SEEM5020 Algorithms for Big Data
Streaming Algorithms (II)

Sibo WANG

Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong
Recap: Data Stream Model

Definition 1 (Data Stream Model)
The data streaming model involves processing a finite sequence of n integers drawn from a finite domain of size m. However, unlike traditional datasets, this sequence is not readily available for random access. Instead, the data arrives incrementally in the form of a continuous 'stream,' with each integer being presented one at a time.

Main challenges:

- In the data streaming model, accessing the input sequence typically allows for only a small number of passes, most likely just once.
- The streaming algorithms are restricted to use a space that is logarithmic or polylogarithmic in m and n.
Table of Contents

1 Finding Frequent Items in Data Streams
 • Counter-based Algorithms
 • Sketch-based Algorithms

2 Querying Over a Slide Window in Streams
 • The DGIM Algorithm
Misra-Gries Algorithm [1]

Misra-Gries Algorithm: A deterministic algorithm that has
- a space cost of $O\left(\frac{1}{\gamma} \log n\right)$.
- $(\gamma \cdot n, 1)$-approximation (or simply $\gamma \cdot n$-approximation when the probability is 1) guarantee: $f(e) - \gamma \cdot n \leq \hat{f}(e) \leq f(e)$, where $\hat{f}(e)$ is an estimate of the frequency $f(e)$ of element e.

Algorithm 1 (Misra-Gries Algorithm)

Let S be a set of pairs in the form $\langle k, c \rangle$, initially empty;

for each element e in the stream do
 if there exists a pair $\langle e, c \rangle \in S$ then
 update the pair as $\langle e, c + 1 \rangle$
 else if $|S| < \left\lceil \frac{1}{\gamma} \right\rceil - 1$ then
 Add a pair $\langle e, 1 \rangle$ to S;
 else
 for each pair $\langle e, c(e) \rangle \in S$ do
 decrement $c(e)$ by 1 and remove the pair from S if $c(e) = 0$
 end
end
How to estimate?
- If a pair \(\langle e, c(e) \rangle \in S \), return \(\hat{f}(e) = c(e) \);
- Otherwise, return 0.

Example 1

Consider a stream of elements \(B, A, B, C, B, D, A, D, D, E, E, E, E \). Assume that \(\gamma = \frac{1}{4} \).
Misra-Gries Algorithm (Cont.)

How to estimate?

- If a pair $\langle e, c(e) \rangle \in S$, return $\hat{f}(e) = c(e)$;
- Otherwise, return 0.

Example 1

Consider a stream of elements $B, A, B, C, B, D, A, D, D, E, E, E, E$. Assume that $\gamma = \frac{1}{4}$. Initially, we add $\langle B, 1 \rangle$ to S. When the next element A comes, $S = \{\langle B, 1 \rangle, \langle A, 1 \rangle\}$. For the next element B, we update the pair for B as $\langle B, 2 \rangle$. For the next element C, we update $S = \{\langle B, 2 \rangle, \langle A, 1 \rangle, \langle C, 1 \rangle\}$. When the next B comes, we update the pair for B as $\langle B, 3 \rangle$. Next, when D comes, S already includes 3 pairs, we decrement the counter for each element and remove those with counter zero. Thus $S = \{\langle B, 2 \rangle\}$. We repeat this process, and finally $S = \{\langle B, 1 \rangle, \langle D, 1 \rangle, \langle E, 3 \rangle\}$
We prove that the Misra-Gries algorithm provides $\gamma \cdot n$-approximation.

Proof.

We count the number of key-decrease operations on all elements in S. It happens only when the set S is full. A key-decrease operation will decrement the count by 1 to all $\lceil 1/\gamma \rceil$ elements in S. Since there are n elements, the counter for any element e is decremented by at most

$$\frac{n}{\lceil 1/\gamma \rceil} \leq \frac{n}{1/\gamma} = \gamma \cdot n.$$

Thus, for any element e,

$$\hat{f}(e) = c(e) \geq f(e) - \gamma \cdot n.$$

Also, it is obvious that $f(\hat{e}) \leq f(e)$. Proof done.
The key difference between Space-Saving and the Misra-Gries Algorithm:

- When a new element \(e \) comes and the set \(S \) is full, it kicks out the pair \(\langle e_{\text{min}}, c_{\text{min}} \rangle \) with the min count, and insert a pair \(\langle e, c_{\text{min}} + 1 \rangle \).

