
Effective Indexing for Approximate Constrained Shortest
Path Queries on Large Road Networks

Sibo Wang1 Xiaokui Xiao1 Yin Yang2 Wenqing Lin3

1Nanyang Technological University 2Hamad Bin Khalifa University 3Institute for Infocomm Research

{wang0759, xkxiao}@ntu.edu.sg yyang@qf.org.qa linw@i2r.a-star.edu.sg

ABSTRACT
In a constrained shortest path (CSP)query, each edge in the road
network is associated with both a length and a cost. Given an ori-
gin s, a destinationt, and a cost constraintθ, the goal is to find
the shortest path froms to t whose total cost does not exceedθ.
Because exact CSP is NP-hard, previous work mostly focuses on
approximate solutions. Even so, existing methods are stillpro-
hibitively expensive for large road networks. Two main reasons are
(i) that they fail to utilize the special properties of road networks
and (ii) that most of them process queries without indices; the few
existing indices consume large amounts of memory and yet have
limited effectiveness in reducing query costs.

Motivated by this, we proposeCOLA, the first practical solution
for approximate CSP processing on large road networks.COLA
exploits the facts that a road network can be effectively partitioned,
and that there exists a relatively small set of landmark vertices
that commonly appear in CSP results. Accordingly,COLA in-
dexes the vertices lying on partition boundaries, and applies an
on-the-fly algorithm calledα-Dijk for path computation within a
partition, which effectively prunes paths based on landmarks. Ex-
tensive experiments demonstrate that on continent-sized road net-
works, COLA answers an approximate CSP query in sub-second
time, whereas existing methods take hours. Interestingly,even
without an index, theα-Dijk algorithm inCOLAstill outperforms
previous solutions by more than an order of magnitude.

1. INTRODUCTION
Nowadays, route planning via online mapping/navigation ser-

vices has become an essential part of driving in many places.Most
popular online maps today, such as Google Maps [3], compute
routes based on a single criterion, which is usually either the total
route length or the total travel time. In practice, however,the user
often needs to consider multiple criteria when planning a route. Be-
sides travel distance and time, a common criterion is toll payment.
For example, many cities charge the road user a fee to use high-
ways (e.g., in Tokyo), bridges and undersea tunnels (e.g., in New
York City and Hong Kong); additionally, some densely populated
metropolitan areas impose congestion charges (e.g., in London and

Singapore). Another common consideration is safety. For instance,
in 2015, members of the New York City Council requested that
Google Maps reduces the number of left turns in its suggested
routes, since left turns lead to a higher rate of pedestrian crashes1.
Finally, the shortest path is not necessarily the fastest orthe most
pleasant, e.g., the user may rather prefer driving through auniver-
sity campus than on the highway. Currently, most online navigation
systems address the problem by returning multiple paths, allowing
the user to manually modify a path, and providing multiple options
on how the best route is determined.None of these solutions is
ideal since they do not take into consideration multiple criteria si-
multaneously.

Theconstrained shortest path (CSP)[19,24] addresses this prob-
lem by finding the best path based on one criterion with a constraint
on another criterion. For instance, the user may want to compute a
CSP that minimizes total travel time within a budget for tollpay-
ment. In an online navigation system, the constraint can be pre-
sented to the user in the form of a slider bar, which drastically sim-
plifies user-system interactions. We focus on single-constraint CSP,
because (i) tuning multiple parameters burdens the user, e.g., many
parameter combinations may lead to no feasible solution and(ii)
processing single-constraint CSP efficiently is already very chal-
lenging; for existing solutions, a single query may take hours on a
continent-sized road network. Hence, we focus on single-constraint
CSP and leave multiple-constraint CSP as future work.

Specifically, in CSP, each edge is assigned two attributes, which
are used in the optimization objective and constraint respectively.
Without loss of generality, we assume that these two attributes are
edge length and cost, respectively. Given an origins, a destination
t, and a cost constraintθ, CSP finds the path froms to t that min-
imizes its total length, while satisfying that its total cost does not
exceedθ. Besides online navigation systems, CSP also finds appli-
cations in railroad management, military aircraft management sys-
tems, telecommunications, etc. [29]. The CSP problem has been
proven to be NP-hard [13, 19]. Hence, the majority of existing
work (e.g., [19, 24, 31]) focuses on approximate solutions,which
guarantee that the resulting path length is no longer thanα times
of the optimal path length (whereα is a user specified approxi-
mation ratio), subject to the cost constraintθ. Although there exist
polynomial-time algorithms for approximate CSP (e.g. [19,24,31]),
as we show in the experiments, the current state-of-the-artsolutions
are still prohibitively expensive for large road networks.There are
two main reasons for their inefficiency. First, they aim at answer-
ing approximate CSPs on general graphs, rather than specifically
on road networks; consequently, they fail to utilize the latter’s spe-
cial properties. Second and more importantly, most of them process

1http://www.digitaltrends.com/cars/new-york-city-to-google-
reduce-the-number-of-left-turns-in-maps-navigation-directions/

queries without an index. The few known indices are all designed
for exact CSPs, and they consume large amounts of memory; fur-
thermore, none of them succeeds at reducing query cost to a prac-
tical level.

We thus propose a novel and practical solutionCOLAfor index-
based approximate CSP processing on large road networks.COLA
mainly exploits two important properties of the road network. First,
real road networks are often (roughly) planar, and, thus, can be ef-
fectively split into partitions, each of which contains only a rela-
tively small number of boundary vertices. Accordingly,COLApar-
titions the network, builds an overlay graph on the partitions, and
indexes a set of selected paths between pairs of boundary vertices.
Second, in practice there often exist a relatively small number of
landmark vertices [16] in the road network that commonly appear
in CSP results. Based on this property, we design an index-free
algorithmα-Dijk as a component ofCOLA for path computation
within a partition, which achieves effective pruning usinga land-
mark set. Extensive experiments using real continent-sized road
networks containing tens of millions of vertices show thatCOLA
answers an approximate CSP query within a second, whereas pre-
vious solutions need several hours. Further, even when an index
is not available (e.g., when the edge lengths or costs changefre-
quently), theα-Dijk module still outperforms existing methods by
over an order of magnitude.

2. BACKGROUND
In this section, we first provide formal definitions of the problem

and the terminology used in this paper in Section 2.1. Then, in
Section 2.2, we present the state-of-the-art solutions forexact and
approximate CSP queries, and point out their drawbacks thatrender
them inefficient for answering CSP queries. Other existing methods
are reviewed in Section 2.3.

2.1 Formal Definitions
Let G = (V,E) be a directed road network with a vertex setV

and an edge setE. Each edgee ∈ E is associated with alength
ℓ(e) ≥ 0 and acostc(e) ≥ 0. For a pathP = 〈e1, e2, · · · , ek〉
in G, the lengthandcostof P are defined asℓ(P) =

∑k

i=1 ℓ(ei)

andc(P) =
∑k

i=1 c(ei), respectively. Following previous work
[19, 24, 31], we assume that the length of each edge is an integer.
In practice this can be done by measuring the edge length in a suf-
ficiently small unit, e.g., foot or meter, if the edge length represents
travel distance. Similarly, we assume that the cost of each edge
is also an integer. We useℓmax (resp.cmax) to denote the maxi-
mum length (resp. cost) of an edge inG. Meanwhile, we assume
thatℓmax (resp.cmax) is non-zero; otherwise, the problem can be
trivially regarded as a conventional shortest path problem.

Given an origin vertexs ∈ V , a destination vertext ∈ V , and a
cost constraintθ, aconstrained shortest path (CSP)query asks for
the shortest pathP among all paths froms to t with costs no more
thanθ. If there exist multiple CSPs with the same length, we break
ties by the cost of the paths. The CSP problem has been proven
to be NP-hard, if bothℓmax andcmax can be arbitrarily large [13,
19]. On the other hand, if eitherℓmax or cmax is polynomial to
the number of vertices, there exist polynomial-time solutions for
CSP, e.g., [19, 21]. Nevertheless, as we review in Sections 2.2 and
2.3, these algorithms incur tremendous costs for large graphs, and,
thus, are far from practical. As such, recently much effort has been
devoted to solving approximate versions of the CSP problem.This
paper follows a popular definition calledα-CSP, defined as follows.

DEFINITION 1 (α-CSPQUERY). Given an origins, a des-
tination t, a cost constraintθ, and an approximation ratioα,

Table 1: List of notations.
Symbol Meaning
G = (V, E) Input graph
n,m Numbers of vertices and edges inG
ℓ(e), c(e) Length and cost of an edgee
ℓmax, cmax Maximum length and cost for any edge inG
α Approximation ratio inα-CSP
s, t Query origin and destination vertices
T A partitioning of graphG
Gs, Gt Subgraph inT containings andt, respectively
G◦ = (V ◦, E◦) Overlay graph ofG (refer to Section 3.1)

an α-CSP query returns a pathP , such thatc(P) ≤ θ, and
ℓ(P) ≤ α · ℓ(Popt), wherePopt is the optimal answer to the exact
CSP query with origins, destinationt, and cost constraintθ. �

EXAMPLE 1. Figure 1 illustrates an example of exact- andα-
CSP on a graph with 5 verticesv1, v2, · · · , v5. The length and cost
for each edge are also shown in the figure. For example, the edge
fromv1 tov2 has costc = 1 and lengthℓ = 2. Given origins = v1,
destinationt = v5, and cost constraintθ = 6, the CSP query
returns the pathPopt = 〈(v1, v3), (v3, v5)〉, since (i)c(Popt) =
6 ≤ θ and (ii) the lengthℓ(Popt) = 5 is the smallest among all
paths fromv1 tov5 with a cost no more thanθ. Meanwhile, forα =
1.2, a valid result for theα-CSP query with the same parameters
s = v1, t = v5 and θ = 6 is Pα = 〈(v1, v2), (v2, v5)〉, since
c(Pα) = 5 ≤ θ, andℓ(Pα) = 6 ≤ α · ℓ(Popt) = 6. �

v1 v3
l = 4
c = 3

v5
l = 1
c = 3

v2 v4
l = 2
c = 4

l =
 2

c =
 1

l = 1

c = 3

l = 4c = 4

l = 3c = 2

CSP (T = 6)

s

D-CSP (D ����T = 6)

t

Figure 1: Example of exact CSP andα-CSP

Two important concepts in solvingα-CSP aredominance rela-
tionshipandskyline. We define dominance forα-CSP as follows.

DEFINITION 2 (α-DOMINANCE). Let P1 and P2 be two
paths connecting the same origin and destination vertices.P1 α-
dominatesP2 iff c(P1) ≤ c(P2) andℓ(P1) ≤ α · ℓ(P2). �

For instance, consider pathsP1 = 〈(v1, v2), (v2, v5)〉 andP2 =
〈(v1, v3), (v3, v5)〉 in the above example. Whenα = 1.2, P1 α-
dominatesP2, since (i) the cost ofP1 is c(P1) = 5 ≤ c(P2) = 6,
and (ii) the length ofP1 is ℓ(P1) = 6 ≤ α · ℓ(P2) = 1.2× 5 = 6.

Based on the above definition, a set of pathsS is called askyline
set, iff no path in S is α-dominated by another in the same set
S. We say that a pathP is askyline pathif P is in a skyline set.
Note that if two pathsP1 andP2 have the same cost, it is possible
that theyα-dominate each other, in which case we put the path with
smaller length in a skyline set.For exact CSP, we define dominance
relationship and skyline in the same way, by simply fixingα = 1.
Table 1 summarizes common symbols throughout the paper.

2.2 State of the Art
We present the current state of the art for CSP processing. Addi-

tional literature review appears in Section 2.3.

Exact CSP without index. The state of the art index-free solu-
tion for exact CSP problem is the one proposed in [18], which we

call Sky-Dijkbecause it follows the general idea of Dijkstra’s algo-
rithm [10]. The main difference betweenSky-Dijkand Dijkstra’s
algorithm is that the former incrementally maintains a set of paths
at each vertex, rather than a single shortest path. Specifically, Sky-
Dijk maintains a label setL(v) for each vertexv, which contains
the current set of skyline paths from the origins to v, i.e., those not
dominated by another path inL(v). Similar to Dijkstra’s algorithm,
eachL(v) is initialized to empty and updated iteratively.

Meanwhile, akin to Dijkstra’s algorithm,Sky-Dijkmaintains a
heapH of paths originating froms, in ascending order of their
costs2. Initially, H contains only one trivial path with no edge,
which both starts and ends at the origin vertexs. Then, in each
iteration, Sky-Dijkpops the top pathP from H . Let v be the last
vertex inP . If v 6= t, i.e.,P has not reached the query destina-
tion, the algorithm enumerates each pathP ′ that can be obtained
by appending an edge(v, v′) at the end ofP , and checks whether
P ′ exceeds the cost limitθ or is dominated by any path inL(v′). If
so,P ′ is simply discarded; otherwise,Sky-DijkaddsP ′ to bothH
andL(v′), and updatesL(v′) to eliminate paths dominated byP ′.
The algorithm terminates whenH is empty, and returns the path in
L(t) with the minimum length, wheret is the destination vertex.

EXAMPLE 2. Consider again the example in Figure 1 with the
same exact CSP query with origins = v1, destinationt = v5, and
cost constraintθ = 6. Sky-Dijkinitializes the heapH with a trivial
pathP0 from v1 to v1 with no edge, and zero cost / length. Then,
it popsP0 from H , and extends it to obtain pathsP1 = 〈(v1, v2)〉
with costc1 = 1 and lengthℓ1 = 2, andP2 = 〈(v1, v3)〉 with
c2 = 3 andℓ2 = 4. The algorithm addsP1 andP2 to the label set
L(v2) andL(v3) respectively, and both of them toH .

