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ABSTRACT
Given a graphG , a source node s and a target node t , the personalized
PageRank (PPR) of t with respect to s is the probability that a random
walk starting from s terminates at t . A single-source PPR (SSPPR)
query enumerates all nodes inG , and returns the top-k nodes with

the highest PPR values with respect to a given source node s . SSPPR
has important applications in web search and social networks, e.g.,

in Twitter’s Who-To-Follow recommendation service. However,

SSPPR computation is immensely expensive, and at the same time

resistant to indexing and materialization. So far, existing solutions

either use heuristics, which do not guarantee result quality, or rely

on the strong computing power of modern data centers, which is

costly.

Motivated by this, we propose FORA, a simple and effective

index-based solution for approximate SSPPR processing, with rig-

orous guarantees on result quality. The basic idea of FORA is to

combine two existing methods Forward Push (which is fast but does

not guarantee quality) and Monte Carlo RandomWalk (accurate but

slow) in a simple and yet non-trivial way, leading to an algorithm

that is both fast and accurate. Further, FORA includes a simple and

effective indexing scheme, as well as a module for top-k selection

with high pruning power. Extensive experiments demonstrate that

FORA is orders of magnitude more efficient than its main competi-

tors. Notably, on a billion-edge Twitter dataset, FORA answers a

top-500 approximate SSPPR query within 5 seconds, using a single

commodity server.
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1 INTRODUCTION
Personalized PageRank (PPR) is a fundamental operation first pro-

posed by Google [19], a major search engine. Specifically, given a

graphG and a pair of nodes s, t inG , the PPR value π (s, t) is defined
as the probability that a random walk starting from s (called the

source node) terminates at t (the target node), which reflects the

importance of t with respect to s . One particularly useful variant

of PPR is the single-source PPR (SSPPR), which takes as input a

source node s and a parameter k , and returns the top-k nodes in

G with the highest PPR values with respect to s . According to a

recent paper [12], Twitter, a leading microblogging service, applies

SSPPR in their Who-To-Follow application, which recommends to

a user s (who is a node in the social graph) a number of other users

(with high PPR values with respect to s) that user s might want

to follow. Clearly, such an application computes SSPPR for every

user in the social graph on a regular basis. Hence, accelerating PPR

computation may lead to improved user experience (e.g., faster re-

sponse time), as well as reduced operating costs (e.g., lower power

consumption in the data center).

Similar to PageRank [19], PPR computation on a web-scale graph

is immensely expensive, which involves extracting eigenvalues of a

n×n matrix, where n is the number of nodes that can reach millions

or even billions in a social graph. Meanwhile, unlike PageRank, PPR

values cannot be easily materialized: since each pair of source/target

nodes lead to a different PPR value, storing all possible PPR values

requiresO(n2) space, which is infeasible for large graphs. For these

reasons, much previous work focuses on approximate PPR computa-

tion (defined in Section 2.1), which provides a controllable tradeoff

between the execution time and result accuracy. Meanwhile, com-

pared to heuristic solutions, approximate PPR provides rigorous

guarantees on result quality.

However, even under the approximate PPR definition, SSPPR

computation remains a challenging problem, since it requires sifting

through all nodes in the graph. To our knowledge, the majority

of existing methods (e.g., [15, 16, 22]) focus on approximate pair-

wise (i.e., with given source and target nodes) PPR computations. A

naive solution is to compute pair-wise PPR π (s,v) for each possible

target node v , and subsequently applies top-k selection. Clearly,

the running time of this approach grows linearly to the number of

nodes in the graph, which is costly for large graphs.

Motivated by this, we propose FORA (short for FOward Push

andRAndomWalks), an efficient algorithm for approximate SSPPR

computation. The basic idea of FORA is to combine two existing
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solutions in a simple and yet non-trivial way, which are (i) Forward

Push [1], which can either computes the exact SSPPR results at

a high cost, or terminate early but with no guarantee at all on

the result quality, and (ii) Monte Carlo [8], which samples and

executes random walks and provides rigorous guarantees on the

accuracy of SSPPR results, but is rather inefficient. In fact, this

idea is so effective that even without any indexing, basic FORA

already outperforms its main competitors BiPPR [15] and HubPPR

[22]. Then, we describe a simple and effective indexing scheme for

FORA, as well as a novel algorithm for top-k selection. Extensive

experiments using several real graphs demonstrate that FORA is

more than two orders of magnitude faster than BiPPR, and more

than an order of magnitude faster than HubPPR. In particular, on a

billion-edge Twitter graph, FORA answers top-500 SSPPR query

within 5 seconds, using a single commodity server.

2 BACKGROUND
2.1 Problem Definition
Let G = (V ,E) be a directed graph. In case the input graph is

undirected, we simply convert it to a directed one by treating each

edge as two directed edges of opposing directions. Given a source

node s ∈ V and a decay factor α , a random walk (or more precisely,

random walk with restart [10]) from s is a traversal ofG that starts

from s and, at each step, either (i) terminates at the current node

with α probability, or (ii) proceeds to a randomly selected out-

neighbor of the current node. For any node v ∈ V , the personalized

PageRank (PPR) π (s,v) ofv with respect to s is then the probability

that a random walk from s terminates at v [19].

