SEEM5020 Algorithms for Big Data Nearest Neighbor Search: Locality Sensitivity Hashing

Sibo WANG

Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong

Definition 1 (Nearest Neighbor Search)

Given a set $P = {\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}}$ of *n* points in \mathbb{R}^d and a distance metric $dist(\cdot, \cdot)$, for any query point $\mathbf{q} \in \mathbb{R}^d$, the nearest neighbor search query finds the point closest to \mathbf{q} in *P* according to the provided distance metric.

Definition 2 (*r*-near neighbor search (*r*-NNS))

Still consider the input set *P* of *n d*-dimensional points and a distance metric $dist(\cdot, \cdot)$ is given. For any query point **q**, the *r*-near neighbor search (if exists) returns a point $\mathbf{x} \in P$ s.t. $dist(\mathbf{q}, \mathbf{x}) \leq r$

The *r*-near neighbor search problem can be treated as a decision problem of the nearest neighbor search problem. To solve the nearest neighbor search, we can apply the decision version with $\log(d_{max}/d_{min})$ iterations.

イロト 不得 トイヨト イヨト

Nearest Neighbor Search: Exact Solutions

Consider the Euclidean distance, i.e., $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_2$.

- When d = 1: sort the data and then for any input query point, we can do a binary search to find the closest point.
 - O(n) space and $O(\log n)$ query time.
- When d = 2: Building a Voronoi diagram.
 - O(n) space and $O(\log)$ query time.
- When *d* > 2:
 - Voronoi diagram: $O(n^{\lceil d/2 \rceil})$ space. Too expensive!
 - Linear search: $O(d \cdot n)$ search time.

Definition 3 (c-Approximate Nearest Neighbor Search (c-ANNS))

Given a set $P = {\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}}$ of *n* points in \mathbb{R}^d and a distance metric $dist(\cdot, \cdot)$, for any query point $\mathbf{q} \in \mathbb{R}^d$, the *c*-approximate nearest neighbor search query returns an arbitrary point \mathbf{x} so that $dist(\mathbf{q}, \mathbf{x}) \leq c \cdot dist(\mathbf{q}, \mathbf{x}^*)$, where \mathbf{x}^* is the nearest neighbor of \mathbf{q} .

- Point x₄ is the nearest neighbor of the query point q.
- Within the range of 2 · dist(q,x₄), x₁,x₂,x₃ all fall into it.
- We can return any of x₁, x₂, and x₃, which is a valid answer for the 2-ANNS query.

Definition 4 (*c*-Approximate *r*-Near Neighbor Search (c, r)-ANNS)

For any query point \mathbf{q} , if there exists a point \mathbf{x} in P such that $dist(\mathbf{q}, \mathbf{x}) \leq r$, then the *c*-approximate *r*-near neighbor search query returns a point $\mathbf{x}' \in P$ so that $dist(\mathbf{q}, \mathbf{x}') \leq c \cdot dist(\mathbf{q}, \mathbf{x})$.

Similarly, we can answer the *c*-approximate nearest neighbor query via a binary search on the radius *r* with the (c, r)-ANNS query. Next, we focus on this (c, r)-ANNS query, which will be solved by locality sensitivity hashing.

Locality Sensitivity Hashing

LSH Family for Different Distance Measures

- LSH for Euclidean distance
- LSH for Cosine Distance
- LSH for Jaccard Distance (for Binary Vectors)

Locality-Sensitive Hashing [1]

Intuition: For two points \mathbf{x} and \mathbf{y} , locality-sensitive hashing will hash the close data points into the same buckets with a higher probability.

Consider a simple idea that projects the data points into a random line crossing the origin.

- Close points x₁ and x₂ are projected into the same bucket with ID 3.
- The far point x₄ of x₁ is in a different bucket, with ID 1.
- The far point x₅ is in the same bucket as x₁. But the chances of such events are much lower.

