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ABSTRACT

In a constrained shortest path (CSB)ery, each edge in the road
network is associated with both a length and a cost. Giverrian o
gin s, a destinatiort, and a cost constrairit, the goal is to find
the shortest path from to ¢t whose total cost does not excegd
Because exact CSP is NP-hard, previous work mostly focuses o
approximate solutions. Even so, existing methods are sl
hibitively expensive for large road networks. Two main m@sare

(i) that they fail to utilize the special properties of roagtworks
and (ii) that most of them process queries without indices;few
existing indices consume large amounts of memory and yet hav
limited effectiveness in reducing query costs.

Motivated by this, we propos€OLA the first practical solution
for approximate CSP processing on large road netwofkOLA
exploits the facts that a road network can be effectivelyifiamed,
and that there exists a relatively small set of landmarkicest
that commonly appear in CSP results. AccordingB®LA in-
dexes the vertices lying on partition boundaries, and eppdin
on-the-fly algorithm calledv-Dijk for path computation within a
partition, which effectively prunes paths based on landtaEx-
tensive experiments demonstrate that on continent-sizad met-
works, COLA answers an approximate CSP query in sub-second
time, whereas existing methods take hours. Interestirghgn
without an index, thev-Dijk algorithm inCOLAstill outperforms
previous solutions by more than an order of magnitude.

1. INTRODUCTION

Nowadays, route planning via online mapping/navigation se
vices has become an essential part of driving in many pladest
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Singapore). Another common consideration is safety. Fiairce,
in 2015, members of the New York City Council requested that
Google Maps reduces the number of left turns in its suggested
routes, since left turns lead to a higher rate of pedestrashes.
Finally, the shortest path is not necessarily the fastei@most
pleasant, e.g., the user may rather prefer driving througihiaer-
sity campus than on the highway. Currently, most onlinegpetion
systems address the problem by returning multiple patlwyialg
the user to manually modify a path, and providing multipl&ams
on how the best route is determinetllone of these solutions is
ideal since they do not take into consideration multipléecia si-
multaneously.

Theconstrained shortest path (CSRP, 24] addresses this prob-
lem by finding the best path based on one criterion with a caimst
on another criterion. For instance, the user may want to coeg
CSP that minimizes total travel time within a budget for fmdly-
ment. In an online navigation system, the constraint canrbe p
sented to the user in the form of a slider bar, which dradyican-
plifies user-system interactions. We focus on single-caimgtCSP,
because (i) tuning multiple parameters burdens the uggyeany
parameter combinations may lead to no feasible solution(i@nd
processing single-constraint CSP efficiently is already \ohal-
lenging; for existing solutions, a single query may takersan a
continent-sized road network. Hence, we focus on singtesttaint
CSP and leave multiple-constraint CSP as future work.

Specifically, in CSP, each edge is assigned two attributeighw
are used in the optimization objective and constraint retbyy.
Without loss of generality, we assume that these two atetare
edge length and cost, respectively. Given an origia destination
t, and a cost constraifit CSP finds the path fromto ¢ that min-

popular online maps today, such as Google Maps [3], compute imizes its total length, while satisfying that its total tdees not

routes based on a single criterion, which is usually eithertbtal
route length or the total travel time. In practice, howetleg, user
often needs to consider multiple criteria when planninguieoBe-
sides travel distance and time, a common criterion is tothpent.

exceed. Besides online navigation systems, CSP also finds appli-
cations in railroad management, military aircraft managensys-
tems, telecommunications, etc. [29]. The CSP problem hes be
proven to be NP-hard [13, 19]. Hence, the majority of exgstin

For example, many cities charge the road user a fee to use high Work (e.g., [19, 24, 31]) focuses on approximate solutionsich

ways (e.g., in Tokyo), bridges and undersea tunnels (evdNeiv
York City and Hong Kong); additionally, some densely popeda
metropolitan areas impose congestion charges (e.g., iddroand

guarantee that the resulting path length is no longer théimes
of the optimal path length (where is a user specified approxi-
mation ratio), subject to the cost constraintAlthough there exist
polynomial-time algorithms for approximate CSP (e.g. P931]),
as we show in the experiments, the current state-of-thesartions
are still prohibitively expensive for large road networR$ere are
two main reasons for their inefficiency. First, they aim as\aer-
ing approximate CSPs on general graphs, rather than spdlyific
on road networks; consequently, they fail to utilize théelds spe-
cial properties. Second and more importantly, most of thesngss
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queries without an index. The few known indices are all dessig Table 1: List of notations.

for exact CSPs, and they consume large amounts of memokry; fur [ Symbol Meaning
thermore, none of them succeeds at reducing query cost taca pr G=(V,E) Input graph
tical level. n,m Numbers of vertices and edgesGh

We thus propose a novel and practical solut@@LAfor index- £(e), c(e) Length and cost of an edge
based approximate CSP processing on large road netwoxsA Umaz, Cmaz Maximum length and cost for any edgeGh
mainly exploits two important properties of the road netivdfirst, a Approximation ratio ina-CSP
real road networks are often (roughly) planar, and, thus beaef- s, t Query origin and destination vertices
fectively split into partitions, each of which contains pra rela- T A partitioning of graphGy
tively small number of boundary vertices. AccordindBOLApar- Gs, Gy Subgraph i~ containings andt, respectively
titions the network, builds an overlay graph on the pantiiocand G° = (V°,E°) | Overlay graph of7 (refer to Section 3.1)
indexes a set of selected paths between pairs of boundaigeger
Second, in practice there often exist a relatively small peinof an «-CSP query returns a patt®, such thate(P) < 6, and

landmark vertices [16] in the road network that commonlyesp U(P) < - £(P,pt), WhereP,,; is the optimal answer to the exact
in CSP results. Based on this property, we design an index-fr CSP query with origirs, destinatior¢, and cost constraint. [
algorithm a-Dijk as a component dEOLA for path computation
within a partition, which achieves effective pruning usiadand-
mark set. Extensive experiments using real continendsinad
networks containing tens of millions of vertices show tG&LA
answers an approximate CSP query within a second, whereas pr
vious solutions need several hours. Further, even whendexin
is not available (e.g., when the edge lengths or costs chizage
quently), thea-Dijk module still outperforms existing methods by
over an order of magnitude.

ExampPLE 1. Figure 1 illustrates an example of exact- and
CSP on a graph with 5 vertices, v2, - - - , vs. The length and cost
for each edge are also shown in the figure. For example, the edg
fromwv; tows has cost = 1 and lengtl? = 2. Given origins = vy,
destinationt = wvs, and cost constrait = 6, the CSP query
returns the pattPo,: = ((v1,v3), (vs,vs)), since (i)c(Popt) =
6 < 0 and (ii) the length¢(P,,¢) = 5 is the smallest among all
paths fromw; to vs with a cost no more thath Meanwhile, fora =
1.2, a valid result for thex-CSP query with the same parameters
s = vi,t = vs andf = 6is Po = ((v1,v2), (v2,vs5)), since

2. BACKGROUND ¢(Pa) = 5 < 0,ande(Pa) = 6 < o - £(Popt) — 6. 0
In this section, we first provide formal definitions of the lpiem

and the terminology used in this paper in Section 2.1. Then, i a-CSP(a=1.2,0= 6)
Section 2.2, we present the state-of-the-art solutionexact and \
approximate CSP queries, and point out their drawbacksehder
them inefficient for answering CSP queries. Other existieghods
are reviewed in Section 2.3.

2.1 Formal Definitions
Let G = (V, E) be a directed road network with a vertex $ét

and an edge sdf. Each edge: € F is associated with &Ength \\
£(e) > 0 and acostc(e) > 0. For a pathP = (ej,ea,--- ,ex) CSP(0=6)
in G, thelengthandcostof P are defined ag(P) = Y01, £(e;) Figure 1: Example of exact CSP anch-CSP

andc(P) = Zle c(e;), respectively. Following previous work

[19, 24, 31], we assume that the length of each edge is aneinteg ~ Two important concepts in solving-CSP aredominance rela-
In practice this can be done by measuring the edge lengthufira s tionshipandskyline We define dominance fet-CSP as follows.

ficiently small unit, e.g., foot or meter, if the edge lengtpresents DEFINITION2 (w-DOMINANCE). Let P, and P, be two
travel distance. Similarly, we assume that the cost of eaige e  paths connecting the same origin and destination verti€gsa-
is also an integer. We ugg,q. (resp.cmaqs) to denote the maxi- dominatesP; iff ¢(P1) < ¢(Pe) andé(P1) < a - £(Pz). 0O

mum length (resp. cost) of an edgeGh Meanwhile, we assume ) )
thatlymaz (T€SP.Cmaz) iS NON-zero; otherwise, the problem can be For instance, consider pattty = ((v1,v2), (v2,v5)) and Py =
trivially regarded as a conventional shortest path problem ((v1,v3), (v3,v5)) in the above example. When = 1.2, P a-
Given an origin vertex € V/, a destination verteke V,anda ~ dominatesPs, since (i) the cost of is ¢(F1) = 5 < ¢(P2) = 6,
cost constraing, aconstrained shortest path (CS)ery asks for ~ and (i) the length ofP is £(P1) = 6 < a - £(P») = 1.2 x 5 = 6.
the shortest pat#? among all paths from to ¢ with costs no more Based on the above definition, a set of patis called askyline
than@. If there exist multiple CSPs with the same length, we break Set iff no path in S is a-dominated by another in the same set
ties by the cost of the paths. The CSP problem has been provenS- We say that a patli” is askyline pathf P is in a skyline set.
to be NP-hard, if boti,.a. andema. can be arbitrarily large [13, ~ Note that if two paths” and P, have the same cost, it is possible

19]. On the other hand, if €ithef,.az OF cmas is polynomial to that theya-dominate each other, in which case we put the path with
the number of vertices, there exist polynomial-time solusi for smaller length in a skyline seffor exact CSP, we define dominance
CSP, e.g., [19, 21]. Nevertheless, as we review in Sectichari relationship and skyline in the same way, by simply fixiag= 1.

2.3, these algorithms incur tremendous costs for largengtagnd, ~ Table 1 summarizes common symbols throughout the paper.

thus, are far from practical. As such, recently much effas heen 2.2 State of the Art
devoted to solving approximate versions of the CSP problnis

paper follows a popular definition calledCSP, defined as follows. We present the current state of the art for CSP processingi- Ad

tional literature review appears in Section 2.3.

DEFINITION 1 (a-CSPQUERY). Given an origins, a des- Exact CSP without index. The state of the art index-free solu-
tination ¢, a cost constrainty, and an approximation ratiay, tion for exact CSP problem is the one proposed in [18], whieh w



call Sky-Dijkbecause it follows the general idea of Dijkstra’s algo-
rithm [10]. The main difference betwee8ky-Dijkand Dijkstra’s
algorithm is that the former incrementally maintains a $egaths
at each vertex, rather than a single shortest path. Spélgificky-
Dijk maintains a label sekt(v) for each vertexs, which contains
the current set of skyline paths from the origito v, i.e., those not
dominated by another path inv). Similar to Dijkstra’s algorithm,
eachL(v) is initialized to empty and updated iteratively.
Meanwhile, akin to Dijkstra’s algorithm Sky-Dijkmaintains a
heap H of paths originating froms, in ascending order of their
costé. Initially, H contains only one trivial path with no edge,
which both starts and ends at the origin vertexThen, in each
iteration, Sky-Dijkpops the top patt® from H. Let v be the last
vertex inP. If v # t, i.e., P has not reached the query destina-
tion, the algorithm enumerates each paththat can be obtained
by appending an edde, v') at the end ofP, and checks whether
P’ exceeds the cost limitor is dominated by any path ih(v"). If
so, P’ is simply discarded; otherwisesky-DijkaddsP’ to both H
andL(v"), and updated.(v") to eliminate paths dominated by .
The algorithm terminates whel is empty, and returns the path in
L(t) with the minimum length, wheréis the destination vertex.

EXAMPLE 2. Consider again the example in Figure 1 with the
same exact CSP query with origén= v1, destination: = vs, and
cost constrainf = 6. Sky-Dijkinitializes the heaH with a trivial
path P, from vy to v, with no edge, and zero cost / length. Then,
it pops P, from H, and extends it to obtain patt§ = ((vi,v2))
with coste; = 1 and length?; = 2, and P> = ((v1,v3)) with
c2 = 3 andly = 4. The algorithm add$’ and P» to the label set
L(v2) and L(vs) respectively, and both of them 8.

Next, P; is popped fromH, and Sky-Dijkextends it to obtain
paths Py = ((v1,v2), (v2,vs)), Ps = ((v1,v2), (v2,vs)) and
Ps = ((v1,v2), (v2,vs)), which are added td.(vs), L(v4) and
L(vs) respectively. Note that novL(vs) contains two pathd
(c2 = 3,42 = 4) and Py (c2 = 4, {2 = 3); neither dominates the
other. Meanwhile, note thd% does not need to be insertedig as
it has reached the destinatior- vs, and, thus, cannot be extended
further. After that,P, is popped fromH; extendingP. generates
Pr = {(v1,v3), (vs3,v5)), which is eventually returned as the CSP
result. The algorithm terminates unfil becomes empty, at which
time it inspects.(vs ), and returng?;. O

The time complexity ofSky-Dijkis O (mazmn - log(bmazn)),
wherem (resp. n) is the number of edges (resp. vertices) in the
graph, and,,.... is the maximum edge length [18]. Clearlgky-
Dijk is a polynomial-time algorithm whef,,... is polynomial to
n. However, on real road networks, the performanceSidy-Dijk
is very poor, since it does not optimize for such datasetdlat a
As shown in [30] and also in our experiment$§ky-Dijkincurs
enormous costs for large graphs, and is clearly impractical

«-CSP without index. The current state-of-the-art solution for
«-CSP is developed by Tsaggouris and Zaroliagis [31], dulatsed
CP-Dijkin the following. Specifically, given an-CSP with origin
s, destinatiort, cost constrainf, and approximation ratia, CP-

for a largea. Consequently, the performance improvementBf
Dijk overSky-Dijkis often negligible, as shown in our experiments.
The time complexity ofCP-Dijk is O(kmn - log(xkn)), where
Kk = log(n - bmaz/lmin)/(a — 1) [31], andlmaz, €min are the
maximum and minimum non-zero values of an edge length, cespe
tively [31]. As explained before, in terms of practical perhance,
CP-Dijk obtains only marginal improvement ov8ky-Dijk never-
theless CP-Dijk is at least no worse thaBky-Dijk As discussed
in Section 2.3, other polynomial-time solutions f@#fCSP can be
far more costly. The fact th&P-Dijk is the state-of-the-art fat-
CSP processing reveals that previous research focuse$/ronst
asymptotic complexity, not practical performance.

Exact CSP with index. The state-of-the-art for indexed CSP pro-
cessing iSCSP-CH[30], which accelerateSky-Dijkwith contrac-
tion hierarchies [15], an indexing technique that has béewa to
be effective for accelerating conventional shortest patitgssing
on road networks [32]. Similar to [15], in each iteratiG®P-CH
removes a vertex from the graph, and substitutes it with rrewts
cut edges for the remaining vertices. Each shorteutv) created
during the removal of vertex represents a patf{u, v), (v, w))
that is not dominated by any other path framo w. After that,
CSP-CHanswers query with a bidirection8ky-Dijksearch from
both the origins and the destinationsimultaneously, utilizing the
shortcuts to reduce the number of nodes to be traversed.

The problem ofSP-CHis that unlike conventional shortest path
search, in CSP there can be numerous shortcuts (i.e., tegip-
line sets) for each removed vertex, leading to a prohibitilerge
index size.CSP-CHuses heuristics to alleviate this problem, e.g.,
by adding only a set of selected shortcuts, and by keepinggttex
in the graph instead of removing it. Such compromises, hewev
dramatically decrease the effectiveness of the index. &@prently,
its query processing cost is still impractically high.

«-CSP with index. To our knowledge, we are not aware of any
indexed solution forx-CSP processing. In sum, none of the state-
of-the-art methods optimizes for road networks, applieexing
effectively, or obtains acceptable query time for largevoeks.

2.3 Other Related Work

Joksch [21] first studies the CSP problem, and proposes a dy-
namic programming algorithm for exact CSP. Subsequentiy-H
dler and Zang [17] propose two methods for exact CSP process-
ing: one method formulates CSP as an integer linear progiaghm
(ILP) problem, and solves it with a standard ILP solver. ame
methodology is used by Mehlhorn and Ziegelmann [25]. Howeve
as shown in [25], these ILP-based solutions scale poorly,ian
cur tremendous processing costs on large road networksothke
solution in [17] reduces CSP tokashortest patlproblem, and re-
peatedly computes the next shortest path (in terms of tetajth)
until reaching one that satisfies the cost constraint. Afeds,
Hansen [18] proposes an augmented Dijkstra’s algorithrh fidO
exact CSP queries and is shown in [28] to outperfornktis@ortest
path solution. The state-of-the-art methods for exact CSP are de

Dijk applies the same data structures and follows the same stepsscribed in Section 2.2, for index-free and indexed procesgie-

as Sky-Dijk with a single modification: that each label detv)
maintains the set of paths that are Rgt:-dominated (Definition 2)
by another path ir.(v), wheren is the total number of vertices in
the input graphG. Becausey/a-dominance is a relaxed condition
of exact (i.e.,1-) dominance, this modification leads to faster query
processing. However, for a large grapifx is very close td even

°Note that, similar to the Dijkstra’s algorithm, it sufficesgtore in
H only the length, cost and the last two vertices for each fFath.
ease of presentation we assufieontains full paths.

spectively. Meanwhile, most recently, Sedeno et al. [26ppse
several pruning strategies to improve the efficiency:afhortest
path search, and is shown to outperform the existirghortest
pathsolutions. However, it does not compare with 8le/-Dijkso-
lution. In our experiment, we include Sedeno et al.’s solu{27]
as one of our competitors.

Regarding «-CSP, Hansen [18] proposes the first solution,
which runs in polynomial time but has a high complexity:

O(m? n? "_). Lorenz and Raz. [24] improve the complex-

a—1 a—1
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Figure 2: A partition 7 = {G1,G2,G3} of G in Figure 1 and
the corresponding overlay graphG°.

ity to O(nm - (loglog 7222 + —L7)). However, this solution is
orders of magnitude slower than an exact CSP algorithm based
k-shortest pathas shown in [23]. Later on, Tsaggouris et al. [31]
proposeCP-Dijk based on the conservative pruning technique, i.e.,
the current state-of-the-art fa-CSP as described in Section 2.2.
Delling et al. [9] study a related query, which returns the en
tire set of skyline paths between two given vertices. Thalint®on
creates shortcuts similarly &SP-CH[30], and can be adapted
to answer CSP queries. However, this method is not scalable t
large graphs, as shown in [12,30]. In order to reach an aabkpt
processing time, [9] proposes to modify the problem setbiynge-
laxing the definition of dominance. However, with this redtian,
the method can no longer be used to answer CSRP@SP queries.
Another related query type is to find the shortest path in $eoin

a weighted sum of edge costs [11, 14]. These methods, however

cannot be used to answer CSR.eCSP queries.

Finally, we briefly review classic shortest path and distanc
queries. One notable class of solutions [8, 20, 22] emplaplyr
partitioning, as in the proposed meth6DLA The representative
is MLD [8], which combines partitioning and contraction tae
chy to improve query efficiencyYu et al. [34] proposeCl-Rank
which first identifies a number of star vertices, and thendsudn
overlay graph on these star vertices. The proposed meZkudA
differs from CI-Rankin two major aspects. First, in terms of data
structure, the overlay graph @OLA correspond to skyline paths,
rather than simple shortest paths ainRRank Second, in terms
of algorithm,COLAbuilds an additional index structure on top of
overlay graph, whereaSl-Rankprocesses the query directly us-
ing the overlay graphAnother important indexing technique 2s
hop labelling (2HL)[6]. The state-of-the-ar2HL algorithms pre-
compute an order of vertices in the graph, and construiha
index based on this order, e.g., [4,7,33]. None of these odsth
applies to CSP ot-CSP. Hence, we omit further discussions on
classic shortest path processing for brevity, and we ragereader
to a recent survey [5].

3. COLA FRAMEWORK

This section presents the general framework of our propssed
lution constrained labeling (COLAYhe implementation of several
important components i€OLA s described in Section 4. Basi-
cally, COLApartitions the road network and constructsoaerlay
graphon top of the partitions. The index structureG®LAIs then
built on the overlay graph, whose size is much smaller than th
original graph, leading to much less query processing ctsthe
following, Section 3.1 describes the overlay graph; Sec3@ ex-
plains the index structure &OLA; Section 3.3 elaborates on query
processing based on tBOLAIndex; Section 3.4 presents several
sophisticated optimizations that significantly reducerguests.

3.1 Overlay Graph

Given an input graphy, a partitioning of G consists of a set
T = {G1,G2,--- G} of edge-disjoint subgraphs 6f, such
that the union of allG; (1 < ¢ < |T]) equalsG. GivenT, we
say that a vertex is aboundary vertexif v appears in more than
one subgraphs ifi. Graph partitioning is a well-studied problem,
andCOLAcould use any of the existing solutions, e.g., [8, 20, 22].
In our implementation, we use a state-of-the-art approachoad
networks by Delling et al. [8].

We formally define an overlay graph as follows.

DEFINITION 3 (OVERLAY GRAPH). Given an input graph
G, a partitioning7 of G, and the query approximation ratio®, a
graphG° = (V°, E°) is an overlay graph o7 with respect to7,
if it satisfies the following three conditions:

1. V° consists of all boundary vertices with respecftp

2. For each edge® € E° that starts at vertex and ends at
vertexv’ , there exists a pat in G that goes fromv to v/,
such thate(P) = ¢(e®) and{(P) = £(e°);

3. For any pair of origin and destination verticast € G°, and
any pathP in G from s to ¢, there exists a patl° in G° that
goes froms to ¢ that a-dominatesP, i.e.,¢(P°) < ¢(P) and
L(P°) < a-UP). 0

Intuitively, an overlay graph compresses the input graplfipy
including only the boundary vertices of the partitions aathov-
ing all other vertices, (ii) using edges to represent paihs,iand
(i) reducing the number of edges by removing paths thatoare
dominated by others. Note that the above definition doeseot r
quire the overlay graph to be minimal, i.e., for the same ly@p
and partitioning7, there may be another possible overlay graph
with fewer edges. Hence, there can be different ways to tanild
overlay graph, and we explain one such algorithm later irtiGec
4.2. Besides, for any two verticesandv’ in the overlay grapld:°,
there can be multiple edges fromto v’, when there are multiple
paths fromw to v’ in G.

ExampPLE 3. Consider the input grapfi in Figure 1. Figures
2(a), (b), and (c) show three subgrajghs G2 andG's of G respec-
tively. Clearly,7 = {G1, G2, Gs} is a partitioning ofG, since (i)
the set of edges of each subgraph is disjoint with the othler su
graphs, and (ii) the union of edges @y, G> and G5 constitutes
the set of edges aff. Meanwhile,v, v3, andvs are the boundary
vertices w.r.t.7, since they appear in more than one subgraphs.

Assume thatx = 1.1, Figure 2(d) shows an overlay gragi
w.r.t. 7. The set of vertices of7° is V° = {v2,v3,vs}, which
consists of the boundary verticesBf Observe that there is exactly
one path fromy, to vs, i.e. ((v2,v3)); henceG° contains an edge
e7 = (v2,v3) with length¢(e7) = 1 and cost(e7) = 3. Similarly,
there is exactly one path fromy to vs; thus,G° also includes an
edgee; = (vs,vs) with £(e3) = 1 andc(e3) = 3. Fromu; to vs
there are three pathg? = ((v2, v3), (v3,vs5)), P2 = ((v2,vs)),
and P; = ((v2,v4), (va,vs5)). Note thatP, a-dominatesPs, and
the two edges in patl; already exist inG°. Hence,G° only
includes one edge; from v, to vs with lengthé(e3) = £(P) = 4
and coste(e3) = c(P2) = 4. O

Since the overlay graph can be pre-computed and has a smaller
size than the original graph, it can be used as a low-coskitale
acceleratex-CSP processing, as follows. Given arCSP query
g on G with an origins, a destinatiort, and a cost thresholé,
we first identify the subgraph&s andG: in T that contains and
t, respectively. Then, we construct graphi (which we call an

3Note that the overlay graph and tB®LAindex both require the
knowledge ofa, which we consider as a system parameter. The
choice ofa is discussed further in Section 6.4.



extended graphby mergingG,, G¢ andG°, i.e.,G? = (V. UV, U
V° EsUE;UE?), whereV; (resp.E;) andV; (resp.E;) are the
vertex (resp. edge) sets 6f; and G, respectively. After that, we
run ana-CSP algorithm orG?; its result corresponds to a result
for the originala~-CSP query, according to the following lemfna

LEMMA 1. LetP,,: be aresult of a CSP query on gra@with
origin s, destinatiort, and cost constrairit. Meanwhile, letG, =
(Vs, Es), G¢ = (V4, Ey) be the subgraphs in a partitionifig that
containss andt, respectively. Then, any resuftof ana-CSP with
parameters;, t, a on the extended grapf? (VsuVzuve,
E, U E, U E°) satisfiese(P) < § and{(P) < a - £(Popt). O

To translate am-CSP onG“? to ana-CSP onG, we “unfold”
each edge ifE° into a path inG, which is done according to Con-
dition 2 in Definition 3. Becausé&'? can be viewed as a compressed
version ofG with significantly fewer vertices and edges, searching
for an a-CSP onG“ is expected to be faster than doing so@n
On the other hand, the speedup using an overlay graph istmit
since the query processing algorithm is the same, albeisamedier
graph. Next we introduce a much more powerful index striectur

3.2 Constrained Labeling Index

The mainCOLAindex is constructed on the overlay gragh =
(V°,E°) described in the previous subsection. For each vertex
v° € G°, the index contains two label sets fot: anin-label set
B, (v°) and anout-label setB,.+(v°). Each entry inBou:(v°)
corresponds to a patfirom v° to another vertex i:°. Symmetri-
cally, each label il3;,, (v) corresponds to a path from another ver-
texinG° tov°. The paths in the label sets are carefully chosen such
that given any pair of origin and destination vertic8st® € G°,
and a cost constraimt, we can construct the-CSP froms® to ¢°
subject tdd using only the paths if3,.+(s°) and B;» (t°). In other
words, with theCOLA index we do not need to search for the
CSP result; instead, we simply combine pre-computed pattigei
label sets to form a result.

Formally, we define th€ OLAindex as follows.

DEFINITION4 (COLAINDEX). Given an overlay graple°,
a COLA index contains label set8;, (v°) and B,.+(v°) for each
vertexv® € G° satisfying the following conditions:

1. Each entry inB;,(v°) corresponds to a path from another
vertex inG° to v°;

Each entry inB,.:(v°) corresponds to a path from° to an-
other vertex inG°;

. For any pathP between any two vertices’,;t° € V° (P
may contain vertices i \ V°), the COLA index contains
both an out-label inB,.:(s°) with costc, and length?, and
an in-label in B;, (t°) with coste; and length?; such that
Co+ ¢ < c(P)andly +4; < o - L(P). 0

Condition 3 in the above definition indicates that for any path

P connecting two vertices® and¢° in the overlay graph, we can

derive another patl®’ by concatenating two pattd, and P; from

the out-label set 0§° and in-label set of° respectively, such that

P’ a-dominatesP. Therefore, according to the definition of

CSP (Definition 1) andv--dominance (Definition 2), we can obtain

ana-CSP result betwees” andt® by joining the paths from their

label sets, without searching for the result from scratch.

2.

“We include all proofs in Appendix.

SNote that, similar taSky-Dijkand CP-Dijk, it suffices to store the
important path parameters such as its length, cost andiaster-
tices, instead of the entire path. These details are claiiifi&Sec-
tion 5.2; for now, we assume that each entry in a label set &la p
for simplicity.

EXAMPLE 4. Consider the overlay gragh® in Example 3 with
a = 1.1. Let P = ((v2,v3)) , Py ((vs, vs)), and P3
((v2,vs5)). Let P/, P;, andP; be three trivial paths that go from
to va, vs t0 v3, anduvs to vs, with zero cost / length, respectively.

Then Boui(v2) = {Pr, Pi}, Bin(v2) = {Pi}, Bout(vs) =
{Ps}, Bin(vs) = {Ps}, Bout(vs) = {Ps}, and Bi,(vs)
{Ps, Ps5, P;} constitute an instanc€ of COLA index. To ex-
plain, clearly, £ satisfies Conditions 1 and 2 in Definition 4. It
remains to verify thatC satisfies Condition 3. Note that in the
input graphG, there are five paths concerning node<ih, i.e.,
Py = ((v2,v4), (va,05)), P2 = ((v2,v3)), Ps = ((vs,vs)),
Py = ((v2,v5)), andPs = ((v2,v3), (vs,vs)). Consider the first
path P, = ((vz, v4), (v4,vs)) with coste; = 6 and¢; = 5. Py in
Bout(v2) and Py in By (vs) satisfy thate(Pr) + ¢(Ps) < ¢(P1)
and{(Pr) + £(P5) < « - £(Py). Similarly, we can verify that’
also fulfills Condition 3 for the other four paths. O

One may wonder why we need both an in-label set and an out-
label set, instead of just one of them. For example, givenila pa
of origin and destination vertices’ and ¢°, if the out-label set
Bout(s°) of s° contains a path that ends &t and satisfies the
cost constraint, we could simply return this path as¢h€SP re-
sult, without checking the in-labels 6f. The problem with having
only out- (or in-) labels is that we must store for each vettex
complete set of labels containing skyline paths to (or frengry
other vertex inG°, leading to a prohibitively large index size. In
contrast, by using both in-labels and out-labels, eacH Edieonly
contains path to (or from) a selected subset of verticedjigao
a significantly reduced index size. This is akin to databasmal-
ization, where storing two separate base tables consuisespace
than their join results.

3.3 Query Processing

This subsection clarifies the processing ofta@SP query with
a pair of origin and destination verticest € G and a cost con-
straintf, using the overlay graph and tRE®LAiIndex described in
previous subsections. Note that if batandt belong to the overlay
graphG*°, we can simply joinB..:(s) and B; (t), and select the
a-CSP result by concatenating a path frdsg.:(s) and another
from B;, (t), according to Conditior3 in Definition 4. However,
eithers or ¢ may not appear in the overlay graph, wheredh€SP
queries withs andt cannot be answered purely by tBOLAiIndex
which is built on the overlay graph. Note that we could bufid t
COLAindex on the original graplds instead of the overly graph
G°. Nevertheless, doing so may lead to a prohibitively largein
size, since? is far larger tharG°.

The main idea ofCOLA query processing is to buil@,.+(s)
and B;, (t) during query time, using th€OLA index as well as
subgraphsss, G € T containings andt, respectively. In partic-
ular, Bout(s) and By, (t) must satisfy that the.-CSP result can be
obtained by concatenating a path frdsg.:(s) and another from
B;x (t). Formally, for any pathP betweens and¢, there must exist
pathsP, and P; in Bou:(s) and By, (t) respectively, such that the
concatenation o, and P; a-dominatesP. Given this property,
the a-CSP result can be obtained by joinifi}.(s) and By (t)
similarly as the case whenandt are boundary vertices.

The main challenge thus lies in the computatiorBaf. (s) and
Bin(t). We first focus on the former, initialized to empty. @&t
T be the sub-graph containing We perform a Dijkstra-like search
from vertexs to every boundary vertex affs. This can be done,
for example, using a slightly modified version (i.e., with Itiple
destinations) of th€P-Dijk algorithm described in Section 2.2. In
our implementation, we use a novel algorithwDijk, detailed in
Section 4, which is significantly more efficient th@®-Dijk. After



Algorithm 1: COLA Algorithm 2: LabelJoin

input : s,t,0, o, G, G°, Bout(s), and By, (t) input : 0, o, Bout(s), and By, (t)
output: A path for thea-CSP query with the origig, the destination output: An a-CSPP* with a cost not larger thaf from s to ¢
t, and cost threshold on G

1 Sort paths inBo.¢ () firstly in ascending order of end vertex 1D, and

1 Initialize both Bout(s) and By, (t) to empty; secondly in ascending order of cost (which is also descgnatider of
2 Perform a Dijkstra search fromwithin its partition G to obtain the length);
set of skyline pathd.(v°) from s to each of the boundary vertex in 2 Sort paths inB;, (t) firstly in ascending order of end vertex ID, and
Gs; secondly in ascending order of length (which is also desognarder
3 for each boundary vertex° € G5 N G° do of cost);
4 Join L(v°) and Bowt (v°); / | optimized in Section 3.4 3 Initialize a-CSP resultP* to empty;
5 for eachjoined pathP from s to w° € G° do 4 repeat
6 if ¢(P)> 0or P isa-dominated by a path if3.¢(s) to 5 Scan bothB,«:(s) and By, (t) simultaneously, until reaching a
w® then matching pairP, € Bout(s) andP; € Boyt(t);
7 |_ DiscardP; 6 while P, matchesr;, i.e., P, ends at the origin vertex d?; do
3 else 7 if ¢(Po) +c(P;) > 0then
9 Add P t0 Bout(s); 8 | SetP; to the next entry iBoyt(s);
10 Delete all paths iB,w¢(s) from s to w® that are 9 else
a-dominated byP; 10 UpdateP* to the concatenation d?, and P; if the
L combination ofP, and P; has length smaller thaR*;
11 ComputeB;, (t) similarly as Line2-9 (see Section 3.3); 11 SetF, to next entry inBip, (¢);
12 Join Bout (s) and By, (t); /| optimized in Section 3.4 . ) .
13 return the a-SCPs from the above join result; 12 until reaching the end of eitheBou¢ (s) or Bin (1);

13 return P*,

we finish the Dijkstra search, we extract the set of skylinthpa

(c.f. Section 2.1).(v°) for each boundary vertex’ € G, N G°. First we optimize the join betweefou:(s) ar_1d Bin(t), WhiCh
Then, we jOINL (v°) With Bou: (v°) and add the results Bou: (s). produces the:-CSP result based on the following observation.
Specifically, for each patk; in L(v°) from s to v°, and each path OBSERVATION 1. Let P, and P; be two arbitrary paths in
P, in By (v°) from v° to another boundary vertex (say,’ € Boui(s) andB;y,, (t) respectively that can be joined, i.€, ends at
G°), we concatenaté; and P into a pathP from s to w°, and the starting vertex of;. We have the following:

insert P to Bou:(s) if the latter does not contain a path that
dominatesP. After that, we purge fronB,..(s) all paths froms
to w® that area-dominated byP. The computation foB;,, (t) is
symmetric and omitted for brevity. Algorithm 1 summarizés t

1. Ife(P,)+c(P;) > 6, thenjoiningP, (resp.P;) with any path
in B;n () (resp. Bout(s)) with cost higher tharP; (resp. P,)
cannot lead to an-CSP result;

; ; 2. If ¢(P,) + ¢(P;) < 0, then joining P, (resp. F;) with any

COLAquery processing algorithm.
queryp 'ng aigor path in B;»(t) (resp. Bout(s)) with length longer thanP;
EXAMPLE 5. Consider the overlay graph in Example 3, and the (resp.P,) can be discarded. O

COLA index £ in Example 4 withae = 1.1. Given ana-CSP
query fromuv; to vs with cost threshold = 7, COLAfirst checks
whetherv; andvs are boundary vertices. Sinag is a bound-
ary vertex, the method directly obtaid,, (vs) = {Ps, P5, Ps}.
On the other hand, sinag is not a boundary vertex, its out-label
set Bout(v1) needs to be computed on the fly. To do ttGHLA
initiates a Dijkstra-like search from;, and computes the set of
skyline paths fromv; to the boundary nodes afi’s subgraph. In
particular, it retrieves the skyline set from to vs, which con-
tains only Pi = ((vi,v2)). Then, it joins the skyline set with
Bout(v2), and adds the joined paths inf8..:(v1) if they are
not a-dominated by any path ii,.:(v1). After that, we have
Bout(v1) = {P1, P» - P}, whereP; - P{ denotes the concatena-

Based on the above observation, we accelerate the join be-
tween Bo.+(s) and B;, (t) through a careful ordering of the la-
bels. SpecificallyCOLAsorts paths iB..:(s) by the IDs of their
end vertices, breaking ties by total cost (in ascendingrprdéote
that Bo.:(s) is a skyline set, meaning that paths with the same end
vertex are also automatically sorted in descending ordeheif
lengths (otherwise one path would dominate another). Siiyjl
COLA sorts paths imB;, (t) firstly by the IDs of their origin ver-
tices, and secondly in ascending of their lengths / desngnaoli-
der of their costs. With such ordering, we propose a noved-alg
rithm LabelJoin(as shown in Algorithm 2), which join®,.:(s)
andB;, (t) with alinear scan of each set

tion of P, and Py. LEMMA 2. Algorithm 2 correctly computes the-CSP result
Similarly, COLA retrieves the skyline set from; to v3, and from Bout(s) and By () in linear time. O

joins paths in the skyline set witli,.:(v3). These paths are

Py, = ((v1,v3)) and P3 = ((v1,v2), (v2,v3)). Note thatPs is ExXamMPLE 6. Consider armv-CSP query froms to ¢ with o =

identical toP; - P{. Hence,Ps is not added taB,.:(v1), which 1.1 and cost threshold = 13. Assume thaB,.(s) = {P1, P2}
ends up WithB,:(v1) = {P1, P1 - P{, P»}. By joining Bou:(v1) where bothP; and P, end atw, with ¢(P1) = 4, {(P,) = T,
and B, (vs), COLAretrieves a skyline set for all paths fram to c(P2) = 7, and{(P2) = 4; Bin(t) = {Ps, P1, P5} where all
vs. Finally, it inspects the results, unfolds edgesih whenever three paths start av, with ¢(P3) = 7, £(Ps) = 5, ¢(P1) = 6,
necessary, and returns path= ((v1,vs), (v2, v3), (vs,vs)). O ((Py) = 6, c(Ps) = 5, and/(Ps) = 7. Clearly, Bou:(s) (resp.
B;xn (t) ) is sorted in ascending (resp. descending) order of cost.

The query processing algorithm described so far contairesae By Algorithm 2, we first checkP; and Ps, to see if the con-
nested-loop join operations, which can be rather expefisivarge catenated patt?”’ = P, - P; satisfies the cost constraint. As
label / skyline sets. Next we present effective optimizagithat c(P') = 11 < 0 = 13 and P* is empty, the found shortest path
reduce the cost of such joins. under cost constraint is hence updated®o = P’. Afterwards,

the LabelJoinalgorithm proceeds to the next path in Bou:(s),
and concatenate it witls. Here, P; is not further concatenated

3.4 Optimizations



with P, and Ps due to Observation 1.2, i.e., concatenatifgwith
P, or P5 produces a path with a larger length thiah
Consider the concatenated p@&h= P» - P;. Note that the cost

of P/ exceeds the cost threshold, and Algorithm 2 proceeds to the

next path, i.e.Py, in B;,(t). ConsiderP; = P> - P;. The cost of
Py is 13, which satisfies the cost constraint, and the lengtR:ois
10, smaller thar”*. HenceP* is updated taP;. Since there is no
more path inB,.:(s), the LabelJoinalgorithm stops checking the
labels and return®* as the result. O

Next, we focus on the join between a skyline $€v°) and a
label setBou:(v°) in the COLA index (Line 4 of Algorithm 1).
The case for joinind.(v°) with B;, (v°) is symmetric and omitted
for brevity. The basic idea for the optimization is not to qarte
the complete join results, but only those results that cassipty
lead to ama-CSP result. Specifically, we avoid generating certain
join results based on the following observation.

OBSERVATION 2. Let P be a path frons to w° from the join
result of L(v°) and B, (v°). P cannot possibly lead to anCSP
result, if any of the following is true.

1. w° cannot possibly reachon the input grapldx;
2. The minimum cost for any path from"® to ¢ exceed$—c(P);

3. There exists a patl®’ from s to ¢ satisfying the cost con-
straint, such that the minimum length of any path frafmto
t exceedd(P’)/a — £(P). 0

According to the above observation, before performing ainy |
operation, we first select a set of end vertigBdor the join results
that can possibly lead to amCSP result, which is incrementally
pruned using Observation 2. Then, we filter ®@@LAindex, and
use only the labels that reach a vertexiin Algorithm 3 shows
the algorithm for computingV. Filtering theCOLAindex before
joining it with the skyline sets can be understood as usingnai-s
join to improve join performance in database systems. Nutethe

Algorithm 3: PruneLabel

input : s,t,0,a, L, Bout, andB;,,
output: By and B;,, with labels filtered

1 Initialize vertex set? with all boundary vertices reachable from both
s andt, according taBow¢(s) and By, (t);  //Pruning condition 1
for each vertexw in W do

for each vertexv® in G do

L Compute the minimum cosgf from s to v® in L(v°);

Compute the minimum cogb from v° to w in Boyt (v°);
Setes(w) = ¢1 + c2;

2
3
4
5
6
7 Computec; (w) similarly as Lines3-6;

8 if cs(w) + ct(w) > 0 then

9 |_ Removew from W, /I Pruning condition 2

10 Initialize £ynqz t0 —o0;
1 for eachvertexw in W do
12 for each boundary vertex° in G5 do
13 \; Compute the max length},, ... from s to v° in L(v°), and

1ax

the max lengtht2, ... from v° from w in Boyt(v°);

1axr
Setl]q.(w) = Z}naw + Z?naw;
15 Computer?, ... (w) similarly as Linesl2-14;

16 Updatelp,az if €5, 4, (W) + £, 00 (W) > bmag;

17 for eachvertexw in W do

18 Compute minimum length&’ . (w) andét . (w) similarly as
Lines12-14;

19 if 25 ., (w)+ £ . (w) > lmas then

20 |_ Removew from W, /I Pruning condition 3

21 Filter Byt (resp.B;y) by removing paths that do not end (resp.
originate) at a vertex ifV;
22 return Boy: andB;,;

power to vertices that are associated with a large numbeatbp
and does not allocate pruning power at all to vertices wittikely
few paths. In a real road network, there are usually a smatlau
of landmark vertices that appear frequently in CSPs, wréak to

COLAindex is constructed before we know the query parameters, @ccumulate a large number of paths. As a result, concemgrtte

hence, it usually contains a large number of labels not ricéate
answering the query at hand.

Algorithm 3 shows the pseudo-code for computidg W is
initialized with all boundary vertices reachable from bethndt.
Then, we prune those vertices that cannot lead to a path from
to ¢ within cost threshold. After that, the algorithm computes an
upper bound for the length of a path franto ¢, and uses it to prune
more vertices ifV based on the third condition in Observation 2.

4. o-DIIK

Recall that our query processing involves computing théirsiy
paths to (resp. from) the boundary vertex from the origineses
(resp. to the destinatiot). In this section, we present an efficient
algorithma-Dijk to accelerate this process. Apart from thisDijk
has three other main uses: (i) for intra-partition searainduquery
processing irCOLA, (ii) for building the COLAindex, and (iii) as

a standalone index-free solution f@fCSP.
Similar toCP-Dijk (refer to Section 2.2)y-Dijk is based orsky-

Dijk with enhanced pruning based on the relaxedominance def-
inition. On the other hand, the pruning strategyaeDijk is rad-
ically different from that inCP-Dijk. The intuition is as follows.
Imagine that we have a total “budget” for pruning along a ptta
higher the budget allocated to a vertex, the stronger pgupawer
itis allowed to apply to reduce the size of its set of assedigiaths.

pruning power to such vertices leads to effective reductibthe
total number of paths to be examined, and thus, acceleragsy q
processing.

Formally, «-Dijk applies a;-dominance to prune entries in
L(v;), where the values of; € [1, «] depends orn;. In other
words, the amount of pruning applied in eatlw;) is adaptive
rather than fixed as i€P-Dijk. Let P,,; be the CSP from an origin
vertex s to a destination vertek under a cost threshol@l Let &
be the number of edges i%,,¢, £; (i € [1, k]) be the length of the
i-th edge inP,,:, andv; be the vertex that theth edge points to.
By adoptinga;-dominance into the construction afv; ), a-Dijk
always returns a patR from s to ¢, such that(P) < 6 and

k k k k
(P) S£1Hai+£2Hai+€3Hai+--~+€kHai
i=1 =2 i=3 i=k

Therefore,P can be am-CSP if eachy; is carefully selected to
ensure that
k

k k
> <4j 'Haz) < Z(fj “a). @

j=1

CP-Dijk simply distributes this budget equally to each vertex on the A straightforward approach to enforce Inequality (1) is &t s

path. Since there can be a large number of vertices on a @ath, e
of them only receives little pruning power, leading to ieetive
pruning everywhere. In contrast;Dijk concentrates the pruning

o = an (as in the case ofEP-Dijk), but it leads to ineffective
pruning in each.(v;), as we discuss in Section 2.2. One may won-
der whether we can apply pruning everywhere, i.e., maxirgige



punning power. The following example shows that pruninggve Algorithm 4: a-Dijk
where may cause problems.

input : An a-CSP query orty with an origins, a destinatiort, and a
. o . cost threshold
EXAMPLE 7. Given the graphG in Figure 1, consider an- output: An answerP to thea-CSP query

CSP query with origin, destinqtioms, ,COSt constraing = 7’, 1 Calculate the minimum-length paffy (v) and minimum-cost path
anda = 1.35. Assume that--dominance is used to do the pruning P.(v) from s to each vertexw;

during the traversal. . 2 Let¢t(v) and¢ T (v) be the length o, (v) Pe(v), respectively;
Similar to Sky-Dijk it first adds pathPy = {(v1, v2} (with ¢; = 3 Creates a min-heafl with entries in the form P, 7), sorted in
1, ¢4, = 2) to L(UQ), P, = {(1;171;3)} (with c2 = 4, 2 = 3) ascending order of path costs, breaking ties with path hengt

IN

Create an entry list.(v) for each vertew in G;

Insert an entry P = (s), 7 = 0) into H;

while H is not emptydo

Pop the top entry = (P, ) in H;

Let (P’, 7'} be the entry inL(v) with the largest cost;

to L(vz), and then pushes these two paths into hBapNext P
is popped fromH, andPs = {(v1, v2), (v2,v3)} ((with ¢s = 4,
43 = 3)) y Py = {(1)1,1)2),(1)2,1)4)} (Wlth cqa = b, by = 4),
P = {(’01,’02)7 (1)2,1)5)} (Wlth cs = b, U5 = 6) are extended

O W ~NO O,

fromPi. Asco =3 <c3=4andl; =4 < «-¥3 =1.35x 3, if 7/ < 7 then
Ps is a-dominated byP, that is stored in.(vs). Then by applying 1 | continug; /1 pis pruned
the greedy pruning strategy is omitted and is not added infd. 11 Insertp into L(v);
Py ar\]n((jjl?s are added intd.(v4) and L(vs), respectively, and are if v # s and|L(v)| > log,, ﬁIEZ; then
pu:le?(t I]I;tdﬁ - . : 13 |_ Modify p to setr = max{¢/a, £+ (v)};
, P> has the minimum cost it7, and is popped fron# .
Ps = {(v1,v3), (vs,vs)} (With ¢s = 6 andfs = 5) is then ex- ~ 14 | foreachoutgoing edge = (v, ') of v do
tended fromP,. Meanwhile, ass = 5 < ¢s and¥s = 6 < 15 Construct pattPnc., by extending with e;
a-ls = 1.35 -5, Ps can bea-dominated byPs stored inL(vs) 1 if e+ cle) < 0 then ;
andFs is d.iscard’ed. ’ - o L PushiPrew, 7+ 7(e)) into H;

When the traversal finished,(vs) ends up with onlyPs and 18 return the length-shortest path ib(t);
P; satisfies the cost constraint, so it retufs as the query re-

sult. However, the answer for the exact CSP query is path= o ) . . .
{(v1,v2), (v2,v3), (v3,v5)}, With ¢; = 7 and#> = 4. Note that H is initialized with a single entry that contains a trivialtpahat

ls =6 > a7 = 1.35 x 4, which means?- is nota-dominated contains only one vertex, and a pruning surrogate with value 0

by P, andPs is not a valida-CSP query answer 0 (Line 5). In addition,a-Dijk initializes an listL(v) of heap entries
o 7 ' for each vertex (Line 4).

After that, a-Dijk iteratively pops the top entry = (P, 7) from
H and processes it as follows. Letbe the last vertex iP. a-
Dijk first examinesl(v), and retrieves the entyy = (P, 7') in
L(v) with the largest path cost (Line 8). The algorithm guarasitee
that the cost ofP’ is smaller than that oP, since H is sorted in
ascending order of path costs. ThenDijk compares the pruning
surrogates and 7’ of the two entries, and prungsiff. 7/ < 7
(Lines 9-10). Let/(P) be the total length of” and(P’) be the

In this paper, we propose to sef = 1 for some vertices; but
oy > aw for the othersy;. That is, we give up pruning in some
entry lists, in exchange for more effective optimizatioritie other
entry lists. Intuitively, this allows us to focus our prugieffort
on the entry lists that are important for the giverCSP query to
achieve higher efficiency. To implement this idea, howeves,
have to address two crucial issues. First, on which entryligv; )

should we havey;, > an? Second, given that, ¢s, ..., ¢ are length of P/, we have:
unknown in advance, how can we appropriately selgcivithout , ,
invalidating Equation (1)? In the following, we clarify theissues (P)<a- -7 <a-1m<a-lP),

by elaborating the details of our-Dijk algorithm. Algorithm 4
shows the pseudo-code @fDijk. Given ana-CSP query with an
origin vertexs, a destination vertekx and a cost thresholt] a-Dijk
first invokes the vanilla Dijkstra’s algorithm to computey each
vertexv, the minimum-length patt?;(v) and the minimum-cost
path, i.e., the path with the minimum cost (ties broken bylena
length), P.(v) from s to v (Line 1). Then it records the length of
Py(v) and P.(v) asf*(v) and(" (v) (Line 2), respectively. Note
that - (v) and¢" (v) are lower- and upper- bounds on the total
path length, respectivelifo explain why/ T (v) is an upper-bound,
consider a pathP’ that has length larger thatl (v). Clearly, P’
can bea-dominated byP.(v). Therefore, we can keep onl.(v)
and discard all paths with length larger th&n(v), meaning that
its length? " (v) is the upper bound for total path length.

Next, a-Dijk creates a min-heafl of skyline paths sorted on
path costs similarly as iSky-Dijkand CP-Dijk, except that im-
Dijk each heap entry = (P, 7) contains both a patl and an
additionalpruning surrogater € [¢/«, ¢] that facilitates adaptive
allocation of the “pruning budget” as mentioned eaflieFhe heap

which means thaP’ a-dominatesP (note that the former also has
a lower cost explained above). One may wonder why we prune
based on surrogates rather than the path lengths. The risabai
the surrogates andr’ control the amount of pruning at vertex
To see this, if we set’ = ¢'/a andT = ¢, thenP’ can pruneP
whenever the formeni-dominates the latter, which indicates that
we use the maximum pruning powerat Conversely, when’ >
¢ /o or T < {, pruning atv is not performed with full power,
i.e., it is possible thaf’ is not pruned even i’ a-dominatesP.
Note thatpruning with full power everywhere leads to incorrect
results as shown in Example 7. Meanwhilauning with the same
power everywhere is inefficieras explained at the beginning of
this subsection. The use of surrogates enabtizptive pruning
the key idea ofv-Dijk.

It remains to clarify hown-Dijk computes the surrogate values.
This is done in Lines 12-13. In particular, 4f passes pruning, it
is inserted intoL(v). At this point, the algorithm adjusts its sur-

rogater based on the following heuristic: if the number of entries
T
- [L(v)] > log, {14, thena-Dijk setst = max{¢/a, £*(v)},

To conserve memory, in our implementation instead of a fathp ~ \hich grantsy the maximum pruning power (Line 13). Otherwise,
P each entry only stores its lengthcostc, last vertexv and the a-Dijk setsr = ¢, minimizing the pruning capability g5. To ex-
vertexvy,,.q beforev. The full path can be reconstructed by using - T (o) |
v andv,,.q. Details can be found in Section 5.2. plain, observe thadbg,, 77 is an upper bound gf.(v)| when we




apply e-dominance in the construction @f(v). Intuitively, if the
size of the currenL(v) exceeds this upper bound, then applying
aggressive pruning ifi(v) is likely to reduce/L(v)| and help im-
prove query efficiency. On the other hand}fifv)| < log,, ﬁigg
then pruning entries ith.(v) tends to be ineffective, in which case
it is more preferable to omit pruning if(v) in order to enable
aggressive pruning at other vertices.

After that, for an entry that is not pruned, the algorithmtaaures
to extend the corresponding path by adding one more edge=
(v,v") (Lines 14-15). If the resulting patR,.., satisfies the cost
constraint,a-Dijk creates a new entry and inserts it it The
surrogate value foP,.,, is computed by adding and theedge
surrogate value-(e) (Line 17), obtained as follows. If edges an
original edge in the input graph, thette) is simply the length of
e. Otherwise, i.e.¢ is added during the construction of the overlay
graph which corresponds to a path in the original grafh) is the
surrogate value corresponding to that path, as we claritygmext
subsection. Finally, afteFl depletesn-Dijk retrieves the entry in
L(t) with the smallest length, and returns the correspondin pat
as the the answer to the CSP query.

We demonstrate how-Dijk works with the following example.

ExAMPLE 8. Consider amx-CSP query on grapli? in Fig-
ure 1, with originv, destinationus, cost constrain = 7, and
« = 1.35. First,a-Dijk computeg* (v) and¢ " (v) for all vertices
in G, and obtaing™ (vo) = £ (v2) = 2,0 (v3) = 3,0 (v3) = 4,
KJ' (U4) = [r (U4) =4, andél (U5) =4, [r (U5) ="T.

a-Dijk initializes heapH with a single entrypy = (Fo,0),
where Py, = (v1). Then, two paths?1 = ((vi,v2)) (a1 = 1,
61 = 2)and P> = ((v1,v3)) (c2 = 3, {2 = 4) are extended
from Py. Hence, the algorithm inserts infd entries(P;, 71 = 2)
and (P>, 72 = 3). Next, p1 = (Pi,n = 2) is popped from
H. As L(v2) is empty,p; is inserted intaL(v2). Meanwhile, as

|L(v2)| > log, ﬁgzz; = log, 35 2, a-Dijk setsr; = 2.
Afterwards, P; = <(1117112)7 (U27U3)> (03 = 4, {3 = 3),
P4 <(v1, vg), ('UQ, v4)) (C4 5, 44 4), and P5
((v1,v2), (v2,vs5)) (c5 = 5, {5 = 6) are extended fronP;. As
aresult, three entriegds, 73 = 3), (Ps, 74 = 4), @and(Ps, 75 = 6)

are pushed intd7.
(P2, 12) is popped fromH, and is in-

After that, ps
serted intoL(vs). As |L(vs)] > log, ﬁégz; T is set to

max{lz/onL(vg)}, which is 3. Then, pathtPs = ((v1,v3),
(vs,vs)) (c6 = 6,06 = 5) is extended fromP, and an entry
(Ps, 76 = 4) is pushed intd.

Subsequentlyps = (Ps3,73) is popped fromH. Notice that
L(v2) contains an entry pertinent to path, andr, < 73. There-
fore, Ps is pruned. Afterwardsps = (P4, 74) andps = (Ps, 75)
are popped fron¥, andps and ps are inserted intd.(v4) and

L(vs), respectively. SincéL(vs)| > log,, ﬁégi; 74 is set to 4.
Similarly, 75 is set tomax{¢s/a, 4} = 4.44. For pathP;, a path
P7 = <(U1,1)2), (1)2,1)4), (1)4,1)5)) (67 = 7,47 = 7) is extended
from it, and an entry P;, 7 = 7) is pushed intd.

Next, ps = (Ps, Ts) Is popped fromH, and is compared with
the only entry inL(vs). Notice thatrs = 4 < 75 = 4.4, which
means that the entry cannot be pruned. Heiifg, 6) is added
into L(vs). Then, it updatess to max{fs/c, £ (vs)} = 4. Fi-
nally, P7 is pruned as; > 75. Thus,a-Dijk returnsPs with cost
ce = 6, lengthls = 5 as thew-CSP query answer. O

Theoretical Analysis. The following theorem establishes the cor-
rectness ofv-Dijk.

Algorithm 5: Overlay Graph Construction

input : A partiton 7 = {G1,Ga,...,Gi} of G
output: An overlay graphG°® = (V°, E°) of G

Let E° = (), andV° be the set of boundary vertices definedBy
for each subgraphG; € T do
for each boundary vertex° in G; do
Feedv® andG; as input to the single-souree Dijk, which
outputs an entry lisL(v) for each vertex in Gj;
for each boundary vertex in G; do
LetS = 0;
for eachentryp in L(v) in ascending order of(p) do
Let p’ be the last entry inserted int;
if S'is empty orl(p’) > a - T(p) then
| Insertpinto S;

else
12 L 7(p") = min{r(p"), 7(p)};
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fo_r eachentrypin S do
Insert an edge® = (v°,v)) into E°, with
| cle®) = c(p), £(e®) = £(p), andr(e°) = 7(p);

return G° = (Ve,E°);
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THEOREM 1. For each vertew, let L(v) be the entry list ob
whena-Dijk terminates. Then, for any patR from s to v with a
cost smaller thard, there exists an entry in L(v) with a cost at
mostc(P’) and a length at most - £(P"). O

Next, we discuss the time complexity of oarDijk algorithm.
For each vertex, the number of stored entries Ir(v) is bounded
by /... - n. When adding labels for outgoing edges of each vertex
v, itincurs at mostl, - £ma. - 1 labels, wherel, is the out-degree
of v. To sum up with, there are at mdst... - n - m labels added
in the whole procedure. To insert/ pép.... - n - m entries into the
heap, it require® (log(¢{ma=n)) time for each operation, ending
up With O (L - m - 1 - log(Lmae - n)) time complexity.

5. COLA IMPLEMENTATION

This section details the implementation @OLA Section 5.1
clarifies the algorithm for building the overlay graph. Sewct5.2
describes the construction of tR®LAiIndex.

5.1 Overlay Graph Construction

Given a partitioningl” = {G1, G2, ..., Gy} of G, we construct
an overlay graplz° = (V°, E°) defined in Definition 3 using-
Dijk with two minor modifications: (i) there is no cost constraint
i.e.,0 = +oo and (i) instead of a path, the algorithm returns the
entry list L(v) for every vertexv. We refer to this modified al-
gorithm assingle-sourcex-Dijk. To simplify our notations, in the
following we usec(p), I(p) andT(p) to denote the path cost, path
length and pruning surrogate of an engrg L(v), respectively.

Algorithm 5 shows the pseudo-code of our overlay graph con-
struction algorithm. Initially, the algorithm sets° to the set of all
boundary vertices defined by, and E° to empty (Line 1). After
that, it processes each subgragh(Lines 2-14). In particular, for
each boundary vertex’ in G;, it invokes the single-source-Dijk
to compute an entry lisk(v) for each vertexw in G; (Line 4). If
v is also a boundary vertex ifi;, then some of the entries i(v)
may be converted into edges betwegrandv in E° (Lines 5-14),
as follows. First, the algorithm creates a $et= () for storing
entries (Line 6). Then, it inspects the entrieslifw) in ascend-
ing order of their costs, and compares each eptwyith the last
entry p’ inserted intoS. If p’ does not exist (i.e.S is empty) or
c(p’) < e(p) orb(p’) < a - 7(p), then the algorithm inserts



into S as an entry to be converted into an edgeFin (Lines 9-
10). Otherwise, the path representedbynust bea-dominated
by p’, and hence, the algorithm omits and modifiesp’ to set
7(p') = min{r(p'),7(p)} (Lines 11-12). The change of(p’)

is important to ensure that the resulting gragh satisfies Defini-
tion 3. After all entries inL(v) are examined, the algorithm re-
trieves each entry that has been inserted i) and converts it into
an edge=° € E° with c(e®) = ¢(p) andl(e®) = £(p). In addition,
we define the surrogate valuedfasr(e®) = 7(p), which is used

in our COLA index construction, clarified in the next subsection.
Once all subgraphs iff are processed, the algorithm terminates
and returng5° = (V°, E°). We have the following theorem for
Algorithm 5.

THEOREM 2. Algorithm 5 correctly constructs an overlay
graph that satisfies Definition 3. O

5.2 Labeling Index Construction

This subsection details the construction of @@LAindex. Note
that the index structure is not unique, and there are vani@ys to
build it. In our implementation, we apply a standard techriin
the literature of2-hop labeling(e.g., [4, 7, 33]) for conventional
shortest paths, which introduces a ranking functiaf all vertices
in G°, whose values reflect the relative importance of the vestice
Then, foreach® € G°, we require that (i) each entry B, (v°) is
a pathP; originating at a vertexv that has the highest rank among
all vertices inP;, and symmetrically, (i) each entry iBo.+(v°) is
a pathP, ending at a vertexy that has the highest rank among all
vertices inP,. To reduce memory consumption, in each entry we
can substitute a full path with a tuple, ¢, [, vprcq), Wherec andi
are the cost and length of the path andndv,,.q are the last and
second-to-last vertices, respectively.

Similar to conventional 2-hop labeling, the choice of thdeur
ing plays an important role for the effectiveness of the xndé/e
follow a similar approach as in previous work [7], and wilsdiiss
the details in Section 5.3. We further define the rank of a path
follows.

DEFINITION5 (RANK OF A PATH). Let P be an arbitrary
path in G°. The rankr(P) of P is the highest rank among all
vertices inP. O

Our index construction algorithm runs in iterations. Affi@ish-
ing 7 iterations, the labels constructed i,..: and B;,, guarantee
that for any pathP from « to v (u, v € G°) whose rank is no more
thani, there exists a label entpy, € Bo.¢(u) corresponding to a
pathPi, and a label entry, € B;,(v) concerning a patt®, in G°
such thaic(pu) + c(py) < ¢(P) andf(pw) + €(py) < a - £(P).

In other words, by concatenatin and P, we find a path that
a-dominatesP.

Algorithm 6 shows the procedure for the index constructitin.
produces indices im iterations. We explain how labels iB;,
are computed, and,.: can be explained similarly. In theth
iteration, the vertex:; with r(u;) = 4 is selected. A modified
version ofa-Dijk is invoked to produce a set of label listgv) for
v € G°. The main modification is that: when deriving the lower
bound of the lengti (v) from u; to v, it requires to use the
value of a path instead of the length of the path. The mairoreas
is thatG° is a simplified version oty to capture the paths from
to v, and the minimum length patR in G might not be preserved
in G°; however, ther value of a path denotes the lower bound of
the minimum length path that it has pruned, indicatingthalue
of the minimums path is a lower bound of the length from to v.

Meanwhile, when a label entyy = (v, ¢, £, 7, vprea) iS popped
from the heapH. A dominance checking procedure is proceeded,
which checks if a path with costand lengthr will be dominated
by existing labels. In particular, it uses the labels cardéd in
the previous — 1 iterations to do a dominance checking. Specif-
ically, it checks if there exists a labpl” € Bou:(u;) and a label
p~ € Bin(v) suchthat(p™)+c(p™) < candl(p™)+£L(p™) < 7.

If the answer is yes, this label entry can be skipped in tleisait
tion without affecting the query correctness as will be piin
Lemma 3.

When thex-Dijk’s algorithm finishes, it outputs the label list into
L. For each vertex, the most simple approach is to subsequently
select the label froni(v) with the smallest cost and that cannot be
a-dominated by previous selected labels. This approachebeny
cannot efficiently help path reconstruction. In particutiven an
in-label entryp™ = (w, ¢, £, vpreq), and denote the path pertinent
to this label agP, the path reconstruction requires the knowledge of
the label pertinent to the sub-pathBfthat starts fromp,.cq to u;.

We denote this label as tloild of p~. This requirement, however,
cannot be guaranteed by the simple selection strategyddstve
adopt a more advanced approach to guarantee that, for e&ch ou
label in B,,: (resp. in-label inB;y,), its child is always inB,.:
(resp.Bin).

Observe that, in theth iteration, if a labeKw, ¢, £, 7, vpred) IS
stored inL, there must exist a labébycq, ¢, ', 7'v},..q) Stored in
L. This is due to the traversing order of a pathe#Dijk. If a path
P from u to w has been traversed, its sub-path frarto w’s pre-
decessor must also be traversed. Note that c and¢’ < ¢. By
storing the labels in descending order of the cost, withlire&en
by the length, we can guarantee that each label is orderedeiies
child. Denote the sorted label &s. This procedure is proceeded as
shown in Lines 8-9 of Algorithm 6. After that, we maintain ssha
tableT to record the child of the added labels. Besides, we record
the last pruned label concerningand denote it 88yrune(v). Note
that pprune(v) is initially set to the first label concerningin L;.
Then in order of the sorted lidt;, we inspect whether (i) the cur-
rent labelp = (w, ¢, ¢, ) satisfies that it is a child of a previous
stored label, and (ii) whether the next lalpglconcerningw satis-
fies that?(pp) < 7(pprune) - @. If both conditions are not satisfied
(Line 13-15), this label can be pruned safely. Otherwisegbell
(ui, ¢, £, vpreq) is inserted intoB;, (w); its child is inserted into
the hash-tabl€’; and pp,un. is updated tq, as shown in Lines
17-20.

With the guarantee that a label’s child will always beGOLA
index. Then we can reconstruct the path as follows. Giver a la
bel p = (w,¢,l,vprea) € Bin(v), we can find its child label
p = (w,c ', v,0q) € Bin(vprea) With O(1) time, by storing
a pointer top’ in p. Afterwards, we can then recursively unfold the
edges inG° by checkingO(k) labels, wherek is the number of
edges inP°. Afterwards, we apply a bidirectional traversal to find
the path inG corresponding to each edge/f.

When the label entries are updated, a backward versiaw of
Dijk is proceeded, and entries are added ibBtn,;. After that, the
input graph of the next iteration is updated by removingesett;
and its incident edges. Afteriteration, the algorithm finishes and
ends up with two label sef8,,; and B;,, that guarantees the query
correctness as shown in Lemma 3.

LEMMA 3. Algorithm 6 correctly produces a COLA index that
satisfies Definition 4. O
5.3 Vertex Ordering

Recall that every in-label (resp. out-label) of each vertdr
the COLAIndex is a skyline pattP originating (reps. ending) at a



Algorithm 6: Index Construction

input : An overlay graphG°, and a rank for all vertices i6/°
output: a COLA indexL

1 Creates a min-heaf that (i) stores entries in the form of
(v, ¢, €, T, vpreq), and (i) sorts the entries in ascending order of their
c values, with ties broken by theifrvalues;

2 LetGy = G°;
3 fori=1,2,...,ndo
4 Let u; be the vertex whose rankis
5 Invoke Algorithm 4 onG¢ except that (i) to derivé- (v), it
requires to compte the pafh with minimum 7 value instead of
minimum-length; (i) when a label enty = (w, ¢, £, 7, vpred)
is popped from the heap, it invoke a dominance checking
procedure to see if a path with casand lengthr, will be
dominated by existing labels with a linear label scannimgilar
to Algorithm 2; (iii) output the label list;
6 Let L; be an empty list;
7 for v € V° whoseL(v) is not emptydo
8 | Insertall entries in_(v) into L;;
9 Sort all entries in; in descending order of cost, with ties broken
by length;
10 Initiate a hash-tabl@” to record preserved labels, and the key is of
the form(w, ¢, £);
11 Record the last labgl,;-une (v) pruned witha-dominance,
initially it is set to the first label inl; concerningy;
12 for each label entry = (w, ¢, £, T, vpreq) IN L; dO
13 Let pp, € L; be the next label concerning after p;
14 if (w,c,f) ¢ Tandl(pp) < 7(pPprunec(w)) -« then
15 | continug;
16 else
17 Add p" = (u;, ¢, £, Vpreq) INtO By (w);
18 Let P be the path pertinent tof, and lete be the edge
that points fromu,,,.cq t0 w;
19 Insert an entry(vy,.cq, ¢ — c(e),£ — £(e)) into T,
20 Updatepprune t0 bepp;
21 Repeat the above procedure with a backward modifidijk and
add entries intd3ou¢;
22 UpdateG?, ; by removing the incident edges g;

23 return Bj,, Bout;

vertexv’ that has the highest rank among all vertice®iri.e., the
rank ofv’ is higher than the rank af. In other words, the ordering
of vertices would affect the total number of labelSG®LA which
is similar to the situation in conventional 2-hop labelirgg., [4,
7,33]. Note that, computing a 2-hop labeling with minimalesis
NP-hard. However, the case @OLAis even worse, SincEOLA
index is built on the overlay graph, which allows multipleged
from a vertex to another. Besides, given an ordering of cesti
it is highly costly to the exact index size GfOLA whose cost is
equivalent to building the index.

To produce aCOLA index with small size and also overcome
the computational difficulty, we present in this section aglng
based approach that worksririterations, each of which orders one
vertex of of the overlay grapti®. Specifically, in each iteration,
we first estimate the number of labels pertinent to each xeared
then select the vertex to order higher than the rest if results
in the smallest estimated index size. Once a vertéx ordered,
we removev from G°, and continue to order the rest vertices in
residual graplG; until G, is empty.

In order to estimate the number of labels pertinent to each ve
tex v, we first define thecoverageof v as the setP, of skyline
pathsP in G5 that goes through, denoted byC'(v) = [P,]. In-
tuitively, the larger coverage of the vertexn G, the more index
space would be saved if is ranked higher than the rest vertices
in G¢, as we can avoid the computation of the path®ijnin the

subsequent iterations. However, it is highly expensiveotopgute

all skyline paths inG;, especially wherG;. is sufficiently large.

To avoid the deficiency, we devise a sampling based appra@ach t
estimate the coverage ofin G;. To explain, letu be a randomly
sampled node, and be a randomly sampled number[ip 1]. De-
finec(e) - B+ £(e) - (1 — ) as theweightof an edgee. Then

we sample fromu a spanning tree with the minimum total weight.
The rationale is that, if a path is a skyline path, then theiste a

£ in [0, 1] such that the path has the minimal weight. Hence, we
samplek treesTy, Ts, - - - , Tk using the above strategy, whetés
sufficiently large. LetC;(v) be the size of subtree with rootin

T; (1 < j < k). Based on that, we can estimate the coverage of
aszg?zl Cj(v)/k. Then, we order the vertex of the largest es-
timated coverage among verticesGiy. After that, we remove all
subtrees rooted atfrom 741,75, - - - , Ty, and update the estimated
coverage for the rest vertices respectively.

A larger sample sizé tends to provide a more accurate esti-
mated coverage for each vertex. However, it comes at a higher
computational cost. To explain, let, be the number vertices in
G°, then the number of nodes in sampled tree is at mgsThere-
fore, the time complexity in computing the sampled treeshsy t
above method i©)(kn2). Letm, be the number of edges @&°.

To reduce the cost, we constrain the total number of edgegledm
from all trees to be at most - m,, whereh = 16 following the
setting in previous work [7].

6. EXPERIMENTS

This section experimentally evaluat€©LA against the current
state-of-the-art methods. Section 6.1 explains the exmaal set-
tings. Sections 6.2 and 6.3 present evaluation resultsrinstef
query efficiency and indexing overhead, respectively. iBed.4
provides insights for choosing an appropriate valuexfor

6.1 Experimental Settings

All methods are implemented in C++, compiled with full op-
timizations, and tested on a Linux machine with an Intel Xeon
2.6GHz CPU and 64GB RAM. We repeat each experiment 5 times
and report the average results.

Datasets.We use 8 real road networks from the 9th DIMACS Im-
plementation Challenge [2] as shown in Tablel@.the datasets,
each vertex represents a road junction, and each edge entzes
road segment. Among the eight road networks, EU is direated a
the others are undirectedcach edge in the dataset contains two
attributes: the travel time and the travel distance. Faligwpre-
vious work [27], we use the travel time as the cost, and theetra
distance as the length. The dataset sizes vary from smialb ¢t
the full USA road networks. Table 2 summarizes the propexfe
the datasets, whel®’|, |E|, |V°| and|E°| are the cardinalities of
vertices in the road network, edges in the road networkjogstn
the overlay graph (Ref. Section 3 for definition of overlapm)
and edges in the overlay graph, respectively.

Query sets.For each dataset, we generate 5 query sets Q1-Q5, each
containing 100 queries. Q1-Q5 are generated as followst, ke
randomly choose the query originand destinatiot among the
vertices of the road networks. Then, we classify the quety in
one of the 5 query sets, based on the length fsoto ¢. Specifi-
cally, we first compute a lower bound for the graph diametee (t
longest length of all shortest paths) using an existing @pprate
algorithm [26], which is at most 2 times the value of diametat
dmin be this lower bound. We then generate queries as follows: if
the length of these two nodes is in rangg,.» /2, +cc), we add

it into Q5; if the distance is in rang@min /4, dmin/2), we add it
into Q4; if the distance is in the ran§@,,:» /8, dmin /4), we add it



dataset V| |E| [vel |E°|
New York City (NY) 0.3M 0.7M 4.8K 0.2M
Florida (FLA) 1.1M 2.7TM 4.2K 0.2M
Northwest USA (NW) 1.2M 2.8M 4.2K 0.2M
Northeast USA (NE) 1.5M 3.9M 7.0K 0.7M
Great Lakes (LKS) 2.8M 6.9M 10.9K 1.8M
Western USA (W) 6.3M 15.2M 7.8K 1.2M
Europe (EU) 18.0M | 422M | 169K | 9.3M
Full USA (USA) 23.9M 58.3M 17.7K 9.5M

Table 2: Road networks (K=10%, M=10°).

into Q3, etc. For each query set, we report the average tintado
100 queries. The differences among results for differeetysets
reflect the impact of the travel distance.

Next, we clarify the generation of the cost constr&int For
each query, we first computg,;,, the minimum cost of any path,
and ¢mqz, the cost of the minimum-length path frogrto ¢; then,
we select uniformly at random fromc,min, ¢maz]. Note that if
0 < cmin, the query cannot return any result;fif> cp,q2, the
minimume-length path is always a valid result to the CSP query

Another important parameterdg which determines the approx-
imation guarantee ofi-CSP queries. We view as a system pa-
rameter rather than part of the query, sinceontrols the trade-
off between query accuracy and system efficiency, e.g.espaia-
sumption, which is more relevant to the system environmiggu t
individual queries.In order to find a suitable value far, we per-
formed a set of experiments with varyiag The results shown in
in Section 6.4 demonstrate that the value= 1.1 leads to a good
balance among the space consumption, preprocessing tirag; q
efficiency and query accuracy. Hence, in the rest of our éxper
ments, we fixa = 1.1.

Methods. We compareCOLA against three state-of-the-art meth-
ods: Sky-Dijk[18], CP-Dijk [31] and CSP-CHI[30], described in
Section 2.2. Meanwhile, we also include a most reéeshortest
path based solution [27] as our competitor, dubbedK&P. Be-
sides, we also include-Dijk (see Section 4) in our comparisons,
which answergv-CSP queries without an index.

6.2 Query Efficiency

Figure 3 plots the average query execution time (in secdiods)
all methods. For brevity, we only show the results on 4 regres
tative datasets: NY, LKS, EU, and USA. On these 4 datasets, we
inspect the performance on all 5 query sets Q1-Q5. Note ligat t
y-axis is in logarithmic scale, and we use error bars to pitette
variations of the query performance f60OLAanda-Dijk.

The most apparent observation is that regardless of theetata
or query set, our main proposaDLAconsistently outperforms all
other methods by several orders of magnitude. Further, ubeyq
time of COLA is always within one second, even on the largest
network covering the entire US/esides, on large directed road
networks, e.g., EUCOLA still outperforms the existing methods
by two orders of magnitude, which demonstrates the effectgs
of our COLAIindex on both directed and undirected road networks.

For state-sized network§OLA always finishes within millisec-
onds. In contrast, the rest of the methods require at least s
ond to finish, except for a few settings that involve both alsma
dataset and a query set with very close query origin andraesti
tion. For queries with relatively far apart origin / destioa pairs,
these methods (except farDijk) can take several hours to process
one query.

From these observations, we conclude Bax_Anot only out-
performs its competitors, but brings down the query praogssost
from prohibitively high to a practically low. In other wordS8OLA
makesa-CSP feasible on current hardware.

BesidesCOLA the next fastest method is our index-free algo-
rithm a-Dijk, again in all settings. The performance gap between
«-Dijk and the competitors is also notable, often more than an or-
der of magnitude Moreover, bothCOLA and a-Dijk demonstrate
small variation for the query processing time, which is gale
close to the average. In contrast, as shown in [27, 30]iegi€SP
algorithms vary significantly in terms of query time, and niay
cur much longer query time than the average. This demoastrat
the robustness of our methods to the input quirerestingly, our
index-freea-Dijk outperforms the indexed meth@85P-CH which
is given the advantage of large amounts of pre-computatibhis
suggest that exact CSP as a query type may not be practical for
large networks; in such situations, it is necessary to rdexquery
definition.

Comparing the four existing method3SP-CHoutperformsCP-
Dijk and Sky-Dijkin all settings, and outperformi€SPfor queries
with far apart origin / destination pairs. MeanwhikSPturns out
to be very efficient when the origin and destination are clek®v-
ever, as the distance between the origin and destinatioaases,
the query efficiency degrades rapidly, due to the exporiegrogvth
in the number of paths from the origin to the destination. ddia
tion, we observe that the performance improveme@mRfDijk (for
«a-CSP) overSky-Dijk(for exact CSP) is negligible, in all settings.
This confirms that th&€P-Dijk (and also other previous work on
«a-CSP, aLLP-Dijk is the current state of the art) focuses on theo-
retical improvement in terms of asymptotic complexity eatthan
practical performance.

The impact of the distance between the origiand destination
t becomes apparent, once we compare results for differemy que
sets. When they are close to each other (e.g., Q1 and Q2), the
query cost for all methods are small, especially on smalloeks.

As s andt become farther apart, query costs increase rapidly. This
is expected, as the longer the trip is, the more verticesnandvied
during CSP processing. An important observation is @@t.As
performance is robust against varying query sets. This islgna
due to its use of the overlay network. SpecificalQLA utilizes
the pre-computed distances between boundary vertice ffefettit
partitions, and the number of boundary vertices involved/t in-
creases with the distance betweeand¢, compared to the number
of vertices in the network. Besides, the query cost of@ijk al-
gorithm increases slowly, which demonstrates the effentgs of
its adaptive pruning. On the contrary, the other four exgstneth-
ods scale poorly; for large datasets, they usually requitgshto
process a single query. Furthermore, on the USA dataseg, oion
these four methods can answer queries in Q3-Q5 due to ptivhibi
memory consumption{64GB).

Finally, we compare results on different datasets. As expkc
the larger the network is, the more expensive it is to proagSSP
query. Once again, unlike its competitors, the query coSOEA
grows slowly with the network size, thanks to its use of thertay
network and the constrained labeling index, whose effeeteine
more pronounced as the dataset becomes larger.

6.3 Index Size and Construction Time

Figure 4 illustrates the memory consumption for all methbés
fore running any query. The results for the non-indexed eggtes
Sky-Dijk, CP-Dijk, KSRand«-Dijk are simply the size of the road
network. On the other hand, the results @8P-CHand COLA
indicate their respective index sizes. In addition, we alsow the
size of the overlay graph i@OLAin the same figure.

The most important observation is that the index siz€GILA
is no more than 5GB on the largest dataset USA and such memory
requirement can be easily satisfied on a modern server. Gorgpa
CSP-CHandCOLA, the former uses a smaller amount of memory
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than the latter, and yet the index size@8P-CHis considerable promising use cases, the proposed methods might becomeankey e
compared to that of non-indexed methods, i.e., the sizesafibut ablers for new online navigation services basedve@SP.

graph. AlthoughCOLArequires a larger index, its memory over- g .4 Tuning «

head is affordable, which is more than compensated by its hig
query performance as shown in Figure 3. The results also show
that the size of the overlay graphs is negligible, indicatimat the
space consumption @OLAis mainly attributed to its constrained
labeling index.

Figure 5 presents the total pre-processing tim€8fP-CHand
COLA Note that the non-indexed methods are not shown as they
do not need pre-processin@Compared tadCSP-CH COLA takes
on average 3x to 4x processing time. Nevertheless, the ¢ost o
pre-processing ilCOLA is still modest, i.e., within 12 hours on
the largest dataset USA, using a single server. Considéhiaig
existing methods require hours to process even one querpréi
processing cost dOLAis worth paying for.

Summarizing the experiment§OLA effectively reduces the
processing time oft-CSP queries from hours to sub-second, with
moderate index size (no more than 5GB). Hence, it is cleady t
method of choice for-CSP processing. When an index is not
available, we recommend the-Dijk algorithm, which might be
suitable for applications that do not require fast resporSimce
all previous methods are prohibitively expensive an€€SP has

In this set of experiments, we evaluate the impaet oh COLA
In particular, we measure the query accuracy and space mgasu
tion of COLAby varyinga from 1.005 to 1.4. Due to space limita-
tions, we show the results for 4 representative datasets.

Figures 6(a)-(b) show the memory consumption, i.e., thexnd
size, and preprocessing costs of @OLA on FLA, NE, W, and
USA datasetsAs we can observe, whem changes from 1.005 to
1.4, both the space consumption and pre-processing tinteafes,
since a largery tends to help th€OLA labels prune more paths,
resulting in a smaller index size.

Note that the impact af is more pronounced on pre-processing
time than on memory consumption. To explain, the index canst
tion algorithm requires examining a large number of pather{e
if the paths are added into label sets), and a largeran help
prune more paths, and hence can help save more preprocessing
time. However, only a subset of the paths traversed aredsinre
the index, and hence the pruning effect is less significatgrims
of space consumption than pre-processing time.

Besides, the query time &OLAis relatively insensitive ta.

In particular, wheny decreases from 1.4 to 1.005, the query time
of COLA only increases by around 1.5x. To explain, the size of
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the COLAIndex is not significantly increased with decreasings

shown in the results; and hence the query time is not significa

affected.

In terms of the query accuracy, we usdative error of 1000
random queries as the evaluation. More specifically, givgneay
q, let P* be the solution of the exact CSP query aidbe ana-

CSP, the relative error of the latter is computed? Zlgljf)(P*).

Figure 6(b) shows the relative error GOLAoN the same datasets.
A higher value ofx leads to a larger relative error. Nevertheless, the

relative error is generally smaller than the worst case douFor
example, the relative error ef-Dijk for o = 1.1, is around3%

on FLA dataset, which is less than a third of the worst casetou
i.e.,10%. We seta to 1.1 forCOLAsince it strikes a good balance

among query accuracy, query efficiency, space consumptidn
preprocessing time.

7. CONCLUSIONS

a

We presentCOLA a novel and practical solution for approxi-

mate constrained shortest path processing, which can tiecypp
navigation services where a single criterion on the pattoisof-
ficient to capture the user’s requireme@OLA utilizes important
properties for real road networks, and applies effectidexing

which leads to orders of magnitude reduction in query exeut

time. Meanwhile COLAalso includes an algorithmy-Dijk, which

significantly outperforms existing techniques f@fCSP process-

ing without an index. As future work, we plan to investigate (i)

how to avoid reconstruction of indices for different valwésx and

(ii) «-CSP processing in denser graphs compared to road networks[23]
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APPENDIX
A. PROOFS

Proof of Lemma 1. Let v7 be the first boundary vertex thé&t,:
goes through, ands be the last boundary vertex th&,: goes
through. We consider three sub-paths P>, and Ps;, where P,

is the path froms to vy, P is the path fromw? to v5, and Ps is
the path fromws to ¢. Clearly, P; is within G5, otherwise, it must
go to another subgraph, which indicates that there mustseais
boundary vertex° such thatP; goes through. This contradicts to
the assumption that? is the first boundary vertex if,,:. Simi-
larly, Ps is within G¢. Meanwhile, based on the property of overlay
graph, there exists a paf?° in G° such thatP° cana-dominate
Py, ie.,c(P°) < ¢(P2),4(P°) < a-£(P2). Let P’ be the path
by concatenating®, P°, andPs, thenc(P’) < c¢(Pop) < 6, and
L(P") < al(P,pt). This finishes the proof. O

Proof of Lemma 2. From Algorithm 2, it is easy to verify that
LabelJoinalgorithm since it nevers goes back to an entry previously
scanned. So we mainly focus on the correctness proof hersayWe
a pathP is covered byCOLAIf it can be reconstructed by an out-
labelp, and an in-labep;.

Let P be the path with cost no more thdrand has a minimum
length concatenated from,.:(s) and B;,(t). Then it is ana-
CSP query. The reason is that, if there existea@SP query, then
COLAiIndex contains an out-labgl, and an in-labep; to cover it.
Let the pathP’ be thea-CSP path covered bOLA Then asP is
minimum among all paths covered BOLA ¢(P') < ¢(P). If P
is ana-CSP query, the®’ will also be ana-CSP query.

On the other hand, we prouabelJoincan correctly deriveP’.

In particular, during the scan of the labelling, if the labebncerns
different vertices, then, by concatenating these two &Bhbeé will
not be able to derive a path, so it will not miss amCSP. On the
other hand, af3,.+(s) is sorted in increasing order of cost, and
Bin(t) is sorted in decreasing order of cost, if an out-label and an
in-label concerning a vertex, has a total cost larger thah then
going to the next label iB;, (v) will not miss any path since an
previous entry inB;, (v) either has a larger cost, which indicates
that the total cost of the labels will also exceédand will not be a
valid answer. Meanwhile, if a previous label includes arotinde,

it will not be a valid path either.

On the other hand, if the total cost of the two labels does not
exceed, then it compares with the existing palti, if it is larger
than P, then it will not be the minimum path, and can be dis-
carded. TherB,.:(s) goes to the next label entry. This operation,
we prove that will also not mis®”’. In particular, as label entries
are stored in ascending of the cost, which indicates thespath
also stored in descending order of the lengths. Then, aqusvi
label entry inB..+(s) will have a larger length, considering the to-
tal length with the current label entry iB;,, (t). So in either case,
LabelJoinwill not miss P’, indicates that it will find the minimum-
path covered byB,.+(s) and B;, (t). This finishes the proof. O

Proof of Theorem 1. For convenience, we abuse notation and use
7(p) to denote the surrogate value of an entryn L(v). As-
sume thatP’ containsk edgeses, ea,...ex, such thate; (i €
[1,k]) points to a nodev;. We recursively construck paths
Py, P>, ..., Py, and define a surrogate valagP;) for each path

P; as follows. First, we defing’, as a path that contains only
e1. Observe thatl(vi) must contain an entry; that repre-

sentsP; (i.e., p1 = (vi,c(P1),¢(P1), %, s)), since such an entry

would be inserted intd.(v;) right aftera-Dijk pops the first entry
(5,0,0,0,null) from the min-heag. We setr (P1) = 7(p1).

Assume thatP; (¢ € [1,k — 1]) is constructed, and.;
contains an entry, that representd’;. Then, right afterp; is
popped fromH and inserted intal;, «-Dijk would insert an
entry into H for each outgoing edge of v;. Sincee;y1 is an
outgoing edge ofy;, one of the entries inserted should pe =
(it1, e(Ps) + cleitr), €(Ps) + £(eir), 7(P:) + £(eiv1), vi).
Then, whery’ is popped fron#, it is either pruned by an existing
entry in L(v;+1) or inserted intoL(v;+1). In either case, there
must exist an entry;4; with a cost at most(P;) + c(ei+1)
and a surrogate value(pi+1) < 7(Pi) + f(eit1). We set
T(Pit1) = 7(pi+1).

With the above constructions, the following equations Hold
anyi € [1,k —1]:

c(Pit1) < c(Ps) + c(es);
T(Pip1) < 7(P) + £(es);
UPiy1) < a-7(Pig1) < o £(Piga).

Consequently, we have

c(Pr) < c(Pr—1) + cler) < c(Prp—2) + c(ex—1) + c(er)

IN

)

IN

UP) < - T(Py) < a-U(P). 3)

Equations (2) and (3) indicate th&! is a-dominated by a pati®;,
represented by an entry vy ). This completes the proof. O

Proof of Theorem 2. Before proving Theorem 2, we first establish
the following lemma.

LEMMA 4. Let s and v be two vertexes in a grapty;, and
L(v) be the entry list ob constructed by the single-souraeDijk
givenG; and s as input. LetP be the set of all paths from to
v in G;. Then, for any entry € L(v), there exists a pattP €
P with ¢(P) = c(p), {(P) = £(p), and7(p) € [LL(P),L(P)].

Furthermore, for any pattP’ € P, there exists an entry € L(v)
with ¢(p) < ¢(P") andr(p) < £(P'). O

Let v be the destination node adg be the input graph for Al-
gorithm 4, then base on Theorem 1 and how labels are derived, i
is guaranteed that each label is constructed from a paththiset
path beP, and ther value is set to be no smaller th&6P) based
on Algorithm 4. In addition, for any pati®’, as the label stores
paths that cannat-dominate each other from the smallest cost to
the largest cost, if a patR’ has cost, let p be the label entry for
path P that has cost smaller thaR’, and the next label has cost
larger thanP’, then if P has length such that(P) < ¢(P’), then
the requirement is satisfied. Meanwhiler {fP) > ¢(P’), sinceP’
has a cost smaller than the label entry next to the one cangefh
then it should be added into(t) based on the Algorithm 4 Lines
9-11. So in either case$)’ satisfy that there exists a labelsuch
thatc(p) < ¢(P’) andr(p) < £(P'), which finishes the proof of
Lemma 4.

Afterwards, we set the origin as an arbitrary vertexe G° and
destination as an arbitrary vertex € G°. Then, it satisfies that
for any pathP from v; to vz, there exists a label ik (v2) cana-
dominateP. Meanwhile, based on how the edges are constructed



(Algorithm 5 Line 9), it is guaranteed that for any paehfrom v, clearly r(P,) < i. For each pathP*, we divide them into two
to vz, there exists a stored entry that cardominateP. As such sub-paths withP; = P, and P, is the remaining sub-path. L&t
entries are mapped to an edge and these entries are pertinent be the path by concatenati®, and P,. Then it is guaranteed that,
to a path fromw; to v2. As a consequence, the constructed graph c(Pi) < c¢(P*), and¢(P;) < ¢(P*). Based on the induction
satisfies all conditions in Definition 3, which finishes theqft O assumption, pati;” satisfies that there exist a label B,,; and

a label inB;,,, such that their corresponding pafh satisfy that

c(Pr) < e(PH), andl(P,) < a-4(P}) < a- £(PT). In other
d words, for any pathP™ derived by the above method, there will
exist a path pertinent to an out-label and an in-label thata
dominateP*. So pruning such paths will be safe, and will not
affect the correctness.

Consider any patt® whose rank ig, based on the above con-
struction, for the sub-pati®; from w; to the ending node of,
there exists a labegl that will be stored such thatp) < c¢(P:) and

L(p) < a-£(Py1). As areversed version of-Dijk is applied. Sim-
ilarly, there exists a label’ such that, for the sub-path, from the
source ofP to u;, such that(p’) < c(P) andl(p’) < a - £(P).
Adding them together, we can conclude that for any gatvhose
rank isi, it will be a«-dominated by a pat? concatenated from an
in-label and an out-label.

This indicates that aften iterations, the label constructed will
satisfy Definition 4, which finishes the proof. O

Proof of Theorem 3We prove that after thé-th iteration, for all
paths P whose rank (ref. Section 5.2\ P) < 4, it will be a-
dominated by a patl? that can be concatenated by an in-label an
an out-label.

In the first iteration, let.; be the node with(u;) = 1. Since
initially B,.: and B;,, are empty, Algorithm 6 Line 5 condition 2
will not be triggered. The correctness is guaranteed by fidmed..

Consider the-th iteration, anx-Dijk will be started from vertex
u; with (u;) = 4. During the traversal, if a patk from u; to v
is pruned byn-Dijk, the subsequent correctness can be guaranteed’
by 1. However, if a path is pruned by label checking, i.e..eLh
condition 2, then there exists an out-labelBg.:(u;) and an in-
label in B;, (v) such that their concatenated pdth satisfy that
c(P") < ¢(P)and{(P’) < 7(P). Inthis case, consider any path
P that contains” as a sub-path. We prove that for any such paths
P, there will exists some label that candominateP ™.

Denote the path corresponding to the labels that pRires P,



