SEEM5020 Algorithms for Big Data Streaming Algorithms (I)

Sibo WANG

Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong

4 0 8

Definition 1 (Data Stream Model)

The data streaming model involves processing a finite sequence of n integers drawn from a finite domain of size m . However, unlike traditional datasets, this sequence is not readily available for random access. Instead, the data arrives incrementally in the form of a continuous 'stream,' with each integer being presented one at a time.

Main challenges:

- In the data streaming model, accessing the input sequence typically allows for only a small number of passes, most likely just once.
- The streaming algorithms are restricted to use a space that is logarithmic or polylogarithmic in m and n.

Applications

Here, we list several applications.

- Query streams: Google/ChatGPT wants to know which queries are more frequent today than yesterday.
- Click streams: Wikipedia wants to know which pages have received unusual hits in the past hour.
- Social network post/update streams: trending topics on Twitter, TikTok, Facebook, etc.
- IP packet monitoring at a switch: Gather package receiving speed info and optimize the routing. Identify DDoS attacks.
- Sensor data collection: Identify the number of abnormal results.

 $\bullet\;\cdots$

Table of Contents

1 [Sampling from Data Streams](#page-3-0)

• [Reservoir Algorithm](#page-5-0)

[Approximate Counting](#page-7-0)

• [Morris Algorithm](#page-9-0)

[Distinct Element Counting](#page-16-0)

- [MinHash Algorithm](#page-18-0)
- Bottom-k [Sketch Algorithm](#page-23-0)
- \bullet [More Solutions for Distinct Element Counting](#page-32-0)

€⊡

Problem 1 (Uniform sampling in a stream)

Given a stream of elements from the universe $[m]$, where $[m]$ means the set of integers $\{1, 2, 3, \cdots m\}$, sample k elements from the stream uniformly at random.

Assume that we have *n* elements in the sequence. Each element has k/n probability of being sampled. However, the main challenge is: the size n of the stream is usually unknown.

Reservoir Sampling

The reservoir sampling algorithm achieves this goal without knowing the number *n* of elements in this sequence. It works as follows:

Algorithm 1 (Reservoir Sampling)

1. Initialize an array A of size k (array index starting from 1) and include the first k elements in the stream. This array is the reservoir; 2. When the i-th element a_i comes $(i > k)$, we draw a random integer r; if $r\leq k$, we update $A[i]$ and set $A[r]=$ a_i; 3. When the stream ends, return A;

It takes $O(k \log m)$ bits to store the array.

つひひ

Theorem 1

Algorithm [1](#page-5-1) returns each element with a probability $\frac{k}{n}$.

Proof.

We prove this by induction. When $n = k$. It naturally holds. **Inductive hypothesis:** When $n > k$, assume that the sample set A contains each element seen so far with probability $\frac{k}{n}$. Inductive step: Now a new element e comes, we aim to prove that each element seen so far is sampled with probability $\frac{k}{n+1}$.

- For the new element e_{n+1} , according to Algorithm [1,](#page-5-1) it is added into A with probability $\frac{k}{n+1}$.
- For the remaining elements e_1, e_2, \dots, e_n , the probability is:

$$
\mathbb{P}[e_i \in A_{n+1}] = \mathbb{P}[e_i \in A_n] \cdot \frac{n}{n+1} = \frac{k}{n} \cdot \frac{n}{n+1} = \frac{k}{n+1}.
$$

Proof done.

Table of Contents

[Sampling from Data Streams](#page-3-0)

• [Reservoir Algorithm](#page-5-0)

[Approximate Counting](#page-7-0) • [Morris Algorithm](#page-9-0)

[Distinct Element Counting](#page-16-0)

- [MinHash Algorithm](#page-18-0)
- Bottom-k [Sketch Algorithm](#page-23-0)
- \bullet [More Solutions for Distinct Element Counting](#page-32-0)

€⊡

Problem 2 (Counting Problem)

Given a stream of events, the counting problem aims to count the number of events that occur thus far with as little space as possible.

