. After selecting the 𝑖-th seed (𝑖 > 0), we could derive a lower bound of 𝑐 (𝑆𝑜 ) by

𝑐 (𝑆𝑜 ) ≥𝑐⊥𝑖 (𝑆𝑜 )=
𝑐 (𝑠𝑖 )

[
𝜂 − (1+𝜖𝑖 )Γ̂(𝑆𝑖−1)

]
(1 + 𝜖𝑖 )

[
Γ̂(𝑆𝑖−1∪{𝑠𝑖 })− Γ̂(𝑆𝑖−1)

]+2𝜖𝑖𝜌 Γ̂(𝑆𝑖−1) .
The proof of Lemma 3.7 is similar to the derivation of the approximation ratio in Theorem 3.4.

However, to obtain a tighter bound, we deduce the lower bound of 𝑐 (𝑆𝑜 ) directly based on the
influence function Γ̂(𝑆𝑖 ) instead of 𝜂𝑖 .
With Lemma 3.7, we can also make the ratio in Theorem 3.4 explicit by replacing the 𝑐 (𝑆𝑜 ) in

the square bracket of Ineq. (6) with its lower bound. Accordingly, the ratio in Ineq. (6) becomes
clear and will still hold as long as 𝛽𝑐⊥ (𝑆𝑜 ) > 𝑘𝐶𝜖 .
Moreover, note that the derivation of 𝑐⊥ (𝑆𝑜 ) does not require the number of RR-sets in R1 to

be any specific value. Actually, given any R1 with |R1 | > 2
3 ln

1
𝛿 , we can derive an approximation

ratio by STAR. Thus, our algorithm is also applicable to the online setting where the advertiser
could pause the generation of R1 at any time, ask for a seed set and its performance guarantee, and
continue to generate RR-sets to improve the quality.

4 MCSS-PCG
To solve the MCSS-PCG problem, we have to estimate the probability of 𝑆 reaching 𝜂. Previous
works tend to adopt the Monte Carlo method, which stimulates a number of diffusion samples from
the seeds to provide an estimation. In this way, large numbers of samples have to be generated
during seed selection, failing to be scalable to large networks. To be efficient in sampling, we attempt
to adapt the well-known reverse sampling technique RR-sets for estimation. The main obstacle in
applying RR-sets for probability estimation is that each RR-set could only provide an estimation
of 0 or 1. No specific probability could be derived. To overcome this issue, we may generalize the
generation of an RR-set by selecting more roots to make a more fine-grained estimation. Intuitively,
the ratio of the roots covered by 𝑆 could be viewed as a probability. To elaborate, given a set of 𝑟
roots, independent RR-sets are generated from each root. Then, the 𝑟 RR-sets comprise a group of
RR-sets {𝑅1, 𝑅2, · · · , 𝑅𝑟 }, referred to as GRR. Each RR-set (e.g., 𝑅𝑖 ) in this group makes its binary
estimation 𝑝𝑖 ∈ {0, 1} according to whether the seed set 𝑆 intersects with it. Then, the average value
1
𝑟

∑
𝑝𝑖 could be regarded as the probability estimated by this group of RR-sets. Finally, numerous

such RR-set groups could be generated to make the estimation more precise. This method seems to
be promising in both efficiency and accuracy. However, the resultant estimation may deviate from
the ground truth evidently. For a vivid explanation, we present an example in Appendix D of [1].

4.1 Meta RR-sets
Although RR-set groups are biased, their idea of transforming a binary estimation to a fine-grained
decimal estimation still offers valuable insights into probability estimation.

Inspecting the RR-set groups, we find that the cause of their bias may come from the independency
among the RR-sets, which is a basic property of the reverse sampling technique though. To explain,
since the RR-sets are generated independently, the reverse diffusion processes that generate the RR-
sets may belong to different realizations. As a result, the states of an edge in different RR-sets may
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conflict with each other. Thus, a group of RR-sets could not comprise an overall diffusion sample
like a Monte Carlo simulation. To address this issue, we propose a new reverse sampling method,
called Meta RR-set (MRR-set). Each MRR-set consists of a number of RR-sets that are required
to be consistent with the same realization, where the concept of being consistent is presented in
Definition 4.1. Especially, each of such RR-sets is called a consistent RR-set (cRR-set), to differentiate
from traditional RR-sets. Then, an MRR-set could be viewed as a sample of an overall diffusion
process, equivalent to stimulating a diffusion. Thus intuitively, with enough MRR-sets, we could
estimate the probability of current influence reaching any given threshold.

Definition 4.1. A collection of cRR-sets is consistent with the same realization, if the states of an
edge are the same in the reverse diffusion processes that generate the cRR-sets.

Given the social network 𝐺 and diffusion probabilities 𝑝 (·), we can generate a collection of
MRR-setsM by Alg. 3. Let 𝜅 be the number of MRR-sets to be generated, and 𝜃 be the number of
cRR-sets in an MRR-set. After initializing the MRR-set collectionM, we will insert 𝜅 MRR-sets
intoM. To generate an MRR-setM𝑖 , we have to adopt two arrays to record the states of users and
edges during the reverse propagation (Lines 3-4). The first array 𝑠𝑡𝑎𝑡𝑒 [·] stores the state of each
edge 𝑒 ∈ 𝐸, which is shared by all the cRR-sets inM𝑖 , ensuring the cRR-sets are consistent with the
same realization. Each element in 𝑠𝑡𝑎𝑡𝑒 [·] may take three values. Initially, the states of all edges are
set to be Unknown, since no edge has been probed yet. After an MRR-set generation begins, edges
will be probed by the users. Then, the state of an edge will become True if the activation through
it is successful, and False otherwise. For each MRR-set, the second array 𝑟𝑜𝑜𝑡𝑠 [·] stores 𝜃 roots
sampled from the network uniformly at random, from which the cRR-sets will be generated.
When generating a cRR-set 𝑐𝑅𝑅𝑖, 𝑗 in M𝑖 , we need another two arrays to keep track of the

diffusion process. First, a queue 𝑄 is applied to record the set of users whose in-edges have not
been probed. Second, to avoid inserting duplicate users into the same cRR-set, the array 𝑎𝑑𝑑𝑒𝑑 [·]
is introduced to indicate whether a user has been added into 𝑐𝑅𝑅𝑖, 𝑗 or not. Specifically, an element
in 𝑎𝑑𝑑𝑒𝑑 [·] takes value True if the corresponding user has already been inserted into the cRR-set,
and vice versa.

To generate a cRR-set 𝑐𝑅𝑅𝑖, 𝑗 , we take out a root 𝑟 from the root array 𝑟𝑜𝑜𝑡𝑠 ofM𝑖 to trigger the
reverse diffusion. Initially, the cRR-set 𝑐𝑅𝑅𝑖, 𝑗 and the queue 𝑄 only contain the root 𝑟 . Accordingly,
all elements in array 𝑎𝑑𝑑𝑒𝑑 [·] is set to be False except 𝑎𝑑𝑑𝑒𝑑 [𝑟 ]. Then, for each user 𝑢 in 𝑄 , we
try to activate its in-neighbors 𝑁in (𝑢). Specifically, for each in-neighbor 𝑣 , we have to first examine
the state of the edge (𝑣,𝑢), in case its state has been revealed by other roots. In this way, we could
ensure that the edge states are consistent among different cRR-sets. Accordingly, the state of (𝑣,𝑢)
(i.e., 𝑠𝑡𝑎𝑡𝑒 [(𝑣,𝑢)]) may result in three cases.

