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Recent advancements in AI have enabled models to map real-world entities, such as product images, into high-

dimensional vectors, making approximate nearest neighbor search (ANNS) crucial for various applications.

Often, these vectors are associated with additional attributes like price, prompting the need for range-filtered

ANNS where users seek similar items within specific attribute ranges. Naive solutions like pre-filtering and

post-filtering are straightforward but inefficient. Specialized indexes, such as SeRF, SuperPostFiltering, and

iRangeGraph, have been developed to address these queries effectively. However, these solutions do not

support dynamic updates, limiting their practicality in real-world scenarios where datasets frequently change.

To address these challenges, we propose DIGRA, a novel dynamic graph index for range-filtered ANNS.

DIGRA supports efficient dynamic updates while maintaining a balance among query efficiency, update

efficiency, indexing cost, and result quality. Our approach introduces a dynamic multi-way tree structure

combined with carefully integrated ANNS indices to handle range filtered ANNS efficiently. We employ a lazy

weight-based update mechanism to significantly reduce update costs and adopt optimized choice of ANNS

index to lower construction and update overhead. Experimental results demonstrate that DIGRA achieves

superior trade-offs, making it suitable for large-scale dynamic datasets in real-world applications.
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1 Introduction
In today’s landscape of big data and AI, effectively managing high-dimensional vectors is essential

for modern applications like recommendation engines [21], image retrieval [15], and natural

language processing [10, 26]. Machine learning models convert various data types into vector

representations, enabling real-world applications to perform queries within vector spaces [16, 20,

27, 31]. A key task in this domain is identifying the nearest vector to a given query vector, which is

critical for functionalities such as object recognition [37] and personalized content delivery [8].

However, as vector dimensionality increases, traditional exact search methods become inefficient

due to the curse of dimensionality, making approximate nearest neighbor search (ANNS) a more

practical solution. ANNS techniques enable the efficient retrieval of vectors similar to a query vector,

supporting large-scale vector search operations. Vector databases like Milvus [33] and AnalyticDB

[35] enhance search precision by integrating ANNS with attribute-based filtering. For example,

e-commerce platforms can provide product recommendations based on image similarity while also

applying filters for price or user age [28, 33, 39]. To handle high-dimensional vectors and range-

filtered queries effectively, modern vector databases utilize various algorithms to accelerate ANNS

with range filters. Although combining ANNS with range filtering is crucial for many applications,

existing methods often fall short in addressing this challenge efficiently.

Common approaches to manage such queries involve pre-filtering or post-filtering techniques.

Pre-filtering filters the dataset based on attribute criteria and then conducts nearest neighbor

search. Post-filtering, conversely, conducts ANNS first and then filters the results according to

the attribute constraints. These methods are straightforward to implement and support dynamic

updates to the dataset, making them compatible with database systems and widely adopted in

various vector databases [33, 35, 39]. However, they exhibit sub-optimal performance on large

datasets. Pre-filtering can be time-consuming due to the need for extensive preliminary scans,

while post-filtering may miss many similar objects, leading to delays in query completion.

To gain better query efficiency for ANNS with range filters, recent research has designed special-

ized algorithms that construct dedicated indexes to enable efficient query processing. One such

method is SeRF [40], which addresses ANNS with range filters by utilizing Hierarchical Naviga-

ble Small World (HNSW) graphs. HNSW is a popular index structure for ANNS that organizes

data points into a hierarchical, multi-layered graph, allowing efficient navigation through high-

dimensional spaces by connecting vertices (vectors) via edges based on proximity. This structure

facilitates fast approximate searches by traversing from higher levels of the hierarchy down to the

most relevant vertices. In SeRF, the approach involves compressing 𝑂 (𝑛2) HNSW graphs—each

corresponding to different range filters—into a single, unified graph. This method theoretically

incurs a space overhead of up to 𝑂 (𝑛2𝑀), where 𝑀 is a parameter in HNSW that controls the

maximum number of connections per vertex, significantly impacting memory usage. To mitigate

this substantial space requirement, SeRF employs a compression technique called MaxLeap, which

reduces the number of edges by allowing longer-range connections. However, this compression

leads to the loss of crucial graph structure information, resulting in suboptimal query performance.

Additionally, because the construction of SeRF must follow a specific attribute order, inserting or

deleting objects affects many subsequent HNSW constructions, rendering it incapable of supporting

dynamic updates.

SuperPostFiltering [12] addresses the efficiency issue by creating graph indices for various

predefined range combinations. During the query phase, it selects the appropriate pre-constructed

index to answer the query. While this method can improve query efficiency, it generates a large

number of redundant graph indices, leading to significant memory overhead. Moreover, when

objects are inserted or deleted from the dataset, the set of maintained ranges changes substantially,
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Fig. 1. Impact of insertion on SIFT.

making it impractical to support dynamic updates. A more recent method, iRangeGraph [38],

utilizes a segment tree to manage indices, which reduces overlaps between graph indices and

achieves both stable query performance and reduced space overhead. However, segment trees are

inherently static structures that cannot efficiently handle updates. As noted in [38], iRangeGraph

does not support dynamic insertion or deletion of objects, limiting its applicability in environments

where datasets change over time.

In real-world scenarios, vector databases are dynamic, with new data frequently added and old

data removed. For instance, as illustrated in Fig. 1(a) (resp. Fig. 1(b)), starting with 90% (resp. 80%)

vectors from a base dataset of 1 million SIFT vectors, the addition of the other 10% (resp. 20%)

vectors significantly degrades the search efficiency of static indexes like SeRF, irangeGraph, and

SuperPostFiltering when handling range-filtered ANNS. Specifically, to achieve a high recall rate of

90%, the Queries Per Second (QPS) performance deteriorates markedly. This degradation becomes

more pronounced with the insertion of 20% new data. Results on other datasets are similar, as seen in

Sec. 6. In fact, when a substantial portion of new elements is added, relying on the static index built

on the original dataset leads to significant drops in recall. While one might consider periodically

rebuilding the index to handle updates, this approach is impractical due to the high computational

costs and resource consumption involved in rebuilding large-scale indices. Moreover, determining

the optimal frequency for rebuilding is challenging: Rebuilding too often incurs excessive overhead,

while doing it infrequently leads to outdated indices and degraded query performance.

To address this limitation, we propose DIGRA1
, an effective index that achieves a superior

trade-off among query efficiency, update efficiency, indexing cost, and query result quality (in

terms of recall). As we can see from Figure 1, our DIGRA, which supports dynamic index updates,

consistently maintains high query efficiency and high recall, even as new data is added, underscoring

the importance of supporting index updates.

Achieving a balance among all four aspects—query efficiency, update efficiency, indexing cost,

and result quality—is challenging because previous methods struggle with updates due to their

static nature or costly rebuilding processes when data changes. Specifically, existing solutions face

difficulties because they: (i) encode the graph index and range information using static structures

that are not amenable to efficient updates; (ii) build multi-level graph index structures that necessi-

tate complete or partial rebuilding when the dataset changes, incurring significant update costs. To

overcome the challenges, DIGRA includes the following innovative designs:

Dynamic multi-way tree structure.We employ a dynamic multi-way tree 𝑇 to organize the

index based on the attribute 𝜙 of range filtering. Each node in𝑇 uses 𝜙 as the key and stores mapped

vector IDs as values. By utilizing split and merge operations similar to those in B-trees, we can

adjust the tree structure efficiently during insertions and deletions. This dynamic approach allows

the index to accommodate data updates seamlessly.

1
Dynamic Graph Index for Range-filtered ANN
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Fig. 2. Example of an object set

Efficient range query handling. For any arbitrary range [ℓ, 𝑟 ], we can efficiently identify at

most two nodes in 𝑇 in 𝑂 (log𝑛) time such that all vectors with attribute values within this range

are stored in the subtrees of these two nodes. This property enables us to retrieve vectors matching

the range filter without scanning irrelevant parts of the tree, thereby enhancing query efficiency.

Integration of ANNS indices at tree nodes. To accelerate approximate nearest neighbor

search (ANNS) within the filtered ranges, we build an ANNS index 𝐺𝑢 (e.g., a Navigable Small

World (NSW) or a Hierarchical Navigable Small World (HNSW) graph index) at each internal

node 𝑢 of 𝑇 . This index is constructed over the vectors stored in the subtree rooted at 𝑢. During

a range-filtered ANNS query, we first locate the relevant nodes 𝑢 and 𝑣 , perform ANNS searches

using𝐺𝑢 and𝐺𝑣 , and then merge the results to obtain the top-𝑘 answers. This hierarchical indexing

leverages the tree structure to improve search performance.

Lazy weight-based update mechanism. Maintaining the ANNS indices 𝐺𝑢 at each node 𝑢 in

the multi-way tree𝑇 during dynamic updates presents a significant challenge, especially when split

and merge operations modify the number of elements in affected subtrees. For instance, splitting a

node can impact numerous descendants, necessitating the costly rebuilding of their ANNS indices.

To address this, we introduce a lazy weight-based update mechanism that reduces the update cost to

an amortized 𝑂 (𝑐𝑢𝑝𝑑 · log𝑛) per update, where 𝑐𝑢𝑝𝑑 represents the time complexity of inserting an

object into an ANNS index. Additionally, we employ a background rebuilding strategy to eliminate

amortization effects, ensuring consistent update performance without degrading query efficiency.

This approach effectively balances the need for dynamic updates with the preservation of high

query performance and recall quality.

Optimized choice of ANNS index.While it might initially seem advantageous to use HNSW

graphs at each node of our multi-way tree—given HNSW’s typically higher Queries Per Second

(QPS) compared to other graph-index methods that support update like NSW while achieving

similar recall rates [34], we recognize that HNSW’s primary strength lies in its inherent hierarchical

structure. Since our multi-way tree already provides a hierarchical organization, incorporating

HNSW would result in redundant layering of hierarchies. Therefore, we opt for NSW graphs as

the ANNS indices at each node for several reasons. First, NSW graphs have significantly lower

construction and update costs, being up to an order of magnitude less computationally intensive

to build and maintain compared to HNSW graphs [34], thereby reducing overall indexing and

update overhead. Second, the flat structure of NSW graphs aligns seamlessly with the hierarchical

organization of themulti-way tree, facilitating efficient searcheswithin subtreeswithout introducing

unnecessary complexity.

In summary, we make the following contributions.

• By combining the multi-way tree and NSW structures, DIGRA achieves efficient range-filtered

searches with high recall, without relying on redundant graph indices.

• With the structural design of DIGRA, we introduce an efficient lazy weight-based update mecha-

nism, ensuring real-time index maintenance without the need for complete index rebuilding.

• We provide a rigorous theoretical analysis showing that the update overhead of DIGRA is only

𝑂 (log𝑛) times larger than that of inserting a point in a vanilla NSW, which translates to at least

an 𝑂 (𝑛/log𝑛) reduction in update costs compared to traditional approaches.
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• Extensive experiments on real-world high-dimensional vector datasets demonstrate that DI-

GRA maintains excellent query performance, while reducing update overhead by five orders of

magnitude compared to methods that require index rebuilding.