A straightforward solution: By maintaining a counter with $O(\log n)$ bits. That is already the best we can do if we want to maintain the exact count.

Can we do better if we allow for some approximation?

Definition 2 ((ϵ , δ)-approximation)

Let μ be the value of interest, e.g. the number of events in previous slides. Let $\hat{\mu}$ be an estimation of μ . Then, we say $\hat{\mu}$ is an (ϵ, δ) -approximation of μ if the following holds:

$$
\mathbb{P}[\vert \mu - \hat{\mu} \vert > \epsilon \cdot \mu] \le \delta.
$$

A classic solution for approximate counting: Morris algorithm.

Algorithm 2 (Morris Algorithm)

- 1. Initialize X as zero;
- 2. For each update, increment X with probability $\frac{1}{2^{\chi}}$;
- 3. For a counting query, return $\hat{n} = 2^X 1$;

Analysis of Morris Algorithm

Lemma 1

 $\mathbb{E}[2^{X_n}] = n + 1.$

Proof.

We prove this by induction. It is easy to verify the base case. Assume that it holds for $j \leq n$. Then, taking the condition on X_n , we have that:

$$
\mathbb{E}[2^{X_{n+1}}] = \sum_{j=0}^{+\infty} \mathbb{P}[X_n = j] \cdot \mathbb{E}[2^{X_{n+1}} | X_n = j]
$$

=
$$
\sum_{j=0}^{+\infty} \mathbb{P}[X_n = j] \cdot \left(2^{j}(1 - \frac{1}{2^{j}}) + 2^{j+1} \cdot \frac{1}{2^{j}}\right)
$$

=
$$
\sum_{j=0}^{+\infty} \mathbb{P}[X_n = j] \cdot 2^{j} + \sum_{j=0}^{+\infty} \mathbb{P}[X_n = j] = \mathbb{E}[2^{X_n}] + 1 = n + 2.
$$

Proof done.

Analysis of Morris Algorithm (Cont.)

We will further derive the variance of the Morris algorithm so as to apply the Chebyshev's inequality. Let $\hat{n} = 2^{X_n} - 1$ The variance $Var[\hat{n}]$ is:

$$
\mathbb{E}[(2^{X_n}-1-n)^2]=\mathbb{E}[2^{2X_n}]-(n+1)^2.
$$

Lemma 2

$$
\mathbb{E}[2^{2X_n}] = \frac{3}{2}n^2 + \frac{3}{2}n + 1.
$$

The proof is left as a self exercise. Accordingly, $\text{Var}[\hat{\theta}] = \frac{n(n-1)}{2}$. Then, by applying the Chebyshev's inequality, we have that:

$$
\mathbb{P}[|\hat{n}-n| > \epsilon \cdot n] \leq \frac{\text{Var}[\hat{n}]}{(\epsilon n)^2} < \frac{n^2/2}{\epsilon^2 n^2} = \frac{1}{2 \cdot \epsilon^2}.
$$

However, this bound is loose and the inequality is almost useless if $\epsilon \leq 1/\sqrt{2}.$

 Ω

Morris⁺

Can we achieve a meaningful probability, say $\delta = 1/3$?

- Key observation: the sum of Independent and identically distributed (i.i.d) random variables has degraded variance.
- Solution: Take t trials of Morris algorithm. Let their estimations be $\hat{n}_1, \hat{n}_2, \cdots, \hat{n}_t$. Then, take the average of the t trials: $\frac{\sum_{i=1}^t \hat{n}_i}{t}.$
	- Variance: $\frac{n(n-1)}{2t}$.
	- Applying the Chebshev's inequality again, we have:

$$
\mathbb{P}\left[\left|\frac{\sum_{i=1}^t \hat{n}_i}{t} - n\right| > \epsilon \cdot n\right] \le \frac{\text{Var}[\hat{n}]}{t \cdot (\epsilon n)^2} < \frac{1}{2t\epsilon^2}
$$

By setting $t = \frac{3}{2\epsilon}$ $\frac{3}{2\epsilon^2}$, we have that $\delta=\frac{1}{3}$ $\frac{1}{3}$.

