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Nearest Neighbor Search (NNS)

Definition 1 (Nearest Neighbor Search)

Given a set P = {x1,x2, · · · ,xn} of n points in Rd and a distance metric
dist(·, ·), for any query point q ∈ Rd , the nearest neighbor search query
finds the point closest to q in P according to the provided distance metric.

Definition 2 (r -near neighbor search (r -NNS))

Still consider the input set P of n d-dimensional points and a distance
metric dist(·, ·) is given. For any query point q, the r -near neighbor search
(if exists) returns a point x ∈ P s.t. dist(q,x)≤ r

The r -near neighbor search problem can be treated as a decision problem
of the nearest neighbor search problem. To solve the nearest neighbor
search, we can apply the decision version with log(dmax/dmin) iterations.
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Nearest Neighbor Search: Exact Solutions

Consider the Euclidean distance, i.e., dist(x,y) = ||x−y||2.
When d = 1: sort the data and then for any input query point, we
can do a binary search to find the closest point.

O(n) space and O(logn) query time.

When d = 2: Building a Voronoi diagram.

O(n) space and O(log) query time.

When d > 2:

Voronoi diagram: O(n⌈d/2⌉) space. Too expensive!
Linear search: O(d ·n) search time.
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Approximate Nearest Neighbor Search

Definition 3 (c-Approximate Nearest Neighbor Search (c-ANNS))

Given a set P = {x1,x2, · · · ,xn} of n points in Rd and a distance metric
dist(·, ·), for any query point q ∈ Rd , the c-approximate nearest neighbor
search query returns an arbitrary point x so that dist(q,x)≤ c ·dist(q,x∗),
where x∗ is the nearest neighbor of q.

Point x4 is the nearest neighbor of the
query point q.

Within the range of 2 ·dist(q,x4),
x1,x2,x3 all fall into it.

We can return any of x1, x2, and x3,
which is a valid answer for the
2-ANNS query.
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Approximate r -Near Neighbor Search

Definition 4 (c-Approximate r -Near Neighbor Search (c , r)-ANNS)

For any query point q, if there exists a point x in P such that
dist(q,x)≤ r , then the c-approximate r -near neighbor search query returns
a point x′ ∈ P so that dist(q,x′)≤ c ·dist(q,x).

Similarly, we can answer the c-approximate nearest neighbor query via a
binary search on the radius r with the (c, r)-ANNS query. Next, we focus
on this (c , r)-ANNS query, which will be solved by locality sensitivity
hashing.
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Locality-Sensitive Hashing [1]

Intuition: For two points x and y, locality-sensitive hashing will hash the
close data points into the same buckets with a higher probability.

Consider a simple idea that projects the data points into a random line
crossing the origin.

Close points x1 and x2 are
projected into the same
bucket with ID 3.

The far point x4 of x1 is in a
different bucket, with ID 1.

The far point x5 is in the
same bucket as x1. But the
chances of such events are
much lower.

𝒛𝟏

𝒛𝟐

𝒙𝟏

𝒙𝟐

𝒙𝟒

𝒙𝟑 𝒙𝟓

buckets

Sibo WANG (CUHK) SEEM5020 Algorithms for Big Data Fall 2023 7 / 32



Locality-Sensitive Hashing (LSH) Families

Definition 5 ((r ,c · r ,p1,p2)-sensitive)
Given a distance measure dist(·, ·), a fixed r , a family H of hash function
is said to be (r ,c · r ,p1,p2)-sensitive, where p1 > p2 and c > 1, if h
randomly drawn from H satisfies the following:

P[h(x) = h(y)]≥ p1 when dist(x,y)≤ r .

If x and y are close, the collision probability is high.

P[h(x) = h(y)]≤ p2 when dist(x,y)≥ c · r .
If x and y are sufficiently far, the probability of collision is low.

A key parameter: the gap between p1 and p2 measured as ρ = logp1
logp2

. We
will see the role of ρ later in our analysis.

Here, we assume that we have already had the locality-sensitive family H
for the distance measure dist. We will see how to design the LSH family
for different metrics later.
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The Issue with a Single LSH Function from H

Given a query point q, even though there is a small probability p2 that a
point x will collide with q if the distance is far, i.e. at least c · r , there
might exist O(n) such far data points.