(1) If the state of (𝑣,𝑢) is False (Line 12), this means that the edge (𝑣,𝑢) has been probed and
revealed to be blocked. To keep the edge states consistent with the same realization, we only need
to adopt the previous probing result. Thus, user 𝑣 would remain to be inactivated and no further
action is needed.

(2) On the other hand, if the state of (𝑣,𝑢) is found to be True (Line 14), then the diffusion through
(𝑣,𝑢) will also be successful as before and user 𝑣 will be activated. Before adding 𝑣 into 𝑐𝑅𝑅𝑖, 𝑗 ,
we have to further check whether 𝑣 has already been inserted into 𝑐𝑅𝑅𝑖, 𝑗 in case of duplication,
by looking up the array 𝑎𝑑𝑑𝑒𝑑 [𝑣]. If 𝑎𝑑𝑑𝑒𝑑 [𝑣] is False, we could safely insert 𝑣 into the cRR-set.
Accordingly, we update the state of 𝑎𝑑𝑑𝑒𝑑 [𝑣] by True and append 𝑣 to 𝑄 to further probe its
in-neighbors. Otherwise, if 𝑎𝑑𝑑𝑒𝑑 [𝑣] is True, we just skip user 𝑣 for the next one.
(3) Different from the above two cases, if the state of the edge (𝑣,𝑢) is still Unknown (Line 22),

meaning the edge (𝑣,𝑢) has not been probed yet, then we ascertain it by simulating the diffusion
through (𝑣,𝑢). Specifically, we sample a number in [0, 1] uniformly at random. If the random
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Algorithm 3: MRR(𝐺, 𝑝, 𝜅, 𝜃 )
Input: Graph 𝐺 = (𝑉 , 𝐸), diffusion probability 𝑝 (·), the number of roots 𝜃 , the number of

MRR-sets 𝜅.
Output: A collection of MRR-setsM.

1 M ← ∅;
2 for 𝑖 ∈ [1, 𝜅] do
3 M𝑖 ← ∅, 𝑠𝑡𝑎𝑡𝑒 [𝑒] ← Unknown,∀𝑒 ∈ 𝐸 ;
4 𝑟𝑜𝑜𝑡𝑠 ← UniformSampling(𝑉 , 𝜃 );
5 for 𝑗 ∈ [1, 𝜃 ] do
6 𝑟 ← 𝑟𝑜𝑜𝑡𝑠 [ 𝑗], 𝑐𝑅𝑅𝑖, 𝑗 .append(𝑟 );
7 𝑄 .clear().append(𝑟 );
8 𝑎𝑑𝑑𝑒𝑑 [𝑢] ← False,∀𝑢 ∈ 𝑉 ; 𝑎𝑑𝑑𝑒𝑑 [𝑟 ] ← True;
9 while 𝑄.empty() == False do
10 𝑢 ← 𝑄.pop();
11 for 𝑣 ∈ 𝑁in (𝑢) do
12 if 𝑠𝑡𝑎𝑡𝑒 [(𝑣,𝑢)] == False then
13 continue;
14 else if 𝑠𝑡𝑎𝑡𝑒 [(𝑣,𝑢)] == True then
15 if 𝑎𝑑𝑑𝑒𝑑 [𝑢] == True then
16 continue;
17 else
18 𝑐𝑅𝑅𝑖, 𝑗 .append(𝑣) ;
19 𝑎𝑑𝑑𝑒𝑑 [𝑢] ← True;
20 𝑄 .append(𝑣) ;
21 continue ;
22 else
23 if rand() > 𝑝 (𝑣,𝑢) then
24 𝑠𝑡𝑎𝑡𝑒 [(𝑣,𝑢)] ← False;
25 else
26 𝑠𝑡𝑎𝑡𝑒 [(𝑣,𝑢)] ← True;
27 go to Line 15;
28 M𝑖 .append(𝑐𝑅𝑅𝑖, 𝑗 );
29 M.append(M𝑖 );
30 returnM;

number is larger than the diffusion probability 𝑝 (𝑣,𝑢), then the diffusion fails and the state of (𝑣,𝑢)
is set to be False. Otherwise, the edge should be live and its state is set to be True. Accordingly,
we try to insert the user 𝑣 into the cRR-set, by adopting the same actions in Lines 15-21.

When 𝑄 becomes empty, we finish the generation of 𝑐𝑅𝑅𝑖, 𝑗 from root 𝑟 , and insert the cRR-set
𝑐𝑅𝑅𝑖, 𝑗 intoM𝑖 . Then, iterating the above processes for the 𝜃 roots, we can derive the MRR-setM𝑖 .
After generating 𝜅 such MRR-sets, we obtain the final MRR-set collectionM.

Example 4.2. To be intuitive, we further illustrate the execution of Alg. 3 with Fig. 1. For ease
of reverse diffusion, we first reverse all edge directions to derive the transpose graph 𝐺𝑇 (𝑉 , 𝐸),
which consists of four users (𝑣0, 𝑣1, 𝑣2, 𝑣3), and five edges (𝑒0 = (𝑣0, 𝑣1), 𝑒1 = (𝑣0, 𝑣2), 𝑒2 = (𝑣1, 𝑣2), 𝑒3 =
(𝑣1, 𝑣3), 𝑒4 = (𝑣2, 𝑣3)) which are associated with the same diffusion probability 0.5. Let us generate
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(a) Transpose graph
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(b) MRR-setM1

2''2,1 = {E1, E3, E2}
2''2,2 = {E2, E3}
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(c) MRR-set M2

Fig. 1. Example of MRR-sets generation.

an MRR-set collection with 𝜅 = 𝜃 = 2. To derive the first MRR-set M1, we assume the array
𝑟𝑜𝑜𝑡𝑠 = {𝑣0, 𝑣1}. When reversely diffusing from root 𝑣0, the edges 𝑒0 and 𝑒2 are probed to be live
while the rest are not, as shown in Fig. 1(b). Then, the cRR-set from 𝑣0 is 𝑐𝑅𝑅1,1 = {𝑣0, 𝑣1, 𝑣2}, and
𝑠𝑡𝑎𝑡𝑒 = {1, 0, 1, 0, 0}. For the second root 𝑣1, when examining its in-neighbor 𝑣2, since the state of
𝑒2 = (𝑣1, 𝑣2) (i.e., 𝑠𝑡𝑎𝑡𝑒 [𝑒2]) has been revealed to be True by the first cRR-set, we directly insert 𝑣2
into the 𝑐𝑅𝑅1,2. However, when probing the in-neighbor 𝑣3 of 𝑣1, the state of 𝑒3 = (𝑣1, 𝑣3) has been
revealed to be False by 𝑐𝑅𝑅1,1. Thus, user 𝑣3 could not be activated or inserted. Similarly, when 𝑣3
is probed by 𝑣2, it is not inserted either, since the edge 𝑒4 = (𝑣2, 𝑣3) was also revealed to be False
by 𝑐𝑅𝑅1,1. Then, the second cRR-set is 𝑐𝑅𝑅1,2 = {𝑣1, 𝑣2}, and the MRR-set isM1 = {𝑐𝑅𝑅1,1, 𝑐𝑅𝑅1,2}.