Algorithm 2 (Space-Saving Algorithm)

Let \(S \) be a set of pairs in the form \(\langle k, c \rangle \), initially empty;

for each element \(e \) in the stream do

if there exists a pair \(\langle e, c \rangle \in S \) then

update the pair as \(\langle e, c + 1 \rangle \)

else if \(|S| < \lceil 1/\gamma \rceil \) then

Add a pair \(\langle e, 1 \rangle \) to \(S \);

else

Let \(\langle e_{\text{min}}, c_{\text{min}} \rangle \) be the pair with the minimum count in \(S \);

Create a new pair \(\langle e, c_{\text{min}} + 1 \rangle \);

Delete \(\langle e_{\text{min}}, c_{\text{min}} \rangle \) from \(S \) and add \(\langle e, c_{\text{min}} + 1 \rangle \) to \(S \);
end
Space-Saving Algorithm (Cont.)

Estimation of an element e: the same as Misra-Gries Algorithm:
- If a pair $\langle e, c(e) \rangle \in S$, return $\hat{f}(e) = c(e)$;
- Otherwise, return 0.

Example 2

Consider a stream of elements $B, A, B, C, B, D, A, D, D, E, E, E, E$. Assume that $\gamma = \frac{1}{3}$.
Space-Saving Algorithm (Cont.)

Estimation of an element e: the same as Misra-Gries Algorithm:

- If a pair $\langle e, c(e) \rangle \in S$, return $\hat{f}(e) = c(e)$;
- Otherwise, return 0.

Example 2

Consider a stream of elements $B, A, B, C, B, D, A, D, D, E, E, E, E$. Assume that $\gamma = \frac{1}{3}$. Initially, we add $\langle B, 1 \rangle$ to S. When A comes, $S = \{\langle B, 1 \rangle, \langle A, 1 \rangle\}$. For the next element B, we update the pair for B as $\langle B, 2 \rangle$. For the next element C, we update $S = \{\langle B, 2 \rangle, \langle A, 1 \rangle, \langle C, 1 \rangle\}$. When the next B comes, we update the pair for B as $\langle B, 3 \rangle$. Next, when D comes, S already includes 3 pairs, we choose a pair with the smallest count. Assume that we choose $\langle A, 1 \rangle$. We add a pair $\langle D, 2 \rangle$ and remove $\langle A, 1 \rangle$ from S. Thus $S = \{\langle B, 2 \rangle, \langle C, 1 \rangle, \langle D, 2 \rangle\}$. When element A comes, we repeat the same steps and update S as $S = \{\langle B, 3 \rangle, \langle D, 2 \rangle, \langle A, 2 \rangle\}$. When the stream ends, $S = \{\langle B, 3 \rangle, \langle D, 4 \rangle, \langle E, 6 \rangle\}$.
The Space-Saving algorithm has the following properties.

Lemma 1 (Overestimation of Maintained elements)

For an element \(e \) that is in set \(S \), its estimation \(\hat{f}(e) = c(e) \) is never under-estimated.

Lemma 2 (Upper bound of \(c_{\text{min}} \))

Let \(c_{\text{min}} \) be the minimum count value in \(S \), \(c_{\text{min}} \leq \gamma \cdot n \).

Lemma 3 (Properties of elements in \(S \) and not in \(S \))

If \(f(e) \geq c_{\text{min}} \), the element \(e \) should appear in the set \(S \). For any element \(e \) that does not appear in \(S \), \(f(e) \leq \gamma \cdot n \).

Lemma 4 (\(\delta \cdot n \)-approximation of Space-Saving)

For any element \(e \), Space-Saving provides \(\delta \cdot n \)-approximation.
Table of Contents

1 Finding Frequent Items in Data Streams
 • Counter-based Algorithms
 • Sketch-based Algorithms

2 Querying Over a Slide Window in Streams
 • The DGIM Algorithm
The Count-Min sketch has the following structure:

- It maintains d arrays, each with a size of w. For each array $A[i][1\cdots w]$, a hash function $h_i : [m] \rightarrow [w]$ is drawn from 2-wise independent family \mathcal{H} and is associated with this array $A[i][1\cdots w]$;

- When e_j comes, for each array $A[i]$, update $A[i][h(e_j)] + = 1$;

- The frequency estimation for item e_j is $\min_{i \in [d]} A[i][h_i(e_j)]$.