2 PRELIMINARIES
2.1 Problem Definition
Given a set 𝑋 and a distance function 𝛿 : 𝑋 × 𝑋 → R, the pair (𝑋, 𝛿) is called a metric space if, for

all 𝑥,𝑦, 𝑧 ∈ 𝑋 , (i) 𝛿 (𝑥,𝑦) ≥ 0, with 𝛿 (𝑥,𝑦) = 0 if and only if 𝑥 = 𝑦; (ii) 𝛿 (𝑥,𝑦) = 𝛿 (𝑦, 𝑥); and (iii)
𝛿 (𝑥,𝑦) ≤ 𝛿 (𝑥, 𝑧) + 𝛿 (𝑦, 𝑧). For example, if 𝑋 = R𝑑

is the set of all 𝑑-dimensional real vectors and

𝛿 is the Euclidean distance, then (𝑋, 𝛿) is a Euclidean space. In a metric space (𝑋, 𝛿), the nearest
neighbor search (NNS) problem, which has numerous real-world applications, is defined as follows:

Definition 2.1 (Nearest Neighbors Search (NNS)). Let (𝑋, 𝛿) be a metric space. Given a set 𝑂 ⊆ 𝑋
with𝑛 objects, a query q ∈ 𝑋 , and a positive integer𝑘 ≤ 𝑛, the NNS returns a set𝑅∗ = {o∗

1
, o∗

2
, . . . , o∗

𝑘
}

of 𝑘 objects from 𝑂 with the top-𝑘 smallest distances to q on distance function 𝛿 .

In many applications, the number of objects involved in nearest neighbor search has grown

significantly, making exact NNS computationally expensive. For example, exact NNS on a large

number of high-dimensional Euclidean space vectors is impractical in many cases due to the curse

of dimensionality. Hence, approximate nearest neighbor search (ANNS) is widely used, which

sacrifices little query quality for higher query efficiency. In the literature, recall is commonly used

to measure the quality of ANNS. If 𝑅∗ is the exact NNS result and 𝑅 is the ANNS result, the recall is

defined as Recall(𝑅) = |𝑅∩𝑅
∗ |

|𝑅∗ | =
|𝑅∩𝑅∗ |

𝑘
. The goal of ANNS query processing is to maximize query

throughput while keeping a high recall.

In many applications, each object in the set 𝑂 is associated with a specific attribute (e.g., date,

price), and users may want to perform NNS on objects whose attributes fall within a given range.

For example, if vectors represent image embeddings and the attribute is the publication date, users

might seek images similar to a given image that were published within a specific date range. This

problem is known as NNS with a range filter, formally defined as follows:

Definition 2.2 (NNS with Range Filter). Let (𝑋, 𝛿) be a metric space. Given an object set 𝑂 ⊆ 𝑋
where each object o ∈ 𝑂 has an attribute 𝜙 (o), a query q ∈ 𝑋 , a positive integer 𝑘 , and a range

𝑄 = [ℓ, 𝑟 ], the NNS with range filter returns the nearest neighbors to q on 𝛿 within the set

𝑂𝑄 = {o ∈ 𝑂 | o ∈ 𝑂,𝜙 (o) ∈ 𝑄}, i.e., the objects satisfying the range filter on attribute 𝜙 .

For NNS with range filter queries, we also focus on the approximate version to gain high query

efficiency while achieving high recall. In this paper, we focus on high-dimensional Euclidean
spaces with 𝛿 being the Euclidean distance, the most widely used setting in existing vector

databases [33, 35, 39]. But we note that our method can be applied to other metric spaces as well.

Example 2.3. As shown in Fig. 2, consider a set of objects 𝑂 = {o1, o2, . . . , o7} where each object

is associated with an attribute value on 𝜙 . For example, o2 has an attribute value of 1 on 𝜙 . Given a

query vector q, represented by a cross, performing a NNS on 𝑂 returns o1, as it is the closest to q.
When we perform an NNS with a range filter on attribute 𝜙 , where the query range is [3, 6] and 𝑘
is set to 2, the subset after applying the range filter is 𝑂𝑄 = {o3, o4, o6, o7}. Then, o4 and o6 are the
query answers that meet the filter condition.

2.2 NSW and HNSW
Given a set 𝑂 of 𝑛 vectors in 𝑑-dimensional space R𝑑

, graph-based methods construct a directed

proximity graph 𝐺 . Each vertex in 𝐺 corresponds to a vector in 𝑂 , and directed edges connect
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Algorithm 1: GreedySearch

Input: Graph 𝐺 , entry point 𝑒𝑛𝑡𝑟𝑦, query vector q, 𝑒 𝑓
Output: Query result

1 Mark 𝑒𝑛𝑡𝑟𝑦 as visited and set 𝐶 ← {𝑒𝑛𝑡𝑟𝑦},𝑊 ← {𝑒𝑛𝑡𝑟𝑦};
2 while |𝐶 | > 0 do
3 𝑢 ←− extract nearest element from 𝐶 to q;
4 𝑓 ←− get furthest element from𝑊 to q;
5 if 𝛿 (𝑢, q) > 𝛿 (𝑓 , q) then break;

6 for 𝑣 ∈ 𝑁𝐺 (𝑢) do
7 if 𝑣 is not visited then
8 Mark 𝑣 as visited;

9 if 𝛿 (𝑣, q) < 𝛿 (𝑓 , q) or |𝑊 | < 𝑒 𝑓 then
10 𝐶 ←− 𝐶 ∪ {𝑣},𝑊 ←−𝑊 ∪ {𝑣};
11 if |𝑊 | > 𝑒 𝑓 then
12 Remove 𝑓 from𝑊 ;

13 return W ;

pairs of vertices based on their proximity. Let 𝑢 and 𝑣 be vertices representing vectors o𝑢 and o𝑣 ,
respectively, with 𝛿 (𝑢, 𝑣) denoting the distance between them. The (out-)neighbors of a vertex 𝑢,

denoted 𝑁𝐺 (𝑢), are selected based on certain proximity rules.

NSW. NSW (Navigable Small World) [22] is a proximity graph that supports updates. In NSW, the

edge density between near vertices is higher, but it also retains some edges between vertices that are

far apart to facilitate routing. The NSW graph is constructed by continuously inserting elements in

a random order, connecting them bidirectionally to𝑀 nearest neighbors among previously inserted

elements found through a greedy search.

The ANNS and build processes on NSW adopt the same greedy search algorithm, as shown in

Alg. 1. For simplicity, we use 𝛿 (𝑢, q) to denote the distance between o𝑢 and the query vector q. The
ANNS begins at an initial entry vertex 𝑒𝑛𝑡𝑟𝑦, returning a candidate set that contains the vectors

closest to q among the visited vertices. To find the final set of 𝑘 nearest neighbors, the algorithm

selects the 𝑘 closest vectors from the returned candidate set𝑊 . The parameter 𝑒 𝑓 determines the

size of𝑊 , thereby balancing the trade-off between search efficiency and accuracy: increasing 𝑒 𝑓

broadens the search scope and improves accuracy, but at the cost of reduced efficiency.

NSW updates. Alg. 2 shows the pseudo-code for handling vertex insertion in NSW. Initially,

the 𝑒 𝑓𝑐𝑜𝑛 nearest vertices to 𝑢 are retrieved using Alg. 1, and these vertices are selected as edge

candidates. The candidates are then pruned to retain at most𝑀 edges, forming the neighborhood

𝑁 (𝑢) (Lines 1–2). For each 𝑣 ∈ 𝑁 (𝑢), 𝑢 is added to 𝑁 (𝑣), and pruning is performed if |𝑁 (𝑣) | > 𝑀

(Lines 3–6). An edge (𝑢, 𝑣) is considered dominated if there exists an edge (𝑢,𝑤) in the graph such

that 𝛿 (𝑢,𝑤) < 𝛿 (𝑢, 𝑣) and 𝛿 (𝑣,𝑤) < 𝛿 (𝑢, 𝑣). During pruning, candidates are sorted by their distance
to 𝑢 (Line 8), and edges not dominated are iteratively added to the set 𝑅 (Lines 10–14). For vertex

deletions, a vertex is simply marked as deleted, and the traversal will not include marked vertices

into the answer.

HNSW.HNSW (Hierarchical Navigable Small World) is a popular graph-based method for ANNS.

Unlike NSW that use a single proximity graph, HNSW leverages a multi-layer structure inspired by

skip lists, where each layer contains a NSW graph. Assume that HNSW has 𝐿 layers. The NSW

at layer 𝑖 is denoted as 𝐻 [𝑖]. The number of vertices decreases exponentially from the base layer

𝐻 [0] to the top layer 𝐻 [𝐿], similar to the hierarchical structure of skip lists. Like NSW, HNSW is

also built by inserting vertices incrementally into an initially empty graph.
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To handle ANNS with HNSW, the search begins at the top layer and descends through the layers

to reach layer 0, where the main search is performed. Starting from layer 𝐿, it finds the vertex

closest to query q at each layer, using it as the entry point for the next layer, until reaching layer

0. Once at layer 0, a greedy search, 𝐺𝑟𝑒𝑒𝑑𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝐻 [0], 𝑒𝑝0, q, 𝑒 𝑓 ), is applied to find the closest

vertices to q. Finally, it returns the 𝑘 nearest objects from the search.

HNSW updates. When inserting a vertex 𝑢 into HNSW, it first determines the highest layer

𝐿𝑢 in which 𝑢 will appear, where 𝐿𝑢 is determined by a truncated geometric distribution. After

determining the layers, 𝑢 is inserted into the NSW graphs using 𝐺𝑟𝑎𝑝ℎ𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 from layer 𝐿𝑢
down to layer 0. The maximum out-degree is 2𝑀 in layer 0 and𝑀 in all other layers. When deleting

a vertex, it uses the same marking method as in NSW.

2.3 Existing Solutions
Prefiltering. Prefiltering is a straightforward method. It pre-sorts all elements based on attribute 𝜙 .

Given a query vector q and a range filter [𝑙, 𝑟 ], it first does a binary search on the sorted attribute

list to find the start and end positions of elements satisfying the range filter, and then scans this

subset, computes the distance between q and each element, and returns the closest 𝑘 element.

Postfiltering. Postfiltering method builds an ANNS index on all data. For a query vector q and

a range filter [ℓ, 𝑟 ] on attribute 𝜙 , it first retrieves the 𝐾 = 𝑘 nearest neighbors using the ANNS

index. The range filter is then applied to these elements to check if at least 𝑘 of them satisfy the

filter. If fewer than 𝑘 elements meet the criteria, 𝐾 is multiplied by a constant factor𝑚 > 1, and the

ANNS query is repeated. It continues until the stopping condition is met, e.g., 𝐾 is sufficiently large.

The final result is the closest elements to q that meet the range filter, based on the most recent

ANNS query.

ACORN. ACORN [29] is an index for general-filtered ANNS based on HNSW. A straightforward

approach for general-filtered ANNS is to only access vertices that satisfy the filter on HNSW,

ensuring that the search results meet the filter. However, when the selectivity is low, this method

may fail to guarantee search quality due to too few edges on the graph satisfying the filter. To

address this issue, ACORN has improved HNSW using heuristic methods. ACORN increases the

number of edges in the graph. During the search process, not only the vertices satisfying the filter

in 1-hop are added to the search queue, but also those satisfying the filter in 2-hop are added. This

ensures that each vertex can expand a sufficient number of candidates to guarantee search quality.

ACORN focuses more on ANNS with general predicate filters and does not perform well on range

filters, which is demonstrated in our experiment.