To generate the second MRR-setM2, assume the roots are {𝑣1, 𝑣2}. For the root 𝑣1, when probing
the edge 𝑒3 = (𝑣1, 𝑣3), we assume the diffusion is successful, as shown in Fig. 1(c). Then, user 𝑣3
is inserted to the cRR-set, and the array 𝑎𝑑𝑑𝑒𝑑 = {0, 1, 0, 1}. Likewise, the other in-neighbor 𝑣2 is
activated and inserted via 𝑒2 = (𝑣1, 𝑣2). Then, we have to probe the edge 𝑒4 from 𝑣2, which is found
to be live. However, the value of 𝑣3 in 𝑎𝑑𝑑𝑒𝑑 is True. Thus, user 𝑣3 would not be inserted into 𝑐𝑅𝑅2,1.
Accordingly, the cRR-set from 𝑣1 is 𝑐𝑅𝑅2,1 = {𝑣1, 𝑣3, 𝑣2}, and the array 𝑠𝑡𝑎𝑡𝑒 = {?, ?, 1, 1, 1}. For the
second root 𝑣2, when probing its only in-neighbor 𝑣3, we find that the state of the edge 𝑒4 = (𝑣2, 𝑣3)
(i.e., 𝑠𝑡𝑎𝑡𝑒 [𝑒4]) has been revealed to be live by 𝑐𝑅𝑅2,1, and 𝑎𝑑𝑑𝑒𝑑 [𝑣3] is False in the new cRR-set.
Thus, we directly insert 𝑣3 into 𝑐𝑅𝑅2,2. Finally, the cRR-set is 𝑐𝑅𝑅2,2 = {𝑣2, 𝑣3}, and the MRR-set is
M2 = {𝑐𝑅𝑅2,1, 𝑐𝑅𝑅2,2}.

Remark. Besides the probability P[𝐼 (𝑆) ≥ 𝜂], MRR-sets can also be applied to estimate the
expected influence I[𝑆] in traditional influencemaximization (IM) problems [21, 23, 48]. To elaborate,
note that eachMRR-setM𝑖 is a sketch of a realization𝜙𝑖 . Then,M𝑖 can estimate the influence spread
under 𝜙 as 𝐼𝜙𝑖

(𝑆) = 𝑛 · Λ𝑖 (𝑆)/𝜃 , where Λ𝑖 (𝑆) is the number of cRR-sets covered by 𝑆 inM𝑖 . With a
number of MRR-sets {M𝑖 }𝜅𝑖=1, the expected influence I(𝑆) can be estimated as Î(𝑆) = 1

𝜅

∑𝜅
𝑖=1 𝐼𝜙𝑖

(𝑆).
It is easy to see that Î(𝑆) is an unbiased estimator and MRR-sets have a smaller variance than
traditional RR-sets, where detailed analyses could be found in Appendix C of [1]. However, an
MRR-set takes more time to be generated than an RR-set, since each MRR-set has to generate
numerous cRR-sets. How to improve the efficiency of MRR-sets to solve traditional IM could be a
potential direction for future work.

4.2 Theoretical Analysis of MRR-sets
In this subsection, we show that MRR-sets could estimate the probability of 𝐼 (𝑆) reaching 𝜂 with a
theoretical guarantee, by properly setting parameters 𝜅 and 𝜃 in Alg. 3.
Let the random variable 𝑌 (Ψ,Φ) = 1 denote the event that a random user Ψ is activated by the

seed set 𝑆 in a random diffusion process Φ, and 𝑌 (Ψ,Φ) = 0 otherwise. Note that the randomness
of 𝑌 (Ψ,Φ) comes from two sources: the selection of a random user and the random propagation
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from 𝑆 to the user. Thus, even if we take an expectation w.r.t. user selection, the result EΨ [𝑌 (Ψ,Φ)]
is still a random variable.
To estimate P[𝐼 (𝑆) ≥ 𝜂], an attractive way is to enquire the complementary cumulative distri-

bution function (CCDF) 𝐹𝑐 (𝜂) = P[𝐼 (𝑆) ≥ 𝜂] of 𝐼 (𝑆) directly, which however is often unavailable.
Nevertheless, we find that Lemma 4.3 could connect the distribution of 𝐼 (𝑆) with EΨ [𝑌 (Ψ,Φ)], and
thus provide the possibility to access 𝐹𝑐 (·) in an indirect way.
Lemma 4.3. The distribution of 𝑛 · EΨ [𝑌 (Ψ,Φ)] is the same as 𝐼 (𝑆), and so is the CCDF of 𝑛 ·

EΨ [𝑌 (Ψ,Φ)].
Then, we show that actually EΨ [𝑌 (Ψ,Φ)] could be well approximated by the MRR-sets, based on

which we could obtain a surrogate CCDF of 𝐼 (𝑆). To see this, let us first consider the simpler case
where the realization is fixed, i.e., Φ = 𝜙 . In this case, the r.v. EΨ [𝑌 (Ψ, 𝜙)] is actually a constant
value, since whether a user could be activated by 𝑆 under a given realization 𝜙 is deterministic, by
the definition of 𝜙 . Next, by Lemma 4.4, we show that a random cRR-set 𝑐𝑅𝑅 of an MRR-set under
𝜙 is actually an unbiased estimator of EΨ [𝑌 (Ψ, 𝜙)].

Lemma 4.4. Given any realization 𝜙 and a random cRR-set 𝑐𝑅𝑅 generated under 𝜙 , let the indicator
r.v. 𝑌 = 1 if 𝑐𝑅𝑅 is covered by 𝑆 and 𝑌 = 0 otherwise. Then, we have

E[𝑌 ] = EΨ [𝑌 (Ψ, 𝜙)] .
Thus, we can estimate EΨ [𝑌 (Ψ, 𝜙)] with a number of cRR-sets in an MRR-set. To elaborate,

assume we have generated 𝜃 cRR-sets under the realization 𝜙 , which form an MRR-setM𝑖 . Let
𝑌𝑖, 𝑗 be the indicator random variable of the cRR-set 𝑐𝑅𝑅𝑖, 𝑗 , where 𝑌𝑖, 𝑗 = 1 if 𝑐𝑅𝑅𝑖, 𝑗 is covered by 𝑆 ,
and 𝑌𝑖, 𝑗 = 0 otherwise. Given the 𝜃 cRR-sets, we can estimate EΨ [𝑌 (Ψ, 𝜙)] with the sample mean
𝑌𝑖 = 1

𝜃

∑𝜃
𝑗=1 𝑌𝑖, 𝑗 . Further, by establishing the concentration results in Lemma 4.5, we can derive

the estimation error ofM𝑖 . Specifically, Lemma 4.5 implies that, to estimate EΨ [𝑌 (Ψ, 𝜙)] with an
estimation error of 𝜏 and failure probability 𝛿1, the number of cRR-sets we need in an MRR-set
should be at least 𝜃 = ln 1

𝛿1
/(2𝜏2).