Next, P1 is popped fromH , andSky-Dijkextends it to obtain
pathsP4 = 〈(v1, v2), (v2, v3)〉, P5 = 〈(v1, v2), (v2, v4)〉 and
P6 = 〈(v1, v2), (v2, v5)〉, which are added toL(v3), L(v4) and
L(v5) respectively. Note that nowL(v3) contains two pathsP2

(c2 = 3, ℓ2 = 4) andP4 (c2 = 4, ℓ2 = 3); neither dominates the
other. Meanwhile, note thatP6 does not need to be inserted toH , as
it has reached the destinationt = v5, and, thus, cannot be extended
further. After that,P2 is popped fromH ; extendingP2 generates
P7 = 〈(v1, v3), (v3, v5)〉, which is eventually returned as the CSP
result. The algorithm terminates untilH becomes empty, at which
time it inspectsL(v5), and returnsP7. �

The time complexity ofSky-DijkisO(ℓmaxmn · log(ℓmaxn)),
wherem (resp. n) is the number of edges (resp. vertices) in the
graph, andℓmax is the maximum edge length [18]. Clearly,Sky-
Dijk is a polynomial-time algorithm whenℓmax is polynomial to
n. However, on real road networks, the performance ofSky-Dijk
is very poor, since it does not optimize for such datasets at all.
As shown in [30] and also in our experiments,Sky-Dijk incurs
enormous costs for large graphs, and is clearly impractical.

α-CSP without index. The current state-of-the-art solution for
α-CSP is developed by Tsaggouris and Zaroliagis [31], dubbedas
CP-Dijk in the following. Specifically, given anα-CSP with origin
s, destinationt, cost constraintθ, and approximation ratioα, CP-
Dijk applies the same data structures and follows the same steps
asSky-Dijk, with a single modification: that each label setL(v)
maintains the set of paths that are notn

√
α-dominated (Definition 2)

by another path inL(v), wheren is the total number of vertices in
the input graphG. Becausen

√
α-dominance is a relaxed condition

of exact (i.e.,1-) dominance, this modification leads to faster query
processing. However, for a large graph,n

√
α is very close to1 even

2Note that, similar to the Dijkstra’s algorithm, it suffices to store in
H only the length, cost and the last two vertices for each path.For
ease of presentation we assumeH contains full paths.

for a largeα. Consequently, the performance improvement ofCP-
Dijk overSky-Dijkis often negligible, as shown in our experiments.

The time complexity ofCP-Dijk is O(κmn · log(κn)), where
κ = log(n · ℓmax/ℓmin)/(α − 1) [31], andℓmax, ℓmin are the
maximum and minimum non-zero values of an edge length, respec-
tively [31]. As explained before, in terms of practical performance,
CP-Dijk obtains only marginal improvement overSky-Dijk; never-
theless,CP-Dijk is at least no worse thanSky-Dijk. As discussed
in Section 2.3, other polynomial-time solutions forα-CSP can be
far more costly. The fact thatCP-Dijk is the state-of-the-art forα-
CSP processing reveals that previous research focuses mostly on
asymptotic complexity, not practical performance.

Exact CSP with index. The state-of-the-art for indexed CSP pro-
cessing isCSP-CH[30], which acceleratesSky-Dijkwith contrac-
tion hierarchies [15], an indexing technique that has been shown to
be effective for accelerating conventional shortest path processing
on road networks [32]. Similar to [15], in each iterationCSP-CH
removes a vertex from the graph, and substitutes it with new short-
cut edges for the remaining vertices. Each shortcut(u,w) created
during the removal of vertexv represents a path〈(u, v), (v, w)〉
that is not dominated by any other path fromu to w. After that,
CSP-CHanswers query with a bidirectionalSky-Dijksearch from
both the origins and the destinationt simultaneously, utilizing the
shortcuts to reduce the number of nodes to be traversed.

The problem ofCSP-CHis that unlike conventional shortest path
search, in CSP there can be numerous shortcuts (i.e., multiple sky-
line sets) for each removed vertex, leading to a prohibitively large
index size.CSP-CHuses heuristics to alleviate this problem, e.g.,
by adding only a set of selected shortcuts, and by keeping thevertex
in the graph instead of removing it. Such compromises, however,
dramatically decrease the effectiveness of the index. Consequently,
its query processing cost is still impractically high.

α-CSP with index. To our knowledge, we are not aware of any
indexed solution forα-CSP processing. In sum, none of the state-
of-the-art methods optimizes for road networks, applies indexing
effectively, or obtains acceptable query time for large networks.

2.3 Other Related Work
Joksch [21] first studies the CSP problem, and proposes a dy-

namic programming algorithm for exact CSP. Subsequently, Han-
dler and Zang [17] propose two methods for exact CSP process-
ing: one method formulates CSP as an integer linear programming
(ILP) problem, and solves it with a standard ILP solver. Thissame
methodology is used by Mehlhorn and Ziegelmann [25]. However,
as shown in [25], these ILP-based solutions scale poorly, and in-
cur tremendous processing costs on large road networks. Theother
solution in [17] reduces CSP to ak-shortest pathproblem, and re-
peatedly computes the next shortest path (in terms of total length)
until reaching one that satisfies the cost constraint. Afterwards,
Hansen [18] proposes an augmented Dijkstra’s algorithm [10] for
exact CSP queries and is shown in [28] to outperform thek-shortest
path solution. The state-of-the-art methods for exact CSP are de-
scribed in Section 2.2, for index-free and indexed processing, re-
spectively. Meanwhile, most recently, Sedeno et al. [27] propose
several pruning strategies to improve the efficiency ofk-shortest
path search, and is shown to outperform the existingk-shortest
pathsolutions. However, it does not compare with theSky-Dijkso-
lution. In our experiment, we include Sedeno et al.’s solution [27]
as one of our competitors.

Regardingα-CSP, Hansen [18] proposes the first solution,
which runs in polynomial time but has a high complexity:
O(m2 n2

α−1
log n

α−1
). Lorenz and Raz. [24] improve the complex-

v1 v3
l = 4
c = 3

v2
l = 2

c = 1

l = 1c = 3
v3 v5

l = 1
c = 3

(a)G1. (b)G2.

v5

v2 v4
l = 2
c = 4

l = 4c = 4

l = 3c = 2
v5v3

l = 1c = 3

l = 4c = 4
l = 1
c = 3

v2

(c) G3. (d)G◦.

Figure 2: A partition T = {G1, G2, G3} of G in Figure 1 and
the corresponding overlay graphG◦.

ity to O(nm · (log log ℓmax

ℓmin

+ 1
α−1

)). However, this solution is
orders of magnitude slower than an exact CSP algorithm basedon
k-shortest path, as shown in [23]. Later on, Tsaggouris et al. [31]
proposeCP-Dijk based on the conservative pruning technique, i.e.,
the current state-of-the-art forα-CSP as described in Section 2.2.

Delling et al. [9] study a related query, which returns the en-
tire set of skyline paths between two given vertices. Their solution
creates shortcuts similarly asCSP-CH[30], and can be adapted
to answer CSP queries. However, this method is not scalable to
large graphs, as shown in [12, 30]. In order to reach an acceptable
processing time, [9] proposes to modify the problem settingby re-
laxing the definition of dominance. However, with this relaxation,
the method can no longer be used to answer CSP orα-CSP queries.
Another related query type is to find the shortest path in terms of
a weighted sum of edge costs [11, 14]. These methods, however,
cannot be used to answer CSP orα-CSP queries.

Finally, we briefly review classic shortest path and distance
queries. One notable class of solutions [8, 20, 22] employ graph
partitioning, as in the proposed methodCOLA. The representative
is MLD [8], which combines partitioning and contraction hierar-
chy to improve query efficiency.Yu et al. [34] proposeCI-Rank,
which first identifies a number of star vertices, and then builds an
overlay graph on these star vertices. The proposed methodCOLA
differs fromCI-Rankin two major aspects. First, in terms of data
structure, the overlay graph inCOLAcorrespond to skyline paths,
rather than simple shortest paths as inCI-Rank. Second, in terms
of algorithm,COLAbuilds an additional index structure on top of
overlay graph, whereasCI-Rankprocesses the query directly us-
ing the overlay graph.Another important indexing technique is2-
hop labelling (2HL)[6]. The state-of-the-art2HL algorithms pre-
compute an order of vertices in the graph, and construct a2HL
index based on this order, e.g., [4, 7, 33]. None of these methods
applies to CSP orα-CSP. Hence, we omit further discussions on
classic shortest path processing for brevity, and we refer the reader
to a recent survey [5].

3. COLA FRAMEWORK
This section presents the general framework of our proposedso-

lution constrained labeling (COLA). The implementation of several
important components inCOLA is described in Section 4. Basi-
cally, COLApartitions the road network and constructs anoverlay
graphon top of the partitions. The index structure inCOLAis then
built on the overlay graph, whose size is much smaller than the
original graph, leading to much less query processing costs. In the
following, Section 3.1 describes the overlay graph; Section 3.2 ex-
plains the index structure ofCOLA; Section 3.3 elaborates on query
processing based on theCOLA index; Section 3.4 presents several
sophisticated optimizations that significantly reduce query costs.

3.1 Overlay Graph

Given an input graphG, a partitioning ofG consists of a set
T = {G1, G2, · · · , G|T |} of edge-disjoint subgraphs ofG, such
that the union of allGi (1 ≤ i ≤ |T |) equalsG. GivenT , we
say that a vertexv is aboundary vertex, if v appears in more than
one subgraphs inT . Graph partitioning is a well-studied problem,
andCOLAcould use any of the existing solutions, e.g., [8, 20, 22].
In our implementation, we use a state-of-the-art approach for road
networks by Delling et al. [8].

We formally define an overlay graph as follows.

DEFINITION 3 (OVERLAY GRAPH). Given an input graph
G, a partitioningT of G, and the query approximation ratioα3, a
graphG◦ = (V ◦, E◦) is an overlay graph ofG with respect toT ,
if it satisfies the following three conditions:

1. V ◦ consists of all boundary vertices with respect toT ;

2. For each edgee◦ ∈ E◦ that starts at vertexv and ends at
vertexv′ , there exists a pathP in G that goes fromv to v′,
such thatc(P) = c(e◦) andℓ(P) = ℓ(e◦);

3. For any pair of origin and destination verticess, t ∈ G◦, and
any pathP in G froms to t, there exists a pathP ◦ in G◦ that
goes froms to t thatα-dominatesP , i.e.,c(P ◦) ≤ c(P) and
ℓ(P ◦) ≤ α · ℓ(P).

�

Intuitively, an overlay graph compresses the input graph by(i)
including only the boundary vertices of the partitions and remov-
ing all other vertices, (ii) using edges to represent paths in G, and
(iii) reducing the number of edges by removing paths that areα-
dominated by others. Note that the above definition does not re-
quire the overlay graph to be minimal, i.e., for the same graph G
and partitioningT , there may be another possible overlay graph
with fewer edges. Hence, there can be different ways to buildan
overlay graph, and we explain one such algorithm later in Section
4.2. Besides, for any two verticesv andv′ in the overlay graphG◦,
there can be multiple edges fromv to v′, when there are multiple
paths fromv to v′ in G.

EXAMPLE 3. Consider the input graphG in Figure 1. Figures
2(a), (b), and (c) show three subgraphsG1,G2 andG3 of G respec-
tively. Clearly,T = {G1, G2, G3} is a partitioning ofG, since (i)
the set of edges of each subgraph is disjoint with the other sub-
graphs, and (ii) the union of edges inG1, G2 andG3 constitutes
the set of edges ofG. Meanwhile,v2, v3, andv5 are the boundary
vertices w.r.t.T , since they appear in more than one subgraphs.

Assume thatα = 1.1, Figure 2(d) shows an overlay graphG◦

w.r.t. T . The set of vertices ofG◦ is V ◦ = {v2, v3, v5}, which
consists of the boundary vertices ofT . Observe that there is exactly
one path fromv2 to v3, i.e. 〈(v2, v3)〉; hence,G◦ contains an edge
e◦1 = (v2, v3) with lengthℓ(e◦1) = 1 and costc(e◦1) = 3. Similarly,
there is exactly one path fromv3 to v5; thus,G◦ also includes an
edgee◦2 = (v3, v5) with ℓ(e◦2) = 1 andc(e◦2) = 3. Fromv2 to v5
there are three paths:P1 = 〈(v2, v3), (v3, v5)〉, P2 = 〈(v2, v5)〉,
andP3 = 〈(v2, v4), (v4, v5)〉. Note thatP2 α-dominatesP3, and
the two edges in pathP1 already exist inG◦. Hence,G◦ only
includes one edgee◦3 from v2 to v5 with lengthℓ(e◦3) = ℓ(P2) = 4
and costc(e◦3) = c(P2) = 4. �

Since the overlay graph can be pre-computed and has a smaller
size than the original graph, it can be used as a low-cost index to
accelerateα-CSP processing, as follows. Given anα-CSP query
q on G with an origins, a destinationt, and a cost thresholdθ,
we first identify the subgraphsGs andGt in T that contains and
t, respectively. Then, we construct graphGq (which we call an
3Note that the overlay graph and theCOLA index both require the
knowledge ofα, which we consider as a system parameter. The
choice ofα is discussed further in Section 6.4.

extended graph) by mergingGs, Gt andG◦, i.e.,Gq = (Vs∪Vt ∪
V ◦, Es ∪Et ∪E◦), whereVs (resp.Es) andVt (resp.Et) are the
vertex (resp. edge) sets ofGs andGt, respectively. After that, we
run anα-CSP algorithm onGq; its result corresponds to a result
for the originalα-CSP query, according to the following lemma4.