Figure: An illustration of the Count-Min sketch.
Analysis of the Count-Min Sketch

How to set the number d of hash functions and the size w of each array?

- Recap: We have a stream that includes a sequence of n integers, which are from the domain $[m]$.
- We have the following lemma for the counter maintained at each row (for each hash function). Now, let’s focus on the i-th row (other rows can be analyzed in the same approach).
- With Lemma 5, we know how to set w.

Lemma 5

Given an arbitrary element e, let $A[i][h_i(e)]$ be the counter value at the $h_i(e)$-th position of the i-th array. Setting $w = \lceil \frac{3}{\varepsilon} \rceil$, we have that:

$$\mathbb{P}[A[i][h_i(e)] - f(e) \geq \varepsilon \cdot n] \leq \frac{1}{3}.$$
Proof.

Let e_x be an arbitrary element that is not equal to e. Then, we know that

$$\Pr[h_i(e) = h_i(e_x)] = \frac{1}{w}$$

since h_i is a 2-wise independent hash function.

Hence, let $f_{\neq e}$ be the number of elements in the stream that is not equal to e. Clearly, we know $f_{\neq e} + f(e) = n$. Let X be the overestimation of $f(e)$, i.e., $A[i][h_i(e)] - f(e)$. Then, by expectation, we know

$$E[X] = \frac{f_{\neq e}}{w} \leq \frac{n}{w}.$$

Then, by the Markov’s inequality, we have:

$$\Pr[A[i][h_i(e)] - f(e) \geq \varepsilon \cdot n] = \Pr[X \geq \varepsilon \cdot n] \leq \frac{E[X]}{\varepsilon} \leq \frac{n}{\left\lceil \frac{3}{\varepsilon} \right\rceil \cdot \varepsilon \cdot n} \leq \frac{1}{3}$$

Proof done.
How to set the number \(d \) of hash functions and the size \(w \) of each array?

- By Lemma 5, we know how to set \(w \).
- We set \(d \) to achieve \((\varepsilon \cdot n, \delta)\)-approximation via Lemma 6.

Lemma 6

Given an arbitrary element \(e \), let \(\hat{f}(e) = \min_{i \in [d]} A[i][h_i(e)] \) with the \(d \) setting as \(\lceil \log_3 (1/\delta) \rceil \), we have that:

\[
P[\hat{f}(e) - f(e) \geq \varepsilon \cdot n] \leq \frac{1}{\delta}
\]

The above is easy to prove since every row fails with at most \(\frac{1}{3} \) probability and thus all \(d \) rows fail with at most \(\frac{1}{3^d} \leq \frac{1}{\delta} \) probability.

Total space cost: \(O\left(\frac{\log m \cdot \log (1/\delta)}{\varepsilon}\right) \) bits.
Definition 2 (Range-based Frequency Queries)

Given a range \([\ell \cdots r]\), the range-based frequency query asks for the frequency of the elements in \([\ell \cdots r]\), i.e., \(f(\ell \cdots r) = \sum_{i=\ell}^{r} f(i)\).

A naive solution: Let \(\hat{f}(e)\) be the estimation of the frequency \(f(e)\) of element \(e\) returned by the Count-Min sketch. Return \(\sum_{i=\ell}^{r} \hat{f}(i)\).

- Issue: The larger the range it is, the larger the approximation error will be. A very loose bound: \((r - \ell) \cdot \epsilon \cdot n\).

An improved solution: Dyadic tree-based solution.

- Assumption: \(m\) is a power of 2. If not, we enlarge the domain from \([m]\) to \([2^\lceil \log_2 m \rceil]\). Let \(L = \lceil \log_2 m \rceil\).

- Main idea: For ranges \([1 \cdots 2], [3 \cdots 4], \cdots [2^L - 1 \cdots 2^L]\) (each pair), \([1 \cdots 4], [5 \cdots 8], \cdots, [2^L - 3, \cdots 2^L]\) (each quadruple), \(\cdots\), \([1 \cdots 2^{L-1}], [2^{L-1} + 1 \cdots 2^L]\), we track the frequency for each range.
An improved solution: Dyadic tree-based solution (cont.).