Lemma 4.5. Given any realization 𝜙 and an MRR-setM𝑖 with 𝜃 cRR-sets generated under 𝜙 , for
any 𝜏 > 0 and 𝛿1 = 𝑒−2𝜃𝜏

2
, we have

P

[
EΨ [𝑌 (Ψ, 𝜙)] ≥ 1

𝜃

𝜃∑︁
𝑗=1

𝑌𝑖, 𝑗 − 𝜏
]
≥ 1 − 𝛿1. (7)

With tractable estimation of EΨ [𝑌 (Ψ, 𝜙)] under any realization 𝜙 , we are ready to consider the
original case where the realization is random. To this end, we first introduce some useful concepts
and tools. Let 𝑍1, 𝑍2, · · ·𝑍𝜅 be a set of real-valued samples from the same distribution, whose CCDF
is denoted as 𝐹𝑐 (𝑧) and CDF is 𝐹 (𝑧) = 1 − 𝐹𝑐 (𝑧). Then, we define the empirical CCDF 𝐹𝑐𝜅 (𝑧) in
Definition 4.6. Moreover, the DKW inequality in Lemma 4.7 harnesses the error between 𝐹𝜅 (𝑧) and
𝐹 (𝑧), and thus also harnesses the error between 𝐹𝑐𝜅 (𝑧) and 𝐹𝑐 (𝑧).

Definition 4.6. Given a series of samples 𝑍1, 𝑍2, · · ·𝑍𝜅 from the same distribution whose CCDF is
𝐹𝑐 (𝑧), then the empirical CCDF and empirical CDF are defined as

𝐹𝑐𝜅 (𝑧) =
1
𝜅

∑︁𝜅

𝑖=1 I{𝑍𝑖≥𝑧} , 𝐹𝜅 (𝑧) = 1 − 𝐹𝑐𝜅 (𝑧),
where I{𝑍𝑖≥𝑧} is the indicator function which takes value 1 if 𝑍𝑖 ≥ 𝑧, and 0 otherwise.

Lemma 4.7 (DKW Ineqality [33]). For any integer𝜅 and real number 𝜆 ≥ min
{√︁

ln 2/2𝜅, 1.0841
𝜅2/3

}
,

it holds for any 𝑧 ∈R that
P
[
𝐹 (𝑧) ≥ 𝐹𝜅 (𝑧) + 𝜆

] ≤ 𝑒−2𝜅𝜆2 .
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Algorithm 4: SCORE
Input: Graph 𝐺 = (𝑉 , 𝐸), user cost 𝑐 (·), diffusion probability 𝑝 (·), failure probabilities 𝛿, 𝛿1

and 𝛿2, estimation errors 𝜖𝑒 , 𝜏 and 𝜆, minimum influence 𝜉 .
Output: The seed set 𝑆 .

1 𝑆 ← ∅, R ← ∅,M ← ∅, 𝜃𝑒 ← ⌈(2 + 2𝜖𝑒
3 ) ln 2

𝛿𝑛
/ (𝜖2𝑒 𝜉)⌉;

2 while |R | < 𝜃𝑒 do
3 Generate a random RR-set and insert it into R;
4 𝜃 ← ln 1

𝛿1
/(2𝜏2), 𝜅 ← ln 1

𝛿2
/(2𝜆2);

5 M ← MRR(𝐺, 𝑝, 𝜅, 𝜃 );
6 𝑐𝑛𝑡 ← 0, 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [𝑖] ← 0,∀𝑖 ∈ [1, 𝜅];
7 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑖] [ 𝑗] ← False,∀𝑖 ∈ [1, 𝜅],∀𝑗 ∈ [1, 𝜃 ];
8 while 𝑐𝑛𝑡/𝜅 < 𝑝 + 𝜆 do
9 𝑢∗ ← max Γ̂ (𝑆∪{𝑢})−Γ̂ (𝑆 )

𝑐 (𝑢 ) ;
10 𝑆 ← 𝑆 ∪ {𝑢∗};
11 VEST(𝑢∗, 𝑐𝑛𝑡, 𝑐𝑜𝑣𝑒𝑟𝑒𝑑, 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒,M, 𝜂/𝑛 + 𝜏);
12 return 𝑆 ;

The DKW inequality indicates that by sampling a sufficient number of realizations, we could
derive an empirical CCDF of EΨ [𝑌 (Ψ,Φ)] with provable deviation. Note that each MRR-setM𝑖

corresponds to a realization 𝜙𝑖 . Thus, by generating a series of MRR-setsM1,M2, · · · ,M𝜅 , we
could derive an empirical CCDF 𝐹𝑐𝜅 (𝜂) = 1

𝜅

∑𝜅
𝑖=1 I{𝑛EΨ [𝑌 (Ψ,𝜙𝑖 ) ]≥𝜂} . Recall that EΨ [𝑌 (Ψ, 𝜙𝑖 )] could

be estimated by the cRR-sets inM𝑖 . Thus, we could replace it with 𝑌𝑖 = 1
𝜃

∑𝜃
𝑗=1 𝑌𝑖, 𝑗 . To ensure the

estimated value would not overestimate the probability, we could further restrict the indicator
function to take value 1 only when EΨ [𝑌 (Ψ, 𝜙𝑖 )] reaches 𝜂 with certainty, by incorporating the
estimation error 𝜏 . Thus, we could define a stricter empirical CCDF as

𝐹𝑐
′

𝜅 (𝜂) =
1
𝜅

𝜅∑︁
𝑖=1
I{ 1

𝜃

∑𝜃
𝑗=1 𝑌𝑖,𝑗 ≥𝜂/𝑛+𝜏

} . (8)

On this basis, Theorem 4.8 presents the estimation error 𝜆 of 𝜅 MRR-sets. Then, by setting 𝜅 =
ln 1

𝛿2
/(2𝜆2), when 𝐹𝑐′𝜅 (𝜂) ≥ 𝑝 +𝜆, we have P(𝐼 (𝑆) ≥ 𝜂) ≥ 𝑝 holds with probability at least 1−𝛿1−𝛿2.

Theorem 4.8. Given the seed set 𝑆 and 𝜅 MRR-setsM1,M2, · · · ,M𝜅 , where each MRR-set contains
𝜃 cRR-sets, if the empirical CCDF satisfies 𝐹𝑐

′
𝜅 (𝜂) ≥ 𝑝 + 𝜆 where 𝜆 ≥ min

{√︁
ln 2/2𝜅, 1.0841/𝜅2/3

}
,

then we have P(𝐼 (𝑆) ≥ 𝜂) ≥ 𝑝 holds with probability at least 1 − 𝑒−2𝜅𝜆2 − 𝜅𝑒−2𝜃𝜏2 + 𝜅𝑒−2𝜅𝜆2−2𝜃𝜏2 .

4.3 The SCORE Algorithm
Although MRR-sets provide reliable probability estimation, naive application of them could not
fully explore their potential in efficiency. To explain, when estimating the probability, we have to
examine the state of each MRR-set and each cRR-set therein, by verifying whether it is covered by
𝑆 . If we simply check the state of MRR-sets and cRR-sets from scratch after each seed selection,
extensive computation would be incurred. Instead, we devise an accumulative estimation method
called VEST to apply MRR-sets efficiently, where the probability estimation is incrementally updated
after each seed selection.

On this basis, we propose our SCORE algorithm to solve the MCSS-PCG problem with theoretical
guarantee. Different from our solution to MCSS-ECG, SCORE only needs one collection of RR-sets
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Procedure VEST(𝑢,&𝑐𝑛𝑡,&𝑐𝑜𝑣𝑒𝑟𝑒𝑑,&𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒,M,𝑇 )
Input: seed 𝑢∗, count 𝑐𝑛𝑡 , arrays 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [·] [·], 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [·], MRR-setsM, threshold 𝑇 .