LEMMA 1. LetPopt be a result of a CSP query on graphG with
origin s, destinationt, and cost constraintθ. Meanwhile, letGs =
(Vs, Es), Gt = (Vt, Et) be the subgraphs in a partitioningT that
containss andt, respectively. Then, any resultP of anα-CSP with
parameterss, t, α on the extended graphGq = (Vs ∪ Vt ∪ V ◦,
Es ∪Et ∪E◦) satisfiesc(P) ≤ θ andℓ(P) ≤ α · ℓ(Popt). �

To translate anα-CSP onGq to anα-CSP onG, we “unfold”
each edge inE◦ into a path inG, which is done according to Con-
dition2 in Definition 3. BecauseGq can be viewed as a compressed
version ofG with significantly fewer vertices and edges, searching
for anα-CSP onGq is expected to be faster than doing so onG.
On the other hand, the speedup using an overlay graph is limited,
since the query processing algorithm is the same, albeit on asmaller
graph. Next we introduce a much more powerful index structure.

3.2 Constrained Labeling Index
The mainCOLAindex is constructed on the overlay graphG◦ =

(V ◦, E◦) described in the previous subsection. For each vertex
v◦ ∈ G◦, the index contains two label sets forv◦: an in-label set
Bin(v

◦) and anout-label setBout(v
◦). Each entry inBout(v

◦)
corresponds to a path5 from v◦ to another vertex inG◦. Symmetri-
cally, each label inBin(v) corresponds to a path from another ver-
tex inG◦ tov◦. The paths in the label sets are carefully chosen such
that given any pair of origin and destination verticess◦, t◦ ∈ G◦,
and a cost constraintθ, we can construct theα-CSP froms◦ to t◦

subject toθ using only the paths inBout(s
◦) andBin(t

◦). In other
words, with theCOLA index we do not need to search for theα-
CSP result; instead, we simply combine pre-computed paths in the
label sets to form a result.

Formally, we define theCOLA index as follows.

DEFINITION 4 (COLA INDEX). Given an overlay graphG◦,
a COLA index contains label setsBin(v

◦) andBout(v
◦) for each

vertexv◦ ∈ G◦ satisfying the following conditions:

1. Each entry inBin(v
◦) corresponds to a path from another

vertex inG◦ to v◦;

2. Each entry inBout(v
◦) corresponds to a path fromv◦ to an-

other vertex inG◦;

3. For any pathP between any two verticess◦, t◦ ∈ V ◦ (P
may contain vertices inV \ V ◦), the COLA index contains
both an out-label inBout(s

◦) with costco and lengthℓo and
an in-label inBin(t

◦) with costci and lengthℓi such that
co + ci ≤ c(P) andℓo + ℓi ≤ α · ℓ(P).

�

Condition3 in the above definition indicates that for any path
P connecting two verticess◦ andt◦ in the overlay graph, we can
derive another pathP ′ by concatenating two pathsPo andPi from
the out-label set ofs◦ and in-label set oft◦ respectively, such that
P ′ α-dominatesP . Therefore, according to the definition ofα-
CSP (Definition 1) andα-dominance (Definition 2), we can obtain
anα-CSP result betweens◦ andt◦ by joining the paths from their
label sets, without searching for the result from scratch.
4We include all proofs in Appendix.
5Note that, similar toSky-DijkandCP-Dijk, it suffices to store the
important path parameters such as its length, cost and last two ver-
tices, instead of the entire path. These details are clarified in Sec-
tion 5.2; for now, we assume that each entry in a label set is a path
for simplicity.

EXAMPLE 4. Consider the overlay graphG◦ in Example 3 with
α = 1.1. Let P ◦

1 = 〈(v2, v3)〉 , P ◦
2 = 〈(v3, v5)〉, andP ◦

3 =
〈(v2, v5)〉. LetP ′

1, P ′
2, andP ′

3 be three trivial paths that go fromv2
to v2, v3 to v3, andv5 to v5, with zero cost / length, respectively.

ThenBout(v2) = {P ◦
1 , P

′
1}, Bin(v2) = {P ′

1}, Bout(v3) =
{P ′

2}, Bin(v3) = {P ′
2}, Bout(v5) = {P ′

3}, andBin(v5) =
{P ◦

2 , P
◦
3 , P

′
3} constitute an instanceL of COLA index. To ex-

plain, clearly,L satisfies Conditions 1 and 2 in Definition 4. It
remains to verify thatL satisfies Condition 3. Note that in the
input graphG, there are five paths concerning nodes inG◦, i.e.,
P1 = 〈(v2, v4), (v4, v5)〉, P2 = 〈(v2, v3)〉, P3 = 〈(v3, v5)〉,
P4 = 〈(v2, v5)〉, andP5 = 〈(v2, v3), (v3, v5)〉. Consider the first
pathP1 = 〈(v2, v4), (v4, v5)〉 with costc1 = 6 andℓ1 = 5. P ◦

1 in
Bout(v2) andP ◦

2 in Bin(v5) satisfy thatc(P ◦
1) + c(P ◦

2) ≤ c(P1)
andℓ(P ◦

1) + ℓ(P ◦
2) ≤ α · ℓ(P1). Similarly, we can verify thatL

also fulfills Condition 3 for the other four paths. �

One may wonder why we need both an in-label set and an out-
label set, instead of just one of them. For example, given a pair
of origin and destination verticess◦ and t◦, if the out-label set
Bout(s

◦) of s◦ contains a path that ends att◦ and satisfies the
cost constraint, we could simply return this path as theα-CSP re-
sult, without checking the in-labels oft◦. The problem with having
only out- (or in-) labels is that we must store for each vertexthe
complete set of labels containing skyline paths to (or from)every
other vertex inG◦, leading to a prohibitively large index size. In
contrast, by using both in-labels and out-labels, each label set only
contains path to (or from) a selected subset of vertices, leading to
a significantly reduced index size. This is akin to database normal-
ization, where storing two separate base tables consumes less space
than their join results.

3.3 Query Processing
This subsection clarifies the processing of anα-CSP query with

a pair of origin and destination verticess, t ∈ G and a cost con-
straintθ, using the overlay graph and theCOLAindex described in
previous subsections. Note that if boths andt belong to the overlay
graphG◦, we can simply joinBout(s) andBin(t), and select the
α-CSP result by concatenating a path fromBout(s) and another
from Bin(t), according to Condition3 in Definition 4. However,
eithers or t may not appear in the overlay graph, where theα-CSP
queries withs andt cannot be answered purely by theCOLAindex
which is built on the overlay graph. Note that we could build the
COLA index on the original graphG instead of the overly graph
G◦. Nevertheless, doing so may lead to a prohibitively large index
size, sinceG is far larger thanG◦.

The main idea ofCOLA query processing is to buildBout(s)
andBin(t) during query time, using theCOLA index as well as
subgraphsGs, Gt ∈ T containings andt, respectively. In partic-
ular,Bout(s) andBin(t) must satisfy that theα-CSP result can be
obtained by concatenating a path fromBout(s) and another from
Bin(t). Formally, for any pathP betweens andt, there must exist
pathsPo andPi in Bout(s) andBin(t) respectively, such that the
concatenation ofPo andPi α-dominatesP . Given this property,
theα-CSP result can be obtained by joiningBout(s) andBin(t)
similarly as the case whens andt are boundary vertices.

The main challenge thus lies in the computation ofBout(s) and
Bin(t). We first focus on the former, initialized to empty. LetGs ∈
T be the sub-graph containings. We perform a Dijkstra-like search
from vertexs to every boundary vertex ofGs. This can be done,
for example, using a slightly modified version (i.e., with multiple
destinations) of theCP-Dijk algorithm described in Section 2.2. In
our implementation, we use a novel algorithmα-Dijk, detailed in
Section 4, which is significantly more efficient thanCP-Dijk. After

Algorithm 1: COLA

input : s, t, θ, α, G, G◦, Bout(s), andBin(t)
output: A path for theα-CSP query with the origins, the destination

t, and cost thresholdθ onG

1 Initialize bothBout(s) andBin(t) to empty;
2 Perform a Dijkstra search froms within its partitionGs to obtain the

set of skyline pathsL(vo) from s to each of the boundary vertexvo in
Gs;

3 for each boundary vertexvo ∈ Gs ∩G◦ do
4 JoinL(vo) andBout(vo); / / optimized in Section 3.4
5 for each joined pathP froms to wo ∈ G◦ do
6 if c(P) > θ or P is α-dominated by a path inBout(s) to

wo then
7 DiscardP ;

8 else
9 Add P to Bout(s);

10 Delete all paths inBout(s) from s to wo that are
α-dominated byP ;

11 ComputeBin(t) similarly as Lines2-9 (see Section 3.3);
12 JoinBout(s) andBin(t); / / optimized in Section 3.4
13 return theα-SCPs from the above join result;

we finish the Dijkstra search, we extract the set of skyline paths
(c.f. Section 2.1)L(v◦) for each boundary vertexv◦ ∈ Gs ∩ G◦.
Then, we joinL(v◦) with Bout(v

◦) and add the results toBout(s).
Specifically, for each pathP1 in L(v◦) from s to v◦, and each path
P2 in Bout(v

◦) from v◦ to another boundary vertex (say,w◦ ∈
G◦), we concatenateP1 andP2 into a pathP from s to w◦, and
insertP to Bout(s) if the latter does not contain a path thatα-
dominatesP . After that, we purge fromBout(s) all paths froms
to w◦ that areα-dominated byP . The computation forBin(t) is
symmetric and omitted for brevity. Algorithm 1 summarizes the
COLAquery processing algorithm.

EXAMPLE 5. Consider the overlay graph in Example 3, and the
COLA index L in Example 4 withα = 1.1. Given anα-CSP
query fromv1 to v5 with cost thresholdθ = 7, COLAfirst checks
whetherv1 and v5 are boundary vertices. Sincev5 is a bound-
ary vertex, the method directly obtainsBin(v5) = {P ◦

2 , P
◦
3 , P

′
3}.

On the other hand, sincev1 is not a boundary vertex, its out-label
setBout(v1) needs to be computed on the fly. To do this,COLA
initiates a Dijkstra-like search fromv1, and computes the set of
skyline paths fromv1 to the boundary nodes ofv1’s subgraph. In
particular, it retrieves the skyline set fromv1 to v2, which con-
tains onlyP1 = 〈(v1, v2)〉. Then, it joins the skyline set with
Bout(v2), and adds the joined paths intoBout(v1) if they are
not α-dominated by any path inBout(v1). After that, we have
Bout(v1) = {P1, P1 · P ◦

1 }, whereP1 · P ◦
1 denotes the concatena-

tion of P1 andP ◦
1 .

Similarly, COLA retrieves the skyline set fromv1 to v3, and
joins paths in the skyline set withBout(v3). These paths are
P2 = 〈(v1, v3)〉 andP3 = 〈(v1, v2), (v2, v3)〉. Note thatP3 is
identical toP1 · P ◦

1 . Hence,P3 is not added toBout(v1), which
ends up withBout(v1) = {P1, P1 · P ◦

1 , P2}. By joiningBout(v1)
andBin(v5), COLAretrieves a skyline set for all paths fromv1 to
v5. Finally, it inspects the results, unfolds edges inG◦ whenever
necessary, and returns pathP = 〈(v1, v2), (v2, v3), (v3, v5)〉. �

The query processing algorithm described so far contains several
nested-loop join operations, which can be rather expensivefor large
label / skyline sets. Next we present effective optimizations that
reduce the cost of such joins.

3.4 Optimizations

Algorithm 2: LabelJoin

input : θ, α, Bout(s), andBin(t)
output: An α-CSPP ∗ with a cost not larger thanθ from s to t

1 Sort paths inBout(s) firstly in ascending order of end vertex ID, and
secondly in ascending order of cost (which is also descending order of
length);

2 Sort paths inBin(t) firstly in ascending order of end vertex ID, and
secondly in ascending order of length (which is also descending order
of cost);

3 Initialize α-CSP resultP ∗ to empty;
4 repeat
5 Scan bothBout(s) andBin(t) simultaneously, until reaching a

matching pairPo ∈ Bout(s) andPi ∈ Bout(t);
6 while Po matchesPi, i.e.,Po ends at the origin vertex ofPi do
7 if c(Po) + c(Pi) > θ then
8 SetPi to the next entry inBout(s);

9 else
10 UpdateP ∗ to the concatenation ofPo andPi if the

combination ofPo andPi has length smaller thanP ∗;
11 SetPo to next entry inBin(t);

12 until reaching the end of eitherBout(s) or Bin(t);
13 return P ∗;

First we optimize the join betweenBout(s) andBin(t), which
produces theα-CSP result based on the following observation.

OBSERVATION 1. Let Po and Pi be two arbitrary paths in
Bout(s) andBin(t) respectively that can be joined, i.e.,Po ends at
the starting vertex ofPi. We have the following:

1. If c(Po)+c(Pi) > θ, then joiningPo (resp.Pi) with any path
in Bin(t) (resp.Bout(s)) with cost higher thanPi (resp.Po)
cannot lead to anα-CSP result;

2. If c(Po) + c(Pi) ≤ θ , then joiningPo (resp. Pi) with any
path inBin(t) (resp. Bout(s)) with length longer thanPi

(resp.Po) can be discarded.
�

Based on the above observation, we accelerate the join be-
tweenBout(s) andBin(t) through a careful ordering of the la-
bels. Specifically,COLAsorts paths inBout(s) by the IDs of their
end vertices, breaking ties by total cost (in ascending order). Note
thatBout(s) is a skyline set, meaning that paths with the same end
vertex are also automatically sorted in descending order oftheir
lengths (otherwise one path would dominate another). Similarly,
COLA sorts paths inBin(t) firstly by the IDs of their origin ver-
tices, and secondly in ascending of their lengths / descending or-
der of their costs. With such ordering, we propose a novel algo-
rithm LabelJoin(as shown in Algorithm 2), which joinsBout(s)
andBin(t) with a linear scan of each set.