SeRF. An idea to perform range-filtered ANNS is to build a dedicated ANNS index for each

possible query range on attribute 𝜙 . SeRF [40] is based on this concept, utilizing HNSW as the index

for each range on attribute 𝜙 . To reduce redundancy, SeRF compresses the index by minimizing

duplicate edge storage. However, this method leads to the creation of𝑂 (𝑛2) indices, which becomes

impractical for large datasets. SeRF addresses this issue by recognizing that certain edges are shared

across indices for continuous ranges. When an edge appears in the indices for intervals [𝑥,𝑦], for
all 𝑥 ∈ [𝑙, 𝑟 ] and 𝑦 ∈ [𝑏, 𝑒], SeRF avoids storing the edge multiple times. Instead, it stores the edge

once, associating it with the four values 𝑙, 𝑟 , 𝑏, 𝑒 . During a query with a range filter [𝐿, 𝑅], SeRF
performs ANNS on the HNSW index comprising vertices that satisfy the range filter and edges

where 𝐿 ∈ [𝑙, 𝑟 ] and 𝑅 ∈ [𝑏, 𝑒]. If the attribute values are independent of the object set, the expected
space overhead of SeRF is𝑂 (𝑀𝑛 log𝑛). However, in the worst case, space consumption can grow to

𝑂 (𝑛𝑀2), and construction time may reach𝑂 (𝑀2𝑛2). To mitigate this, SeRF employs a compression

technique that omits the storage of certain edges. While this reduces space usage, excessive pruning

can degrade the quality of query results. Besides, SeRF does not support arbitrary data insertion or

deletion, making it unsuitable for large datasets that require dynamic updates.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 148. Publication date: June 2025.



148:8 Mengxu Jiang et al.

Algorithm 2: GraphInsertion

Input: Graph 𝐺 , node 𝑢, entry node 𝑒𝑛𝑡𝑟𝑦, Parameters𝑀 , 𝑒 𝑓𝑐𝑜𝑛
1 𝐶 ← 𝐺𝑟𝑒𝑒𝑑𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝐺,𝑢, 𝑒𝑛𝑡𝑟𝑦, 𝑒 𝑓𝑐𝑜𝑛);
2 𝑁𝐺 (𝑢) ← 𝑝𝑟𝑢𝑛𝑒 (𝐶,𝑢,𝑀);
3 for 𝑣 ∈ 𝑁𝐺 (𝑢) do
4 𝑁𝐺 (𝑣) ← 𝑁𝐺 (𝑣) ∪ 𝑢;
5 if |𝑁𝐺 (𝑣) | > 𝑀 then
6 𝑁𝐺 (𝑣) ← 𝑝𝑟𝑢𝑛𝑒 (𝑁𝐺 (𝑣), 𝑣, 𝑀);
7 procedure prune(𝐶 ,𝑢,𝑀):
8 Sort elements in 𝐶 by the distance to 𝑢;

9 𝑅 ← ∅;
10 for 𝑣 ∈ 𝐶 do
11 if not exists𝑤 ∈ 𝑅 s.t. 𝛿 (𝑣,𝑤) < 𝛿 (𝑢, 𝑣) then
12 𝑅 ← 𝑅 ∪ {𝑤};
13 if |𝑅 | = 𝑀 then
14 break;

15 return 𝑅;

SuperPostfiltering. SuperPostfiltering [12] avoids building indices for all 𝑂 (𝑛2) possible query
ranges for attribute 𝜙 . It constructs graph indices for ranges on attribute 𝜙 within a predefined

range set 𝑅. This set consists of log𝛽 𝑛 levels, where 𝛽 is a constant. At level 𝑖 , the ranges are defined

as 𝑅 [𝑖] = {[ 𝑗 · 𝛽𝑖 + 1, ( 𝑗 + 2) · 𝛽𝑖 ] | 𝑗 ≥ 0∧ ( 𝑗 + 2) · 𝛽𝑖 ≤ 𝑛}. For a query range containing𝑚 elements,

a corresponding range in 𝑅 [𝑖] can be found such that 𝛽𝑖−1 ≤ 𝑚 ≤ 𝛽𝑖 , ensuring the number of

elements in this range does not exceed 2𝛽𝑚. Once the appropriate range is identified, Postfiltering

is applied on the index for that range. While offering good query performance, significant overlap

between ranges at each level leads to high space consumption. Despite the theoretical space

complexity of 𝑂 (𝑛𝑀 log𝑛), the actual space usage can be several times larger than the original

dataset. Furthermore, SuperPostfiltering has the same issue as SeRF that does not support updates.

iRangeGraph. The iRangeGraph index [38] is built on a static segment tree over attribute 𝜙 ,

where each node corresponds to an HNSW index covering the elements within the range of that

node. For query, iRangeGraph does not perform a greedy search on a preconstructed graph at a

specific node in the segment tree. Instead, it constructs the search graph during the query process.

For an ANNS query with a range filter [𝑙, 𝑟 ], when the greedy search accesses an element 𝑢, the

algorithm dynamically searches for𝑀 out-neighbors 𝑣 that satisfy 𝑙 ≤ 𝜙 (𝑣) ≤ 𝑟 . This is done by
traversing the segment tree from the root to the leaf node associated with 𝑢, resulting in 𝑂 (log𝑛)
nodes being examined. These neighbors are then added to the search queue. iRangeGraph achieves

a good trade-off between efficiency and accuracy. Yet, since segment tree is a static structure, it

cannot efficiently handle dynamic data.

3 Our solution
Next, we elaborate on our proposed DIGRA index. In Sec. 3.1, we introduce the dynamic multi-way

tree structure, 𝑇 , which organizes data points in order based on their attribute values 𝜙 . At each

node 𝑢 in 𝑇 , we maintain an NSW graph index, constructed for all vectors falling within the

sub-tree rooted at node 𝑢. This dynamic structure enables efficient handling of data insertions and

deletions while keeping the index updated seamlessly. In Sec. 3.2, we explain the index construction

process. Next, we explain how to process queries in Sec. 3.3; we show how to use the concept

of 𝛼-approximate range coverage to efficiently identify at most two nodes in 𝑇 that can include
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Table 1. Frequently used notations

Notation Description

𝑂,𝑛 The set 𝑂 with 𝑛 objects

𝜙 (o) The attribute value of object o
𝛿 (𝑢, 𝑣) The distance between 𝑢 and 𝑣

𝑄 = [ℓ, 𝑟 ], q The query range and the query vector

𝑂𝑄 The set of objects whose attribute falling into 𝑄

𝑀 The maximum out-degree in the graph

𝑒 𝑓 , 𝑒 𝑓𝑐𝑜𝑛 The size of the candidate set in graph search and

graph construction, respectively

𝑇 , 𝐵 The tree index 𝑇 and its maximum degree 𝐵

𝑢.𝑘𝑒𝑦,𝑢.𝑐ℎ𝑖𝑙𝑑 The key and the child set of node 𝑢

𝑢.𝑒𝑛, 𝑢.𝐺 The search entry and the NSW graph of node 𝑢

𝐻𝑢 The implicit hierarchical graph structure on 𝑢

𝑂𝑢 The set of objects falling into the subtree of 𝑢

all vectors satisfying the range filter. This reduces the need to scan irrelevant portions of the

tree, thereby improving query performance. In Sec. 3.4, we introduce our lazy update mechanism,

designed to maintain high update efficiency in the NSW graph indices during dynamic changes. We

show that the amortized time complexity for each update can be bounded by𝑂 (𝑐𝑢𝑝𝑑 · log𝑛), where
𝑐𝑢𝑝𝑑 is the cost of inserting an object into the NSW graph. This balances the need for efficient

updates while preserving query performance and accuracy. Table 1 shows the frequently used

notations in our solution.

3.1 Index Structure
The proposed DIGRA index uses a multi-way tree structure 𝑇 to manage the entire object set. To

distinguish, we use "node" in tree structures and "vertex" in graph structures. The tree structure 𝑇

is similar to a B-tree, where each node can store up to 𝐵 children, and it separates its children by

storing several key values. For each object o, we use attribute value 𝜙 (o) as the key. For a node
𝑢 in 𝑇 with 𝑡 keys and 𝑡 + 1 children, we use 𝑢.𝑐ℎ𝑖𝑙𝑑 [𝑖] to represent its 𝑖-th child, and 𝑢.𝑘𝑒𝑦 [𝑖] to
represent its 𝑖-th stored key value. Thus, all attribute values of objects in the subtree of 𝑢.𝑐ℎ𝑖𝑙𝑑 [𝑖]
are guaranteed to be within the range of (−∞, 𝑢.𝑘𝑒𝑦 [0]) for 𝑖 = 0; range [𝑢.𝑘𝑒𝑦 [𝑖 − 1], 𝑢.𝑘𝑒𝑦 [𝑖]) for
1 ≤ 𝑖 < 𝑡 ; range [𝑢.𝑘𝑒𝑦 [𝑡 − 1], +∞) for 𝑖 = 𝑡 . For node 𝑢, we maintain an NSW-style search graph,

represented as 𝑢.𝐺 . It is constructed for set 𝑂𝑢 , the object set containing all the objects stored in

the subtree rooted at 𝑢. To speed up the search, we additionally maintain an entry node for node 𝑢,

represented as 𝑢.𝑒𝑛, which is a leaf node in the subtree of 𝑢 to help obtain the search entry in the

current graph 𝑢.𝐺 . Each node in 𝑇 further stores a value 𝑙𝑎𝑦𝑒𝑟 to indicate its level, with leaf nodes

having a layer value of 0. For a non-leaf node 𝑢, its 𝑙𝑎𝑦𝑒𝑟 value is the layer value of its child plus

one, i.e., 𝑢.𝑙𝑎𝑦𝑒𝑟 = 𝑢.𝑐ℎ𝑖𝑙𝑑 [0] .𝑙𝑎𝑦𝑒𝑟 + 1. Similar to B-trees, DIGRA guarantees that all child nodes

of any given node are assigned identical layer values. An important property of the multi-way tree

structure in DIGRA is that we keep the tree 𝑇 weight-balanced, whose definition is as follows.

Definition 3.1. (Weight Balance) Let 𝑇 be a multi-way tree with a branching factor 𝐵. The tree 𝑇

is said to be weight balanced if: For every non-root node 𝑢 in 𝑇 at layer 𝑖 , the size of 𝑢, denoted

by size(𝑢), satisfies 𝐵𝑖

4
≤ size(𝑢) ≤ 𝐵𝑖 , where size(𝑢) is defined as the number of leaf nodes in the

subtree rooted at 𝑢.
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Fig. 3. The DIGRA index for object set 𝑂 in Figure 2.

The weight of a node 𝑢 is defined as its 𝑠𝑖𝑧𝑒 (𝑢). We will use this condition to develop a lazy,

weight-based update strategy that ensures update costs remain bounded. For now, we assume that

the index is weight-balanced in our discussion of Sec.s 3.1-3.3.

Lemma 3.2. The height of 𝑇 is 𝑂 (log𝑛).