1 for 𝑖 ∈ [1, 𝜅] do
2 if 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [𝑖]/𝜃 >= 𝑇 then
3 continue;
4 else
5 for 𝑗 ∈ [1, 𝜃 ] do
6 if 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑖] [ 𝑗] == True then
7 continue;
8 else
9 if 𝑢∗ ∈ 𝑅𝑖, 𝑗 then
10 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑖] [ 𝑗] ← True;
11 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [𝑖] ← 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [𝑖] + 1;
12 if 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [𝑖]/𝜃 >= 𝑇 then
13 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1;
14 break;

R to select the seeds. Moreover, the stopping condition becomes that the probability of 𝑆 reaching
𝜂 is estimated to be no less than 𝑝 + 𝜆. More implementation details could be found in Alg. 4.

Specifically, we first initialize the seed set 𝑆 , RR-set collection R, and MRR-set collectionM.
Then, the RR-set collection R is filled with 𝜃𝑒 RR-sets, the same as the MCSS-ECG case. Following
the analysis in Section 4.2, we generate 𝜅 MRR-sets, each of which contains 𝜃 cRR-sets, resulting in
the estimation error 𝜆 and failure probability 𝛿1 + 𝛿2. Then, we introduce some global variables to
track the states of MRR-sets. For each cRR-set 𝑐𝑅𝑅𝑖, 𝑗 in the MRR-setM𝑖 , its state of being covered
by the current seed set or not is recorded by the array 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑖] [ 𝑗], corresponding to the r.v. 𝑌𝑖, 𝑗
in Eq. (8), which takes value True if 𝑐𝑅𝑅𝑖, 𝑗 has been covered and takes value False otherwise.
Further, the number of cRR-sets covered by the seed set inM𝑖 is recorded by the array 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [𝑖].
Moreover, if the coverage of 𝑆 inM𝑖 reaches 𝜃 (𝜂/𝑛 + 𝜏), then the indicator function in Eq. (8) takes
value 1. Finally, we apply a counter 𝑐𝑛𝑡 to record the number of MRR-sets that satisfy the condition.
Accordingly, we can estimate the probability P[𝐼 (𝑆) ≥ 𝜂] with 𝑐𝑛𝑡/𝜅 by Eq. (8).

Now, we are ready to select the seed users. Each time, we select the user 𝑢∗ with the largest
influence-to-cost ratio as the seed, and insert it into the seed set 𝑆 . Then, the values of 𝑐𝑛𝑡 ,
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [·], and 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [·] [·] need to be updated due to the new seed 𝑢∗. To be efficient, we
apply VEST to update the states of MRR-sets and cRR-sets which contain 𝑢∗. Specifically, for each
MRR-setM𝑖 , we first examine the coverage of 𝑆 on it (i.e., 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [𝑖]) and take corresponding
actions as follows.

If more than 𝜃 (𝜂/𝑛 + 𝜏) cRR-sets inM𝑖 have already been covered by 𝑆 (Line 2), we just proceed
to the next MRR-set, without updating the states of its cRR-sets or the value of 𝑐𝑛𝑡 . Because an
MRR-set with coverage over 𝜃 (𝜂/𝑛 + 𝜏) and the cRR-sets therein have already contributed to
increasing the value of 𝑐𝑛𝑡 (Lines 12-13). Duplicated addition to 𝑐𝑛𝑡 would make the estimation not
accurate any more.

If 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [𝑖] < 𝜃 (𝜂/𝑛 +𝜏), then we delve into the states of the cRR-sets. For each cRR-set 𝑐𝑅𝑅𝑖, 𝑗
inM𝑖 , if it has already been covered by previous seeds, we just skip this cRR-set for the next one,
since the new seed 𝑢∗ would not change its state of being covered. If the cRR-set has not been
covered, we next check whether it is covered by the new seed 𝑢∗. If 𝑢∗ ∈ 𝑐𝑅𝑅𝑖, 𝑗 (Line 9), then 𝑐𝑅𝑅𝑖, 𝑗
will be covered by 𝑢∗. Meanwhile, the state of 𝑐𝑅𝑅𝑖, 𝑗 (i.e., 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [𝑖] [ 𝑗]) needs to be updated as
True, and the coverage of 𝑆 inM𝑖 is also increased by 1. Since the value of coverage is changed,
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we have to further examine whether the new coverage exceeds 𝜃 (𝜂/𝑛 + 𝜏). If that is the case, the
value of 𝑐𝑛𝑡 should also be added by 1. Finally, the new probability is estimated as 𝑐𝑛𝑡/𝜅 , according
to Eq. (8). If the estimated probability is still smaller than 𝑝 + 𝜆, we continue to select seeds and
make new estimations until the condition is met.

Next, we build the approximation ratio of SCORE based on our results in MCSS-ECG. Specifically,
we focus on deriving a practical ratio based on Lemma 3.7. To be concise, we will succeed the
notations in MCSS-ECG, while they are defined under the condition that the influence will reach 𝜂
with probability at least 𝑝 , such as 𝑆𝑜 , 𝑆𝑘 . To begin with, we measure the gap between 𝜂 and I(𝑆𝑜 )
by 𝑎 = max{𝜂 − I(𝑆𝑜 ), 0}, and the gap between 𝜂 and I(𝑆𝑘−1) by 𝑎′ = max{I(𝑆𝑘−1) − 𝜂, 0}, which
are upper bounded by Lemma 4.9.

Lemma 4.9. The upper bounds of 𝑎 and 𝑎′ are
𝑎 ≤ (1 − 𝑝)𝜂, 𝑎′ ≤ 𝑝𝑛 + (1 − 𝑝)𝜂 + 1. (9)

Note that SCORE and CLEAR select seed users with the same idea, and the approximation ratio
of CLEAR is already available in Lemma 3.7. Thus, we can bound the cost of SCORE reaching an
expected influence of a smaller value 𝜂 − 𝑎. Further, by the definition of 𝑎′, the expected influence
of 𝑆𝑘−1 satisfies I(𝑆𝑘−1) ≤ 𝜂 + 𝑎′. Synthesizing the two observations, we can bound the total cost of
SCORE by adding the cost to reach 𝜂 + 𝑎′ from 𝜂 − 𝑎 and the cost to reach 𝜂 − 𝑎 from 0. With this
idea, we derive Theorem 4.10, where 𝑆𝑙 is the minimum seed set selected by CLEAR whose expected
influence is at least 𝜂 − 𝑎, i.e., Γ̂(𝑆𝑙 ) ≥ (1 + 𝜖) (𝜂 − 𝑎). Further, 𝑆∗ is the optimal seed set which
achieves the expected influence of 𝜂 − 𝑎 with the minimum cost, i.e., 𝑆∗ = argmin{Γ (𝑆 )≥𝜂−𝑎} 𝑐 (𝑆).
Moreover, 𝑐⊥ (𝑆∗) is the lower bound of the optimal cost 𝑐 (𝑆∗) derived by Lemma 3.7.