ഹൈ

 $Morris++$

- To have a probability of δ , Morris+ needs $O(1/\delta)$ trials of Morris algorithm. Can we reduce the dependency to δ ?
- \bullet Solution: Morris $++$ via Median trick.
	- Apply Morris $+$ s times. Then, take the median as the estimation. The solution is Morris $++$.
	- \bullet Let Y be the random variable to indicate whether Morris $+$ succeeds. If it does succeed, $Y = 1$ and otherwise 0. To make Morris $++$ fail, at least half of the estimators fail. Think why?
	- Then, Morris $++$ fails indicates $\sum_{j=1}^{s} Y_i \leq \frac{s}{2}$.

$$
\mathbb{P}[\sum_{j=1}^{s} Y_{i} < \frac{s}{2}] = \mathbb{P}[\sum_{j=1}^{s} Y_{i} < (1 - \frac{1}{4}) \cdot \frac{2s}{3}] \leq \mathbb{P}[\sum_{j=1}^{s} Y_{i} < (1 - \frac{1}{4})\mu]
$$

Applying Chernoff bound, we have that:

$$
\mathbb{P}[\sum_{j=1}^s Y_j < (1-\frac{1}{4})\mu] \leq e^{-\mu(\frac{1}{4})^2/2} \leq e^{-\mu(\frac{1}{4})^2/2} \leq e^{-\frac{s}{48}}.
$$

• Settin[g](#page-16-0) $s = 48 \log(1/\delta)$ $s = 48 \log(1/\delta)$, the dependency r[edu](#page-12-0)[ce](#page-14-0)s [to](#page-13-0) $O(\log(1/\delta))$ $O(\log(1/\delta))$ $O(\log(1/\delta))$ $O(\log(1/\delta))$.

What is the space cost to achieve (ϵ, δ) -guarantee for the Morris++ algorithm?

Notice that the counter is a random variable. So is the space cost. Can we bound the space cost with a high probability?

Consider the case when $X_n \geq c \cdot \log_2(n+1)$. We have that:

$$
\mathbb{P}[X_n \ge c \cdot \log_2(n+1)] = \mathbb{P}[2^{X_n} \ge 2^{c \cdot \log_2(n+1)}]
$$

\$\le \frac{\mathbb{E}[2^{X_n}]}{2^{c \cdot \log_2(n+1)}} = \frac{n+1}{(n+1)^c} \le \frac{1}{(n+1)^{c-1}}\$

We have $\frac{3}{2\epsilon^2}\cdot 48\log(1/\delta)$ Morris counter. It is easy to bound the probability to $\frac{72 \log(1/\delta)}{\epsilon^2 (n+1)^{c-1}}$. With an appropriate c , this can be bounded with high probability. Thus, the space cost is bounded by $O(\frac{\log(1/\delta)\log\log n}{\epsilon^2})$ $\frac{1}{2}$ $\frac{\log \log n}{2}$ with high probability.

Exercise

The above Morris $++$ algorithm is not effective in practice when ϵ is no larger than 0.25. Also, the dependency to $log(1/\delta)$ is a multiplication factor over $log log n$. Can we reduce this dependency?

More generally, we can adopt a Morris(a) algorithm, where we increment the counter by the $\frac{1}{(1+a)^{\chi}}$ probability. Then, we estimate \hat{N} as $\frac{(1+a)^{\chi}-1}{a}$ $\frac{y-1}{a}$. If we set $a = 0$, we actually provide the actual count. If we set $a = 1$, we have the previous Morris algorithm. By choosing a between $(0, 1)$, we are gaining a balance between the accuracy and the space cost.

- Prove that $\hat{N} = \frac{(1+a)^{X}-1}{2}$ $\frac{a^{n-1}}{a}$ is an unbiased estimation of N and the variance is $\frac{aN(N-1)}{2}$.
- The space cost is bounded by $O(\log \log n + \log(1/\delta) + \log(1/\epsilon))$ with high probability by setting $a = 2\epsilon^2 \delta$.