LEMMA 2. Algorithm 2 correctly computes theα-CSP result
fromBout(s) andBin(t) in linear time. �

EXAMPLE 6. Consider anα-CSP query froms to t with α =
1.1 and cost thresholdθ = 13. Assume thatBout(s) = {P1, P2}
where bothP1 andP2 end atw, with c(P1) = 4, ℓ(P1) = 7,
c(P2) = 7, andℓ(P2) = 4; Bin(t) = {P3, P4, P5} where all
three paths start atw, with c(P3) = 7, ℓ(P3) = 5, c(P4) = 6,
ℓ(P4) = 6, c(P5) = 5, andℓ(P5) = 7. Clearly,Bout(s) (resp.
Bin(t)) is sorted in ascending (resp. descending) order of cost.

By Algorithm 2, we first checkP1 andP3, to see if the con-
catenated pathP ′ = P1 · P3 satisfies the cost constraint. As
c(P ′) = 11 ≤ θ = 13 andP ∗ is empty, the found shortest path
under cost constraint is hence updated toP ∗ = P ′. Afterwards,
the LabelJoinalgorithm proceeds to the next pathP2 in Bout(s),
and concatenate it withP3. Here,P1 is not further concatenated

with P4 andP5 due to Observation 1.2, i.e., concatenatingP1 with
P4 or P5 produces a path with a larger length thanP ′.

Consider the concatenated pathP ′
1 = P2 ·P3. Note that the cost

of P ′
1 exceeds the cost threshold, and Algorithm 2 proceeds to the

next path, i.e.P4, in Bin(t). ConsiderP ′
2 = P2 · P4. The cost of

P ′
2 is 13, which satisfies the cost constraint, and the length ofP ′

2 is
10, smaller thanP ∗. HenceP ∗ is updated toP ′

2. Since there is no
more path inBout(s), theLabelJoinalgorithm stops checking the
labels and returnsP ∗ as the result. �

Next, we focus on the join between a skyline setL(v◦) and a
label setBout(v

◦) in the COLA index (Line 4 of Algorithm 1).
The case for joiningL(v◦) with Bin(v

◦) is symmetric and omitted
for brevity. The basic idea for the optimization is not to compute
the complete join results, but only those results that can possibly
lead to anα-CSP result. Specifically, we avoid generating certain
join results based on the following observation.

OBSERVATION 2. LetP be a path froms to w◦ from the join
result ofL(v◦) andBout(v

◦). P cannot possibly lead to anα-CSP
result, if any of the following is true.

1. w◦ cannot possibly reacht on the input graphG;
2. The minimum cost for any path fromw◦ to t exceedsθ−c(P);
3. There exists a pathP ′ from s to t satisfying the cost con-

straint, such that the minimum length of any path fromw◦ to
t exceedsℓ(P ′)/α− ℓ(P).

�

According to the above observation, before performing any join
operation, we first select a set of end verticesW for the join results
that can possibly lead to anα-CSP result, which is incrementally
pruned using Observation 2. Then, we filter theCOLA index, and
use only the labels that reach a vertex inW . Algorithm 3 shows
the algorithm for computingW . Filtering theCOLA index before
joining it with the skyline sets can be understood as using a semi-
join to improve join performance in database systems. Note that the
COLA index is constructed before we know the query parameters,
hence, it usually contains a large number of labels not needed for
answering the query at hand.

Algorithm 3 shows the pseudo-code for computingW . W is
initialized with all boundary vertices reachable from boths andt.
Then, we prune those vertices that cannot lead to a path froms
to t within cost thresholdθ. After that, the algorithm computes an
upper bound for the length of a path froms to t, and uses it to prune
more vertices inW based on the third condition in Observation 2.

4. α-DIJK
Recall that our query processing involves computing the skyline

paths to (resp. from) the boundary vertex from the origin vertex s
(resp. to the destinationt). In this section, we present an efficient
algorithmα-Dijk to accelerate this process. Apart from this,α-Dijk
has three other main uses: (i) for intra-partition search during query
processing inCOLA, (ii) for building theCOLA index, and (iii) as
a standalone index-free solution forα-CSP.

Similar toCP-Dijk (refer to Section 2.2),α-Dijk is based onSky-
Dijk with enhanced pruning based on the relaxedα-dominance def-
inition. On the other hand, the pruning strategy ofα-Dijk is rad-
ically different from that inCP-Dijk. The intuition is as follows.
Imagine that we have a total “budget” for pruning along a path; the
higher the budget allocated to a vertex, the stronger pruning power
it is allowed to apply to reduce the size of its set of associated paths.
CP-Dijk simply distributes this budget equally to each vertex on the
path. Since there can be a large number of vertices on a path, each
of them only receives little pruning power, leading to ineffective
pruning everywhere. In contrast,α-Dijk concentrates the pruning

Algorithm 3: PruneLabel
input : s, t, θ, α, L, Bout, andBin

output: Bout andBin with labels filtered

1 Initialize vertex setW with all boundary vertices reachable from both
s andt, according toBout(s) andBin(t); / / Pruning condition 1

2 for each vertexw in W do
3 for each vertexvo in Gs do
4 Compute the minimum costc1 from s to vo in L(vo);
5 Compute the minimum costc2 from vo to w in Bout(vo);
6 Setcs(w) = c1 + c2;

7 Computect(w) similarly as Lines3-6;
8 if cs(w) + ct(w) > θ then
9 Removew from W ; / / Pruning condition 2

10 Initialize ℓmax to −∞;
11 for each vertexw in W do
12 for each boundary vertexvo in Gs do
13 Compute the max lengthℓ1max from s to vo in L(vo), and

the max lengthℓ2max from vo from w in Bout(vo);
14 Setℓsmax(w) = ℓ1max + ℓ2max;

15 Computeℓtmax(w) similarly as Lines12-14;
16 Updateℓmax if ℓsmax(w) + ℓtmax(w) > ℓmax;

17 for each vertexw in W do
18 Compute minimum lengthsℓsmin(w) andℓtmin(w) similarly as

Lines12-14;
19 if ℓsmin(w) + ℓtmin(w) > ℓmax then
20 Removew from W ; / / Pruning condition 3

21 Filter Bout (resp.Bin) by removing paths that do not end (resp.
originate) at a vertex inW ;

22 return Bout andBin;

power to vertices that are associated with a large number of paths,
and does not allocate pruning power at all to vertices with relatively
few paths. In a real road network, there are usually a small number
of landmark vertices that appear frequently in CSPs, which tend to
accumulate a large number of paths. As a result, concentrating the
pruning power to such vertices leads to effective reductionof the
total number of paths to be examined, and thus, accelerates query
processing.

Formally, α-Dijk applies αi-dominance to prune entries in
L(vi), where the values ofαi ∈ [1, α] depends onvi. In other
words, the amount of pruning applied in eachL(vi) is adaptive,
rather than fixed as inCP-Dijk. LetPopt be the CSP from an origin
vertexs to a destination vertext under a cost thresholdθ. Let k
be the number of edges inPopt, ℓi (i ∈ [1, k]) be the length of the
i-th edge inPopt, andvj be the vertex that thei-th edge points to.
By adoptingαi-dominance into the construction ofL(vi), α-Dijk
always returns a pathP from s to t, such thatc(P) ≤ θ and

ℓ(P) ≤ ℓ1

k
∏

i=1

αi + ℓ2

k
∏

i=2

αi + ℓ3

k
∏

i=3

αi + . . .+ ℓk

k
∏

i=k

αi

=

k
∑

j=1

(

ℓj ·
k
∏

i=j

αi

)

.

Therefore,P can be anα-CSP if eachαj is carefully selected to
ensure that

k
∑

j=1

(

ℓj ·
k
∏

i=j

αi

)

≤
k
∑

j=1

(ℓj · α). (1)

A straightforward approach to enforce Inequality (1) is to set
αi = α

1

n (as in the case ofCP-Dijk), but it leads to ineffective
pruning in eachL(vi), as we discuss in Section 2.2. One may won-
der whether we can apply pruning everywhere, i.e., maximizing the

punning power. The following example shows that pruning every-
where may cause problems.

EXAMPLE 7. Given the graphG in Figure 1, consider anα-
CSP query with originv1, destinationv5, cost constraintθ = 7,
andα = 1.35. Assume thatα-dominance is used to do the pruning
during the traversal.

Similar toSky-Dijk, it first adds pathP1 = {(v1, v2} (with c1 =
1, ℓ1 = 2) to L(v2), P2 = {(v1, v3)} (with c2 = 4, ℓ2 = 3)
to L(v3), and then pushes these two paths into heapH . NextP1

is popped fromH , andP3 = {(v1, v2), (v2, v3)} ((with c3 = 4,
ℓ3 = 3)) , P4 = {(v1, v2), (v2, v4)} (with c4 = 5, ℓ4 = 4),
P5 = {(v1, v2), (v2, v5)} (with c5 = 5, ℓ5 = 6) are extended
from P1. As c2 = 3 ≤ c3 = 4 andℓ2 = 4 ≤ α · ℓ3 = 1.35 × 3,
P3 isα-dominated byP2 that is stored inL(v3). Then by applying
the greedy pruning strategy,P4 is omitted and is not added intoH .
P4 andP5 are added intoL(v4) andL(v5), respectively, and are
pushed intoH .

Next, P2 has the minimum cost inH , and is popped fromH .
P6 = {(v1, v3), (v3, v5)} (with c6 = 6 andℓ6 = 5) is then ex-
tended fromP2. Meanwhile, asc5 = 5 ≤ c6 and ℓ5 = 6 ≤
α · ℓ6 = 1.35 · 5, P6 can beα-dominated byP5 stored inL(v5),
andP6 is discarded.

When the traversal finishes,L(v5) ends up with onlyP5 and
P5 satisfies the cost constraint, so it returnsP5 as the query re-
sult. However, the answer for the exact CSP query is pathP7 =
{(v1, v2), (v2, v3), (v3, v5)}, with c7 = 7 andℓ7 = 4. Note that
ℓ5 = 6 > α · ℓ7 = 1.35 × 4, which meansP7 is notα-dominated
by P5, andP5 is not a validα-CSP query answer. �

In this paper, we propose to setαi = 1 for some verticesvi but
αj > α

1

n for the othersvj . That is, we give up pruning in some
entry lists, in exchange for more effective optimization inthe other
entry lists. Intuitively, this allows us to focus our pruning effort
on the entry lists that are important for the givenα-CSP query to
achieve higher efficiency. To implement this idea, however,we
have to address two crucial issues. First, on which entry listsL(vi)

should we haveαi > α
1

n ? Second, given thatℓ1, ℓ2, . . . , ℓk are
unknown in advance, how can we appropriately selectαi without
invalidating Equation (1)? In the following, we clarify these issues
by elaborating the details of ourα-Dijk algorithm. Algorithm 4
shows the pseudo-code ofα-Dijk. Given anα-CSP query with an
origin vertexs, a destination vertext, and a cost thresholdθ,α-Dijk
first invokes the vanilla Dijkstra’s algorithm to compute, for each
vertexv, the minimum-length pathPℓ(v) and the minimum-cost
path, i.e., the path with the minimum cost (ties broken by smaller
length),Pc(v) from s to v (Line 1). Then it records the length of
Pℓ(v) andPc(v) asℓ⊥(v) andℓ⊤(v) (Line 2), respectively. Note
that ℓ⊥(v) and ℓ⊤(v) are lower- and upper- bounds on the total
path length, respectively.To explain whyℓ⊤(v) is an upper-bound,
consider a pathP ′ that has length larger thanℓ⊤(v). Clearly,P ′

can beα-dominated byPc(v). Therefore, we can keep onlyPc(v)
and discard all paths with length larger thanPc(v), meaning that
its lengthℓ⊤(v) is the upper bound for total path length.

Next, α-Dijk creates a min-heapH of skyline paths sorted on
path costs similarly as inSky-DijkandCP-Dijk, except that inα-
Dijk each heap entryρ = 〈P, τ 〉 contains both a pathP and an
additionalpruning surrogateτ ∈ [ℓ/α, ℓ] that facilitates adaptive
allocation of the “pruning budget” as mentioned earlier6. The heap

6To conserve memory, in our implementation instead of a full path
P each entry only stores its lengthℓ, costc, last vertexv and the
vertexvpred beforev. The full path can be reconstructed by using
v andvpred. Details can be found in Section 5.2.

Algorithm 4: α-Dijk
input : An α-CSP query onG with an origins, a destinationt, and a

cost thresholdθ
output: An answerP to theα-CSP query

1 Calculate the minimum-length pathPℓ(v) and minimum-cost path
Pc(v) from s to each vertexv;

2 Let ℓ⊥(v) andℓ⊤(v) be the length ofPℓ(v) Pc(v), respectively;
3 Creates a min-heapH with entries in the form〈P, τ〉, sorted in

ascending order of path costs, breaking ties with path lengths;
4 Create an entry listL(v) for each vertexv in G;
5 Insert an entry〈P = 〈s〉, τ = 0〉 into H;
6 while H is not emptydo
7 Pop the top entryρ = 〈P, τ〉 in H;
8 Let 〈P ′, τ ′〉 be the entry inL(v) with the largest cost;
9 if τ ′ ≤ τ then

10 continue; / / ρ is pruned

11 Insertρ into L(v);

12 if v 6= s and|L(v)| > logα
ℓ⊤(v)

ℓ⊥(v)
then

13 Modify ρ to setτ = max{ℓ/α, ℓ⊥(v)};

14 for each outgoing edgee = (v, v′) of v do
15 Construct pathPnew by extendingP with e;
16 if c+ c(e) ≤ θ then
17 Push〈Pnew , τ + τ(e)〉 into H;

18 return the length-shortest path inL(t);

H is initialized with a single entry that contains a trivial path that
contains only one vertexs, and a pruning surrogate with value 0
(Line 5). In addition,α-Dijk initializes an listL(v) of heap entries
for each vertexv (Line 4).