- Build a Count-Min sketch for $[1 \cdots 1], [2 \cdots 2], \ldots, [2^L \cdots 2^L]$.
- Build a Count-Min sketch for $[1 \cdots 2], [3 \cdots 4], \ldots, [2^L - 1 \cdots 2^L]$.
- ...
- Build a Count-Min sketch for $[1 \cdots 2^{L-1}], [2^{L-1}, 2^L]$.
- We have L Count-Min sketches.
- Given an element e, it is easy to obtain its corresponding ranges via bit-operations. Then, we update the corresponding sketch entries.

How to Query:

- Given a range $[\ell \cdots r]$, it can be transformed into at most $2L$ disjoint ranges so that their union is $[\ell \cdots r]$. Thus, we can apply the Count-Min sketch for each range and then sum them together. The error is bounded by $2L \cdot \varepsilon \cdot n$, which is $O(\log m \cdot \varepsilon \cdot n)$.
Definition 3 (Turnstile Model)

The stream consists of a sequence of n pairs (e_i, c_i), where $e_i \in [m]$ is an item and c_i is the number of items to be added (when c_i is positive) or deleted (when c_i is negative). The count of an element cannot be negative at any stage. The frequency of an item e is

$$f(e) = \sum_{(e_i, c_i) \in S \land e_i = e} c_i.$$

Think: What is the new approximation guarantee?

- Define f as the vector of the frequency of each distinct element. Under the same choice of d and w, the error is related to $\|f\|_1$, i.e. the sum of the frequency of each distinct element. More specifically,

$$\mathbb{P}[\hat{f}(e) - f(e) \geq \varepsilon \|f\|_1] \leq \delta$$
Count-Sketch

The approximation error of Count-Sketch is related to the L_2-norm of f.

- Maintain d arrays, each with a size of w. For each array $A[i][1\cdots w]$, two pairwise independent hash functions $h_i : [m] \to [w]$ and $g_i : [m] \to \{1, -1\}$ are associated with this array $A[i][1\cdots w]$.

- When a pair $\langle e, c_e \rangle$ comes, update the sketch as follows:

$$A[i][h_i(e)] \leftarrow A[i][h_i(e)] + g_i(e) \quad \forall i \in [1\cdots d]$$

- The estimated frequency of item e is the median over the d arrays of $g_i \cdot A[i][h_i(e)]$.

Analysis: left as self-exercise.
Definition 4 (Sliding Window)

Given a sequence of elements in the stream, where each element e_i is associated with a timestamp t_i so that $t_i < t_j$ if $i < j$, a sliding window of size N consists of the set of elements \(\{e_{c-N+1}, e_{c-N+2}, \ldots, e_c\} \) given the current timestamp t_c.

Interesting case:

- N is so large that the data cannot be fitted into the main memory.
- Too many streams: Windows for all cannot be stored in the memory.

Application:

- The number of queries about ChatGPT in the last 1 billion searches on Google.
- The number of times product X was sold in the last 1 million sales on Alibaba.
Problem 1

Given a stream of 0s and 1s, answer the query about how many 1s are there in the last \(k \) elements, where \(k \leq N \) and \(N \) is the window size.

A naive solution: Store the most recent \(N \) elements.

- When the new element comes, discard the oldest element.
- The space is too high as we have discussed.
 - We cannot get the exact answer without storing the whole window.
- We are happy with an approximate solution in most real scenarios.
The DGIM Algorithm [4]

The DGIM algorithm refers to the inventors: Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani.

- It requires only $O(\log^2 N)$ bits per stream to provide 0.5-approximation (which we will discuss next).
- The timestamp can be maintained with $\log N$ bits by taking $t_c \% N$.
- An ε-approximation can be further achieved by using $O\left(\frac{\log^2 N}{\varepsilon}\right)$ bits.
A key concept in DGIM: **Bucket**

- A bucket is a segment of the window ending with a 1; it is represented by a record consisting of
 - The **timestamp** of the end of the segment ($O(\log N)$ bits).
 - The **size** of the bucket: The number of 1s in this segment.