It is straightforward to verify using the weight balance condition and thus omitted. As to be

detailed in Sec. 3.3, for any arbitrary range 𝑄 = [ℓ, 𝑟 ] on the attribute 𝜙 , there exist at most two

nodes 𝑢 and 𝑣 in the tree 𝑇 such that the union of their associated object sets, 𝑂𝑢 ∪𝑂𝑣 , includes all

objects 𝑂𝑄 that satisfy the range 𝑄 . Formally, this relationship is expressed as: 𝑂𝑄 ⊆ 𝑂𝑢 ∪𝑂𝑣 . It is

important to note that this approach may result in the inclusion of objects outside the specified

range 𝑄 . Yet, we will demonstrate that the number of such irrelevant objects is bounded by a

constant factor, ensuring that the majority of the objects within 𝑂𝑢 ∪𝑂𝑣 are relevant. Next, we

utilize the NSW indices maintained at nodes 𝑢.𝐺 and 𝑣 .𝐺 to incrementally retrieve the ANNS

results, thereby preserving the efficiency of the ANNS and avoid retrieving many irrelevant objects

whose attribute value on 𝜙 is out of the range 𝑄 .

One of our key observations is that our multi-way tree inherently includes a hierarchical struc-

ture. Consequently, we maintain an NSW index at each node without introducing an additional

hierarchical layer. During the search algorithm, we enable skip-based searching, allowing an ANNS

search within a node to leverage the graph indices of its subtree nodes to locate the appropriate

entry points. From this perspective, the proposed DIGRA index resembles a specialized HNSW

structure. Specifically, starting from the root node, it corresponds to a comprehensive NSW graph

akin to the bottom layer in HNSW. As we traverse down the tree layers, this graph becomes

partitioned according to the objects stored in the child nodes.

Therefore, we can implicitly maintain a hierarchical graph structure 𝐻𝑢 similar to HNSW on 𝑢,

which can help us efficiently perform ANNS. 𝐻𝑢 includes all the graphs of the nodes on the path

from the leaf node where 𝑢.𝑒𝑛 is located to 𝑢, with 𝑢.𝐺 as the bottom layer of 𝐻𝑢 . This design offers

several advantages. First, each layer retains only a single NSW graph, ensuring efficient updates

during our lazy weight-based updates. Second, during the search, the ability to utilize child nodes

to identify entry vertices helps maintain query efficiency comparable to that of HNSW.

Example 3.3. Consider again the set 𝑂 in Fig. 2. We construct a DIGRA index for this dataset

with a branching factor 𝐵 = 3. The resulting balanced three-layer tree 𝑇 , maintained by the DIGRA

index, is illustrated in Fig. 3(b). For each node 𝑢 in 𝑇 , an NSW index is built for the corresponding

subset𝑂𝑢 . For example, for node 𝑢1,𝑂𝑢1
includes all objects in𝑂 , so the graph index maintained at

𝑢1 spans all objects, as shown in Layer 2 of Fig. 3(a). Similarly, for node 𝑢4,𝑂𝑢4
contains the objects

o4, o5, o6. Thus, the NSW index 𝑢4 .𝐺 , illustrated in Layer 1 of Fig. 3(a), is constructed over these
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Algorithm 3: DIGRA-Build

Input: The sorted objects 𝑂 , construction parameter𝑀 , 𝑒 𝑓𝑐
Output: Root node of index DIGRA

1 Initialize queues 𝑄 , ℎ ← 0;

2 for 𝑜 in 𝑂 do
3 𝑛𝑑 ←− 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑜𝑑𝑒 (), 𝑛𝑑 ←− 0, 𝑛𝑑.𝑒𝑛 ←− 𝑜 ;
4 𝑄0.𝑝𝑢𝑠ℎ(𝑛𝑑)
5 while |𝑄ℎ | > 1: do
6 while 𝑄ℎ is not empty do
7 if |𝑄ℎ | ≤ 𝐵 then 𝑏𝑟𝑎𝑛𝑐ℎ ←− |𝑄ℎ | ;
8 else 𝑏𝑟𝑎𝑛𝑐ℎ ←− ⌈𝐵/2⌉ ;
9 𝑢 ←− 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑜𝑑𝑒 ();

10 𝑢.𝑐ℎ𝑖𝑙𝑑 ←− 𝑏𝑟𝑎𝑛𝑐ℎ nodes dequeued from 𝑄ℎ ;

11 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ(𝑢,𝑀, 𝑒 𝑓𝑐 );
12 𝑄ℎ+1 .𝑝𝑢𝑠ℎ(𝑢);
13 ℎ ← ℎ + 1;
14 return 𝑄ℎ .𝑓 𝑟𝑜𝑛𝑡 ();

three objects. For graph indices at layers other than 0, the entry point of each graph is highlighted in

gray in Fig. 3(a) and maintained at the corresponding node in Fig. 3(b). For instance, o5 is designated
as the entry point for the graph 𝑢4 .𝐺 . The NSW along the path from a node 𝑢 to the leaf where its

entry is located can form a hierarchical graph structure denoted as 𝐻𝑢 . For example, the graph 𝑢1 .𝐺 ,

𝑢2.𝐺 , 𝑜2 in Fig. 3(a) corresponding to the path 𝑢1, 𝑢2, 𝑜2 in Fig. 3(b) can be regarded as a hierarchical

structure, which is denoted as 𝐻𝑢1
.

Comparing B+-tree and DIGRA. Although both B+-tree and DIGRA are limited-degree multi-

way tree structures where all elements reside in the leaf nodes, DIGRA index employs distinct

designs for ANNS with range filtering, in contrast to the traditional B+-tree. First, DIGRA does not

require scan operations, so leaf nodes do not include linked-list pointers. Second, in addition to

keeping a pointer to NSW in each node, we also store an entry which is a leaf node in the subtree

to guide the implicit construction of HNSW using the tree structure. Third, while our update is

based on splitting and merging, we maintain an entire NSW graph for the set of objects 𝑂𝑢 in the

subtree rooted at𝑢 for each𝑢 in𝑇 . Hence, we cannot rely on a B+-tree-only update method; instead,

updates must address both the graph and tree structures. When nodes split or merge, the objects

within their subtrees change, requiring corresponding NSW updates. To handle this efficiently, we

have designed an update procedure that uses a lazy update strategy to ensure manageable time

complexity.

3.2 Index Construction
The key idea of the DIGRA index construction is to build a dynamic multi-way tree from the bottom

up, where each node maintains an NSW graph covering the objects in its subtree. We start by

placing data objects into leaf nodes and constructing an NSW graph at each leaf. These leaf nodes

are then grouped into higher-level nodes, merging the prebuilt graphs of their children to avoid

rebuilding from scratch. This process continues iteratively until the entire tree is formed. Next, we

introduce the details of index construction.

Alg. 3 shows the pseudo-code for building the DIGRA index. We first create leaf nodes for all

objects and push them into 𝑄0 (Lines 2-4). From bottom to top, we iteratively extract 𝑏𝑟𝑎𝑛𝑐ℎ nodes

from the queue of the lower layer as children of newly created node, construct a graph on the new
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Algorithm 4: Refresh

Input: node 𝑢,construction parameter𝑀 , 𝑒 𝑓𝑐𝑜𝑛
1 𝑢.𝑒𝑛 ←− 𝑠𝑒𝑙𝑒𝑐𝑡𝐸𝑛(𝑢), 𝑢.𝑙𝑎𝑦𝑒𝑟 ←− 𝑢.𝑐ℎ𝑖𝑙𝑑 [0] .𝑙𝑎𝑦𝑒𝑟 + 1;
2 for o ∈ 𝑂𝑢 do
3 𝑅 ← ∅;
4 for 𝑣 ∈ 𝑢.𝑐ℎ𝑖𝑙𝑑 do
5 if 𝑢 ∈ 𝑂𝑣 then 𝑅 ← 𝑅 ∪ 𝑁𝑣.𝐺 (o);
6 else
7 𝑒𝑛𝑡𝑟𝑦 ← 𝑓 𝑖𝑛𝑑𝐸𝑛𝑡𝑟𝑦 (𝐻𝑣, o);
8 𝐶 ← 𝐺𝑟𝑒𝑒𝑑𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝑠 .𝐺, 𝑒𝑛𝑡𝑟𝑦, o, 𝑒 𝑓𝑐𝑜𝑛);
9 𝑅 ← 𝑅 ∪ 𝑝𝑟𝑢𝑛𝑒 (𝐶, o, 𝑀);

10 𝑁𝑢.𝐺𝑟𝑎𝑝ℎ (𝑜) ← 𝑝𝑟𝑢𝑛𝑒 (𝑅, o, 𝑀);

node, and push it into the queue of the new layer (Lines 5-13). The 𝑏𝑟𝑎𝑛𝑐ℎ is usually set to be ⌈𝐵/2⌉
here. This process repeats until only one node remains in the new layer. We return this node as the

root (Line 14).

In Alg. 4, we show the steps of building the NSW index for node 𝑢. First, we set entry and layer

for 𝑢 (Line 1). As we can obtain a multi-layer structure by visiting any path from a leaf node to 𝑢,

we randomly select a leaf node from the subtree of 𝑢 as its entry 𝑒𝑛. Then, we need to build the

NSW for the new node by identifying edges for each o in the subtree of 𝑢 (Lines 2-10). Recalling

the process of building NSW, it first finds the closest 𝑒 𝑓𝑐𝑜𝑛 vertices in the graph for each vertex. If

all 𝑒 𝑓𝑐𝑜𝑛 vertices are selected as neighbors of this vertex, the graph density will be too high. Hence,

through 𝑝𝑟𝑢𝑛𝑒 in Alg. 2, only𝑀 vertices are chosen as neighbors. The intuition behind pruning

is that if two vertices are close to each other, there is likely to be an edge between them, so we

only keep one of them to be a neighbor to sparsify the graph and ensure search performance. Yet,

since the NSW is built incrementally starting from an empty graph, vertices inserted earlier will

have difficulty finding vertices inserted later as neighbors. To overcome this, for each o, we first
independently find 𝑒 𝑓𝑐𝑜𝑛 neighbors and select𝑀 edges through pruning in the graph of each child

of 𝑢 except the child that o belongs to (Lines 5-10). Then we further sparsify the found𝑀 · |𝑢.𝑐ℎ𝑖𝑙𝑑 |
edges to𝑀 edges through pruning (Line 10). This allows each vertex to obtain information from

the entire set 𝑂𝑢 , ensuring search performance. Note that since 𝐻𝑣 is an implicit hierarchical NSW

structure, we use 𝑓 𝑖𝑛𝑑𝐸𝑛𝑡𝑟𝑦 (𝐻𝑢, o) to search 𝐻𝑣 from the top to bottom to find the entry closer to

o, which is the same as HNSW, thereby improving the speed (Line 7). Next, we show an example

for the index construction.