Definition 5 $((r, c \cdot r, p_1, p_2)$ -sensitive)

Given a distance measure $dist(\cdot, \cdot)$, a fixed r, a family \mathscr{H} of hash function is said to be $(r, c \cdot r, p_1, p_2)$ -sensitive, where $p_1 > p_2$ and c > 1, if h randomly drawn from \mathscr{H} satisfies the following:

• $\mathbb{P}[h(\mathbf{x}) = h(\mathbf{y})] \ge p_1$ when $dist(\mathbf{x}, \mathbf{y}) \le r$.

• If x and y are close, the collision probability is high.

•
$$\mathbb{P}[h(\mathbf{x}) = h(\mathbf{y})] \le p_2$$
 when $dist(\mathbf{x}, \mathbf{y}) \ge c \cdot r$.

• If \mathbf{x} and \mathbf{y} are sufficiently far, the probability of collision is low.

A key parameter: the gap between p_1 and p_2 measured as $\rho = \frac{\log p_1}{\log p_2}$. We will see the role of ρ later in our analysis.

Here, we assume that we have already had the locality-sensitive family \mathscr{H} for the distance measure *dist*. We will see how to design the LSH family for different metrics later.

The Issue with a Single LSH Function from ${\mathscr H}$

Given a query point \mathbf{q} , even though there is a small probability p_2 that a point \mathbf{x} will collide with \mathbf{q} if the distance is far, i.e. at least $c \cdot r$, there might exist O(n) such far data points.

- There exist $O(p_2 \cdot n)$ far points that collide with **q** in expectation.
- These far data points that collide with **q** are called false positives.

• For query point **q**, *x*₅ is a false positive

Pruning False Positives with AND Operation

We need to reduce the number of false positives!

Solution: Pick multiple independent hash functions h₁, h₂, ..., h_k from *H*. Define a new hash function g(x) with the AND operation:

$$\mathbf{g}(\mathbf{x}) = \langle h_1(\mathbf{x}), h_2(\mathbf{x}), \cdots, h_k(\mathbf{x}) \rangle$$

where $g(x_1) = g(x_2)$ if and only if

$$h_1(\mathbf{x_1}) = h_2(\mathbf{x_1}) \land h_1(\mathbf{x_2}) = h_2(\mathbf{x_2}) \land \cdots \land h_k(\mathbf{x_1}) = h_k(\mathbf{x_k})$$

Lemma 1

Given a family \mathcal{H} of $(r, c \cdot r, p_1, p_2)$ -sensitive hash functions, by randomly choosing k hash functions from \mathcal{H} and defining it as

$$\mathbf{g}(\mathbf{x}) = \langle h_1(\mathbf{x}), h_2(\mathbf{x}) \cdots, h_k(\mathbf{x}) \rangle,$$

 $g(\mathbf{x})$ constitutes a family \mathscr{G} of $(r, c \cdot r, p_1^k, p_2^k)$ -sensitive hash functions.

Choosing the Appropriate k

We choose k so that the expected number of far points is ≤ 1 .

- This can be done by setting $p_2^k = \frac{1}{n} \rightarrow k = \log_{1/p_2}(n)$.
- Accordingly, $p_1^k = 1/n^{\rho}$. If there is only one point that is the *r*-near neighbor of the query point **q**, then in expectation we only have the probability $\frac{1}{n^{\rho}}$ that the point hashes to the same bucket as the query point **q**.
- As we need to spend at least O(1) time to do a table lookup.
 - The cost of the false positive hence can be bounded by the table lookup cost, without incurring additional cost.

Multiple Hash Tables

We now need to increase the chance that a r-near neighbor of **q** hashes to the same bucket as **q**.

- We can choose a sufficiently large number L of hash functions from (r, c · r, p₁^k, p₂^k)-sensitive hash family G.
- Then, the *r*-near neighbors will hash to at least one of these *L* hash functions with high probability.
 - We set $L = n^{\rho}$. The reason will be explained shortly.
 - The storage is then: $O(n \cdot L) = O(n^{1+\rho})$.