Constraints on the buckets:
- The size of buckets: It must be a power of 2.
- Either one or two buckets has the same size.
- Buckets do not overlap in timestamps.
- Buckets are sorted in size where earlier buckets never have a size smaller than that of later buckets.
- A bucket disappears when the latest timestamp is not within the time window.
- We have at most $2\log_2 N$ buckets.
An Example of Bucketized Summary of the Stream

Different buckets of the form: \(\langle \text{timestamp of last 1}, \text{size} \rangle\), assuming that the oldest timestamp is 1 and \(N = 70\) in the above example:

- **Orange:** One orange color bucket of size 16, \(\langle 16, 16 \rangle\). Part of the 1s in the bucket is outside the window and is not shown.
- **Pink:** Two pink color buckets of size 8, \(\langle 31, 8 \rangle\) and \(\langle 45, 8 \rangle\).
- **Magenta:** Two magenta color buckets of size 4, \(\langle 53, 4 \rangle\) and \(\langle 59, 4 \rangle\).
- **Cyan:** One cyan color bucket of size 2, \(\langle 65, 2 \rangle\).
- **Yellow:** Two yellow color buckets of size 1, \(\langle 66, 1 \rangle\) and \(\langle 69, 1 \rangle\).

The above example satisfies the constraints of buckets mentioned in the previous page.
The DGIM Algorithm (Cont.)

Processing the stream with the DGIM algorithm.

- **Step 1:** When a new element comes at the current timestamp, **Drop** the last (oldest) bucket if its timestamp of the ending segment is prior to \(N \) time units before the current time.

- **Step 2:** If the current element is 0. No other change is required. Otherwise, if the current element is 1:
 - **Step 2.1:** Create a new bucket of size 1 (including only this element), and the timestamp is the current timestamp.
 - **Step 2.2:** If there are no more than 2 buckets of size 1, nothing needs to be done. Otherwise, there are 3 buckets of size 1, a violation of the constraint; merge the oldest two buckets of size 1 into a size 2 bucket. We repeat the above merging steps until there is no violation of the bucket constraint (there are no more than 2 buckets of the same size).
Example: Updating the Buckets

Initial state of the stream: size-16 bucket (orange) shows partial elements in the bucket

```
1001010110001011 0 101010101010111 0 1010101
110101 000 101 1 0 0 1 0
```

1 arrives; create a third bucket of size 1.

```
1001010110001011 0 101010101010111 0 1010101
110101 000 101 1 0 0 1 0 1
```

Combine the oldest two size-1 buckets into a size-2 bucket.

```
1001010110001011 0 101010101010111 0 1010101
110101 000 101 1001 0 1
```

Later, 1, 0, 1 arrive. Now we have 3 size-1 buckets again. Need to merge until no violation on the buckets.

```
1001010110001011 0 101010101010111 0 1010101
110101 000 101 1001 0 1 1 0 1
```
Answering the Query

To estimate the number of 1s in the most recent \(N \) elements

- Sum the sizes of all buckets except the oldest bucket.
- Add half the size of the oldest bucket.

Why only half of the oldest bucket?

- We do not know how many 1s of the oldest bucket are within the time window.

```
1001010110001011 0 10101010101011 0 1010101
110101 000 101 1 00 1 0
```

What is the estimated number of 1s in the time window?

\[8 + 8 + 4 + 4 + 2 + 1 + 1 + \frac{16}{2} = 36. \]
Error Bound

Why it can achieve a 0.5-approximation?

- Suppose the oldest bucket has a size of 2^r.
- By assuming that half of the elements, i.e., 2^{r-1} elements, in the last bucket, are in the window, the error caused by the last bucket is at most 2^{r-1}.
- Since there is at least one bucket of each size less than 2^r and the oldest bucket includes at least 1 element that is within the window size, the true size is at least:

$$1 + 1 + 2 + 4 + \cdots + 2^{r-1} = 2^r$$

- The error is thus bounded by $2^{r-1}/2^r = 0.5$.
Extensions

- How to deal with queries with an arbitrary $k \leq N$?
- How to reduce the error?
- How to handle streams of arbitrary non-negative integers?
Jayadev Misra and David Gries.
Finding repeated elements.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi.
Efficient computation of frequent and top-k elements in data streams.

Graham Cormode and S. Muthukrishnan.
An improved data stream summary: the count-min sketch and its applications.

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
Maintaining stream statistics over sliding windows.