Example 3.4. Still consider the set 𝑂 of objects in Fig. 2. To build our DIGRA index with 𝐵 = 3

(see Fig. 3), we first sort the objects o1 through o7 by their attribute values on 𝜙 . These objects form
the leaf nodes at Layer 0. We then group the Layer-0 nodes into sets of size ⌈𝐵/2⌉ = 2, placing any

remaining nodes (no more than 𝐵) into a single set. From this procedure, we obtain the following

groups: {o7, o2},{o3, o1}, and {o4, o6, o5} Next, we create nodes 𝑢2, 𝑢3, and 𝑢4 at Layer 1, each

having one of these groups as its children. At this point, we also construct an NSW graph within

each node. Since Layer 1 contains only three nodes (no more than 𝐵), we create a single node 𝑢1 at

Layer 2 whose children are 𝑢2, 𝑢3, and 𝑢4. To build 𝑢1’s NSW graph (denoted 𝑢1.𝐺), we apply the

𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ process. Specifically, each object in 𝑂𝑢1
(the union of all objects in 𝑢2, 𝑢3, and 𝑢4) locates

neighbor candidates in 𝑢2.𝐺 , 𝑢3.𝐺 , and 𝑢4.𝐺 . For example, object o6 finds o5 as a neighbor candidate
in 𝑢4.𝐺 . Using 𝐺𝑟𝑒𝑒𝑑𝑦𝑆𝑒𝑎𝑟𝑐ℎ, it then locates o2 from 𝑢2 .𝐺 and o3 from 𝑢3.𝐺 . After a pruning step

(which retains all vertices in this example), {o5, o2, o3} is the final neighbor set of o6 in 𝑢1.𝐺 .
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Fig. 4. Example of DIGRA query

Lemma 3.5 shows the time complexity of the 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ operation. With Lemma 3.5, we further

obtain the time complexity of building DIGRA index and the space occupied by DIGRA in Theorem

3.6. All omitted proofs can be found in our technical report [1].

Lemma 3.5. For node 𝑢 in the DIGRA index, the time cost of performing the refresh operation is
𝑂 (𝑠𝑖𝑧𝑒 (𝑢) · 𝑐𝑢𝑝𝑑 ).

Theorem 3.6. Algorithm 3 constructs a DIGRA index on 𝑂 with 𝑂 (𝑀𝑛 log𝑛) space complexity in
𝑂 (𝑛 log𝑛 · 𝑐𝑢𝑝𝑑 ) time.

3.3 Query Processing
Given a range filter𝑄 , the main idea of DIGRA for query processing is to identify a subset of nodes

whose subtrees collectively contain 𝑂𝑄 , the set of objects satisfying the filter. We then run ANNS

on the NSW index at each chosen node, merge the partial results, and return the top-𝑘 answers. As

we will show, our approach can locate 𝑂 (𝐵 log𝑛) such nodes, ensuring that only objects in [ℓ, 𝑟 ]
are included. However, querying all 𝑂 (𝐵 log𝑛) nodes still incurs relatively high costs. To reduce

these costs, we propose an alternative solution requiring at most two nodes that jointly cover 𝑂𝑄 .

While this introduces a bounded number of out-of-range objects, it significantly improves query

efficiency compared to the disjoint exact coverage solution requiring 𝑂 (𝐵 log𝑛) searches.
We begin by presenting the solution that identifies 𝑂 (𝐵 log𝑛) nodes to obtain a disjoint exact

coverage of 𝑂𝑄 , defined below.

Definition 3.7 (Disjoint Exact Coverage). A set of nodes 𝐶 = {𝑢1, 𝑢2, . . . , 𝑢𝑥 } in tree 𝑇 disjointly
covers an arbitrary range𝑄 = [ℓ, 𝑟 ] exactly if:

⋃
𝑢∈𝐶 𝑂𝑢 = 𝑂𝑄 and𝑂𝑢𝑖 ∩𝑂𝑢 𝑗

= ∅ for all 𝑖 ≠ 𝑗 , where

𝑂𝑄 is the set of objects with attribute 𝜙 falling into in 𝑄 , and 𝑂𝑢 is the set of objects in the subtree

rooted at 𝑢.

Lemma 3.8. DIGRA can identify a set 𝐶 of 𝑂 (𝐵 log𝑛) nodes in 𝑇 that disjointly and exactly covers
an arbitrary query range 𝑄 = [ℓ, 𝑟 ] on the attribute 𝜙 in 𝑂 (𝐵 log𝑛) time.

Using Lemma 3.8, we can perform an ANNS on the NSW graph 𝑢.𝐺 for each node 𝑢 ∈ 𝐶 , merge

the results and return the top-𝑘 answers. Yet, this still incurs high query costs due to 𝑂 (𝐵 log𝑛)
ANN searches. To alleviate this issue, we find that it is feasible to include some objects with attribute

value on 𝜙 out of the range [ℓ, 𝑟 ] and then prune them to save costs. The key is to bound such

irrelevant objects. Thus, we propose the 𝛼-approximate range coverage.

Definition 3.9. (𝛼-Approximate Range Coverage) For a range 𝑅 = [ℓ, 𝑟 ] over dataset 𝑂 , let 𝑂𝑅

denote the objects in 𝑂 falling within 𝑅. If a range 𝑅′ = [ℓ ′, 𝑟 ′] with 𝑅 ⊆ 𝑅′ satisfies |𝑂𝑅′ |
|𝑂𝑅 | ≤ 𝛼 for

some constant 𝛼 , 𝑅′ is an 𝛼-approximate coverage of 𝑅.

Theorem 3.10. For any range 𝑄 = [ℓ, 𝑟 ], we can find up to two disjoint nodes 𝑢 and 𝑣 in 𝑇 within
𝑂 (log𝑛) time whose range𝑄 ′ = [ℓ ′, 𝑟 ′] is a 4𝐵-approximate coverage of𝑄 , i.e., |𝑂𝑢 ∪𝑂𝑣 |/|𝑂𝑄 | ≤ 4𝐵.
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Algorithm 5: DIGRA-Query

Input: Query vector q, range [ℓ, 𝑟 ], query parameters 𝑘, 𝑒 𝑓

Output: Query result

1 ℎ𝑁𝑜𝑑𝑒 ← 𝑓 𝑖𝑛𝑑𝐻𝑖𝑔ℎ𝑁𝑜𝑑𝑒 (𝑟𝑜𝑜𝑡, ℓ, 𝑟 );
2 if ℎ𝑁𝑜𝑑𝑒.𝑙𝑎𝑦𝑒𝑟 == 0 then return {ℎ𝑁𝑜𝑑𝑒.𝑒𝑛} ;
3 𝑙𝐼𝑑 ← 𝑓 𝑖𝑛𝑑𝑃𝑜𝑠𝑡𝑖𝑜𝑛(ℎ𝑁𝑜𝑑𝑒, ℓ);
4 𝑟𝐼𝑑 ← 𝑓 𝑖𝑛𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(ℎ𝑁𝑜𝑑𝑒, 𝑟 );
5 𝑒𝑛𝑡𝑟𝑦𝐿𝑖𝑠𝑡 ← 𝑒𝑚𝑝𝑡𝑦𝑙𝑖𝑠𝑡 ;

6 if 𝑟𝐼𝑑 > 𝑙𝐼𝑑 + 1 then
7 𝑒𝑛𝑡𝑟𝑦 ← 𝑓 𝑖𝑛𝑑𝐸𝑛𝑡𝑟𝑦 (𝐻ℎ𝑁𝑜𝑑𝑒 , q);
8 𝑒𝑛𝑡𝑟𝑦𝐿𝑖𝑠𝑡 .𝑝𝑢𝑠ℎ(𝑒𝑛𝑡𝑟𝑦);
9 𝐺 ← ℎ𝑁𝑜𝑑𝑒.𝐺 ∪ (⋃𝑐ℎ∈ℎ𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 𝑐ℎ.𝐺);

10 else
11 𝑙𝑁𝑜𝑑𝑒 ← 𝑓 𝑖𝑛𝑑𝑁𝑜𝑑𝑒 (ℎ𝑖𝑔ℎ𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑙𝐼𝑑], ℓ);
12 𝑟𝑁𝑜𝑑𝑒 ← 𝑓 𝑖𝑛𝑑𝑁𝑜𝑑𝑒 (ℎ𝑖𝑔ℎ𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑟𝐼𝑑], 𝑟 );
13 𝑙𝐸𝑛𝑡𝑟𝑦 ← 𝑓 𝑖𝑛𝑑𝐸𝑛𝑡𝑟𝑦 (𝐻𝑙𝑁𝑜𝑑𝑒 , q);
14 𝑟𝐸𝑛𝑡𝑟𝑦 ← 𝑓 𝑖𝑛𝑑𝐸𝑛𝑡𝑟𝑦 (𝐻𝑟𝑁𝑜𝑑𝑒 , q);
15 𝑒𝑛𝑡𝑟𝑦𝐿𝑖𝑠𝑡 .𝑝𝑢𝑠ℎ(𝑙𝐸𝑛𝑡𝑟𝑦, 𝑟𝐸𝑛𝑡𝑟𝑦);
16 𝑙𝐺 ← 𝑙𝑁𝑜𝑑𝑒.𝐺 ∪ (⋃𝑐ℎ∈𝑙𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 𝑐ℎ.𝐺);
17 𝑟𝐺 ← 𝑟𝑁𝑜𝑑𝑒.𝐺 ∪ (⋃𝑐ℎ∈𝑟𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 𝑐ℎ.𝐺);
18 𝐺 ← 𝑙𝐺 ∪ 𝑟𝐺 ∪ ℎ𝑁𝑜𝑑𝑒.𝐺 ;
19 𝑊 ← 𝑅𝑎𝑛𝑔𝑒𝐺𝑟𝑒𝑒𝑑𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝐺, 𝑒𝑛𝑡𝑟𝑦𝐿𝑖𝑠𝑡, q, 𝑒 𝑓 , ℓ, 𝑟 );
20 return 𝑘 objects closest to q in𝑊 ;

Theorem 3.10 enables us to focus on at most two nodes, 𝑢 and 𝑣 , and their associated NSW

indices, 𝑢.𝐺 and 𝑣 .𝐺 , to efficiently process the search. Our results demonstrate that this strategy

yields approximately a 4x speed-up in query processing compared to directly solving the problem

using disjoint exact coverage. The detailed experimental results are available in our technical report

[1]. Building on this idea, we now present the detailed query algorithm.

Query algorithm. Alg. 5 shows the pseudo-code for answering a query. First, we find the lowest
layer node ℎ𝑁𝑜𝑑𝑒 that covers the range [ℓ, 𝑟 ] in the tree in 𝑂 (log𝑛) time (Line 1). Then: (i) If
ℎ𝑁𝑜𝑑𝑒.𝑙𝑎𝑦𝑒𝑟 = 0, the range covers a single leaf, so we directly return that leaf’s entry (Line 2). Next,

we find 𝑙𝐼𝑑 and 𝑟𝐼𝑑 , the ids of the children which contain ℓ and 𝑟 using the 𝑓 𝑖𝑛𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 function

(Lines 3-4), and check the relationship between 𝑙𝐼𝑑 and 𝑟𝐼𝑑 to determine if ℎ𝑁𝑜𝑑𝑒 can serve as an

approximate range coverage (Line 6). (ii) If range [ℓ, 𝑟 ] fully covers at least one child of ℎ𝑁𝑜𝑑𝑒 , i.e.