Query Processing

The LSH includes *L* hash tables, where for each hash table, the hash function is chosen from the $(r, c \cdot r, p_1^k, p_2^k)$ -sensitive family \mathscr{G} . To answer a query, it proceeds as follows:

- Retrieve data points from buckets $g_1(\mathbf{q}), g_2(\mathbf{q}), \cdots g_L(\mathbf{q})$ one by one.
- For each retrieved data point **x**, we compute the distance *dist*(**q**, **x**).
- Then, (i) we return the first data point such that the distance to **q** is no larger than $c \cdot r$, or (ii) we have retrieved all data points from the L buckets but no point within distance $c \cdot r$, then we return failure.

What if there are too many data points in these L buckets? How to bound the search complexity?

- Fix: we stop the search when we have retrieved 3*L* data points (but no *cr*-near neighbors) and we return failure.
- This bounds the search complexity to $O(d \cdot k \cdot L)$.

Theoretical Analysis

For a query point \mathbf{q} , the LSH query algorithm answers correctly:

- If there is no point that is a *c* · *r*-near neighbor of **q**, hence the query returns failure.
- If the LSH query algorithm returns a data point **x**, its distance to the query point **q** is always bounded by $c \cdot r$.

Theoretical Analysis

For a query point \mathbf{q} , the LSH query algorithm answers correctly:

- If there is no point that is a *c* · *r*-near neighbor of **q**, hence the query returns failure.
- If the LSH query algorithm returns a data point **x**, its distance to the query point **q** is always bounded by $c \cdot r$.

How to bound the failure probability when there is a *r*-near neighbor \mathbf{x} of \mathbf{q} exists. When it fails?

- Event *E*₁: For any *r*-near neighbor **x**, it does not collide with query point **q**.
- Event *E*₂: There are too many (more than 3*L*) far points collide with **q** in these *L* hash functions.

Lemma 2

Event E_1 occurs with probability no more than $\frac{1}{e}$.

Proof.

We analyze the case where there is only one *r*-near neighbor \mathbf{x} of the query point \mathbf{q} . Obviously, the more *r*-near neighbors \mathbf{q} has, the smaller the probability of event E_1 will be.

$$\mathbb{P}[E_1] = \mathbb{P}[g_1(\mathbf{x}) \neq g_1(\mathbf{q}) \land g_2(\mathbf{x}) \neq g_2(\mathbf{q}) \cdots g_L(\mathbf{x}) \neq g_L(\mathbf{q})]$$

= $\mathbb{P}[g_1(\mathbf{x}) \neq g_1(\mathbf{q})] \cdot \mathbb{P}[g_2(\mathbf{x}) \neq g_2(\mathbf{q})] \cdots \mathbb{P}[g_L(\mathbf{x}) \neq g_L(\mathbf{q})]$
= $(1 - \frac{1}{n^{\rho}}) \cdot (1 - \frac{1}{n^{\rho}}) \cdots (1 - \frac{1}{n^{\rho}}) = (1 - \frac{1}{n^{\rho}})^L \text{ (recap: } L = n^{\rho})$
= $(1 - 1/L)^L \leq \frac{1}{\rho}$

This finishes the proof.

Sibo WANG (CUHK)

Fall 2023

15/32

Lemma 3

Event E_2 occurs with a probability no more than $\frac{1}{3}$.

Proof.

Let **x** be a bad point such that $dist(\mathbf{q}, \mathbf{x}) > c \cdot r$. Let Y be a random variable to indicate the number of bad points examined. As we have shown, for a given hash function $g_i(\cdot)$, the expected number of bad points that collide with **q** is bounded by 1. Thus, the expected number of points that collide with the *L* hash functions is bounded by *L*. Then, by Markov's inequality, we have:

$$\mathbb{P}[Y \ge 3L] \le \frac{\mathbb{E}[Y]}{3L} \le \frac{L}{3L} = \frac{1}{3}.$$

This finishes the proof.

Theorem 1

The LSH query algorithm correctly returns an *c*-approximate *r*-near neighbor with probability at least $\frac{2}{3} - \frac{1}{e}$.

The above theorem can be derived via a combination of Lemmas 2-3 and the union bound.

Consider the following questions:

- How to increase the success probability to a larger constant?
- In case we want to return the *c*-approximate nearest neighbor query with a success probability of at least $\frac{2}{3} \frac{1}{e}$, how should we set the parameters?
- In the median trick, we need to have the success probability larger than 1/2 to boost the probability. Here, do we need to have the same constraint? Why?