After that,α-Dijk iteratively pops the top entryρ = 〈P, τ 〉 from
H and processes it as follows. Letv be the last vertex inP . α-
Dijk first examinesL(v), and retrieves the entryρ′ = 〈P ′, τ ′〉 in
L(v) with the largest path cost (Line 8). The algorithm guarantees
that the cost ofP ′ is smaller than that ofP , sinceH is sorted in
ascending order of path costs. Then,α-Dijk compares the pruning
surrogatesτ andτ ′ of the two entries, and prunesρ iff. τ ′ ≤ τ
(Lines 9-10). Letl(P) be the total length ofP and l(P ′) be the
length ofP ′, we have:

ℓ(P ′) ≤ α · τ ′ ≤ α · τ ≤ α · ℓ(P),

which means thatP ′ α-dominatesP (note that the former also has
a lower cost explained above). One may wonder why we prune
based on surrogates rather than the path lengths. The reasonis that
the surrogatesτ andτ ′ control the amount of pruning at vertexv.
To see this, if we setτ ′ = ℓ′/α andτ = ℓ, thenP ′ can pruneP
whenever the formerα-dominates the latter, which indicates that
we use the maximum pruning power atv. Conversely, whenτ ′ >
ℓ′/α or τ < ℓ, pruning atv is not performed with full power,
i.e., it is possible thatP is not pruned even ifP ′ α-dominatesP .
Note thatpruning with full power everywhere leads to incorrect
results, as shown in Example 7. Meanwhile,pruning with the same
power everywhere is inefficient, as explained at the beginning of
this subsection. The use of surrogates enablesadaptive pruning,
the key idea ofα-Dijk.

It remains to clarify howα-Dijk computes the surrogate values.
This is done in Lines 12-13. In particular, ifρ passes pruning, it
is inserted intoL(v). At this point, the algorithm adjusts its sur-
rogateτ based on the following heuristic: if the number of entries

|L(v)| > logα
ℓ⊤(v)

ℓ⊥(v)
, thenα-Dijk setsτ = max{ℓ/α, ℓ⊥(v)},

which grantsρ the maximum pruning power (Line 13). Otherwise,
α-Dijk setsτ = ℓ, minimizing the pruning capability ofρ. To ex-

plain, observe thatlogα
ℓ⊤(v)

ℓ⊥(v)
is an upper bound of|L(v)| when we

applyα-dominance in the construction ofL(v). Intuitively, if the
size of the currentL(v) exceeds this upper bound, then applying
aggressive pruning inL(v) is likely to reduce|L(v)| and help im-

prove query efficiency. On the other hand, if|L(v)| ≤ logα
ℓ⊤(v)

ℓ⊥(v)
,

then pruning entries inL(v) tends to be ineffective, in which case
it is more preferable to omit pruning inL(v) in order to enable
aggressive pruning at other vertices.

After that, for an entry that is not pruned, the algorithm continues
to extend the corresponding pathP , by adding one more edgee =
(v, v′) (Lines 14-15). If the resulting pathPnew satisfies the cost
constraint,α-Dijk creates a new entry and inserts it intoH . The
surrogate value forPnew is computed by addingτ and theedge
surrogate valueτ (e) (Line 17), obtained as follows. If edgee is an
original edge in the input graph, thenτ (e) is simply the length of
e. Otherwise, i.e.,e is added during the construction of the overlay
graph which corresponds to a path in the original graph,τ (e) is the
surrogate value corresponding to that path, as we clarify inthe next
subsection. Finally, afterH depletes,α-Dijk retrieves the entry in
L(t) with the smallest length, and returns the corresponding path
as the the answer to theα-CSP query.

We demonstrate howα-Dijk works with the following example.

EXAMPLE 8. Consider anα-CSP query on graphG in Fig-
ure 1, with originv1, destinationv5, cost constraintθ = 7, and
α = 1.35. First,α-Dijk computesℓ⊥(v) andℓ⊤(v) for all vertices
in G, and obtainsℓ⊥(v2) = ℓ⊤(v2) = 2, ℓ⊥(v3) = 3, ℓ⊤(v3) = 4,
ℓ⊥(v4) = ℓ⊤(v4) = 4, andℓ⊥(v5) = 4, ℓ⊤(v5) = 7.

α-Dijk initializes heapH with a single entryρ0 = 〈P0, 0〉,
whereP0 = 〈v1〉. Then, two pathsP1 = 〈(v1, v2)〉 (c1 = 1,
ℓ1 = 2) andP2 = 〈(v1, v3)〉 (c2 = 3, ℓ2 = 4) are extended
from P0. Hence, the algorithm inserts intoH entries〈P1, τ1 = 2〉
and 〈P2, τ2 = 3〉. Next, ρ1 = 〈P1, τ1 = 2〉 is popped from
H . As L(v2) is empty,ρ1 is inserted intoL(v2). Meanwhile, as

|L(v2)| > logα
ℓ⊤(v2)

ℓ⊥(v2)
= log1.35

2
2
, α-Dijk setsτ1 = 2.

Afterwards, P3 = 〈(v1, v2), (v2, v3)〉 (c3 = 4, ℓ3 = 3),
P4 = 〈(v1, v2), (v2, v4)〉 (c4 = 5, ℓ4 = 4), and P5 =
〈(v1, v2), (v2, v5)〉 (c5 = 5, ℓ5 = 6) are extended fromP1. As
a result, three entries〈P3, τ3 = 3〉, 〈P4, τ4 = 4〉, and〈P5, τ5 = 6〉
are pushed intoH .

After that, ρ2 = 〈P2, τ2〉 is popped fromH , and is in-

serted intoL(v3). As |L(v3)| > logα
ℓ⊤(v3)

ℓ⊥(v3)
, τ2 is set to

max{l2/α, ℓ⊥(v3)}, which is 3. Then, pathP6 = 〈(v1, v3),
(v3, v5)〉 (c6 = 6, ℓ6 = 5) is extended fromP2 and an entry
〈P6, τ6 = 4〉 is pushed intoH .

Subsequently,ρ3 = 〈P3, τ3〉 is popped fromH . Notice that
L(v2) contains an entry pertinent to pathP2, andτ2 ≤ τ3. There-
fore,P3 is pruned. Afterwards,ρ4 = 〈P4, τ4〉 andρ5 = 〈P5, τ5〉
are popped fromH , andρ4 and ρ5 are inserted intoL(v4) and

L(v5), respectively. Since|L(v4)| > logα
ℓ⊤(v4)

ℓ⊥(v4)
, τ4 is set to 4.

Similarly, τ5 is set tomax{ℓ5/α, 4} = 4.44. For pathP4, a path
P7 = 〈(v1, v2), (v2, v4), (v4, v5)〉 (c7 = 7, ℓ7 = 7) is extended
from it, and an entry〈P7, τ7 = 7〉 is pushed intoH .

Next, ρ6 = 〈P6, τ6〉 is popped fromH , and is compared with
the only entry inL(v5). Notice thatτ6 = 4 < τ5 = 4.4, which
means that the entry cannot be pruned. Hence,〈P6, τ6〉 is added
into L(v5). Then, it updatesτ6 to max{ℓ6/α, ℓ⊥(v5)} = 4. Fi-
nally, P7 is pruned asτ7 > τ5. Thus,α-Dijk returnsP6 with cost
c6 = 6, lengthℓ6 = 5 as theα-CSP query answer. �

Theoretical Analysis. The following theorem establishes the cor-
rectness ofα-Dijk.

Algorithm 5: Overlay Graph Construction

input : A partitionT = {G1, G2, . . . , Gk} of G
output: An overlay graphG◦ = (V ◦, E◦) of G

1 LetE◦ = ∅, andV ◦ be the set of boundary vertices defined byT ;
2 for each subgraphGi ∈ T do
3 for each boundary vertexv◦ in Gi do
4 Feedv◦ andGi as input to the single-sourceα-Dijk, which

outputs an entry listL(v) for each vertexv in Gi;
5 for each boundary vertexv in Gi do
6 LetS = ∅;
7 for each entryρ in L(v) in ascending order ofc(ρ) do
8 Let ρ′ be the last entry inserted intoS;
9 if S is empty orℓ(ρ′) > α · τ(ρ) then

10 Insertρ into S;

11 else
12 τ(ρ′) = min{τ(ρ′), τ(ρ)}; / / ρ is pruned

13 for each entryρ in S do
14 Insert an edgee◦ = (v◦, v)) into E◦, with

c(e◦) = c(ρ), ℓ(e◦) = ℓ(ρ), andτ(e◦) = τ(ρ);

15 return G◦ = (V ◦, E◦);

THEOREM 1. For each vertexv, let L(v) be the entry list ofv
whenα-Dijk terminates. Then, for any pathP from s to v with a
cost smaller thanθ, there exists an entryρ in L(v) with a cost at
mostc(P ′) and a length at mostα · ℓ(P ′). �

Next, we discuss the time complexity of ourα-Dijk algorithm.
For each vertexv, the number of stored entries inL(v) is bounded
by ℓmax ·n. When adding labels for outgoing edges of each vertex
v, it incurs at mostdv · ℓmax · n labels, wheredv is the out-degree
of v. To sum up with, there are at mostℓmax · n · m labels added
in the whole procedure. To insert / popℓmax ·n ·m entries into the
heap, it requiresO(log(ℓmaxn)) time for each operation, ending
up withO(ℓmax ·m · n · log(ℓmax · n)) time complexity.

5. COLA IMPLEMENTATION
This section details the implementation ofCOLA. Section 5.1

clarifies the algorithm for building the overlay graph. Section 5.2
describes the construction of theCOLAindex.

5.1 Overlay Graph Construction
Given a partitioningT = {G1, G2, . . . , Gk} of G, we construct

an overlay graphG◦ = (V ◦, E◦) defined in Definition 3 usingα-
Dijk with two minor modifications: (i) there is no cost constraint,
i.e., θ = +∞ and (ii) instead of a path, the algorithm returns the
entry list L(v) for every vertexv. We refer to this modified al-
gorithm assingle-sourceα-Dijk. To simplify our notations, in the
following we usec(ρ), l(ρ) andτ (ρ) to denote the path cost, path
length and pruning surrogate of an entryρ ∈ L(v), respectively.

Algorithm 5 shows the pseudo-code of our overlay graph con-
struction algorithm. Initially, the algorithm setsV ◦ to the set of all
boundary vertices defined byT , andE◦ to empty (Line 1). After
that, it processes each subgraphGi (Lines 2-14). In particular, for
each boundary vertexv◦ in Gi, it invokes the single-sourceα-Dijk
to compute an entry listL(v) for each vertexv in Gi (Line 4). If
v is also a boundary vertex inGi, then some of the entries inL(v)
may be converted into edges betweenv◦ andv in E◦ (Lines 5-14),
as follows. First, the algorithm creates a setS = ∅ for storing
entries (Line 6). Then, it inspects the entries inL(v) in ascend-
ing order of their costs, and compares each entryρ with the last
entry ρ′ inserted intoS. If ρ′ does not exist (i.e.,S is empty) or
c(ρ′) ≤ c(ρ) or ℓ(ρ′) ≤ α · τ (ρ), then the algorithm insertsρ

into S as an entry to be converted into an edge inE◦ (Lines 9-
10). Otherwise, the path represented byρ must beα-dominated
by ρ′, and hence, the algorithm omitsρ, and modifiesρ′ to set
τ (ρ′) = min{τ (ρ′), τ (ρ)} (Lines 11-12). The change ofτ (ρ′)
is important to ensure that the resulting graphG◦ satisfies Defini-
tion 3. After all entries inL(v) are examined, the algorithm re-
trieves each entryρ that has been inserted inS, and converts it into
an edgee◦ ∈ E◦ with c(e◦) = c(ρ) andℓ(e◦) = ℓ(ρ). In addition,
we define the surrogate value ofe◦ asτ (e◦) = τ (ρ), which is used
in our COLA index construction, clarified in the next subsection.
Once all subgraphs inT are processed, the algorithm terminates
and returnsG◦ = (V ◦, E◦). We have the following theorem for
Algorithm 5.

THEOREM 2. Algorithm 5 correctly constructs an overlay
graph that satisfies Definition 3. �

5.2 Labeling Index Construction
This subsection details the construction of theCOLAindex. Note

that the index structure is not unique, and there are variousways to
build it. In our implementation, we apply a standard technique in
the literature of2-hop labeling(e.g., [4, 7, 33]) for conventional
shortest paths, which introduces a ranking functionr of all vertices
in G◦, whose values reflect the relative importance of the vertices.
Then, for eachv◦ ∈ G◦, we require that (i) each entry inBin(v

◦) is
a pathPi originating at a vertexw that has the highest rank among
all vertices inPi, and symmetrically, (ii) each entry inBout(v

◦) is
a pathPo ending at a vertexw that has the highest rank among all
vertices inPo. To reduce memory consumption, in each entry we
can substitute a full path with a tuple〈v, c, l, vpred〉, wherec andl
are the cost and length of the path andv andvpred are the last and
second-to-last vertices, respectively.