𝑟𝐼𝑑 > 𝑙𝐼𝑑 + 1, we perform ANNS on ℎ𝑁𝑜𝑑𝑒 (Lines 6-9). (iii) Otherwise, we search with two nodes

(Lines 11-20). Specifically, we use the function 𝑓 𝑖𝑛𝑑𝑁𝑜𝑑𝑒 (Lines 11-12) to locate two nodes, each

having at least one child covered by [ℓ, 𝑟 ]. From the 𝑙𝐼𝑑/𝑟𝐼𝑑 child of ℎ𝑁𝑜𝑑𝑒 , 𝑓 𝑖𝑛𝑑𝑁𝑜𝑑𝑒 recursively

visits the right/left-most children until they are fully covered by [ℓ, 𝑟 ], taking 𝑂 (log𝑛) time by the

tree’s height. In addition, we optimize NSW search by leveraging a hierarchical structure. First,

we use the hierarchy to find entries closer to q, which is described in Sec. 3.2, to accelerate search

convergence (Lines 7, 12-13). Second, to enhance the search quality, we expand edge coverage by

incorporating edges from the same vertices at the graphs on the children (Lines 9, 16-17) and the

ancestor (Line 18) of the nodes to be searched. Since there can be two search entries, and not all

vertices in the graph satisfy the range filter, we use the 𝑅𝑎𝑛𝑔𝑒𝐺𝑟𝑒𝑒𝑑𝑦𝑆𝑒𝑎𝑟𝑐ℎ algorithm, similar to

Alg. 1, but with two modifications: (i) initialization uses multiple entries, and (ii) a vertex 𝑣 is added

to the set𝑊 only if ℓ ≤ 𝜙 (𝑣) ≤ 𝑟 . Theorem 3.11 shows this yields a 4𝐵-approximate coverage.
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Fig. 5. An example of the insertion with DIGRA (𝑩 = 3).
Theorem 3.11. Given range 𝑄 and dataset 𝑂 , Alg. 5 returns the ANNS results on a set 𝑂 ′ such that

𝑂𝑄 ⊆ 𝑂 ′ and |𝑂 ′ |/|𝑂𝑄 | ≤ 4𝐵.

Example 3.12. Consider the DIGRA index in Fig. 3 and let the query range 𝑄 be [4, 7]. The exact
coverage for this range is 𝑂𝑄 = {o1, o4, o6}, highlighted by gray boxes in Fig. 4. Besides, we further

find that the values 4 and 7 lie in different children of 𝑢1, namely 𝑢3 and 𝑢4 and each node contains

at least one child whose attribute lies within 𝑄 . Hence, we choose 𝑢3 and 𝑢4 (shown in bold) as

an 4𝐵-approximate coverage for 𝑄 . This coverage may include objects outside of 𝑄 (e.g., o3 and
o5), but the total number of such irrelevant objects is bounded by the 𝛼-approximate coverage

guarantee. Finally, we run 𝑅𝑎𝑛𝑔𝑒𝐺𝑟𝑒𝑒𝑑𝑦𝑆𝑒𝑎𝑟𝑐ℎ on 𝑢3.𝐺 and 𝑢4.𝐺 . For query processing, objects

with attributes lie outside of 𝑄 are filtered out.

3.4 Index Update
The key to updating the DIGRA index is to ensure that while maintaining the tree’s balance

condition, the ANN index maintained by each node remains up-to-date and consistent with the

updated set in the corresponding subtree.

Our update algorithms preserve the tree’s balance and the ANN index’s consistency, both crucial

for efficient and accurate queries. They operate in two steps: (i) descend from the root to locate

the node needing an update, refreshing each affected node’s ANN index along the way; and (ii)
backtrack to detect balance violations, rebalancing via split or merge when necessary. The first

step costs no more than updating 𝑂 (log𝑛) vanilla NSW graphs, since a balanced tree’s search

path is 𝑂 (log𝑛). Hence, efficient updates require bounding the second step’s overhead. Splitting or

merging a node 𝑢 of size size(𝑢) takes 𝑂 (size(𝑢) · 𝑐upd). Frequent rebalancing can be costly when

size(𝑢) reaches 𝑂 (𝑛).
To address this, we employ a lazy update mechanism that permits each initially balanced node 𝑢

to tolerate Ω
(
𝑠𝑖𝑧𝑒 (𝑢)

)
updates before triggering a rebalance. This strategy bounds the amortized

overhead for each update to 𝑂
(
𝑐𝑢𝑝𝑑 log𝑛

)
time, significantly reducing the update cost. Next, we

show the details of the update algorithms.

Insertion of DIGRA index. Alg. 6 outlines the pseudo-code of insertion. If the current tree is
empty, we create a new node and make it the root node (Lines 1-2). Otherwise, starting from the

root, we insert a new object o recursively (Line 4). We first find the position in tree to insert the

new node, create a leaf node and insert this leaf node into the corresponding position (Lines 11-14).

Then we insert o into the graph of each node on the backtracking path (Lines 15-26).

Inserting o into a graph follows the standard NSW insertion process, using the 𝐺𝑟𝑎𝑝ℎ𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛

algorithm described in Alg. 2.

Next, if any child of the node has greater than 𝐵 children after the insertion, we split the child

(Line 17). The splitting process is similar to B-tree splitting. When we split the node 𝑛1, we divide

the key and children of 𝑛1 into two parts, keeping one part for itself and moving the other part

becoming the new node 𝑛2, and insert 𝑛2 after 𝑛1 (Lines 18-21). As the subtree of 𝑛1 and 𝑛2 changed,
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Algorithm 6: DIGRA-Insert

Input: object o, construction parameter𝑀 , 𝑒 𝑓𝑐𝑜𝑛
1 if 𝑟𝑜𝑜𝑡 = 𝑁𝑈𝐿𝐿 then
2 𝑟𝑜𝑜𝑡 ←− 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑜𝑑𝑒 (), 𝑟𝑜𝑜𝑡 .𝑙𝑎𝑦𝑒𝑟 ←− 0, 𝑟𝑜𝑜𝑡 .𝑒𝑛 ←− o
3 else
4 𝑖𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒 (𝑟𝑜𝑜𝑡, o);
5 if |𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑 | > 𝐵 then
6 𝑛𝑅𝑜𝑜𝑡 ←− 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑜𝑑𝑒 ();
7 𝑛𝑅𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑 [0] ← 𝑟𝑜𝑜𝑡 , 𝑟𝑜𝑜𝑡 ←− 𝑛𝑅𝑜𝑜𝑡 ;
8 𝑠𝑝𝑙𝑖𝑡𝑁𝑜𝑑𝑒 (𝑟𝑜𝑜𝑡, 0),
9 procedure insertNode(𝑛𝑜𝑑𝑒 , o,𝑀 , 𝑒 𝑓𝑐𝑜𝑛):
10 𝑖𝑑 ←− 𝑓 𝑖𝑛𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑛𝑜𝑑𝑒, o);
11 if node.layer = 1 then
12 𝑛𝑒𝑤𝑁𝑜𝑑𝑒 ←− 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑜𝑑𝑒 ();
13 𝑛𝑒𝑤𝑁𝑜𝑑𝑒.𝑒𝑛 ←− o, 𝑒𝑛𝑡𝑟𝑦 ← o;
14 𝑖𝑛𝑠𝑒𝑟𝑡𝐾𝑒𝑦𝐴𝑛𝑑𝐶ℎ𝑖𝑙𝑑 (𝑛𝑜𝑑𝑒, 𝑖𝑑, o, 𝑛𝑒𝑤𝑁𝑜𝑑𝑒);
15 𝑒𝑛𝑡𝑟𝑦 ← vertex closest to o in 𝑁𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑 ] .𝐺 (o);
16 𝐺𝑟𝑎𝑝ℎ𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝑛𝑜𝑑𝑒.𝐺, o, 𝑒𝑛𝑡𝑟𝑦,𝑀, 𝑒 𝑓𝑐𝑜𝑛);
17 if |𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑] .𝑐ℎ𝑖𝑙𝑑 | > 𝐵 then 𝑠𝑝𝑙𝑖𝑡𝑁𝑜𝑑𝑒 (𝑛𝑜𝑑𝑒, 𝑖𝑑,𝑀, 𝑒 𝑓𝑐𝑜𝑛) ;
18 procedure splitNode(𝑛𝑜𝑑𝑒 , 𝑖𝑑 .𝑀 , 𝑒 𝑓𝑐𝑜𝑛):
19 𝑛1← 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑], 𝑛2← 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑜𝑑𝑒 ();
20 𝑛1, 𝑛2← 𝑠𝑝𝑙𝑖𝑡𝐸𝑣𝑒𝑛𝑙𝑦 (𝑛1);
21 𝑖𝑛𝑠𝑒𝑟𝑡𝐶ℎ𝑖𝑙𝑑 (𝑛𝑜𝑑𝑒, 𝑖𝑑, 𝑛2);
22 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ(𝑛1, 𝑀, 𝑒 𝑓𝑐𝑜𝑛), 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ(𝑛2, 𝑀, 𝑒 𝑓𝑐𝑜𝑛);

we rebuild 𝑛1.𝐺 and 𝑛2.𝐺 by 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ (Line 22). When the insertion finishes, if the number of

children of the root exceeds 𝐵, we split the root and make it a child of the new root node (Lines 5-8).

We first analyze the time complexity of the 𝑆𝑝𝑙𝑖𝑡 operation:

Lemma 3.13. The time of a split operation to 𝑢 is 𝑂 (𝑠𝑖𝑧𝑒 (𝑢) · 𝑐𝑢𝑝𝑑 ).

Assuming that after the last split on node 𝑢, the next split occurs after Ω(size(𝑢)) insertions in
𝑢’s subtree by using the lazy update strategy elaborated later, we have the following theorem:

Theorem 3.14. The DIGRA index can handle each insertion in 𝑂 (𝑐𝑢𝑝𝑑 log𝑛) amortized time.

Example 3.15. Continuing from Fig. 2, assume we have built the DIGRA tree in Fig. 5(a) with

𝐵 = 3 using o1 through o7. We now wish to insert o8, which has 𝜙 (o8) = 8.1. First, we locate o8’s
proper position in the tree and create a new leaf node (shown in bold in Fig. 5(b)). This insertion

causes 𝑢4’s number of children to exceed 3, prompting us to split 𝑢4 into two new nodes, 𝑢5 and 𝑢6.

We rebuild their graphs, 𝑢5 .𝐺 and 𝑢6 .𝐺 , using 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ, and connect both nodes to their parent, 𝑢1,

as seen in Fig. 5(c). Afterwards, 𝑢1 also has more than 3 children and, being the root, must be split

as well. We create a new root 𝑢9. The split of 𝑢1 produces two new children, 𝑢7 and 𝑢8. We then

rebuild 𝑢7.𝐺 , 𝑢8.𝐺 , and 𝑢9.𝐺 using 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ. This process yields the final tree, shown in Fig. 5(d).

Deletion of DIGRA index. Alg. 7 outlines the pseudo-code for dealing with deletions.

We first apply the same marking method as in NSW. We mark the object as deleted (Line 1).

When doing 𝑅𝑎𝑛𝑔𝑒𝐺𝑟𝑒𝑒𝑑𝑦𝑆𝑒𝑎𝑟𝑐ℎ on any graph in query processing, we will put vertices marked

for deletion into the search queue 𝐶 , but not into the result set𝑊 . This completes the deletion of

o in all NSW graphs. Next, we will focus on the change in tree structures. We proceed with the
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Fig. 6. An example of the deletion with DIGRA (𝑩 = 3).
recursive deletion process starting from the root (Line 2). We find the corresponding leaf node and

delete it (Lines 5-6). After deleting the leaf node, we need to check if the number of children of

𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑] of the backtracked node is less than ⌈𝐵/2⌉. If so, we look for a sibling node whose number

of children is greater than ⌈𝐵/2⌉. If we find such a node, we transfer a child from the sibling node

and refresh the graphs of the two nodes (Lines 9-17). If we cannot find such a sibling node, we

merge it with one of its siblings on the left or right (Lines 18-19). When merging 𝑛1 and 𝑛2, we

append the children and keys of 𝑛2 to 𝑛1 (Lines 21-22). Then we remove 𝑛2, and rebuild the graph

of 𝑛1 (Line 24). Finally, if the root node has only one child left after deletion, we will remove the

root node and set its child as the new root node (Line 3). Similar to insertion, we present the time

complexity of𝑀𝑒𝑟𝑔𝑒 and 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 below.