There exist O(p2 ·n) far points that collide with q in expectation.

These far data points that collide with q are called false positives.

For query point q, x5 is a
false positive
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Pruning False Positives with AND Operation

We need to reduce the number of false positives!

Solution: Pick multiple independent hash functions h1,h2, · · · ,hk from
H . Define a new hash function g(x) with the AND operation:

g(x) = ⟨h1(x),h2(x), · · · ,hk(x)⟩

where g(x1) = g(x2) if and only if

h1(x1) = h2(x1)∧h1(x2) = h2(x2)∧·· ·hk(x1) = hk(xk)

Lemma 1

Given a family H of (r ,c · r ,p1,p2)-sensitive hash functions, by randomly
choosing k hash functions from H and defining it as

g(x) = ⟨h1(x),h2(x) · · · ,hk(x)⟩,

g(x) constitutes a family G of (r ,c · r ,pk1 ,pk2 )-sensitive hash functions.
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Choosing the Appropriate k

We choose k so that the expected number of far points is ≤ 1.

This can be done by setting pk2 = 1
n → k = log1/p2(n).

Accordingly, pk1 = 1/nρ . If there is only one point that is the r -near
neighbor of the query point q, then in expectation we only have the
probability 1

nρ that the point hashes to the same bucket as the query
point q.

As we need to spend at least O(1) time to do a table lookup.

The cost of the false positive hence can be bounded by the table
lookup cost, without incurring additional cost.
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Multiple Hash Tables

We now need to increase the chance that a r -near neighbor of q hashes to
the same bucket as q.

We can choose a sufficiently large number L of hash functions from
(r ,c · r ,pk1 ,pk2 )-sensitive hash family G .

Then, the r -near neighbors will hash to at least one of these L hash
functions with high probability.

We set L= nρ . The reason will be explained shortly.
The storage is then: O(n ·L) = O(n1+ρ).
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Query Processing

The LSH includes L hash tables, where for each hash table, the hash
function is chosen from the (r ,c · r ,pk1 ,pk2 )-sensitive family G . To answer a
query, it proceeds as follows:

Retrieve data points from buckets g1(q),g2(q), · · ·gL(q) one by one.

For each retrieved data point x, we compute the distance dist(q,x).

Then, (i) we return the first data point such that the distance to q is
no larger than c · r , or (ii) we have retrieved all data points from the L
buckets but no point within distance c · r , then we return failure.

What if there are too many data points in these L buckets? How to bound
the search complexity?

Fix: we stop the search when we have retrieved 3L data points (but
no cr -near neighbors) and we return failure.

This bounds the search complexity to O(d ·k ·L).
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Theoretical Analysis

For a query point q, the LSH query algorithm answers correctly:

If there is no point that is a c · r -near neighbor of q, hence the query
returns failure.

If the LSH query algorithm returns a data point x, its distance to the
query point q is always bounded by c · r .

How to bound the failure probability when there is a r -near neighbor x of
q exists. When it fails?

Event E1: For any r -near neighbor x, it does not collide with query
point q.

Event E2: There are too many (more than 3L) far points collide with
q in these L hash functions.
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Theoretical Analysis (Cont.)

Lemma 2

Event E1 occurs with probability no more than 1
e .

Proof.

We analyze the case where there is only one r -near neighbor x of the query
point q. Obviously, the more r -near neighbors q has, the smaller the
probability of event E1 will be.

P[E1] = P[g1(x) ̸= g1(q)∧g2(x) ̸= g2(q) · · ·gL(x) ̸= gL(q)]

= P[g1(x) ̸= g1(q)] ·P[g2(x) ̸= g2(q)] · · ·P[gL(x) ̸= gL(q)]

= (1− 1

nρ
) · (1− 1

nρ
) · · ·(1− 1

nρ
) = (1− 1

nρ
)L (recap: L= nρ)

= (1−1/L)L ≤ 1

e

This finishes the proof.
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Theoretical Analysis (Cont.)

Lemma 3

Event E2 occurs with a probability no more than 1
3 .

Proof.