Similar to conventional 2-hop labeling, the choice of the order-
ing plays an important role for the effectiveness of the index. We
follow a similar approach as in previous work [7], and will discuss
the details in Section 5.3. We further define the rank of a pathas
follows.

DEFINITION 5 (RANK OF A PATH). Let P be an arbitrary
path in G◦. The rankr(P) of P is the highest rank among all
vertices inP . �

Our index construction algorithm runs in iterations. Afterfinish-
ing i iterations, the labels constructed inBout andBin guarantee
that for any pathP from u to v (u, v ∈ G◦) whose rank is no more
thani, there exists a label entryρu ∈ Bout(u) corresponding to a
pathP1, and a label entryρv ∈ Bin(v) concerning a pathP2 in G◦

such thatc(ρu) + c(ρv) ≤ c(P) andℓ(ρu) + ℓ(ρv) ≤ α · ℓ(P).
In other words, by concatenatingP1 andP2, we find a path that
α-dominatesP .

Algorithm 6 shows the procedure for the index construction.It
produces indices inn iterations. We explain how labels inBin

are computed, andBout can be explained similarly. In thei-th
iteration, the vertexui with r(ui) = i is selected. A modified
version ofα-Dijk is invoked to produce a set of label listsL(v) for
v ∈ G◦. The main modification is that: when deriving the lower
bound of the lengthℓ⊥(v) from ui to v, it requires to use theτ
value of a path instead of the length of the path. The main reason
is thatG◦ is a simplified version ofG to capture the paths fromui

to v, and the minimum length pathP in G might not be preserved
in G◦; however, theτ value of a path denotes the lower bound of
the minimum length path that it has pruned, indicating theτ value
of the minimum-τ path is a lower bound of the length fromui to v.

Meanwhile, when a label entryρ = 〈v, c, ℓ, τ, vpred〉 is popped
from the heapH . A dominance checking procedure is proceeded,
which checks if a path with costc and lengthτ will be dominated
by existing labels. In particular, it uses the labels constructed in
the previousi − 1 iterations to do a dominance checking. Specif-
ically, it checks if there exists a labelρ+ ∈ Bout(ui) and a label
ρ− ∈ Bin(v) such thatc(ρ+)+c(ρ−) ≤ c andℓ(ρ+)+ℓ(ρ−) ≤ τ .
If the answer is yes, this label entry can be skipped in this itera-
tion without affecting the query correctness as will be proved in
Lemma 3.

When theα-Dijk’s algorithm finishes, it outputs the label list into
L. For each vertexv, the most simple approach is to subsequently
select the label fromL(v) with the smallest cost and that cannot be
α-dominated by previous selected labels. This approach, however,
cannot efficiently help path reconstruction. In particular, given an
in-label entryρ− = 〈w, c, ℓ, vpred〉, and denote the path pertinent
to this label asP , the path reconstruction requires the knowledge of
the label pertinent to the sub-path ofP that starts fromvpred to ui.
We denote this label as thechild of ρ−. This requirement, however,
cannot be guaranteed by the simple selection strategy. Instead, we
adopt a more advanced approach to guarantee that, for each out-
label inBout (resp. in-label inBin), its child is always inBout

(resp.Bin).
Observe that, in thei-th iteration, if a label〈w, c, ℓ, τ, vpred〉 is

stored inL, there must exist a label〈vpred, c′, ℓ′, τ ′v′pred〉 stored in
L. This is due to the traversing order of a path inα-Dijk. If a path
P from u to w has been traversed, its sub-path fromu to w’s pre-
decessor must also be traversed. Note thatc′ ≤ c andℓ′ ≤ ℓ. By
storing the labels in descending order of the cost, with tiesbroken
by the length, we can guarantee that each label is ordered before its
child. Denote the sorted label asLi. This procedure is proceeded as
shown in Lines 8-9 of Algorithm 6. After that, we maintain a hash-
tableT to record the child of the added labels. Besides, we record
the last pruned label concerningv, and denote it asρprune(v). Note
thatρprune(v) is initially set to the first label concerningv in Li.
Then in order of the sorted listLi, we inspect whether (i) the cur-
rent labelρ = 〈w, c, ℓ, τ 〉 satisfies that it is a child of a previous
stored label, and (ii) whether the next labelρp concerningw satis-
fies thatℓ(ρp) ≤ τ (ρprune) · α. If both conditions are not satisfied
(Line 13-15), this label can be pruned safely. Otherwise, a label
〈ui, c, ℓ, vpred〉 is inserted intoBin(w); its child is inserted into
the hash-tableT ; andρprune is updated toρp as shown in Lines
17-20.

With the guarantee that a label’s child will always be inCOLA
index. Then we can reconstruct the path as follows. Given a la-
bel ρ = 〈w, c, l, vpred〉 ∈ Bin(v), we can find its child label
ρ′ = 〈w, c′, l′, v′pred〉 ∈ Bin(vpred) with O(1) time, by storing
a pointer toρ′ in ρ. Afterwards, we can then recursively unfold the
edges inG◦ by checkingO(k) labels, wherek is the number of
edges inP ◦. Afterwards, we apply a bidirectional traversal to find
the path inG corresponding to each edge inP ◦.

When the label entries are updated, a backward version ofα-
Dijk is proceeded, and entries are added in toBout. After that, the
input graph of the next iteration is updated by removing vertex ui

and its incident edges. Aftern iteration, the algorithm finishes and
ends up with two label setsBout andBin that guarantees the query
correctness as shown in Lemma 3.

LEMMA 3. Algorithm 6 correctly produces a COLA index that
satisfies Definition 4. �

5.3 Vertex Ordering
Recall that every in-label (resp. out-label) of each vertexv in

theCOLA index is a skyline pathP originating (reps. ending) at a

Algorithm 6: Index Construction
input : An overlay graphG◦, and a rank for all vertices inG◦

output: a COLA indexL

1 Creates a min-heapH that (i) stores entries in the form of
〈v, c, ℓ, τ, vpred〉, and (ii) sorts the entries in ascending order of their
c values, with ties broken by theirℓ values;

2 LetG◦
i = G◦;

3 for i = 1, 2, . . . , n do
4 Let ui be the vertex whose rank isi;
5 Invoke Algorithm 4 onG◦

i except that (i) to deriveℓ⊥(v), it
requires to compte the pathP with minimumτ value instead of
minimum-length; (ii) when a label entryρ = 〈w, c, ℓ, τ, vpred〉
is popped from the heap, it invoke a dominance checking
procedure to see if a path with costc and lengthτ , will be
dominated by existing labels with a linear label scanning similar
to Algorithm 2; (iii) output the label listL;

6 LetLi be an empty list;
7 for v ∈ V ◦ whoseL(v) is not emptydo
8 Insert all entries inL(v) into Li;

9 Sort all entries inLi in descending order of cost, with ties broken
by length;

10 Initiate a hash-tableT to record preserved labels, and the key is of
the form〈w, c, ℓ〉;

11 Record the last labelρprune(v) pruned withα-dominance,
initially it is set to the first label inLi concerningv;

12 for each label entryρ = 〈w, c, ℓ, τ, vpred〉 in Li do
13 Let ρp ∈ Li be the next label concerningw afterρ;
14 if 〈w, c, ℓ〉 /∈ T and ℓ(ρp) ≤ τ(ρprune(w)) · α then
15 continue;

16 else
17 Add ρ′ = 〈ui, c, ℓ, vpred〉 into Bin(w);
18 LetP be the path pertinent toρ′, and lete be the edge

that points fromvpred to w;
19 Insert an entry〈vpred, c− c(e), ℓ− ℓ(e)〉 into T ;
20 Updateρprune to beρp;

21 Repeat the above procedure with a backward modifiedα-Dijk and
add entries intoBout;

22 UpdateG◦
i+1 by removing the incident edges toui;

23 return Bin, Bout;

vertexv′ that has the highest rank among all vertices inP , i.e., the
rank ofv′ is higher than the rank ofv. In other words, the ordering
of vertices would affect the total number of labels inCOLA, which
is similar to the situation in conventional 2-hop labeling,e.g., [4,
7, 33]. Note that, computing a 2-hop labeling with minimal size is
NP-hard. However, the case inCOLA is even worse, sinceCOLA
index is built on the overlay graph, which allows multiple edges
from a vertex to another. Besides, given an ordering of vertices,
it is highly costly to the exact index size ofCOLA, whose cost is
equivalent to building the index.

To produce aCOLA index with small size and also overcome
the computational difficulty, we present in this section a sampling
based approach that works inn iterations, each of which orders one
vertex of of the overlay graphG◦. Specifically, in each iteration,
we first estimate the number of labels pertinent to each vertex, and
then select the vertexv to order higher than the rest ifv results
in the smallest estimated index size. Once a vertexv is ordered,
we removev from G◦, and continue to order the rest vertices in
residual graphG◦

r until G◦
r is empty.

In order to estimate the number of labels pertinent to each ver-
tex v, we first define thecoverageof v as the setPv of skyline
pathsP in G◦

r that goes throughv, denoted byC(v) = |Pv|. In-
tuitively, the larger coverage of the vertexv in G◦

r , the more index
space would be saved ifv is ranked higher than the rest vertices
in G◦

r , as we can avoid the computation of the paths inPv in the

subsequent iterations. However, it is highly expensive to compute
all skyline paths inG◦

r , especially whenG◦
r is sufficiently large.

To avoid the deficiency, we devise a sampling based approach to
estimate the coverage ofv in G◦

r . To explain, letu be a randomly
sampled node, andβ be a randomly sampled number in[0, 1]. De-
fine c(e) · β + ℓ(e) · (1 − β) as theweightof an edgee. Then
we sample fromu a spanning tree with the minimum total weight.
The rationale is that, if a path is a skyline path, then there exists a
β in [0, 1] such that the path has the minimal weight. Hence, we
samplek treesT1, T2, · · · , Tk using the above strategy, wherek is
sufficiently large. LetCj(v) be the size of subtree with rootv in
Tj (1 ≤ j ≤ k). Based on that, we can estimate the coverage ofv

as
∑k

j=1 Cj(v)/k. Then, we order the vertexv of the largest es-
timated coverage among vertices inG◦

r . After that, we remove all
subtrees rooted atv from T1, T2, · · · , Tk and update the estimated
coverage for the rest vertices respectively.

A larger sample sizek tends to provide a more accurate esti-
mated coverage for each vertex. However, it comes at a higher
computational cost. To explain, letno be the number vertices in
G◦, then the number of nodes in sampled tree is at mostno. There-
fore, the time complexity in computing the sampled trees by the
above method isO(kn2

o). Let mo be the number of edges inG◦.
To reduce the cost, we constrain the total number of edges sampled
from all trees to be at mosth · mo, whereh = 16 following the
setting in previous work [7].

6. EXPERIMENTS
This section experimentally evaluatesCOLAagainst the current

state-of-the-art methods. Section 6.1 explains the experimental set-
tings. Sections 6.2 and 6.3 present evaluation results in terms of
query efficiency and indexing overhead, respectively. Section 6.4
provides insights for choosing an appropriate value forα.

6.1 Experimental Settings
All methods are implemented in C++, compiled with full op-

timizations, and tested on a Linux machine with an Intel Xeon
2.6GHz CPU and 64GB RAM. We repeat each experiment 5 times
and report the average results.

Datasets.We use 8 real road networks from the 9th DIMACS Im-
plementation Challenge [2] as shown in Table 2.In the datasets,
each vertex represents a road junction, and each edge represents a
road segment. Among the eight road networks, EU is directed and
the others are undirected.Each edge in the dataset contains two
attributes: the travel time and the travel distance. Following pre-
vious work [27], we use the travel time as the cost, and the travel
distance as the length. The dataset sizes vary from small cities to
the full USA road networks. Table 2 summarizes the properties of
the datasets, where|V |, |E|, |V ◦| and|E◦| are the cardinalities of
vertices in the road network, edges in the road network, vertices in
the overlay graph (Ref. Section 3 for definition of overlay graph)
and edges in the overlay graph, respectively.

Query sets.For each dataset, we generate 5 query sets Q1-Q5, each
containing 100 queries. Q1-Q5 are generated as follows. First, we
randomly choose the query origins and destinationt among the
vertices of the road networks. Then, we classify the query into
one of the 5 query sets, based on the length froms to t. Specifi-
cally, we first compute a lower bound for the graph diameter (the
longest length of all shortest paths) using an existing approximate
algorithm [26], which is at most 2 times the value of diameter. Let
dmin be this lower bound. We then generate queries as follows: if
the length of these two nodes is in range[dmin/2,+∞), we add
it into Q5; if the distance is in range[dmin/4, dmin/2), we add it
into Q4; if the distance is in the range[dmin/8, dmin/4), we add it

dataset |V | |E| |V ◦| |E◦|

New York City (NY) 0.3M 0.7M 4.8K 0.2M
Florida (FLA) 1.1M 2.7M 4.2K 0.2M
Northwest USA (NW) 1.2M 2.8M 4.2K 0.2M
Northeast USA (NE) 1.5M 3.9M 7.0K 0.7M
Great Lakes (LKS) 2.8M 6.9M 10.9K 1.8M
Western USA (W) 6.3M 15.2M 7.8K 1.2M
Europe (EU) 18.0M 42.2M 16.9K 9.3M
Full USA (USA) 23.9M 58.3M 17.7K 9.5M

Table 2: Road networks (K=103, M=106).

into Q3, etc. For each query set, we report the average time for the
100 queries. The differences among results for different query sets
reflect the impact of the travel distance.