Lemma 3.16. The time cost of merge operation is 𝑂 (𝑠𝑖𝑧𝑒 (𝑢) · 𝑐𝑢𝑝𝑑 ).
Assuming that after the last merge on node 𝑢, the next merge on 𝑢 occurs after Ω(size(𝑢))

deletions in its subtree by using the lazy update strategy explained later, we have the following

theorem:

Theorem 3.17. The deletion of DIGRA index can handle each deletion operation in 𝑂 (𝑐𝑢𝑝𝑑 log𝑛)
amortized time.

Example 3.18. Consider the object set from Example 3.15. We have constructed the tree structure

of DIGRA shown in Fig. 6 (a) with 𝐵 = 3 using o1 to o8, and now we want to delete o2 and o4
sequentially. We locate the corresponding position for o2 and delete the leaf node. After deletion,

the number of children of 𝑢4 is less than 2. We merge 𝑢4 and 𝑢5 into 𝑢8, and build 𝑢8 .𝐺 by 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ.

In the structure shown in Fig. 6 (b), we find that 𝑢2 has only one child, so we merge 𝑢2 and 𝑢3 into

𝑢9. Then we build 𝑢9.𝐺 by 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ and set 𝑢9 as a new root since 𝑢1 has only one child. Then we

delete o4 from the index shown in Fig. 6 (c). As 𝑢8 has 3 children, we transfer a child from 𝑢8 to 𝑢6.

Then we update 𝑢8.𝐺 and 𝑢6.𝐺 by 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ and obtain the index shown in Fig. 6 (d).

Lazy update. The B-tree only limits the number of branches and is not a very effective balancing

strategy in extreme cases. Consider a B-tree with 𝐵 = 3. Suppose a node 𝑢 has two children 𝑣1
and 𝑣2, where all nodes in the subtree of child 𝑣1 have 2 branches, and all nodes in the subtree of

child 𝑣2 have 3 branches. Thus we no longer have 𝑠𝑖𝑧𝑒 (𝑢) = 𝑂 (𝑠𝑖𝑧𝑒 (𝑣1)), since 𝑠𝑖𝑧𝑒 (𝑣1) = 2
𝑖
and

𝑠𝑖𝑧𝑒 (𝑢) = 3
𝑖 + 2𝑖 . This makes it difficult to obtain an 𝛼-approximate range coverage. To improve

this, we trigger a split or merge when the balance condition introduced in Definition. 3.1 is not met.

We replace the condition at line 17 in Alg. 6 with the check if the size of the node is greater than 𝐵𝑖 ,

and replace the condition at lines 9,10,14 in Alg. 7 with the check if the size to the node is less or

greater than 𝐵𝑖/4, where 𝑖 is the layer of the node. To balance the tree, we do not need to perform

split and merge on all of the nodes every update. According to the previous work [5], if we use

such a balancing strategy, we have the following theorem:

Theorem 3.19. It takes Ω(𝑠𝑖𝑧𝑒 (𝑢)) insertions or deletions to make the balanced node 𝑢 after a
merge or split operation unbalanced again.
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Algorithm 7: DIGRA-Delete

Input: object o, construction parameter𝑀 , 𝑒 𝑓𝑐𝑜𝑛
1 𝑚𝑎𝑟𝑘𝐴𝑠𝐷𝑒𝑙𝑒𝑡𝑒𝑑 (o);
2 𝑒𝑟𝑎𝑠𝑒𝑁𝑜𝑑𝑒 (𝑟𝑜𝑜𝑡, o);
3 if |𝑟𝑜𝑜𝑡 .𝑘𝑒𝑦 | = 0 then 𝑟𝑜𝑜𝑡 ←− 𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑 [0]; ;
4 procedure eraseNode(𝑛𝑜𝑑𝑒 , o):
5 𝑖𝑑 ←− 𝑓 𝑖𝑛𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑛𝑜𝑑𝑒, o);
6 if node.layer = 1 then 𝑟𝑒𝑚𝑜𝑣𝑒𝐾𝑒𝑦𝐴𝑛𝑑𝐶ℎ𝑖𝑙𝑑 (𝑛𝑜𝑑𝑒, 𝑖𝑑) ;
7 else
8 𝑒𝑟𝑎𝑠𝑒𝑁𝑜𝑑𝑒 (𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑], o);
9 if |𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑] .𝑐ℎ𝑖𝑙𝑑 | < ⌈𝐵/2⌉ then
10 if 𝑖𝑑 > 0 and |𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑 − 1] .𝑐ℎ𝑖𝑙𝑑 | > ⌈𝐵/2⌉ then
11 𝑟𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐾𝑒𝑦𝑠 (𝑛𝑜𝑑𝑒, 𝑖𝑑);
12 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ(𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑 − 1], 𝑀, 𝑒 𝑓𝑐𝑜𝑛);
13 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ(𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑], 𝑀, 𝑒 𝑓𝑐𝑜𝑛);
14 else if 𝑖𝑑 < |𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 | and |𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑 + 1] .𝑐ℎ𝑖𝑙𝑑 | > ⌈𝐵/2⌉ then
15 𝑟𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐾𝑒𝑦𝑠 (𝑛𝑜𝑑𝑒, 𝑖𝑑);
16 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ(𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑], 𝑀, 𝑒 𝑓𝑐𝑜𝑛);
17 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ(𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑 + 1], 𝑀, 𝑒 𝑓𝑐𝑜𝑛);
18 else if 𝑖𝑑 > 0 then 𝑚𝑒𝑟𝑔𝑒𝑁𝑜𝑑𝑒𝑠 (𝑛𝑜𝑑𝑒, 𝑖𝑑 − 1) ;
19 else 𝑚𝑒𝑟𝑔𝑒𝑁𝑜𝑑𝑒𝑠 (𝑛𝑜𝑑𝑒, 𝑖𝑑,𝑀, 𝑒 𝑓𝑐𝑜𝑛) ;
20 procedure mergeNodes(𝑛𝑜𝑑𝑒 , 𝑖𝑑 ,𝑀 , 𝑒 𝑓𝑐𝑜𝑛):
21 𝑛1← 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑], 𝑛2← 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖𝑑 + 1];
22 𝑛1← 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛1, 𝑛2)
23 𝑟𝑒𝑚𝑜𝑣𝑒𝐶ℎ𝑖𝑙𝑑 (𝑛𝑜𝑑𝑒, 𝑛2),
24 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ(𝑛1, 𝑀, 𝑒 𝑓𝑐𝑜𝑛);

Recap that Theorems 3.14 and 3.17 both require this lazy update strategy to achieve the desired

time complexity. The above theorem affirms that such a lazy update strategy is doable, showing

the final time complexity of insertion and deletion to be both 𝑂 (𝑐𝑢𝑝𝑑 log𝑛).

4 Future work
Next, we discuss possible extensions of our method, which are considered as our future work.

Memory limited method. Our method consists of tree structure and graph index. For the graph

index that cannot fit entirely into memory, one way is to store the index on disk. Some disk-based

graph indexes exist for ANNS, such as Diskann [14]. These graph indexes mostly optimize the

layout on disk to improve locality and also cache some hot data in memory to reduce I/O costs.

Besides, the multi-way tree is a disk-friendly structure. Thus, we can transform the graph index

from NSW to disk-based graph index to implement DIGRA on disk. Another way is to partition

a dataset into multiple clusters and store them on disk and retrieve the needed partitions into

memory when necessary for query processing.

Concurrent updates. Although DIGRA is designed for single-threaded updates, extending it to

a multi-threaded environment could serve as a future research direction. The NSW of each node

in DIGRA is independent of the others. Additionally, if the tree structure remains unchanged, the

NSW at one node will not be affected by changes at other nodes. Hence, we can treat the NSW

as a whole and simply lock the node when updating it. When there are modifications to the tree

structure, we may adopt a similar locking method as in B+-tree. However, the advanced B+-tree

applies write locks only for structure modification, while DIGRA requires locking when updating
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Table 2. Summary of datasets.

Dataset Vector Type Dim. Attribute Type

SIFT Image feature vectors 128 Synthetic

Redcaps CLIP embeddings 512 Timestamp

GIST Image feature vectors 960 Synthetic

WIT ResNet-50 embedding 2048 Image size

the NSW. This presents challenges for implementing an efficient locking strategy. Additionally,

when processing queries synchronously during updates, DIGRA needs to ensure the consistency

of the NSWs stored in internal nodes, which differs from B+-trees that only consider consistency

among the elements stored in leaf nodes.

5 Related Work
Approximate Nearest Neighbor Search. Approximate nearest neighbor search (ANNS) methods

are generally categorized into three types: LSH-based [2, 3, 9, 17, 36], PQ-based [4, 6, 7, 18, 19, 38],

and graph-based [11, 13, 23, 24, 32]. Locality-Sensitive Hashing (LSH) [17] hashes similar items into

the same bucket with high probability. While LSH and its variants offer adjustable performance

and theoretical error guarantees, they require more space to maintain accuracy compared to other

methods. Product Quantization (PQ) [18] partitions high-dimensional space into multiple low-

dimensional subspaces and quantizes each separately. PQ and its extensions [4, 6, 7, 19, 38] trade

some accuracy for reduced space usage, making them suitable for billion-scale datasets. Graph-

based methods [11, 13, 23, 24, 32] build a proximity graph where nodes represent vectors and

edges connect similar vectors, using greedy search for ANNS. Notable graph-based approaches

like HNSW [24], NSG [13], and DiskANN [32] achieve a strong balance between efficiency and

accuracy and are widely adopted in industry.

ANNS with attribute filtering. Several algorithms and systems have been developed for

attribute-filtered ANN queries [12, 14, 25, 33, 38–40]. Some systems, like Milvus [33], support

general attribute filters and predicates, employing different strategies for various ANN searches.

RII [25], based on PQ, first filters vectors by predicates before applying a query strategy. However,

previous works [12, 38, 40] show that general methods are sub-optimal for specific attribute

queries, where specialized designs often perform better. Beyond range-filtering [12, 38, 40], Filtered-

DiskANN [14] target queries with attributes such as date, price range, or language.

6 Experiments
We compare the proposed DIGRA against states of the art in various aspects through experiments.

Our method is a standalone code implemented using C++, without introducing any external

packages. We have enabled all optimizations in the code of the competitors for experimental

comparison. Our method, the same as other competitors, is an independent component based

on the ANN index, and will not interfere with other system functionalities. All experiments are

conducted on a Linux machine with an Intel Xeon(R) CPU at 2.30GHz and 768GB of memory using

a single thread.

6.1 Experimental Settings
Datasets. We use the following four real-world datasets and their query settings tested in related

research for range-filtered ANNS [12, 24, 40]: (i) SIFT, (ii) Redcaps, (iii) GIST and (iv) WIT. The

attributes of SIFT and GIST are random integers from the range [1, 104], while the attributes of
Redcaps and WIT are real properties. The datasets are summarized in Table 2. For each dataset,
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Fig. 7. Impact of insertion on Redcaps.
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Fig. 8. Impact of deletion on SIFT.
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Fig. 9. Impact of deletion on Redcaps.

one million objects that involve both real-world vectors and numeric attributes are extracted to be

the data objects. We generated a thousand query vectors for each dataset. For SIFT and GIST, we

use query vectors provided by the datasets. For Redcaps, we create a set of one thousand query

vectors by asking ChatGPT-4 to come up with queries for an image search system and embedding

using CLIP. For WIT, we randomly extract one thousand vectors from the dataset as query vectors.