Table of Contents

[Sampling from Data Streams](#page-3-0)

• [Reservoir Algorithm](#page-5-0)

[Approximate Counting](#page-7-0)

• [Morris Algorithm](#page-9-0)

3 [Distinct Element Counting](#page-16-0)

- [MinHash Algorithm](#page-18-0)
- Bottom-k [Sketch Algorithm](#page-23-0)
- [More Solutions for Distinct Element Counting](#page-32-0)

Definition 3 (Distinct Element Counting)

Given a stream of integers e_1, e_2, \dots, e_n from $[m]$ where elements might appear more than once in the stream, the goal of the distinct element counting problem is to output the number of distinct elements.

Example 1

Assume that $m = 5$ and the stream is $1, 2, 2, 1, 5, 4, 2, 2, 1$. Then, the number of distinct elements (NDE) is 4.

Two naive solutions

- Store the entire universe with $O(m)$ bits. Mark the *i*-th bit as 1 if *i* appears in the stream.
- Store a hash table or binary search tree to keep the distinct elements. This requires $O(n \cdot \log m)$ bits, or more precisely $O(NDE \cdot \log m)$ bits.

MinHash Algorithm [\[2\]](#page-34-2)

We now assume that we have the following idealized hash function $h: [n] \rightarrow [0, 1]$ with an equal probability of hashing to each value in [0, 1].

Actually, we cannot afford a truly randomized hash function as it cannot be maintained in $o(n)$ bits.

Algorithm 3 (MinHash Algorithm)

1. When an element e_i arrives, derive the hash value $h(e_i)$; 2. Maintain the minimum hash value X_{min} (Initially set as 1). If $h(e_i) < X_{min}$, update X_{min} as $h(e_i)$; 3. When the stream ends, return $\frac{1}{X_{min}}-1$;

つへへ

Lemma 3

 $\mathbb{E}[X_{min}]=\frac{1}{NDE+1}.$

Recap that for a continuous random variable X , we have the concept of probability density function $f_X(x)$ and cumulative distribution function $F_X(x)$. The expectation of such a random variable is

$$
\mathbb{E}[X] = \int_{-\infty}^{+\infty} x \cdot f_X(x) \, dx.
$$

For non-negative random variables, we further have that

$$
\mathbb{E}[X] = \int_0^{+\infty} (1 - F_X(x)) dx.
$$

Analysis of MinHash Algorithm (Cont.)

Lemma 4

$$
\mathbb{E}[X_{min}] = \frac{1}{NDE+1}.
$$

Proof.

Let $F_X(x)$ be the cumulative distribution function $F_X(x)$ that X_{min} is not larger than x. Then $1 - F_X(x)$ is the probability that X_{min} is larger than x, which happens only when all distinct elements have a hash value greater than $x.$ The probability is $(1-x)^{\textit{NDE}}$ for $0 \leq x \leq 1.$ Thus,

$$
\mathbb{E}[X_{min}] = \int_0^{+\infty} (1 - F_X(x)) dx = \int_0^1 (1 - x)^{NDE} dx
$$

=
$$
\frac{-(1 - x)^{NDE}}{NDE + 1} \Big|_0^1 = \frac{1}{NDE + 1}.
$$

Proof done.

Analysis of MinHash Algorithm (Cont.)