Theorem 4.10. The cost of the seed set 𝑆 selected by SCORE approximates that of the optimal seed
set 𝑆𝑜 in the following form

𝑐 (𝑆𝑘 ) ≤
𝑐 (𝑆𝑙 )
𝑐⊥ (𝑆∗) 𝑐 (𝑆

𝑜 ) + (𝑎 + 𝑎
′)𝑛𝜌

𝑛 − (𝜂 + 𝑎′) + 2. (10)

5 RELATEDWORKS
The MCSS problem is dual to the classic influence maximization (IM) problem, sharing many
properties with IM, e.g., the NP-hardness and the inapproximability. As a derivative of IM, the
MCSS problem is formulated after IM and first studied by Long et al. They prove that the influence
function is submodular and propose the first approximation algorithm for MCSS [31]. After that,
a large body of works are carried out to advance the research of MCSS from various aspects
[7, 10, 14, 28, 36, 37, 39, 40, 49, 51].
Initially, researchers are mainly concerned about the basic problem MCSS-ECG. Inspired by

[42], Goyal et al. [18] adopt the greedy idea and propose a bi-criteria approximation algorithm.
Specifically, to derive a bounded approximation ratio ln𝜂/𝜖 , they allow a small shortfall 𝜖 > 0 in
reaching the influence threshold. Later, Kuhnle et al. consider the case where the influence function
is not strictly submodular and the influence oracle is not available [27]. As a solution, they also
propose a bi-criteria approximation algorithm, whose approximation ratio however is worse than
[18]. Notably, Zhu et al. eliminate the shortfall in reaching the influence threshold [52]. Their
algorithm could provide an approximation ratio when an influence oracle exists, which however is
not the case in practice.
The above works often suffer from inefficient and inaccurate influence estimation in their

algorithm implementation. To circumvent this issue, Han et al. apply the well-known RR-sets for
influence estimation [20]. On this basis, a series of algorithms are proposed with performance
guarantee. Later, Hong et al. [22] develop the competitive reverse reachable sets based on RR-sets
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to solve the MCSS problem under competitive influence propagation. Although [20] and [22] solve
MCSS in a relatively efficient way, their algorithms still could not reach the influence threshold.
Differently, Zhang et al. design an algorithm to compensate for the influence shortfall under
uniform costs and very small influence estimation error [50]. Nevertheless, the case of fine-grained
non-uniform costs and practical estimation error still needs further investigation.

Besides MCSS-ECG, the MCSS-PCG problem is also considered in [50]. Zhang et al. propose the
MinSeed algorithm for solution, which is quite time-consuming, since the Monte Carlo method
is adopted to evaluate the probability of current seeds reaching 𝜂. The theoretical performance
of MinSeed is derived based on the results in MCSS-ECG. Due to the dependency on MCSS-ECG,
their analysis is applicable only when the estimation error on influence is very small. Following
[50], Jia et al. instantiate influence estimation with their proposed technique in the Monte Carlo
fashion, which samples many possible worlds and counts the paths from seeds to a user to estimate
the influence [24]. An advantage of their approach may be that the seeds’ influence and their
probability of reaching 𝜂 could be estimated at the same time.

Despite MCSS-ECG and MCSS-PCG , the MCSS problem is also formulated in an adaptive way.
Vaswani et al. are the precursors to study the adaptive seed minimization problem [47]. They first
derive a relationship between the optimal policy and the greedy policy. Applying this relationship
and allowing a shortfall in reaching 𝜂, they derive an approximation ratio for their adaptive greedy
policy. Later, Tang et al., argue that the influence function should be truncated, for which a new
influence estimation technique named mRR-sets is proposed [43]. Drawing the theoretical results
from [17], the authors show that their ASTI algorithm could achieve an approximation ratio of the
form (ln𝜂 + 1)2.
ASTI could always solve the MCSS-PCG problem, due to its adaptive nature. However, the

adaptivity also leads to its two deficiencies in solving MCSS-PCG, besides the scalability issue
discussed in Section 2. First, ASTI needs to observe the diffusion from previous seeds, while it is
often hard to know whether a user has adopted the product in practice. Moreover, much time is
needed to finish the observation of diffusion, since the actual influence dissemination between
users is not completed within milliseconds like computer simulation. With a long implementation
time, ASTI could not accumulate enough engagements within short time so as to be noticed by the
trending algorithms of social platforms. Second, the probability provided by ASTI is fixed, which
may exceed the expectation of marketers too much and incur extra costs, thus is not flexible in
meeting the requirement of MCSS-PCG.
The implementation of the above works relies on the estimation of influence and probability.

Cohen proposes a sketch-based method SKIM to estimate user influence in [6]. The main idea
of SKIM is to build numerous min-hash sketches based on possible worlds (i.e., realizations).
Specifically, given a possible world, SKIM has to traverse the whole possible world to build sketches
for each node, which is quite time-consuming. Further, in SKIM, to provide an approximation
guarantee, numerous possible worlds have to be generated and each possible world has to be
traversed in the above way to build sketches, resulting in high computation cost. In contrast,
RR-sets based methods only require the construction of a partial possible world, a subgraph of
nodes reachable from the root. Existing works, such as [2, 13, 35], have also validated that SKIM is
not as efficient as RR-sets based methods. Thus, in this paper, we propose MRR based on RR-sets
instead of sketches.
To summarize, the MCSS-PCG problem has not been well solved yet. There is still a lack of

efficient methods for probability estimation, and a lack of consideration for non-uniform user costs.
Moreover, the MCSS-ECG problem, which MCSS-PCG often relies on, also needs to eliminate the
influence shortfall and relax the constraint on the error of influence estimation. Thus, we carry out
this work to address these challenges with our MRR, CLEAR, and SCORE algorithms.
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Table 2. Datasets. (𝐾 = 103, 𝑀 = 106, 𝐵 = 109)

Name 𝒏 𝒎 Avg Degree Type
DBLP 655K 2.0M 6.1 undirected
Pokec 1.6M 30.6M 37.5 directed

Livejournal 4.8M 69.0M 28.5 directed
Friendster 65.6M 1.8B 27.5 undirected

6 EXPERIMENTS
In this section, we experimentally evaluate our algorithms against its competitors on real social
networks. Specifically, we aim to answer the following questions for MCSS-PCG and MCSS-ECG.
Q1. Do the algorithms provide feasible solutions?
Q2. What is the scalability of each algorithm?
Q3. What is the total cost required by each algorithm?

A feasible solution for MCSS-PCG (resp. MCSS-ECG) means the output seed set 𝑆 can activate at
least 𝜂 users with probability at least 𝑝 (resp. achieve an expected influence no less than 𝜂). All
experiments are performed on a Linux server with an Intel Xeon 2.7GHz CPU and 400GB memory.
Moreover, all codes are implemented in C++ and compiled by g++ under -O3 optimization.

6.1 Experimental Settings

Datasets. The experiments are carried out on four datasets (i.e., DBLP, Pokec, Livejournal, and
Friendster), which are available in [29]. Their statistic information is summarized in Table 2. As
can be seen, the dataset Friendster contains over 65 million users and 1.8 billion edges, making it
the largest dataset ever tested for MCSS. Note that the influence diffusion is directed under the IC
model. Thus, for undirected networks DBLP and Friendster, we transform each of their edges (𝑢, 𝑣)
into two directed edges (𝑢, 𝑣) and (𝑣,𝑢).
Parameters. For the IC model, like most works on IM and MCSS [3, 5, 12, 25], the diffusion
probability of each edge (𝑢, 𝑣) is set to be 1

𝑑in (𝑣) . Following [19, 20, 30, 34], the cost of each user is
sampled from (0, 1] uniformly at random. The influence threshold 𝜂 is varied from 10% to 20% of
the number of network users with a step of 2%, and the probability of reaching 𝜂 is required to be
0.6. Further, the probability estimation error 𝜆 of our MRR-sets as well as the Monte Carlo method
is set to be 0.07, and the failure probability 𝛿 is set to be 0.01. The influence estimation error 𝜖𝑒 of
RR-sets is 0.1, and the failure probability is also 0.01. Finally, we simulate 10,000 diffusion processes
from each seed set output by the algorithms to estimate its expected influence and the probability
that the influence exceeds 𝜂.
Algorithms. For a comprehensive comparison, seven algorithms are evaluated in experiments,
including five baselines (BCGC, TEGC, ASTI, MinSeed, GRR) and our two algorithms CLEAR and
SCORE. The detailed settings of these algorithms are described as follows.