Competitors. We include the following methods (as we have reviewed in Sec. 2.3) in our

experimental comparisons: (i) SeRF [40], (ii) SuperPostfiltering [12], (iii) iRangeGraph [38], (iv)

ACORN [29], (v) Prefiltering, and (vi) Postfiltering, using HNSW as the index. Our code and more

experimental details can be found in [1].

Evaluation Metrics and Parameters. Following existing benchmarks [38, 40], we use 𝑄𝑃𝑆

(Queries Per Second) to measure efficiency and use 𝑅𝑒𝑐𝑎𝑙𝑙 to show the accuracy. Suppose that 𝑅∗ is
the exact 𝑘 nearest neighbors and 𝑅 is the result of ANNS, the 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) is define as 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
|𝑅∩𝑅∗ |
|𝑅∗ | =

|𝑅∩𝑅∗ |
𝑘

. We set 𝑘 = 10 for all experiments.

In addition, we report the relative error [30] to examine the quality of query results. The relative

error is derived by comparing the distance of the 𝑖-th closest neighbor returned by the ANNS to the

exact 𝑖-th closest neighbor for query 𝒒, and then averaging these errors across all 𝑖-th neighbors.

Note that in some experiments, Posterfiltering, ACORN, and SeRF are omitted because they fail

to return 𝑘 results, making the calculation of relative errors undefined. In terms of construction

parameters, for our method, we set 𝐵 = 3 for the multi-way tree 𝑇 . The NSW graph construction

process includes two parameters 𝑀 and 𝑒 𝑓𝑐𝑜𝑛 . The number 𝑀 is set to 16 for SIFT, 32 for GIST,

Redcaps and WIT. The base 𝑒 𝑓𝑐𝑜𝑛 is set to 400 for all datasets. We also conduct experiments to

examine the impact of these parameters, which can be found in our technical report [1]. For SeRF,

iRangeGraph and Postfiltering, the settings for the parameter𝑀 of their HNSW graph are the same

as DIGRA. For ACORN,𝑀 is set to 32,𝑀𝛽 is set to 64, 𝛾 is set to 100 since the smallest selectivity in
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Fig. 11. QPS vs. recall (Prefiltering is omitted in Fig. 11-17 if its QPS < 50).

our experiment is 1%, as recommended in their paper. Other parameters of these methods are their

default settings. As SuperPostfiltering is based on Vamana, we use its recommended parameters,

i.e., 𝛽 = 2, 𝑒 𝑓 = 500,𝑚 = 64 for all datasets. Apart from Prefiltering, we adjust parameters during

the search to control the QPS-Recall trade-off during the query phase. For SuperPostfiltering, the

parameters are 𝑘 and 𝑓 𝑖𝑛𝑎𝑙_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦, and for other methods, the parameter is 𝑒 𝑓 in greedy search.

The default coverage of query ranges is set to 10%, i.e., 10% of the objects falling into the range.

6.2 Experimental Comparisons
Exp 1: Impact of update. Fig. 7 shows the query performance of various methods on RedCaps

after data insertion (SIFT results are shown in Fig. 1, Sec. 1). Due to space constraints, we report

only SIFT and RedCaps results; similar trends for other datasets are detailed in our technical report

[1]. In this set of experiments, we start with 80% or 90% of vectors from these datasets, and then

add the remaining 10% or 20% vectors to the dataset. Fig. 8-9 shows the query performance of

various methods after data deletion on SIFT and RedCaps. In this set of experiments, we start

with all of vectors from these datasets, and then remove the 10% or 20% vectors from the dataset.

For SeRF, iRangeGraph, and SuperPostFiltering, as they are static indexes, we use the index built

before the update to process the range-filtered ANNS queries. We can observe that the query

performance of SeRF, SuperPostFiltering, and iRangeGraph degrades significantly, as these methods

are designed for static data. We can also find that as the amount of data inserted/deleted increases,

the query performance of indexes designed for static data further degrades, with recall unable

to exceed 0.85. Postfiltering and ACORN can achieve relatively stable accuracy through updates,

but with a suboptimal QPS, as they are not designed for range-filtered ANNS. In contrast, our

DIGRA maintains stable and high QPS even with dynamic data changes. As seen from the curve,

our DIGRA is insensitive to data changes, showing its strong capability in handling ANNS with

range filters for dynamic vector data.

Exp 2: Update efficiency. To evaluate update efficiency, we start with the full dataset, remove

10% of the vectors to test deletion efficiency, and then reinsert the 10% tomeasure insertion efficiency.

We report the average time for each insertion and deletion operation. For static methods such as

SeRF, SuperPostFiltering, and iRangeGraph, we report their index rebuild time for comparison. For

ACORN and Postfiltering, we report their insertion times, since their deletions only made marks

without any other changes. The update times for all methods across different datasets are shown
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Fig. 12. QPS v.s. relative error.

in Fig. 10. The proposed method, DIGRA, demonstrates exceptional update performance, with

insertion and deletion operations being over five and eight orders of magnitude faster, respectively,

than static indexes that require rebuilding.

The insertion time of DIGRA is on the same order of magnitude as Postfiltering and both

outperform ACORN. Additionally, DIGRA-Delete outperforms DIGRA-Insert. This is because, with

randomly generated updates, most deletions only require marking objects for deletion in the ANN

index of affected nodes without reconstructing the tree nodes or their ANN indices. The millisecond-

level update capability of DIGRA highlights its superior performance in handling ANNS with range

filters in dynamic vector data scenarios.

Exp 3: Query performance on static data. In this experiment, we demonstrate that even

without changes to the dataset, our proposed method, DIGRA, remains highly efficient for range-

filtered ANNS while maintaining the same level of recall. Fig. 11 shows the query performance

v.s. recall for all methods on static datasets with a range coverage of 10%, indicating that 10% of

the objects fulfill the range condition 𝑄 on attribute 𝜙 . Prefiltering is excluded due to its QPS

being less than 50. Our index and query strategies, designed for dynamic updates, continue to

deliver excellent performance on static datasets compared to other methods when achieving the

same level of recall. Analyzing the results, SeRF shows suboptimal query performance across all

datasets, primarily due to its heavy compression. While SuperPostfiltering slightly outperforms

DIGRA on the SIFT dataset, it lags behind both DIGRA and iRangeGraph on other datasets. Notably,

our method outperforms iRangeGraph on low-dimensional datasets like SIFT and Redcaps and

performs comparably on high-dimensional datasets like GIST and WIT. This can be attributed to

iRangeGraph’s dynamic edge selection strategy, which incurs significant computational costs in

low-dimensional spaces. In contrast, in high-dimensional spaces, the cost of distance computations

becomes the dominant factor, affecting all methods similarly. In other words, our DIGRA supports

efficient updates and also does so without any compromise to query efficiency—even outperforming

other methods in various scenarios. This demonstrates that DIGRA effectively balances the need

for dynamic updates with high query performance, making it highly suitable for both dynamic

and static datasets. Postfiltering and ACORN significantly lag behind the ANNS index designed for

range filtering, as their designs are not optimized for this type of query. Besides, we further report

the query performance v.s. relative error for all methods in Fig. 12. We only report the results on

SIFT and RedCaps datasets as the results for the other two datasets shows a similar trend and the

full results can be found in our technical report [1]. As shown in Fig. 12, our DIGRA demonstrates

the best trade-off between QPS and relative error across both datasets.

Exp 4: Indexing cost. Fig. 13 shows the memory usage of all methods across various datasets.

Note that Prefiltering does not need an additional index, meaning its memory usage is equivalent

to the input data size. SeRF incurs only a slightly higher memory cost compared to Prefiltering,

significantly lower than the maximum space cost of 𝑂 (𝑛2𝑀). This efficiency is achieved through

an aggressive compression strategy but at the compromise of performance and query accuracy.
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Besides, SuperPostFiltering incurs excessive memory usage to achieve comparable performance

as our DIGRA and iRangeGraph, requiring up to five times the size of the input data. In contrast, our

DIGRA maintains a memory footprint comparable to iRangeGraph, ACORN, and Posterfiltering,

while delivering outstanding query performance. This balance ensures that DIGRA achieves high

efficiency without incurring high memory costs, making it a superior choice for range-filtered

ANNS tasks. For indexing time, Fig. 10 has already shown the indexing time for the other methods.

For DIGRA, the indexing time is comparable to that of iRangeGraph and is omitted here for brevity.

Exp 5: Impact of query range. In this set of experiment, we examine the impact of the range

coverage to the query performance. Fig. 14-16 show the query performance of different methods

across all datasets when varying the range filter coverage ratio. We adjust the range filter across

{1%, 5%, 10%, 20%, 40%} and display the corresponding QPS, recall, and relative error. Due to limited

space, we only report the results on SIFT and Redcaps datasets. The omitted results can be found in

our technical report [1], which shows a similar conclusion. We can observe that DIGRA performs

well, maintaining recall above 0.9, a relative error below 0.1% while ensuring high QPS. Because

SeRF uses MaxLeap to compress ANN index, which loses a significant amount of information, its
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Fig. 17. Impact of the number of categories on Redcaps.

query performance is inferior to other methods, especially when the coverage ratio of range filter

is less than 10%. On the SIFT dataset, SuperPostFiltering achieves the best QPS, but it consumes a

large amount of space to store pre-built ANN indices as shown in Exp. 4. DIGRA gains a higher

recall and smaller relative error than iRangeGraph, consistent with our observations in Exp. 3.

Similar experimental results can be observed on the Redcaps datasets. Our DIGRA significantly

dominates ACORN, gaining far better QPS and higher recall. For Postfiltering, it has high QPS

but at the sacrifice of recalls, falling below 0.7 on Redcaps. Besides, Postfiltering is very sensitive

to the coverage ratio, since it will need to visit more irrelevant objects during the search with a

low coverage ratio. In contrast, our DIGRA gains stable performance across all coverage ranges.

Overall, DIGRA shows stable and superior query performance across various query ranges while

at the same time supporting updates.

Exp. 6: Impact of number of categories. We assess how DIGRA and competing methods

handle different numbers of attribute values in Redcaps by partitioning its continuous attributes

into 10,000, 5,000, 1,000, 500, or 100 buckets. Each dataset variant thus has 10,000, 5,000, 1,000, 500,

or 100 categories, with each bucket holding 100, 200, 1,000, 2,000, or 10,000 objects. As shown in

Fig. 17, all methods handle duplicate attributes well and are largely insensitive to the number of

categories.

Exp. 7: Impact of parameters and ablation study.We conduct experiments to evaluate the

impact of the parameters𝑚 and 𝑒 𝑓𝑐𝑜𝑛 on query performance, indexing time, and memory usage.

Additionally, we perform an ablation study on the proposed optimizations, such as 𝛼-approximate

coverage. Interested readers are referred to our technical report [1] due to space limitations.

7 Conclusions
In this paper, we introduce DIGRA, an effective index that achieves a superb balance among query

efficiency, update efficiency, indexing cost, and query result quality (measured by recall). Compared

to existing methods, DIGRA supports dynamic updates without compromising query efficiency or

increasing indexing space, making it as competitive as all current static methods. Additionally, it

can process insertions in milliseconds and deletions in microseconds.
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