Lemma 5

$$
\mathbb{E}[X_{min}^2] = \frac{2}{(NDE+1)(NDE+2)}.
$$

The proof is left as a self-exercise. We can derive the variance of X_{min} .

$$
\text{Var}[X_{min}] = \mathbb{E}[X_{min}^2] - (\mathbb{E}[X_{min}])^2 = \frac{NDE}{(NDE + 1)^2(NDE + 2)}.
$$

Denote MinHash + as the algorithm by applying s such hash functions and taking the average of these s results of X_{min} . The expectation is still unbiased. The variance is reduced to

$$
\frac{NDE}{s(NDE+1)^2(NDE+2)} \leq \frac{1}{s(1+NDE)^2}
$$

Setting $s=\frac{3}{\epsilon^2}$ $\frac{3}{\epsilon^2}$ and applying the Chebshev's inequality, we have:

$$
\mathbb{P}\left[\left|\frac{1}{s}\sum_{j=1}^{s}X_{min,j}-\frac{1}{1+NDE}\right|\geq\frac{\epsilon}{1+NDE}\right]\leq\frac{1}{3}\qquad \qquad (1)
$$

Analysis of MinHash Algorithm (Cont.)

It is easy to verify that if $NDE \geq 2$ (which easily holds) and $\epsilon < 0.5$, the following holds:

$$
\mathbb{P}\big[\big|\frac{1}{\frac{1}{s}\sum_{j=1}^s X_{min,j}}-1-NDE\big|\geq 2\epsilon NDE\big]\leq \frac{1}{3}
$$

To reduce the failure probability from constant (here $\frac{1}{3}$) to an arbitrarily small value δ , we can apply the median trick as we have applied in Morris $++$ algorithm. This can be achieved with $O(log(1/\delta))$ trials of MinHash+. The final space is $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ $\frac{(1/\delta)}{\epsilon^2}\biggr).$

Table of Contents

[Sampling from Data Streams](#page-3-0)

• [Reservoir Algorithm](#page-5-0)

[Approximate Counting](#page-7-0)

• [Morris Algorithm](#page-9-0)

[Distinct Element Counting](#page-16-0)

- **[MinHash Algorithm](#page-18-0)**
- Bottom-k [Sketch Algorithm](#page-23-0)
- \bullet [More Solutions for Distinct Element Counting](#page-32-0)

Alternative to MinHash Algorithm: Bottom-k Sketch [\[3\]](#page-34-3)

The MinHash Algorithm applies multiple hash functions to reduce the variance. Any alternative method?

- The smallest value tends to have a large variance. Can we use other statistics?
- **•** Intuition: As shown in previous solutions, the median tends to be a stable variable. However, maintaining the median is expensive.
- \bullet As an alternative, we maintain the k smallest hash values.
- Let X_{kth} be the k-th smallest hash value, we return $\frac{k}{X_{kth}}$ as the estimation.

Is there any relationship between the k -th smallest hash value and NDE?

- Unfortunately, the relationship is not as explicit as that in MinHash $^1\!.$
- We will need to analyze this in a different approach.

¹The k-th order statistics: https://en.wikipedia.org/wiki/Order_statistic $\circ \circ \circ$ Sibo WANG (CUHK) [SEEM5020 Algorithms for Big Data](#page-0-0) Fall 2023 25/34

Bottom-k Sketch

Instead of a truly randomized hash function, bottom- k sketch only needs a hash function that is 2-wise independent, a.k.a, pairwise independent.

Definition 4 (k-wise independent hash family)

A family H of hash functions mapping from [a] \rightarrow [b] is k-wise independent if for any $j_1, \dots, j_k \in [b]$ and any distinct $i_1, \dots, i_k \in [a]$,

$$
\mathbb{P}_{h \in \mathcal{H}}[h(i_1) = j_1 \wedge h(i_2) = j_2 \wedge \cdots \wedge h(i_j) = j_k] = 1/b^k.
$$

There are efficient solutions in finding a k-wise independent hash function.

Example 2

Let P be a prime number greater than a (the input domain of h). Choose a_i randomly from $[P]$. The following hash function is k-wise independent:

$$
H(v) = \left((a_0 + a_1 \cdot v^1 + \cdots + a_{k-1} \cdot v^k) \bmod p \right) \bmod m
$$

How bottom-k sketch algorithm works with pairwise independent hashing:

- First, set the range $[b]$ with $b=n^3$ so that we will have no collision with at least $1-\frac{1}{n}$ $\frac{1}{n}$ probability.
- When an element e comes, we compute the hash value $h(e)$ of e.
- We maintain the set S_k of the k smallest hash values and denote the k-th smallest hash value as h_{kth} . If $h(e)$ is smaller than h_{kth} , we remove h_{kth} from S_k and add $h(e)$ to S_k .
- At the end, we retrieve h_{kth} from S_k and return an estimate of $\frac{\dot{b} \cdot k}{h_{\mathit{kth}}}$.