Next, we clarify the generation of the cost constraintθ. For
each query, we first computecmin, the minimum cost of any path,
andcmax, the cost of the minimum-length path froms to t; then,
we selectθ uniformly at random from[cmin, cmax]. Note that if
θ < cmin, the query cannot return any result; ifθ > cmax, the
minimum-length path is always a valid result to the CSP query.

Another important parameter isα, which determines the approx-
imation guarantee ofα-CSP queries. We viewα as a system pa-
rameter rather than part of the query, sinceα controls the trade-
off between query accuracy and system efficiency, e.g., space con-
sumption, which is more relevant to the system environment than
individual queries.In order to find a suitable value forα, we per-
formed a set of experiments with varyingα. The results shown in
in Section 6.4 demonstrate that the valueα = 1.1 leads to a good
balance among the space consumption, preprocessing time, query
efficiency and query accuracy. Hence, in the rest of our experi-
ments, we fixα = 1.1.

Methods. We compareCOLAagainst three state-of-the-art meth-
ods: Sky-Dijk [18], CP-Dijk [31] andCSP-CH[30], described in
Section 2.2. Meanwhile, we also include a most recentk-shortest
path based solution [27] as our competitor, dubbed asKSP. Be-
sides, we also includeα-Dijk (see Section 4) in our comparisons,
which answersα-CSP queries without an index.
6.2 Query Efficiency

Figure 3 plots the average query execution time (in seconds)for
all methods. For brevity, we only show the results on 4 represen-
tative datasets: NY, LKS, EU, and USA. On these 4 datasets, we
inspect the performance on all 5 query sets Q1-Q5. Note that the
y-axis is in logarithmic scale, and we use error bars to present the
variations of the query performance forCOLAandα-Dijk.

The most apparent observation is that regardless of the dataset
or query set, our main proposalCOLAconsistently outperforms all
other methods by several orders of magnitude. Further, the query
time of COLA is always within one second, even on the largest
network covering the entire USA.Besides, on large directed road
networks, e.g., EU,COLA still outperforms the existing methods
by two orders of magnitude, which demonstrates the effectiveness
of our COLAindex on both directed and undirected road networks.
For state-sized networks,COLA always finishes within millisec-

onds. In contrast, the rest of the methods require at least 1 sec-
ond to finish, except for a few settings that involve both a small
dataset and a query set with very close query origin and destina-
tion. For queries with relatively far apart origin / destination pairs,
these methods (except forα-Dijk) can take several hours to process
one query.

From these observations, we conclude thatCOLAnot only out-
performs its competitors, but brings down the query processing cost
from prohibitively high to a practically low. In other words, COLA
makesα-CSP feasible on current hardware.

BesidesCOLA, the next fastest method is our index-free algo-
rithm α-Dijk, again in all settings. The performance gap between
α-Dijk and the competitors is also notable, often more than an or-
der of magnitude.Moreover, bothCOLAandα-Dijk demonstrate
small variation for the query processing time, which is generally
close to the average. In contrast, as shown in [27,30],existing CSP
algorithms vary significantly in terms of query time, and mayin-
cur much longer query time than the average. This demonstrates
the robustness of our methods to the input query.Interestingly, our
index-freeα-Dijk outperforms the indexed methodCSP-CH, which
is given the advantage of large amounts of pre-computations. This
suggest that exact CSP as a query type may not be practical for
large networks; in such situations, it is necessary to relaxthe query
definition.

Comparing the four existing methods,CSP-CHoutperformsCP-
Dijk andSky-Dijkin all settings, and outperformsKSPfor queries
with far apart origin / destination pairs. Meanwhile,KSPturns out
to be very efficient when the origin and destination are close. How-
ever, as the distance between the origin and destination increases,
the query efficiency degrades rapidly, due to the exponential growth
in the number of paths from the origin to the destination. In addi-
tion, we observe that the performance improvement ofCP-Dijk (for
α-CSP) overSky-Dijk(for exact CSP) is negligible, in all settings.
This confirms that theCP-Dijk (and also other previous work on
α-CSP, asCP-Dijk is the current state of the art) focuses on theo-
retical improvement in terms of asymptotic complexity rather than
practical performance.

The impact of the distance between the origins and destination
t becomes apparent, once we compare results for different query
sets. When they are close to each other (e.g., Q1 and Q2), the
query cost for all methods are small, especially on small networks.
As s andt become farther apart, query costs increase rapidly. This
is expected, as the longer the trip is, the more vertices are involved
during CSP processing. An important observation is thatCOLA’s
performance is robust against varying query sets. This is mainly
due to its use of the overlay network. Specifically,COLAutilizes
the pre-computed distances between boundary vertices of different
partitions, and the number of boundary vertices involved slowly in-
creases with the distance betweens andt, compared to the number
of vertices in the network. Besides, the query cost of ourα-Dijk al-
gorithm increases slowly, which demonstrates the effectiveness of
its adaptive pruning. On the contrary, the other four existing meth-
ods scale poorly; for large datasets, they usually require hours to
process a single query. Furthermore, on the USA dataset, none of
these four methods can answer queries in Q3-Q5 due to prohibitive
memory consumption (>64GB).

Finally, we compare results on different datasets. As expected,
the larger the network is, the more expensive it is to processa CSP
query. Once again, unlike its competitors, the query cost ofCOLA
grows slowly with the network size, thanks to its use of the overlay
network and the constrained labeling index, whose effects become
more pronounced as the dataset becomes larger.

6.3 Index Size and Construction Time
Figure 4 illustrates the memory consumption for all methods, be-

fore running any query. The results for the non-indexed approaches
Sky-Dijk, CP-Dijk, KSPandα-Dijk are simply the size of the road
network. On the other hand, the results forCSP-CHand COLA
indicate their respective index sizes. In addition, we alsoshow the
size of the overlay graph inCOLA in the same figure.

The most important observation is that the index size ofCOLA
is no more than 5GB on the largest dataset USA and such memory
requirement can be easily satisfied on a modern server. Comparing
CSP-CHandCOLA, the former uses a smaller amount of memory

COLACSP-CHKSPSky-Dijk CP-Dijk D-Dijk

10-3

10-2

10-1

100

101

102

Q1 Q2 Q3 Q4 Q5

average query time (sec)

10-2
10-1
100
101
102
103

Q1 Q2 Q3 Q4 Q5

average query time (sec)

10-2

10-1

100

101

102

103

Q1 Q2 Q3 Q4 Q5

average query time (sec)

10-2
10-1
100
101
102
103

Q1 Q2 Q3 Q4 Q5

average query time (sec)

(a) NY (b) FLA (c) NW (d) NE
COLACSP-CHKSPSky-Dijk CP-Dijk D-Dijk

10-2
10-1
100
101
102
103

Q1 Q2 Q3 Q4 Q5

average query time (sec)

10-2
10-1
100
101
102
103
104

Q1 Q2 Q3 Q4 Q5

average query time (sec)

10-1

100

101

102

103

104

Q1 Q2 Q3 Q4 Q5

average query time (sec)

10-1

100

101

102

103

104

Q1 Q2 Q3 Q4 Q5

average query time (sec)

(a) LKS (b) W (c) EU (d) USA
Figure 3: Query efficiency vs. Query sets.

COLACSP-CH Overlay Network.-Dijk / Sky-Dijk / CP-Dijk

100

101

102

103

NY FLA NW NE LKS W EU USA

space consumption (MB)

Figure 4: Space consumption.
COLACSP-CH

10-1
100
101
102
103
104
105
106

NY FLA NW NE LKS W EU USA

total preprocessing time (s)

Figure 5: Total preprocessing time.

than the latter, and yet the index size ofCSP-CHis considerable
compared to that of non-indexed methods, i.e., the size of the input
graph. AlthoughCOLA requires a larger index, its memory over-
head is affordable, which is more than compensated by its high
query performance as shown in Figure 3. The results also show
that the size of the overlay graphs is negligible, indicating that the
space consumption ofCOLA is mainly attributed to its constrained
labeling index.

Figure 5 presents the total pre-processing time ofCSP-CHand
COLA. Note that the non-indexed methods are not shown as they
do not need pre-processing.Compared toCSP-CH, COLA takes
on average 3x to 4x processing time. Nevertheless, the cost of
pre-processing inCOLA is still modest, i.e., within 12 hours on
the largest dataset USA, using a single server. Consideringthat
existing methods require hours to process even one query, the pre-
processing cost ofCOLAis worth paying for.

Summarizing the experiments,COLA effectively reduces the
processing time ofα-CSP queries from hours to sub-second, with
moderate index size (no more than 5GB). Hence, it is clearly the
method of choice forα-CSP processing. When an index is not
available, we recommend theα-Dijk algorithm, which might be
suitable for applications that do not require fast response. Since
all previous methods are prohibitively expensive andα-CSP has

promising use cases, the proposed methods might become key en-
ablers for new online navigation services based onα-CSP.

6.4 Tuningα

In this set of experiments, we evaluate the impact ofα onCOLA.
In particular, we measure the query accuracy and space consump-
tion of COLAby varyingα from 1.005 to 1.4. Due to space limita-
tions, we show the results for 4 representative datasets.

Figures 6(a)-(b) show the memory consumption, i.e., the index
size, and preprocessing costs of ourCOLA, on FLA, NE, W, and
USA datasets.As we can observe, whenα changes from 1.005 to
1.4, both the space consumption and pre-processing time decrease,
since a largerα tends to help theCOLA labels prune more paths,
resulting in a smaller index size.

Note that the impact ofα is more pronounced on pre-processing
time than on memory consumption. To explain, the index construc-
tion algorithm requires examining a large number of paths (even
if the paths are added into label sets), and a largerα can help
prune more paths, and hence can help save more preprocessing
time. However, only a subset of the paths traversed are stored in
the index, and hence the pruning effect is less significant interms
of space consumption than pre-processing time.

Besides, the query time ofCOLA is relatively insensitive toα.
In particular, whenα decreases from 1.4 to 1.005, the query time
of COLA only increases by around 1.5x. To explain, the size of

WFLA NE USA

102

103

104

1.0 1.1 1.2 1.4

space consumption (MB)

α

101
102
103
104
105
106

1.0 1.1 1.2 1.4

preprocessing time (s)

α

101

102

103

1.0 1.1 1.2 1.4

average query time (ms)

α

0.01%

0.1%

1%

10%

1.0 1.1 1.2 1.4

relative error

α
(a) space consumption (b) preprocessing time (c) query performance (d) relative error

Figure 6: Tuning α for COLA.

theCOLA index is not significantly increased with decreasingα as
shown in the results; and hence the query time is not significantly
affected.

In terms of the query accuracy, we userelative error of 1000
random queries as the evaluation. More specifically, given aquery
q, let P ∗ be the solution of the exact CSP query andP ′ be anα-
CSP, the relative error of the latter is computed as(ℓ(P ′)−ℓ(P∗)

ℓ(P∗)
.

Figure 6(b) shows the relative error ofCOLAon the same datasets.
A higher value ofα leads to a larger relative error. Nevertheless, the
relative error is generally smaller than the worst case bound. For
example, the relative error ofα-Dijk for α = 1.1, is around3%
on FLA dataset, which is less than a third of the worst case bound,
i.e.,10%. We setα to 1.1 forCOLAsince it strikes a good balance
among query accuracy, query efficiency, space consumption and
preprocessing time.

7. CONCLUSIONS
We presentCOLA, a novel and practical solution for approxi-

mate constrained shortest path processing, which can be applied to
navigation services where a single criterion on the path is not suf-
ficient to capture the user’s requirement.COLAutilizes important
properties for real road networks, and applies effective indexing
which leads to orders of magnitude reduction in query execution
time. Meanwhile,COLAalso includes an algorithm,α-Dijk, which
significantly outperforms existing techniques forα-CSP process-
ing without an index.As future work, we plan to investigate (i)
how to avoid reconstruction of indices for different valuesof α and
(ii) α-CSP processing in denser graphs compared to road networks.

8. REFERENCES
[1] 9th DIMACS Implementation Challenge.http://www.dis.

uniroma1.it/challenge9/download.shtml.
[2] Google Maps.www.google.com/maps.
[3] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance

queries on large networks by pruned landmark labeling. InSIGMOD,
pages 349–360, 2013.

[4] H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann,
T. Pajor, P. Sanders, D. Wagner, and R. F. Werneck. Route planning
in transportation networks.CoRR, abs/1504.05140, 2015.

[5] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and
distance queries via 2-hop labels.SIAM J. Comput.,
32(5):1338–1355, 2003.

[6] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Robust
distance queries on massive networks. InESA, pages 321–333, 2014.

[7] D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. F. Werneck.
Graph partitioning with natural cuts. InIPDPS, pages 1135–1146,
2011.

[8] D. Delling and D. Wagner. Pareto paths with sharc. InSEA, pages
125–136, 2009.

[9] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[10] S. Funke, A. Nusser, and S. Storandt. On k-path covers and their
applications.PVLDB, 7(10):893–902, 2014.

[11] S. Funke and S. Storandt. Polynomial-time construction of
contraction hierarchies for multi-criteria objectives. In SOCS, pages
41–54, 2013.

[12] M. R. Garey and D. S. Johnson.Computers and Intractability: A
Guide to the Theory of NP-Completeness. 1979.

[13] R. Geisberger, M. Kobitzsch, and P. Sanders. Route planning with
flexible objective functions. InALENEX, pages 124–137, 2010.

[14] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.Contraction
hierarchies: Faster and simpler hierarchical routing in road networks.
In WEA, pages 319–333, 2008.

[15] A. V. Goldberg and C. Harrelson. Computing the shortestpath:A
search meets graph theory. InSODA, pages 156–165, 2005.

[16] G. Y. Handler and I. Zang. A dual algorithm for the constrained
shortest path problem.Networks, 10(4):293–309, 1980.