Let x be a bad point such that dist(q,x)> c · r . Let Y be a random
variable to indicate the number of bad points examined. As we have
shown, for a given hash function gi (·), the expected number of bad points
that collide with q is bounded by 1. Thus, the expected number of points
that collide with the L hash functions is bounded by L. Then, by Markov’s
inequality, we have:

P[Y ≥ 3L]≤ E[Y ]

3L
≤ L

3L
=

1

3
.

This finishes the proof.
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Theoretical Analysis (Cont.)

Theorem 1

The LSH query algorithm correctly returns an c-approximate r-near
neighbor with probability at least 2

3 −
1
e .

The above theorem can be derived via a combination of Lemmas 2-3 and
the union bound.

Consider the following questions:

How to increase the success probability to a larger constant?

In case we want to return the c-approximate nearest neighbor query
with a success probability of at least 2

3 −
1
e , how should we set the

parameters?

In the median trick, we need to have the success probability larger
than 1/2 to boost the probability. Here, do we need to have the same
constraint? Why?
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LSH for Euclidean Distance [2]

Intuition: Projection onto random lines (crossing the origin) and divide
them into different buckets.

Version 1: We choose a random line by
randomly sampling a unit vector u and
then divide them into different buckets.

hu(x) = ⌈u ·x
r

⌉.

Issue: Even if two points are very close,
we might still project them into
different buckets.

Final version: We add a random offset
b ∈ [0, r ] to the result.

hu,b(x) = ⌈u ·x+b

r
⌉. (1)

𝒛𝟏

𝒛𝟐

𝒙𝟏

𝒙𝟐

𝒙𝟒

𝒙𝟑 𝒙𝟓
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Generating the Random Gaussian Vector u

Next, we show how to generate a random Gaussian vector in Rd :

Pick d Independent and identically distributed (i.i.d) random variables
Z1,Z2, · · · ,Zd from Gaussian distribution N (0,1). Let
u= (Z1,Z2, · · · ,Zd).

The vector u is also called a random Gaussian vector.

Recap: Property of Gaussian distributions.

Lemma 4

Assume that we have two random variables X and Y that are sampled
from two independent Gaussian distributions, i.e., X ∼ N (µ1,σ

2
1 ) and

Y ∼ N (µ2,σ
2
2 ). Then, their sum Z = X +Y also follows a Gaussian

distribution specified as N (µ1+µ2,σ
2
1 +σ2

2 ).
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Analysis of the Hashing Scheme

Recap that for the hash function:

We pick a bucket width r > 0

a number b sampled from (0, r) uniformly at random

and a random Gaussian vector u.

The final hash function is hu,a(x) = ⌈x·u+b
r ⌉. We omit the subscript and

denote it as h(x) directly when the context is clear.

Lemma 5

Given a vector x and a random Gaussian vector u, then Z = x ·u follows a
Gaussian distribution N (0,(||x||2)2) and E[Z 2] = (||x||2)2.

Sibo WANG (CUHK) SEEM5020 Algorithms for Big Data Fall 2023 21 / 32



Analysis of the Hashing Scheme (Cont.)

Given the hashing scheme h(x), now we consider the probability:

p1 = P[h(x1) = h(x2)] if dist(x1,x2) = ||x1−x2||2 ≤ r .

p2 = P[h(x1) = h(x2)] if dist(x1,x2) = ||x1−x2||2 ≥ c · r

Define x′ = x1−x2.

h(x1) = h(x2)⇔ ⌈x1 ·u+b

r
⌉= ⌈x2 ·u+b

r
⌉

As we have analyzed in Lecture 1,

if |x1 ·u−x2 ·u| ≤ r , the probability that h(x1) = h(x2) holds is
1−|x1 ·u−x2 ·u|/r .
if |x1 ·u−x2 ·u|> r , h(x1) ̸= h(x2).
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Analysis of the Hashing Scheme (Cont.)

Define Z = x1 ·u−x2 ·u. Then, Z follows a Gaussian distribution of
N (0,(||x1−x2||2)2).