 200

Our goal: $(1 - \epsilon)NDE < \frac{b \cdot k}{h_{tot}}$ $\frac{B \cdot K}{h_{kth}} < (1+\epsilon)$ NDE

- We analyze for the probability of the bad event: $\frac{b\cdot k}{h_{kth}} \geq (1+\epsilon)NDE$. The other side can be analyzed in a similar way.
- We define $Y_i = 1$ if the *i*-th element has a hash value no larger than $\frac{b\cdot k}{(1+\epsilon)NDE}$ and otherwise 0. Define $Y=\sum_{i=1}^{NDE}Y_i$.
- Observe that:

$$
\frac{b\cdot k}{h_{kth}}\geq (1+\epsilon)NDE \Leftrightarrow \frac{b\cdot k}{(1+\epsilon)NDE}\geq h_{kth} \Leftrightarrow \sum_{i=1}^{NDE} Y_i\geq k.
$$

The goal is to bound the probability that $\sum_{i=1}^{NDE} Y_i > k$. $\mathbb{E}[Y_i] = \lfloor \frac{k}{(1+\epsilon)NDE} \rfloor$ according to its definition. Thus:

$$
\mathbb{E}[Y] = \mathbb{E}[\sum_{i=1}^{NDE} Y_i] = \text{NDE} \cdot \lfloor \frac{k}{(1+\epsilon) \text{NDE}} \rfloor \leq \frac{k}{(1+\epsilon)}.
$$

The variance $\text{Var}[Y]$ of Y is exactly $\sum_{i=1}^{NDE} \text{Var}[Y_i]$ since Y_i are pairwise independent. More specifically:

$$
\operatorname{Var}[\sum_{i=1}^{NDE} Y_i] = \mathbb{E}[(\sum_{i=1}^{NDE} Y_i - \mathbb{E}[Y_i])^2] = \sum_{i=1}^{NDE} E[(Y_i - \mathbb{E}[Y_i])^2] + 2\mathbb{E}[\sum_{1 \le i < j \le NDE} (Y_i - \mathbb{E}[Y_j])(Y_j - \mathbb{E}[Y_j])]
$$

The variance $\text{Var}[Y]$ of Y is exactly $\sum_{i=1}^{NDE} \text{Var}[Y_i]$ since Y_i are pairwise independent. More specifically:

$$
\operatorname{Var}[\sum_{i=1}^{NDE} Y_i] = \mathbb{E}[(\sum_{i=1}^{NDE} Y_i - \mathbb{E}[Y_i])^2] = \sum_{i=1}^{NDE} E[(Y_i - \mathbb{E}[Y_i])^2] +
$$

2 $\mathbb{E}[\sum_{1 \le i < j \le NDE} (Y_i - \mathbb{E}[Y_i])(Y_j - \mathbb{E}[Y_j])]$

As Y_i and Y_i are pairwise independent,

$$
\mathbb{E}[(Y_i - \mathbb{E}[Y_i])(Y_j - \mathbb{E}[Y_j])] = \mathbb{E}[(Y_i - \mathbb{E}[Y_i])] \mathbb{E}[(Y_j - \mathbb{E}[Y_j])] = 0.
$$

Thus,

$$
\operatorname{Var}[\sum_{i=1}^{NDE} Y_i] = \sum_{i=1}^{NDE} E[(Y_i - \mathbb{E}[Y_i])^2] = \sum_{i=1}^{NDE} \operatorname{Var}[Y_i] \leq \frac{k}{1+\epsilon}.
$$

We further apply the Chebshev's inequality.