In BCGC and TEGC, a shortfall 𝛼 is needed to decide their gap to the threshold 𝜂. To help them
approach 𝜂, we set 𝛼 to a moderately small value 0.02, instead of 0.2 in their work. Note that,
the number of RR-sets demanded by BCGC and TEGC is as large as 1010 even if in the smallest
dataset DBLP, and thus could not be generated within reasonable time. Therefore, we follow their
empirical setting in [20], which is more efficient but provides no performance guarantee. That is,
when calculating the quantity of RR-sets with the union bound, the number of unqualified seed
sets is set to be a fixed value 𝑛8.
The adaptive algorithm ASTI is found to be highly time-consuming when we adopt the same

influence estimation error 0.1 as other algorithms. Thus, to obtain the results of ASTI, we relax its
estimation error to be 0.5. To further boost it, we allow it to select 4 seeds in each round, slightly
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sacrificing the approximation ratio. To eliminate the randomness of adaptive algorithms, ASTI is
repeated 10 times to obtain an average.
MinSeed [50] is dedicatedly designed for MCSS-PCG. As MinSeed also takes much time to

complete, due to its frequent invocation of the Monte Carlo method for probability estimation, we
accelerate it by making probability estimation after selecting every 10 seeds, incurring a little more
seed cost though.
The GRR technique is also implemented for comparison with our MRR-sets. Specifically, GRR

adopts the same framework as SCORE to select the seeds. To estimate the probability P[𝐼 (𝑆) ≥ 𝜂],
GRR generates 𝜅 groups of RR-sets, each group containing 𝜃 independent RR-sets, following a
similar structure of MRR. On this basis, GRR estimates the probability in the way introduced at the
beginning of Section 4.
In our algorithm CLEAR, in addition to the aforementioned parameters, we further specify the

validation error 𝜖𝑣 to be 0.01, and the minimum influence 𝜉 to be 0.002𝜂. When estimating the
probability with the MRR technique in SCORE, we set the failure probabilities to be 𝛿1 = 0.01/3
and 𝛿2 = 0.02/3, resulting in the same total failure probability of 0.01 as the Monte Carlo method.
Finally, the estimation error of each MRR-set is required to be 𝜏 = 0.01.

6.2 Results under MCSS-PCG
For the main problem MCSS-PCG, our algorithm SCORE is evaluated against all the five baselines.
The results to the three research questions are presented as follows.
Probability Attainment. To answer the research question Q1 in MCSS-PCG, we first examine
the probability that the seed set returned by each algorithm reaches the influence threshold 𝜂. The
experimental results are presented in Fig. 2. Note that an algorithm is considered to be feasible for
the MCSS-PCG problem, only when its output seed set reaches influence 𝜂 with a probability no
less than 𝑝 = 0.6.
As can be seen, our algorithm SCORE and three of the baselines (i.e., MinSeed, ASTI, and GRR)

always provide a feasible solution to MCSS-PCG, i.e., achieving a probability no less than 0.6. Our
algorithm SCORE and MinSeed are able to attain the probability since they apply their probability
estimation methods to make sure that the probability is achieved when the seed selection stops. In
the adaptive case, ASTI will continue selecting seeds until the threshold is observed to be reached.
Thus, ASTI will always reach 𝜂 with probability 1, producing feasible solutions for any MCSS-
PCG problem. Note that there are no data points for ASTI in LiveJournal (at 𝜂 > 0.16) or Friendster,
and no data points for MinSeed in Friendster, as they failed to terminate within the time limit of
105 seconds. GRR consistently achieves 𝜂 with a probability of 1. This occurs because GRR tends to
underestimate the probability of reaching 𝜂, and as a result, it selects more seeds than necessary. For
detailed explanations, please refer to the example in Appendix D of [1]. Moreover, BCGC and TEGC
return seed sets that reach influence 𝜂 with a probability much smaller than 0.6 in all datasets. For
some values of 𝜂, the probabilities even approach 0, especially in large networks Livejournal and
Friendster. The reason is that the parameters in BCGC and TEGC are set heuristically, as settings
derived from their theoretical analysis would lead to prohibitive computational costs. As a result,
there is no guarantee on their output solutions.
Running Time. To answer Q2 in MCSS-PCG, we present the running time of the algorithms,
as shown in Fig. 3. Compared with MinSeed and ASTI which can provide feasible solutions, our
algorithm SCORE is at least one order of magnitude faster. Especially, MinSeed (resp. ASTI) takes
200x (resp. 180x) more time than SCORE in Livejournal at 𝜂 = 0.2 (resp. 𝜂 = 0.16). The inefficiency
of MinSeed results from its requirement to invoke hundreds of diffusion simulations for each
probability estimation during seed selection. On the other hand, the reason of ASTI having the
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Fig. 2. Varying 𝜂: probability attainment of each algorithm in MCSS-PCG.
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Fig. 3. Varying 𝜂: running time of each algorithm in MCSS-PCG.
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Fig. 5. Varying diffusion: spread results of 20 times of random diffusion.