Locality Sensitivity Hashing

LSH Family for Different Distance Measures LSH for Euclidean distance

- LSH for Cosine Distance
- LSH for Jaccard Distance (for Binary Vectors)

Intuition: Projection onto random lines (crossing the origin) and divide them into different buckets.

• Version 1: We choose a random line by randomly sampling a unit vector **u** and then divide them into different buckets.

$$h_{\mathbf{u}}(\mathbf{x}) = \lceil \frac{\mathbf{u} \cdot \mathbf{x}}{r} \rceil.$$

Issue: Even if two points are very close, we might still project them into different buckets.

• Final version: We add a random offset $b \in [0, r]$ to the result.

$$h_{\mathbf{u},b}(\mathbf{x}) = \lceil \frac{\mathbf{u} \cdot \mathbf{x} + b}{r} \rceil.$$
(1)

Generating the Random Gaussian Vector ${\boldsymbol{u}}$

Next, we show how to generate a random Gaussian vector in \mathbb{R}^d :

- Pick *d* Independent and identically distributed (i.i.d) random variables Z_1, Z_2, \dots, Z_d from Gaussian distribution $\mathcal{N}(0, 1)$. Let $\mathbf{u} = (Z_1, Z_2, \dots, Z_d)$.
- The vector **u** is also called a random Gaussian vector.

Recap: Property of Gaussian distributions.

Lemma 4

Assume that we have two random variables X and Y that are sampled from two independent Gaussian distributions, i.e., $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$. Then, their sum Z = X + Y also follows a Gaussian distribution specified as $\mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Analysis of the Hashing Scheme

Recap that for the hash function:

- We pick a bucket width r > 0
- a number b sampled from (0, r) uniformly at random
- and a random Gaussian vector **u**.

The final hash function is $h_{\mathbf{u},a}(\mathbf{x}) = \lceil \frac{\mathbf{x} \cdot \mathbf{u} + b}{r} \rceil$. We omit the subscript and denote it as $h(\mathbf{x})$ directly when the context is clear.

Lemma 5

Given a vector \mathbf{x} and a random Gaussian vector \mathbf{u} , then $Z = \mathbf{x} \cdot \mathbf{u}$ follows a Gaussian distribution $\mathcal{N}(0, (||\mathbf{x}||_2)^2)$ and $\mathbb{E}[Z^2] = (||\mathbf{x}||_2)^2$.

Fall 2023

Analysis of the Hashing Scheme (Cont.)

Given the hashing scheme $h(\mathbf{x})$, now we consider the probability:

• $p_1 = \mathbb{P}[h(\mathbf{x_1}) = h(\mathbf{x_2})]$ if $dist(\mathbf{x_1}, \mathbf{x_2}) = ||\mathbf{x_1} - \mathbf{x_2}||_2 \le r$. • $p_2 = \mathbb{P}[h(\mathbf{x_1}) = h(\mathbf{x_2})]$ if $dist(\mathbf{x_1}, \mathbf{x_2}) = ||\mathbf{x_1} - \mathbf{x_2}||_2 \ge c \cdot r$

Define $\mathbf{x}' = \mathbf{x_1} - \mathbf{x_2}$.

$$h(\mathbf{x_1}) = h(\mathbf{x_2}) \Leftrightarrow \lceil \frac{\mathbf{x_1} \cdot \mathbf{u} + b}{r} \rceil = \lceil \frac{\mathbf{x_2} \cdot \mathbf{u} + b}{r} \rceil$$

As we have analyzed in Lecture 1,

• if $|\mathbf{x}_1 \cdot \mathbf{u} - \mathbf{x}_2 \cdot \mathbf{u}| \le r$, the probability that $h(\mathbf{x}_1) = h(\mathbf{x}_2)$ holds is $1 - |\mathbf{x}_1 \cdot \mathbf{u} - \mathbf{x}_2 \cdot \mathbf{u}|/r$.