$$
\mathbb{P}[Y \ge k] = \mathbb{P}[Y - \mathbb{E}[Y] \ge k - \mathbb{E}[Y]] \le \mathbb{P}[|Y - \mathbb{E}[Y]| \ge k - \mathbb{E}[Y]]
$$
\n
$$
\le \mathbb{P}[|Y - \mathbb{E}[Y]| \ge k - \frac{k}{(1+\epsilon)}] = \mathbb{P}[|Y - \mathbb{E}[Y]| \ge \frac{k\epsilon}{(1+\epsilon)}]
$$
\n
$$
\le \frac{\text{Var}[Y]}{(k\epsilon/(1+\epsilon))^2} \le \frac{k}{1+\epsilon} \cdot \frac{(1+\epsilon)^2}{k^2\epsilon^2} = \frac{1+\epsilon}{k\epsilon^2}
$$

Setting $k = \lceil \frac{12}{\epsilon^2} \rceil$ $\frac{12}{e^2}$, we have

$$
\mathbb{P}[Y \ge k] \le \frac{1+\epsilon}{12} \le \frac{1}{6}.
$$

The proof of the other side is left as a self-exercise. You may assume that $\epsilon < \frac{1}{2}$ and the fact that $b = n^3 \gg \textit{NDE} \cdot \epsilon$.

つへへ

Thus, we have that

$$
\mathbb{P}[(1-\epsilon)NDE < \frac{b\cdot k}{h_{kth}} < (1+\epsilon)NDE] \geq \frac{2}{3}
$$

We can further apply the median trick with $log(1/\delta)$ copies of the bottom-k sketch to achieve a success probability of $1 - \delta$. The total space complexity is thus: $O\left(k\cdot \log\left(1/\delta\right)\right)=O\left(\frac{\log\left(1/\delta\right)}{\epsilon^2}\right)$ $\frac{(1/\delta)}{\epsilon^2}\bigg).$

Table of Contents

[Sampling from Data Streams](#page-3-0)

• [Reservoir Algorithm](#page-5-0)

[Approximate Counting](#page-7-0)

• [Morris Algorithm](#page-9-0)

[Distinct Element Counting](#page-16-0)

- **[MinHash Algorithm](#page-18-0)**
- Bottom-k [Sketch Algorithm](#page-23-0)
- [More Solutions for Distinct Element Counting](#page-32-0)

More Solutions for Distinct Element Counting

FM Algorithm [\[4\]](#page-34-4): First, we need a hash function $h : [n] \rightarrow [2^L - 1]$ that maps the key x to each value in the range $[2^L - 1]$ uniformly at random.

- For each element e, compute the hash value $h(e)$. Then, let $r(e)$ be the number of trailing 0's in the binary representation of $h(e)$.
	- For example, $h(e) = 12$ and $12 = (1100)_2$ in binary. So, $r(e) = 2$ since there are two zeros at the end of the binary representation of $h(e)$.
- When the stream ends, let R be the maximum of $r(e)$ we have seen.
- Flajolet and Martin [\[4\]](#page-34-4) prove that $\mathbb{E}[R] \approx \log_2 \phi \cdot n$, where $\phi \approx 0.77351$. The proof is rather involved and hence is omitted.
- According to the above analysis, FM algorithm estimates the number of distinct elements as $2^R/\phi$.
- How to derive more accurate results?

HyperLogLog [\[5\]](#page-34-5): Extension of FM algorithm by splitting the stream into numerous sub-streams. Use harmonic mean to derive the estimation.

References

Robert H. Morris Sr.

Counting large numbers of events in small registers. Commun. ACM, 21(10):840–842, 1978.

Edith Cohen.

Size-estimation framework with applications to transitive closure and reachability. J. Comput. Syst. Sci., 55(3):441–453, 1997.

Edith Cohen and Haim Kaplan.

Summarizing data using bottom-k sketches. In PODC, pages 225–234, 2007.

F Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm. Discrete mathematics & theoretical computer science, 2007.

4 0 F