Then, the probability distribution of the event h(x1) = h(x2) is:

P[h(x1) = h(x2)] =
∫ r

0
P[h(x1) = h(x2)||Z |= y ] · f (y)dy ,

where f (y) (with y ≥ 0) is the density function of |N (0,Z 2)|. Since
P[h(x1) = h(x2) | |Z |= y ] = 1− y

r , we have that:

P[h(x1) = h(x2)] =
∫ r

0
(1− y

r
) · f (y)dy

=
∫ r

0

1

||x1−x2||2
f (

y

||x1−x2||2
)(1− y

r
)dy ,

where f (y) is the density function of |N (0,1)|.
Sibo WANG (CUHK) SEEM5020 Algorithms for Big Data Fall 2023 23 / 32



Analysis of the Hashing Scheme (Cont.)

Now we make a connection between the distance of x1 and x2 and the
probability that they will collide. Define the probability derived on previous
page as p(||x1−x2||).

Clearly, p1 = p(r);

p2 = p(c · r).
We want to bound ρ = log(1/p(r))/ log(1/p(c · r)). Here, notice that for
different data points x1 and x2, p1 and p2 clearly depend on these two
inputs and can be different for different input x1 and x2.

Lemma 6 ([2])

Given the LSH designed with Equation 1, ρ = log(1/p1)
log(1/p2)

is bounded by 1
c .
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Cosine Distance

Cosine similarity between two vectors x and y:

cos(x,y) =
x ·y

||x||2 · ||y||2

The cosine distance measures the angle between the two vectors:

distcos(x,y) = arccos

(
x ·y

||x||2 · ||y||2

)
.

Easy to verify:

When x and y point to opposite directions, their cosine distance is
the largest, which is π.

When x and y point to the same direction, their cosine distance is the
smallest, which is 0.
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LSH for Cosine Distance: SimHash [3]

SimHash is designed for the cosine distance. Given a sampled random
Gaussian unit vector u, hu(x) is defined as:

hu(x) = sign(u ·x),

where sign outputs 1 if the input is ≥ 0 and otherwise outputs -1.

Lemma 7

Given two data points x and y and a SimHash function hu(·) The
probability that the hash values of x and y are equal, i.e., either both are 1
or both are -1, is as follows:

P[hu(x) = hu(y)] = 1− distcos(x,y)

π
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Analysis of SimHash

We can prove Lemma 7 by drawing the
figure as shown on the right-hand side.

We further consider
ρ = log(1/p1)/ log(1/p2).

ρ =
ln(1/(1− r/π))

ln(1/(1− cr/π))

x

y

θ

𝒖𝟏

𝒖𝟐

90° − 𝜃

90° − 𝜃

When ℎ 𝑥 = ℎ 𝑦 = 1

By using the following inequality:

x

x+1
≤ ln(1+ x)≤ x(6+ x)

6+4x
≤ x for x >−1.

We can show that ρ ≤ 1
c for c ≥ 2.
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Jaccard Distance for Binary Vectors

Given two binary vectors x and y, we first map them to two sets X and Y ,
where the i-th non-zero entry indicates the existence of element i in the
set. The Jaccard similarity J(x,y) is defined as:

J(x,y) =
|X ∩Y |
|X ∪Y |

.

The Jaccard distance distJaccard(x,y) is defined as 1−J(x,y).

Example 1

Let x= (1,0,0,0,1,0,1,0,1,1) and y = (0,0,0,0,1,0,1,0,0,0). Then, the
Jaccard similarity between x and y is

J(x,y) =
|X ∩Y |
|X ∪Y |

=
{1,5,7,9,10}∩{5,7}
{1,5,7,9,10}∪{5,7}

=
2

5

Then, distJaccard(x,y) = 1−J(x,y) = 3
5 .
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MinHash for Jaccard Distance [4]

Generate a random permutation P for [1 · · ·d ]. For the i-th dimension, the
hashed value is P[i ], i.e., the value in the i-th dimension of the
permutation P. Let h(x) =minx(i)=1P(x(i)) be the minimum hashed value
among the non-zero entries. Then,

P[h(x= y] = J(x,y) = 1−distJaccard(x,y).

Example 2

Let x= (1,0,0,0,1,0,1,0,1,1) and y = (0,0,0,0,1,0,1,0,0,0). Assume
that the random permutation of [1 · · ·10] is [4,2,10,5,1,3,8,7,9,6]. Then,
h(x) = min{4,1,8,9,6}= 1 and h(y) =min{1,8}= 1.

We can verify that ρ = log(1/p1)/ log (1/p2) can be bounded by 1
c if c ≥ 2.
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