• if
$$|\mathbf{x}_1 \cdot \mathbf{u} - \mathbf{x}_2 \cdot \mathbf{u}| > r$$
, $h(\mathbf{x}_1) \neq h(\mathbf{x}_2)$.

Analysis of the Hashing Scheme (Cont.)

Define $Z = \mathbf{x_1} \cdot \mathbf{u} - \mathbf{x_2} \cdot \mathbf{u}$. Then, Z follows a Gaussian distribution of $\mathcal{N}(0, (||\mathbf{x}_1 - \mathbf{x}_2||_2)^2).$

Then, the probability distribution of the event $h(\mathbf{x_1}) = h(\mathbf{x_2})$ is:

$$\mathbb{P}[h(\mathbf{x}_1) = h(\mathbf{x}_2)] = \int_0^r \mathbb{P}[h(\mathbf{x}_1) = h(\mathbf{x}_2)||Z| = y] \cdot f(y) \, dy,$$

where f(y) (with $y \ge 0$) is the density function of $|\mathcal{N}(0, Z^2)|$. Since $\mathbb{P}[h(\mathbf{x_1}) = h(\mathbf{x_2}) \mid |Z| = y] = 1 - \frac{y}{r}$, we have that:

$$\mathbb{P}[h(\mathbf{x_1}) = h(\mathbf{x_2})] = \int_0^r (1 - \frac{y}{r}) \cdot f(y) \, dy$$

= $\int_0^r \frac{1}{||\mathbf{x_1} - \mathbf{x_2}||_2} f(\frac{y}{||\mathbf{x_1} - \mathbf{x_2}||_2}) (1 - \frac{y}{r}) \, dy,$

where f(y) is the density function of $|\mathcal{N}(0,1)|$.

Analysis of the Hashing Scheme (Cont.)

Now we make a connection between the distance of x_1 and x_2 and the probability that they will collide. Define the probability derived on previous page as $p(||x_1 - x_2||)$.

- Clearly, $p_1 = p(r)$;
- $p_2 = p(c \cdot r)$.

We want to bound $\rho = \log(1/\rho(r))/\log(1/\rho(c \cdot r))$. Here, notice that for different data points $\mathbf{x_1}$ and $\mathbf{x_2}$, ρ_1 and ρ_2 clearly depend on these two inputs and can be different for different input $\mathbf{x_1}$ and $\mathbf{x_2}$.

Lemma 6 ([2])

Given the LSH designed with Equation 1, $\rho = \frac{\log(1/p_1)}{\log(1/p_2)}$ is bounded by $\frac{1}{c}$.

Locality Sensitivity Hashing

2 LSH Family for Different Distance Measures

- LSH for Euclidean distance
- LSH for Cosine Distance
- LSH for Jaccard Distance (for Binary Vectors)

Cosine Distance

Cosine similarity between two vectors **x** and **y**:

$$cos(\mathbf{x}, \mathbf{y}) = rac{\mathbf{x} \cdot \mathbf{y}}{||\mathbf{x}||_2 \cdot ||\mathbf{y}||_2}$$

The cosine distance measures the angle between the two vectors:

$$dist_{cos}(\mathbf{x}, \mathbf{y}) = \arccos\left(\frac{\mathbf{x} \cdot \mathbf{y}}{||\mathbf{x}||_2 \cdot ||\mathbf{y}||_2}\right)$$

Easy to verify:

- When x and y point to opposite directions, their cosine distance is the largest, which is π.
- When **x** and **y** point to the same direction, their cosine distance is the smallest, which is 0.

SimHash is designed for the cosine distance. Given a sampled random Gaussian unit vector \mathbf{u} , $h_{\mathbf{u}}(\mathbf{x})$ is defined as:

$$h_{\mathbf{u}}(\mathbf{x}) = \operatorname{sign}(\mathbf{u} \cdot \mathbf{x}),$$

where sign outputs 1 if the input is ≥ 0 and otherwise outputs -1.

Lemma 7

Given two data points \mathbf{x} and \mathbf{y} and a SimHash function $h_{\mathbf{u}}(\cdot)$ The probability that the hash values of \mathbf{x} and \mathbf{y} are equal, i.e., either both are 1 or both are -1, is as follows:

$$\mathbb{P}[h_{\mathbf{u}}(\mathbf{x}) = h_{\mathbf{u}}(\mathbf{y})] = 1 - \frac{dist_{cos}(\mathbf{x}, \mathbf{y})}{\pi}$$

Analysis of SimHash

We can prove Lemma 7 by drawing the figure as shown on the right-hand side.

We further consider $ho = \log(1/p_1)/\log(1/p_2).$

$$\rho = \frac{\ln(1/(1-r/\pi))}{\ln(1/(1-cr/\pi))}$$

By using the following inequality:

$$\frac{x}{x+1} \le \ln(1+x) \le \frac{x(6+x)}{6+4x} \le x \text{ for } x > -1.$$

We can show that $\rho \leq \frac{1}{c}$ for $c \geq 2$.

Fall 2023

28 / 32

Locality Sensitivity Hashing

2 LSH Family for Different Distance Measures

- LSH for Euclidean distance
- LSH for Cosine Distance
- LSH for Jaccard Distance (for Binary Vectors)

Jaccard Distance for Binary Vectors

Given two binary vectors \mathbf{x} and \mathbf{y} , we first map them to two sets X and Y, where the *i*-th non-zero entry indicates the existence of element *i* in the set. The Jaccard similarity $J(\mathbf{x}, \mathbf{y})$ is defined as:

$$J(\mathbf{x},\mathbf{y})=\frac{|X\cap Y|}{|X\cup Y|}.$$

The Jaccard distance $dist_{Jaccard}(\mathbf{x}, \mathbf{y})$ is defined as $1 - J(\mathbf{x}, \mathbf{y})$.

Example 1

Let $\mathbf{x} = (1,0,0,0,1,0,1,0,1,1)$ and $\mathbf{y} = (0,0,0,0,1,0,1,0,0,0)$. Then, the Jaccard similarity between \mathbf{x} and \mathbf{y} is

$$J(\mathbf{x}, \mathbf{y}) = \frac{|X \cap Y|}{|X \cup Y|} = \frac{\{1, 5, 7, 9, 10\} \cap \{5, 7\}}{\{1, 5, 7, 9, 10\} \cup \{5, 7\}} = \frac{2}{5}$$

Then, $dist_{Jaccard}(\mathbf{x}, \mathbf{y}) = 1 - J(\mathbf{x}, \mathbf{y}) = \frac{3}{5}$.

Generate a random permutation P for $[1 \cdots d]$. For the *i*-th dimension, the hashed value is P[i], i.e., the value in the *i*-th dimension of the permutation P. Let $h(\mathbf{x}) = \min_{\mathbf{x}(i)=1} P(\mathbf{x}(i))$ be the minimum hashed value among the non-zero entries. Then,

$$\mathbb{P}[h(\mathbf{x} = \mathbf{y}] = J(\mathbf{x}, \mathbf{y}) = 1 - dist_{Jaccard}(\mathbf{x}, \mathbf{y}).$$

Example 2

Let $\mathbf{x} = (1,0,0,0,1,0,1,0,1,1)$ and $\mathbf{y} = (0,0,0,0,1,0,1,0,0,0)$. Assume that the random permutation of $[1 \cdots 10]$ is [4,2,10,5,1,3,8,7,9,6]. Then, $h(\mathbf{x}) = \min\{4,1,8,9,6\} = 1$ and $h(\mathbf{y}) = \min\{1,8\} = 1$.

We can verify that $\rho = \log(1/p_1)/\log(1/p_2)$ can be bounded by $\frac{1}{c}$ if $c \ge 2$.

References

Piotr Indyk and Rajeev Motwani.

Approximate nearest neighbors: Towards removing the curse of dimensionality. In *STOC*, pages 604–613, 1998.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In *SOCG*, pages 253–262, 2004.

Moses Charikar.

Similarity estimation techniques from rounding algorithms. In *STOC*, pages 380–388, 2002.

Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise independent permutations (extended abstract). In *STOC*, pages 327–336, 1998.

Sibo WANG (CUHK)

Fall 2023

< □ > < □ > < □ > < □ >