largest running time is two-fold. First, due to its adaptive nature, brand new mRR-sets have to
be generated after each round of seed selection and influence diffusion. Second, the influence
of the 4 seeds in each round is relatively small, which needs a large number of mRR-sets for
estimation. GRR takes less running time than SCORE. To explain, the RR-sets in GRR are generated
independently, thereby avoiding the overhead involved in examining and maintaining edge states,
which however is necessary for MRR. Note that BCGC achieves a running time comparable to our
SCORE. However, as shown in Fig. 2, it always fails to produce feasible solutions for MCSS-PCG,
rendering it substantially unattractive.
Seed Cost. To answer Q3 in MCSS-PCG, we report the costs of the seed sets returned by the
algorithms, as shown in Fig. 4. Compared with other algorithms (i.e., MinSeed, ASTI, and GRR)
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that produce feasible solutions to MCSS-PCG, our algorithm SCORE consumes the smallest cost.
ASTI spends much larger cost than SCORE, since it always has to reach 𝜂 with certainty, resulting
in larger expected influence and thus larger cost. Meanwhile, when selecting the seed users, ASTI
focuses on selecting users with the largest influence, without considering the cost that would be
incurred. The cost of MinSeed is even larger than ASTI, since MinSeed is not an adaptive algorithm
and thus could not make sensible seed selection based on previous diffusion results, while the costs
of users are also neglected like ASTI. Moreover, the costs of BCGC and TEGC are smaller than
other algorithms, since they could not reach the influence threshold with the desired probability,
and the gap is significant. Figs. 2–3 show that GRR constantly produces feasible solutions, and
runs faster than our SCORE. Note that the right vertical axis in each subfigure of Fig. 4 is especially
created to incorporate the cost of GRR. As can be seen, GRR incurs extremely higher seed costs to
solve MCSS-ECG, which is at least 21.8 times greater than that of MinSeed. This discrepancy can
be attributed to GRR’s inaccurate and pessimistic probability estimation, leading to the inclusion of
far more seeds than necessary. Therefore, despite GRR’s efficiency in providing feasible solutions,
its prohibitive cost makes it impractical for real-world applications.
Spread Visualization. To provide an intuitive answer to Q1, in Fig. 5 we visualize the influence
spread of three algorithms (SCORE, MinSeed, and BCGC) at 𝜂 = 0.1𝑛. ASTI is not selected, since it
always reach 𝜂 with certainty. TEGC is not visualized either, due to its similar influence to BCGC.
Specifically, we carry out 20 times of random diffusion from the seed sets of the three algorithms.
According to our setting of 𝑝 = 0.6, an algorithm which reaches 𝜂 in more than 12 samples is
considered to be feasible. As can be seen, SCORE and MinSeed have over 12 samples reaching 𝜂 in all
datasets, satisfying the requirement of MCSS-PCG. For our algorithm SCORE, the minimum number
of diffusion samples that exceeds 𝜂 is 14, obtained in Friendster; and the result for MinSeed is also
14, derived in Pokec and Livejournal. Note that, there is also no result for MinSeed in Friendster,
due to its excessive running time. On the other hand, the number of diffusion samples of BCGC
that exceeds 𝜂 is significantly smaller than BCGC and MinSeed, where the maximum number of
diffusion samples that reach 𝜂 is 6, derived in Pokec; and the minimum number is as small as 0,
derived in Friendster. Thus, BCGC is significantly inferior to SCORE, and cannot provide feasible
solutions to MCSS-PCG.

6.3 Results under MCSS-ECG
In MCSS-ECG, we compare our algorithm CLEAR with the three baselines (BCGC, TEGC, and ASTI)
designed for MCSS-ECG.
Threshold Attainment. In MCSS-ECG, an algorithm is feasible if it reaches the influence threshold
𝜂 in expectation. Thus, to answer Q1 in MCSS-ECG, we present the expected influence achieved
by the algorithms in Fig. 6. As can be seen, only our algorithm CLEAR and the adaptive algorithm
ASTI always reach 𝜂 in the four datasets. The attainment of CLEAR is due to the introduction of
an independent collection of validation RR-sets, which ensures that the seeds could reach 𝜂 w.h.p.
ASTI could reach the threshold without much influence surplus, since it stops seed selection when
the observed influence spread just reaches 𝜂. The other two algorithms BCGC and TEGC constantly
fail to reach 𝜂, even if we have reduced their gaps by adopting a small 𝛼 . Note that, the shortfall 𝛼
cannot be set to be 0, since the approximation ratio (1 + ln 3−𝛼

𝛼 ) would be invalid when 𝛼 = 0 [20].
Such a non-zero shortfall is also the cause of their failure. Moreover, their gap to 𝜂 is even broader
with the increase of 𝜂 in Friendster, up to 7.4%, since Friendster demands a large number of RR-sets
for accurate seed selection, which cannot be satisfied by the empirical setting in [20].
Running Time. To answer Q2, we measure the efficiency of the algorithms by their running time.
From Fig. 7, we observe that the running time of our algorithm CLEAR is the smallest. While BCGC
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Fig. 8. Varying 𝜂: seed costs of each algorithm in MCSS-ECG.

(resp. TEGC) requires as much as 5.5 (resp. 47.1) times longer time than CLEAR in Livejournal at
𝜂 = 0.2. The large running time of BCGC and TEGC is mainly due to their over pessimistic analysis
of the RR-sets quantity, which is required to ensure an estimation error for any possible seed set.
Moreover, the running time of ASTI is the largest, over 700 times larger than CLEAR, due to the
same reason in MCSS-PCG. Note that, even if another collection of RR-sets R2 is generated in
CLEAR, the running time does not increase much, since R2 only needs to ensure the accuracy of the
final influence, which is often a large value. As a result, not many RR-sets need to be generated
according to Lemma 3.1.
Seed Cost. To answer Q3 in MCSS-ECG, we present the cost of each algorithm in Fig. 8. It is shown
that the cost of our algorithm CLEAR is significantly smaller than the adaptive algorithm ASTI,
where the reason is similar to the case of MCSS-PCG. The costs of BCGC and TEGC are slightly
smaller than CLEAR, since they do not need to reach the influence threshold like CLEAR. Moreover,
their excessive number of RR-sets may also provide more accurate influence estimation.
Approximation Ratio. Lemma 3.7 allows us to derive an explicit approximation ratio of our
algorithm CLEAR. Further, combined with Lemma 3.6, Lemma 3.7 implies that CLEAR can provide
a performance guarantee under any number of RR-sets. Thus, to verify these Lemmas, we vary
the number of RR-sets and report the approximation ratio of CLEAR in Fig. 9 and Fig. 10. Given
the original number of RR-sets 𝜃𝑒 adopted by Alg. 1, we set the initial number of RR-sets to be
𝜃0 = 𝜃𝑒 × 2−10. Then, we increase the RR-sets from 𝜃0 to 𝜃0 × 210 with a common ratio of 2. As
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Fig. 9. Varying RR-sets: approximation ratio of CLEAR at 𝜂/𝑛 = 0.1, 0.12 and 0.14.
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Fig. 10. Varying RR-sets: approximation ratio of CLEAR at 𝜂/𝑛 = 0.16, 0.18 and 0.2.

can be seen, the approximation ratio of CLEAR is generally decreasing with the increase of RR-sets
in all datasets. Thus, the performance of CLEAR is becoming better when the number of RR-sets
increases, since we are minimizing a function. The reason may lie in that with more RR-sets, the
influence estimation is more accurate, and the selection of seeds would prefer users whose actual
influence is large, leading to smaller cost to reach 𝜂 and thus its ratio to the optimal cost is smaller.

6.4 Experiments under Alternative Models
To evaluate the performance of our algorithms comprehensively, we further conduct experiments
under the LT model and degree-based cost model. Specifically, in the LT model, the weight of each
edge (𝑢, 𝑣) is also set to be 1

𝑑in(𝑢)
, just like [3, 43–45], and the threshold of each user is selected

from the interval [0, 1] uniformly at random. In terms of the degree-based cost model, we follow
[3, 9, 19] to set the cost of each user 𝑢 to be 𝑐 (𝑢) = 0.01 (𝑑in (𝑢) + 1), where the coefficient 0.01 is
in line with our investigation in Section 1 and the degree is added by 1 to avoid zero cost. Due to
space limitations, the results and corresponding explanations are deferred to Appendix E in [1].

7 CONCLUSION
In this paper, we solve the MCSS-PCG problem under non-uniform costs, by designing efficient
algorithms with theoretical guarantees. First, we tackle the MCSS-ECG problem with our CLEAR al-
gorithm, allowing no influence shortfall. Then, the STAR method is proposed to derive an explicit
approximation ratio of CLEAR. Next, the MRR technique is devised for efficient probability estimation.
On this basis, we solve the MCSS-PCG problem with our SCORE. Finally, extensive experiments on
real social networks validate the effectiveness and efficiency of our algorithms.
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