[17] P. Hansen. Bicriterion path problems. InMultiple criteria decision
making theory and application, pages 109–127, 1980.

[18] R. Hassin. Approximation schemes for the restricted shortest path
problem.Mathematics of Operations research, 17(1):36–42, 1992.

[19] N. Jing, Y. Huang, and E. A. Rundensteiner. Hierarchical encoded
path views for path query processing: An optimal model and its
performance evaluation.IEEE Trans. Knowl. Data Eng.,
10(3):409–432, 1998.

[20] H. C. Joksch. The shortest route problem with constraints. Journal of
Mathematical analysis and applications, 14(2):191–197, 1966.

[21] S. Jung and S. Pramanik. An efficient path computation model for
hierarchically structured topographical road maps.IEEE Trans.
Knowl. Data Eng., 14(5):1029–1046, 2002.

[22] F. A. Kuipers, A. Orda, D. Raz, and P. V. Mieghem. A comparison of
exact andepsilon-approximation algorithms for constrained routing.
In NETWORKING, pages 197–208, 2006.

[23] D. H. Lorenz and D. Raz. A simple efficient approximationscheme
for the restricted shortest path problem.Oper. Res. Lett.,
28(5):213–219, 2001.

[24] K. Mehlhorn and M. Ziegelmann. Resource constrained shortest
paths. InESA, pages 326–337, 2000.

[25] U. Meyer and P. Sanders. [delta]-stepping: a parallelizable shortest
path algorithm.J. Algorithms.

[26] A. Sedeño-Noda and S. Alonso-Rodrı́guez. An enhancedK-SP
algorithm with pruning strategies to solve the constrainedshortest
path problem.Applied Mathematics and Computation, 265:602–618,
2015.

[27] A. J. V. Skriver and K. A. Andersen. A label correcting approach for
solving bicriterion shortest-path problems.Computers & OR,
27(6):507–524, 2000.

[28] O. J. Smith, N. Boland, and H. Waterer. Solving shortestpath
problems with a weight constraint and replenishment arcs.
Computers & OR, 39(5):964–984, 2012.

[29] S. Storandt. Route planning for bicycles-exact constrained shortest
paths made practical via contraction hierarchy. InICAPS, volume 4,
page 46, 2012.

[30] G. Tsaggouris and C. D. Zaroliagis. Multiobjective optimization:
Improved FPTAS for shortest paths and non-linear objectives with
applications.Theory Comput. Syst., 45(1):162–186, 2009.

[31] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest
path and distance queries on road networks: An experimental
evaluation.PVLDB, 5(5):406–417, 2012.

[32] Y. Yoshida. Almost linear-time algorithms for adaptive betweenness
centrality using hypergraph sketches. InSIGKDD, pages 1416–1425,
2014.

[33] X. Yu and H. Shi. Ci-rank: Ranking keyword search results based on
collective importance. InICDE, pages 78–89, 2012.

APPENDIX
A. PROOFS
Proof of Lemma 1. Let v◦1 be the first boundary vertex thatPopt

goes through, andv◦2 be the last boundary vertex thatPopt goes
through. We consider three sub-pathsP1, P2, andP3, whereP1

is the path froms to v◦1 , P2 is the path fromv◦1 to v◦2 , andP3 is
the path fromv◦2 to t. Clearly,P1 is within Gs, otherwise, it must
go to another subgraph, which indicates that there must exists a
boundary vertexv◦ such thatP1 goes through. This contradicts to
the assumption thatv◦1 is the first boundary vertex inPopt. Simi-
larly, P3 is withinGt. Meanwhile, based on the property of overlay
graph, there exists a pathP ◦ in G◦ such thatP ◦ canα-dominate
P2, i.e., c(P ◦) ≤ c(P2), ℓ(P

◦) ≤ α · ℓ(P2). Let P ′ be the path
by concatenatingP1, P ◦, andP3, thenc(P ′) ≤ c(Popt) ≤ θ, and
ℓ(P ′) ≤ αℓ(Popt). This finishes the proof. �

Proof of Lemma 2. From Algorithm 2, it is easy to verify that
LabelJoinalgorithm since it nevers goes back to an entry previously
scanned. So we mainly focus on the correctness proof here. Wesay
a pathP is covered byCOLA if it can be reconstructed by an out-
labelρo and an in-labelρi.

Let P be the path with cost no more thanθ and has a minimum
length concatenated fromBout(s) andBin(t). Then it is anα-
CSP query. The reason is that, if there exists anα-CSP query, then
COLA index contains an out-labelρo and an in-labelρi to cover it.
Let the pathP ′ be theα-CSP path covered byCOLA. Then asP is
minimum among all paths covered byCOLA, ℓ(P ′) ≤ ℓ(P). If P
is anα-CSP query, thenP ′ will also be anα-CSP query.

On the other hand, we proveLabelJoincan correctly deriveP ′.
In particular, during the scan of the labelling, if the labels concerns
different vertices, then, by concatenating these two labels, we will
not be able to derive a path, so it will not miss anyα-CSP. On the
other hand, asBout(s) is sorted in increasing order of cost, and
Bin(t) is sorted in decreasing order of cost, if an out-label and an
in-label concerning a vertexw, has a total cost larger thanθ, then
going to the next label inBin(v) will not miss any path since an
previous entry inBin(v) either has a larger cost, which indicates
that the total cost of the labels will also exceedsθ and will not be a
valid answer. Meanwhile, if a previous label includes another node,
it will not be a valid path either.

On the other hand, if the total cost of the two labels does not
exceedθ, then it compares with the existing pathP ∗, if it is larger
thanP ∗, then it will not be the minimum path, and can be dis-
carded. ThenBout(s) goes to the next label entry. This operation,
we prove that will also not missP ′. In particular, as label entries
are stored in ascending of the cost, which indicates the paths are
also stored in descending order of the lengths. Then, a previous
label entry inBout(s) will have a larger length, considering the to-
tal length with the current label entry inBin(t). So in either case,
LabelJoinwill not missP ′, indicates that it will find the minimum-
path covered byBout(s) andBin(t). This finishes the proof. �

Proof of Theorem 1. For convenience, we abuse notation and use
τ (ρ) to denote the surrogate value of an entryρ in L(v). As-
sume thatP ′ containsk edgese1, e2, . . . ek, such thatei (i ∈
[1, k]) points to a nodevi. We recursively constructk paths
P1, P2, . . . , Pk, and define a surrogate valueτ (Pi) for each path
Pi as follows. First, we defineP1 as a path that contains only
e1. Observe thatL(v1) must contain an entryρ1 that repre-
sentsP1 (i.e., ρ1 = 〈v1, c(P1), ℓ(P1), ∗, s〉), since such an entry

would be inserted intoL(vi) right afterα-Dijk pops the first entry
〈s, 0, 0, 0, null〉 from the min-heapH . We setτ (P1) = τ (ρ1).

Assume thatPi (i ∈ [1, k − 1]) is constructed, andLi

contains an entryρi that representsPi. Then, right afterρi is
popped fromH and inserted intoLi, α-Dijk would insert an
entry intoH for each outgoing edgee of vi. Sinceei+1 is an
outgoing edge ofvi, one of the entries inserted should beρ′ =
〈vi+1, c(Pi) + c(ei+1), ℓ(Pi) + ℓ(ei+1), τ (Pi) + ℓ(ei+1), vi〉.
Then, whenρ′ is popped fromH , it is either pruned by an existing
entry in L(vi+1) or inserted intoL(vi+1). In either case, there
must exist an entryρi+1 with a cost at mostc(Pi) + c(ei+1)
and a surrogate valueτ (ρi+1) ≤ τ (Pi) + ℓ(ei+1). We set
τ (Pi+1) = τ (ρi+1).

With the above constructions, the following equations holdfor
anyi ∈ [1, k − 1]:

c(Pi+1) ≤ c(Pi) + c(ei);

τ (Pi+1) ≤ τ (Pi) + ℓ(ei);

ℓ(Pi+1) ≤ α · τ (Pi+1) ≤ α · ℓ(Pi+1).

Consequently, we have

c(Pk) ≤ c(Pk−1) + c(ek) ≤ c(Pk−2) + c(ek−1) + c(ek)

≤ · · · ≤
k
∑

i=1

c(ei) = c(P ′); (2)

τ (Pk) ≤ τ (Pk−1) + ℓ(ek) ≤ τ (Pk−2) + ℓ(ek−1) + ℓ(ek)

≤ · · · ≤
k
∑

i=1

ℓ(ei) = ℓ(P ′);

ℓ(Pk) ≤ α · τ (Pk) ≤ α · ℓ(P ′). (3)

Equations (2) and (3) indicate thatP ′ isα-dominated by a pathPk

represented by an entry inL(vk). This completes the proof. �

Proof of Theorem 2.Before proving Theorem 2, we first establish
the following lemma.

LEMMA 4. Let s and v be two vertexes in a graphGi, and
L(v) be the entry list ofv constructed by the single-sourceα-Dijk
givenGi and s as input. LetP be the set of all paths froms to
v in Gi. Then, for any entryρ ∈ L(v), there exists a pathP ∈
P with c(P) = c(ρ), ℓ(P) = ℓ(ρ), andτ (ρ) ∈

[

1
α
ℓ(P), ℓ(P)

]

.
Furthermore, for any pathP ′ ∈ P , there exists an entryρ ∈ L(v)
with c(ρ) ≤ c(P ′) andτ (ρ) ≤ ℓ(P ′). �

Let v be the destination node andGi be the input graph for Al-
gorithm 4, then base on Theorem 1 and how labels are derived, it
is guaranteed that each label is constructed from a path. Letthis
path beP , and theτ value is set to be no smaller thanℓ(P) based
on Algorithm 4. In addition, for any pathP ′, as the label stores
paths that cannotα-dominate each other from the smallest cost to
the largest cost, if a pathP ′ has costc, let ρ be the label entry for
pathP that has cost smaller thanP ′, and the next label has cost
larger thanP ′, then ifP has length such thatτ (P) ≤ ℓ(P ′), then
the requirement is satisfied. Meanwhile, ifτ (P) > ℓ(P ′), sinceP ′

has a cost smaller than the label entry next to the one concerningP ,
then it should be added into Ł(v) based on the Algorithm 4 Lines
9-11. So in either cases,P ′ satisfy that there exists a labelρ such
thatc(ρ) ≤ c(P ′) andτ (ρ) ≤ ℓ(P ′), which finishes the proof of
Lemma 4.

Afterwards, we set the origin as an arbitrary vertexv1 ∈ G◦ and
destination as an arbitrary vertexv2 ∈ G◦. Then, it satisfies that
for any pathP from v1 to v2, there exists a label inL(v2) canα-
dominateP . Meanwhile, based on how the edges are constructed

(Algorithm 5 Line 9), it is guaranteed that for any pathP from v1
to v2, there exists a stored entry that canα-dominateP . As such
entries are mapped to an edgee◦, and these entries are pertinent
to a path fromv1 to v2. As a consequence, the constructed graph
satisfies all conditions in Definition 3, which finishes the proof. �

Proof of Theorem 3 We prove that after thei-th iteration, for all
pathsP whose rank (ref. Section 5.2)r(P) ≤ i, it will be α-
dominated by a pathP that can be concatenated by an in-label and
an out-label.

In the first iteration, letu1 be the node withr(u1) = 1. Since
initially Bout andBin are empty, Algorithm 6 Line 5 condition 2
will not be triggered. The correctness is guaranteed by Theorem 1.

Consider thei-th iteration, anα-Dijk will be started from vertex
ui with r(ui) = i. During the traversal, if a pathP from ui to v
is pruned byα-Dijk, the subsequent correctness can be guaranteed
by 1. However, if a path is pruned by label checking, i.e., Line 5
condition 2, then there exists an out-label inBout(ui) and an in-
label inBin(v) such that their concatenated pathP ′ satisfy that
c(P ′) ≤ c(P) andℓ(P ′) ≤ τ (P). In this case, consider any path
P+ that containsP as a sub-path. We prove that for any such paths
P+, there will exists some label that canα-dominateP+.

Denote the path corresponding to the labels that pruneP asPα,

clearly r(Pa) < i. For each pathP+, we divide them into two
sub-paths withP1 = P , andP2 is the remaining sub-path. LetP+

α

be the path by concatenatingPα andP2. Then it is guaranteed that,
c(P+

α) ≤ c(P+), andℓ(P+
α) ≤ ℓ(P+). Based on the induction

assumption, pathP+
α satisfies that there exist a label inBout and

a label inBin, such that their corresponding pathPx satisfy that
c(Px) ≤ c(P+

α), andℓ(Px) ≤ α · ℓ(P+
a) ≤ α · ℓ(P+). In other

words, for any pathP+ derived by the above method, there will
exist a path pertinent to an out-label and an in-label that can α-
dominateP+. So pruning such paths will be safe, and will not
affect the correctness.

Consider any pathP whose rank isi, based on the above con-
struction, for the sub-pathP1 from ui to the ending node ofP ,
there exists a labelρ that will be stored such thatc(ρ) ≤ c(P1) and
ℓ(ρ) ≤ α · ℓ(P1). As a reversed version ofα-Dijk is applied. Sim-
ilarly, there exists a labelρ′ such that, for the sub-pathP2 from the
source ofP to ui, such thatc(ρ′) ≤ c(P2) andℓ(ρ′) ≤ α · ℓ(P2).
Adding them together, we can conclude that for any pathP whose
rank isi, it will be α-dominated by a pathP concatenated from an
in-label and an out-label.

This indicates that aftern iterations, the label constructed will
satisfy Definition 4, which finishes the proof. �

