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Streaming Data

Definition 1 (Data Stream Model)

The data streaming model involves processing a finite sequence of n
integers drawn from a finite domain of size m. However, unlike traditional
datasets, this sequence is not readily available for random access. Instead,
the data arrives incrementally in the form of a continuous ’stream,’ with
each integer being presented one at a time.

Main challenges:

In the data streaming model, accessing the input sequence typically
allows for only a small number of passes, most likely just once.

The streaming algorithms are restricted to use a space that is
logarithmic or polylogarithmic in m and n.
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Applications

Here, we list several applications.

Query streams: Google/ChatGPT wants to know which queries are
more frequent today than yesterday.

Click streams: Wikipedia wants to know which pages have received
unusual hits in the past hour.

Social network post/update streams: trending topics on Twitter,
TikTok, Facebook, etc.

IP packet monitoring at a switch: Gather package receiving speed
info and optimize the routing. Identify DDoS attacks.

Sensor data collection: Identify the number of abnormal results.

· · ·
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Uniform Sampling in a Stream

Problem 1 (Uniform sampling in a stream)

Given a stream of elements from the universe [m], where [m] means the
set of integers {1, 2, 3, · · ·m}, sample k elements from the stream
uniformly at random.

Assume that we have n elements in the sequence. Each element has k/n
probability of being sampled. However, the main challenge is: the size n of
the stream is usually unknown.
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Reservoir Sampling

The reservoir sampling algorithm achieves this goal without knowing the
number n of elements in this sequence. It works as follows:

Algorithm 1 (Reservoir Sampling)

1. Initialize an array A of size k (array index starting from 1) and
include the first k elements in the stream. This array is the reservoir;

2. When the i-th element ai comes (i > k), we draw a random integer
r ; if r ≤ k , we update A[i ] and set A[r ] = ai ;

3. When the stream ends, return A;

It takes O(k logm) bits to store the array.
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Correctness of Reservoir Sampling

Theorem 1

Algorithm 1 returns each element with a probability k
n .

Proof.

We prove this by induction. When n = k . It naturally holds.
Inductive hypothesis: When n > k , assume that the sample set A
contains each element seen so far with probability k

n .
Inductive step: Now a new element e comes, we aim to prove that each
element seen so far is sampled with probability k

n+1 .

For the new element en+1, according to Algorithm 1, it is added into
A with probability k

n+1 .

For the remaining elements e1, e2, · · · , en, the probability is:

P[ei ∈ An+1] = P[ei ∈ An] ·
n

n + 1
=

k

n
· n

n + 1
=

k

n + 1
.

Proof done.
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Counting in Streams

Problem 2 (Counting Problem)

Given a stream of events, the counting problem aims to count the number
of events that occur thus far with as little space as possible.

A straightforward solution: By maintaining a counter with O(log n) bits.
That is already the best we can do if we want to maintain the exact count.

Can we do better if we allow for some approximation?
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Approximate Counting: Morris Algorithm [1]

Definition 2 ((ϵ, δ)-approximation)

Let µ be the value of interest, e.g. the number of events in previous slides.
Let µ̂ be an estimation of µ. Then, we say µ̂ is an (ϵ, δ)-approximation of
µ if the following holds:

P[|µ− µ̂| > ϵ · µ] ≤ δ.

A classic solution for approximate counting: Morris algorithm.

Algorithm 2 (Morris Algorithm)

1. Initialize X as zero;

2. For each update, increment X with probability 1
2X

;

3. For a counting query, return n̂ = 2X − 1;
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Analysis of Morris Algorithm

Lemma 1

E[2Xn ] = n + 1.

Proof.

We prove this by induction. It is easy to verify the base case. Assume that
it holds for j ≤ n. Then, taking the condition on Xn, we have that:

E[2Xn+1 ] =
+∞∑
j=0

P[Xn = j ] · E[2Xn+1 |Xn = j ]

=
+∞∑
j=0

P[Xn = j ] ·
(
2j(1− 1

2j
) + 2j+1 · 1

2j

)

=
+∞∑
j=0

P[Xn = j ] · 2j +
+∞∑
j=0

P[Xn = j ] = E[2Xn ] + 1 = n + 2.

Proof done.
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Analysis of Morris Algorithm (Cont.)

We will further derive the variance of the Morris algorithm so as to apply
the Chebyshev’s inequality. Let n̂ = 2Xn − 1 The variance Var[n̂] is:

E[(2Xn − 1− n)2] = E[22Xn ]− (n + 1)2.

Lemma 2

E[22Xn ] = 3
2n

2 + 3
2n + 1.

The proof is left as a self exercise. Accordingly, Var[n̂] = n(n−1)
2 .

Then, by applying the Chebyshev’s inequality, we have that:

P[|n̂ − n| > ϵ · n] ≤ Var[n̂]

(ϵn)2
<

n2/2

ϵ2n2
=

1

2 · ϵ2
.

However, this bound is loose and the inequality is almost useless if
ϵ ≤ 1/

√
2.
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Morris+

Can we achieve a meaningful probability, say δ = 1/3?

Key observation: the sum of Independent and identically distributed
(i.i.d) random variables has degraded variance.

Solution: Take t trials of Morris algorithm. Let their estimations be

n̂1, n̂2, · · · , n̂t . Then, take the average of the t trials:
∑t

i=1 n̂i
t .

Variance: n(n−1)
2t .

Applying the Chebshev’s inequality again, we have:

P[|
∑t

i=1 n̂i
t

− n| > ϵ · n] ≤ Var[n̂]

t · (ϵn)2
<

1

2tϵ2

By setting t = 3
2ϵ2

, we have that δ = 1
3 .
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Morris++

To have a probability of δ, Morris+ needs O(1/δ) trials of Morris
algorithm. Can we reduce the dependency to δ?
Solution: Morris++ via Median trick.

Apply Morris+ s times. Then, take the median as the estimation. The
solution is Morris++.
Let Y be the random variable to indicate whether Morris+ succeeds. If
it does succeed, Y = 1 and otherwise 0. To make Morris++ fail, at
least half of the estimators fail. Think why?
Then, Morris++ fails indicates

∑s
j=1 Yi <

s
2 .

P[
s∑

j=1

Yi <
s

2
] = P[

s∑
j=1

Yi < (1− 1

4
) · 2s

3
] ≤ P[

s∑
j=1

Yi < (1− 1

4
)µ]

Applying Chernoff bound, we have that:

P[
s∑

j=1

Yi < (1− 1

4
)µ] ≤ e−µ( 1

4 )
2/2 ≤ e−µ( 1

4 )
2/2 ≤ e−

s
48 .

Setting s = 48 log(1/δ), the dependency reduces to O (log(1/δ)).
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Space Cost of Morris++

What is the space cost to achieve (ϵ, δ)-guarantee for the Morris++
algorithm?

Notice that the counter is a random variable. So is the space cost.
Can we bound the space cost with a high probability?

Consider the case when Xn ≥ c · log2(n + 1). We have that:

P[Xn ≥ c · log2(n + 1)] = P[2Xn ≥ 2c·log2(n+1)]

≤ E[2Xn ]

2c·log2(n+1)
=

n + 1

(n + 1)c
≤ 1

(n + 1)c−1

We have 3
2ϵ2

· 48 log(1/δ) Morris counter. It is easy to bound the

probability to 72 log(1/δ)
ϵ2(n+1)c−1 . With an appropriate c , this can be bounded with

high probability. Thus, the space cost is bounded by O( log(1/δ) log log n
ϵ2

)
with high probability.
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Exercise

The above Morris++ algorithm is not effective in practice when ϵ is no
larger than 0.25. Also, the dependency to log(1/δ) is a multiplication
factor over log log n. Can we reduce this dependency?

More generally, we can adopt a Morris(a) algorithm, where we increment

the counter by the 1
(1+a)X

probability. Then, we estimate N̂ as (1+a)X−1
a . If

we set a = 0, we actually provide the actual count. If we set a = 1, we
have the previous Morris algorithm. By choosing a between (0, 1), we are
gaining a balance between the accuracy and the space cost.

Prove that N̂ = (1+a)X−1
a is an unbiased estimation of N and the

variance is aN(N−1)
2 .

The space cost is bounded by O(log log n + log(1/δ) + log(1/ϵ)) with
high probability by setting a = 2ϵ2δ.
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Distinct Element Counting

Definition 3 (Distinct Element Counting)

Given a stream of integers e1, e2, · · · , en from [m] where elements might
appear more than once in the stream, the goal of the distinct element
counting problem is to output the number of distinct elements.

Example 1

Assume that m = 5 and the stream is 1, 2, 2, 1, 5, 4, 2, 2, 1. Then, the
number of distinct elements (NDE) is 4.

Two naive solutions

Store the entire universe with O(m) bits. Mark the i-th bit as 1 if i
appears in the stream.

Store a hash table or binary search tree to keep the distinct elements.
This requires O(n · logm) bits, or more precisely O(NDE · logm) bits.
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MinHash Algorithm [2]

We now assume that we have the following idealized hash function
h : [n] → [0, 1] with an equal probability of hashing to each value in [0, 1].

Actually, we cannot afford a truly randomized hash function as it
cannot be maintained in o(n) bits.

Algorithm 3 (MinHash Algorithm)

1. When an element ei arrives, derive the hash value h(ei );
2. Maintain the minimum hash value Xmin (Initially set as 1). If
h(ei ) < Xmin, update Xmin as h(ei );

3. When the stream ends, return 1
Xmin

− 1;
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Analysis of MinHash Algorithm

Lemma 3

E[Xmin] =
1

NDE+1 .

Recap that for a continuous random variable X , we have the concept of
probability density function fX (x) and cumulative distribution function
FX (x). The expectation of such a random variable is

E[X ] =

∫ +∞

−∞
x · fX (x) dx .

For non-negative random variables, we further have that

E[X ] =

∫ +∞

0
(1− FX (x)) dx .
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Analysis of MinHash Algorithm (Cont.)

Lemma 4

E[Xmin] =
1

NDE+1 .

Proof.

Let FX (x) be the cumulative distribution function FX (x) that Xmin is not
larger than x . Then 1− FX (x) is the probability that Xmin is larger than x ,
which happens only when all distinct elements have a hash value greater
than x . The probability is (1− x)NDE for 0 ≤ x ≤ 1. Thus,

E[Xmin] =

∫ +∞

0
(1− FX (x)) dx =

∫ 1

0
(1− x)NDE dx

=
−(1− x)NDE

NDE + 1

∣∣∣∣1
0

=
1

NDE + 1
.

Proof done.

Sibo WANG (CUHK) SEEM5020 Algorithms for Big Data Fall 2023 21 / 34



Analysis of MinHash Algorithm (Cont.)

Lemma 5

E[X 2
min] =

2
(NDE+1)(NDE+2) .

The proof is left as a self-exercise. We can derive the variance of Xmin:

Var[Xmin] = E[X 2
min]− (E[Xmin])

2 =
NDE

(NDE + 1)2(NDE + 2)
.

Denote MinHash+ as the algorithm by applying s such hash functions and
taking the average of these s results of Xmin. The expectation is still
unbiased. The variance is reduced to

NDE

s(NDE + 1)2(NDE + 2)
≤ 1

s(1 + NDE )2

Setting s = 3
ϵ2

and applying the Chebshev’s inequality, we have:

P[|1
s

s∑
j=1

Xmin,j −
1

1 + NDE
| ≥ ϵ

1 + NDE
] ≤ 1

3
(1)
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Analysis of MinHash Algorithm (Cont.)

It is easy to verify that if NDE ≥ 2 (which easily holds) and ϵ < 0.5, the
following holds:

P[| 1
1
s

∑s
j=1 Xmin,j

− 1− NDE | ≥ 2ϵNDE ] ≤ 1

3

To reduce the failure probability from constant (here 1
3) to an arbitrarily

small value δ, we can apply the median trick as we have applied in
Morris++ algorithm. This can be achieved with O(log(1/δ)) trials of

MinHash+. The final space is O
(
log(1/δ)

ϵ2

)
.
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Alternative to MinHash Algorithm: Bottom-k Sketch [3]

The MinHash Algorithm applies multiple hash functions to reduce the
variance. Any alternative method?

The smallest value tends to have a large variance. Can we use other
statistics?

Intuition: As shown in previous solutions, the median tends to be a
stable variable. However, maintaining the median is expensive.

As an alternative, we maintain the k smallest hash values.

Let Xkth be the k-th smallest hash value, we return k
Xkth

as the
estimation.

Is there any relationship between the k-th smallest hash value and NDE?

Unfortunately, the relationship is not as explicit as that in MinHash1.

We will need to analyze this in a different approach.

1The k-th order statistics: https://en.wikipedia.org/wiki/Order_statistic
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Bottom-k Sketch

Instead of a truly randomized hash function, bottom-k sketch only needs a
hash function that is 2-wise independent, a.k.a, pairwise independent.

Definition 4 (k-wise independent hash family)

A family H of hash functions mapping from [a] → [b] is k-wise
independent if for any j1, · · · jk ∈ [b] and any distinct i1, · · · ik ∈ [a],

Ph∈H[h(i1) = j1 ∧ h(i2) = j2 ∧ · · · ∧ h(ij) = jk ] = 1/bk .

There are efficient solutions in finding a k-wise independent hash function.

Example 2

Let P be a prime number greater than a (the input domain of h). Choose
ai randomly from [P]. The following hash function is k-wise independent:

H(v) =
(
(a0 + a1 · v1 + · · ·+ ak−1 · vk) mod p

)
mod m
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Bottom-k Sketch (Cont.)

How bottom-k sketch algorithm works with pairwise independent hashing:

First, set the range [b] with b = n3 so that we will have no collision
with at least 1− 1

n probability.

When an element e comes, we compute the hash value h(e) of e.

We maintain the set Sk of the k smallest hash values and denote the
k-th smallest hash value as hkth. If h(e) is smaller than hkth, we
remove hkth from Sk and add h(e) to Sk .

At the end, we retrieve hkth from Sk and return an estimate of b·k
hkth

.
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Analysis of Bottom-k Sketch Algorithm

Our goal: (1− ϵ)NDE < b·k
hkth

< (1 + ϵ)NDE

We analyze for the probability of the bad event: b·k
hkth

≥ (1 + ϵ)NDE .
The other side can be analyzed in a similar way.

We define Yi = 1 if the i-th element has a hash value no larger than
b·k

(1+ϵ)NDE and otherwise 0. Define Y =
∑NDE

i=1 Yi .

Observe that:

b · k
hkth

≥ (1 + ϵ)NDE ⇔ b · k
(1 + ϵ)NDE

≥ hkth ⇔
NDE∑
i=1

Yi ≥ k .

The goal is to bound the probability that
∑NDE

i=1 Yi > k .

E[Yi ] = ⌊ ·k
(1+ϵ)NDE ⌋ according to its definition. Thus:

E[Y ] = E[
NDE∑
i=1

Yi ] = NDE · ⌊ k

(1 + ϵ)NDE
⌋ ≤ k

(1 + ϵ)
.
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Analysis of Bottom-k Sketch Algorithm (Cont.)

The variance Var[Y ] of Y is exactly
∑NDE

i=1 Var[Yi ] since Yi are pairwise
independent. More specifically:

Var[
NDE∑
i=1

Yi ] = E[(
NDE∑
i=1

Yi − E[Yi ])
2] =

NDE∑
i=1

E [(Yi − E[Yi ])
2]+

2E[
∑

1≤i<j≤NDE

(Yi − E[Yi ])(Yj − E[Yj ])]

As Yi and Yj are pairwise independent,

E[(Yi − E[Yi ])(Yj − E[Yj ])] = E[(Yi − E[Yi ])]E[(Yj − E[Yj ])] = 0.

Thus,

Var[
NDE∑
i=1

Yi ] =
NDE∑
i=1

E [(Yi − E[Yi ])
2] =

NDE∑
i=1

Var[Yi ] ≤
k

1 + ϵ
.
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Analysis of Bottom-k Sketch Algorithm (Cont.)

The variance Var[Y ] of Y is exactly
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E[(Yi − E[Yi ])(Yj − E[Yj ])] = E[(Yi − E[Yi ])]E[(Yj − E[Yj ])] = 0.
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Var[
NDE∑
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Yi ] =
NDE∑
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k

1 + ϵ
.
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Analysis of Bottom-k Sketch Algorithm (Cont.)

We further apply the Chebshev’s inequality.

P[Y ≥ k] = P[Y − E[Y ] ≥ k − E[Y ]] ≤ P[|Y − E[Y ]| ≥ k − E[Y ]]

≤ P[|Y − E[Y ]| ≥ k − k

(1 + ϵ)
] = P[|Y − E[Y ]| ≥ kϵ

(1 + ϵ)
]

≤ Var[Y ]

(kϵ/(1 + ϵ))2
≤ k

1 + ϵ
· (1 + ϵ)2

k2ϵ2
=

1 + ϵ

kϵ2

Setting k = ⌈12
ϵ2
⌉, we have

P[Y ≥ k] ≤ 1 + ϵ

12
≤ 1

6
.

The proof of the other side is left as a self-exercise. You may assume that
ϵ < 1

2 and the fact that b = n3 ≫ NDE · ϵ.

Sibo WANG (CUHK) SEEM5020 Algorithms for Big Data Fall 2023 30 / 34



Analysis of Bottom-k Sketch Algorithm (Cont.)

Thus, we have that

P[(1− ϵ)NDE <
b · k
hkth

< (1 + ϵ)NDE ] ≥ 2

3

We can further apply the median trick with log (1/δ) copies of the
bottom-k sketch to achieve a success probability of 1− δ. The total space

complexity is thus: O (k · log (1/δ)) = O
(
log (1/δ)

ϵ2

)
.
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More Solutions for Distinct Element Counting

FM Algorithm [4]: First, we need a hash function h : [n] → [2L − 1] that
maps the key x to each value in the range [2L − 1] uniformly at random.

For each element e, compute the hash value h(e). Then, let r(e) be
the number of trailing 0’s in the binary representation of h(e).

For example, h(e) = 12 and 12 = (1100)2 in binary. So, r(e) = 2 since
there are two zeros at the end of the binary representation of h(e).

When the stream ends, let R be the maximum of r(e) we have seen.

Flajolet and Martin [4] prove that E[R] ≈ log2 ϕ · n, where
ϕ ≈ 0.77351. The proof is rather involved and hence is omitted.

According to the above analysis, FM algorithm estimates the number
of distinct elements as 2R/ϕ.

How to derive more accurate results?

HyperLogLog [5]: Extension of FM algorithm by splitting the stream into
numerous sub-streams. Use harmonic mean to derive the estimation.
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