A single-source PPR (SSPPR) query takes as input a graph G, a
source node s , and a parameter k , and returns the top-k nodes

with the highest PPR values with respect to s , together with their

respective PPR values. This paper focuses on approximate SSPPR

processing, and we first define a simpler version of the approximate

SSPPR without top-k selection (called approximate whole-graph

SSPPR), as follows.

Definition 2.1 (Approximate Whole-Graph SSPPR). Given a source

node s , a threshold δ , an error bound ϵ , and a failure probability pf ,
an approximate whole-graph SSPPR query returns an estimated

PPR π̂ (s,v) for each node v ∈ V , such that for any π (s,v) > δ ,

|π (s,v) − π̂ (s,v)| ≤ ϵ · π (s,v) (1)

holds with at least 1 − pf probability. �

The above definition is consistent with existing work, e.g., [15,

16, 22]. Next we define the approximate top-k SSPPR, as follows.

Definition 2.2 (Approximate Top-k SSPPR). Given a source node

s , a threshold δ , an error bound ϵ , a failure probability pf , and a

positive integer k , an approximate top-k SSPPR query returns a

sequences of k nodes, v1,v2, · · · ,vk , such that with probability

1 − pf , for any i ∈ [1,k] with π (s,v
∗
i ) > δ ,

|π̂ (s,vi ) − π (s,vi )| ≤ ϵ · π (s,vi ) (2)

π (s,vi ) ≥ (1 − ϵ) · π (s,v
∗
i ) (3)

hold with at least 1 − pf probability, where v∗i is the node whose
actual PPR with respect to s is the i-th largest. �

Notation Description
G=(V , E) The input graph G with node set V and edge set E

n,m The number of nodes and edges in G , respectively

N out (v) The set of out-neighbors of node v

N in (v) The set of in-neighbors of node v

π (s, t ) The exact PPR value of t with respect to s

α The probability that a random walk terminates at a

step

δ, ϵ, pf Parameters of an approximate PPR query, as in Defini-

tions 2.1 and 2.2

rmax The residue threshold for local update

r (s, v) The residue of v during a local update process from s

π ◦(s, v) The reserve of v during a local update process from s

rsum The sum of all nodes’ residues during a local update

process from s

Table 1: Frequently used notations.

Note that Equation 2 ensures the accuracy of the estimated PPR

values, while Equation 3 guarantees that the i-th result returned

has a PPR value close to the i-th largest PPR score. This definition

is consistent with previous work [22]. Following previous work

[15, 16, 22], we assume that δ = O(1/n), where n is the number

of nodes in G. The intuition is that, we provide approximation

guarantees for nodes with above-average PPR values.

In addition, most applications of personalized PageRank concern

web graphs and social networks, in which case the underlying input

graphs are generally scale-free. That is, for any k ≥ 1, the fraction

f (k) of nodes in G that have k edges satisfies

f (k) = c · k−γ , (4)

where γ is a parameter with 2 ≤ γ ≤ 3, and c is a constant smaller

than 1. It can be verified that, in a scale-free graph with 2 ≤ γ ≤ 3,

the average node degree m/n = O(logn). We will analyze the

asymptotic performance of our algorithm on both general graphs

and scale-free graphs. Table 1 lists the frequently-used notations

throughout the paper.

Remark. Our algorithms can also handle SSPPR queries where the

source s is not fixed but sampled from a node distribution. Interested

readers are referred to Appendix B.2 for details.

2.2 Main Competitors

Monte-Carlo. A classic solution for approximate PPR processing

is the Monte-Carlo (MC) approach [8]. Given a source node s , MC

generates ω random walks from s , and it records, for each node

v , the fraction of random walks f (v) that terminate at v . It then
uses f (v) as an estimation of the PPR π̂ (s,v) of v with respect to s .
According to [8], MC satisfies Definition 2.1 with a sufficiently large

number of random walks: ω = Ω
(
log (1/pf )

ϵ 2δ

)
. According to Refs.

[15, 16, 22] as well as our experiments in Section 5, MC is rather

inefficient. Specifically, the time complexity of MC isO
(
log (1/pf )

ϵ 2δ

)
.

As will be explained later in Section 3.2, when δ = O(1/n) and
the graph is scale-free, in which case m/n = O(logn), this time



Algorithm 1: Forward Push

Input: GraphG , source node s , probability α , residue threshold rmax
Output: π ◦(s, v), r (s, v) for all v ∈ V

1 r (s, s) ← 1; r (s, v) ← 0 for all v , s ;
2 π ◦(s, v) ← 0 for all v ;
3 while ∃v ∈ V such that r (s, v)/ |N out (v) | > rmax do
4 for each u ∈ Nout (v) do
5 r (s, u) ← r (s, u) + (1 − α ) · r (s,v )

|N out (v )|

6 π ◦(s, v) ← π ◦(s, v) + α · r (s, v);
7 r (s, v) ← 0;

complexity is a factor of 1/ϵ larger than that of FORA even without

indexing or top-k pruning.

BiPPR andHubPPR. BiPPR [15] and its successorHubPPR [22] are
currently the states of the art for answering pairwise PPR queries,

in which both the source node s and the target node t are given, and
the goal is to approximate the PPR value π (s, t) of t with respect to s .
The main idea of BiPPR is a bi-direction search on the input graphG .
The forward direction simply samples and executes random walks,

akin to MC described above. Unlike MC, however, BiPPR requires

a much smaller number of random walks, thanks to additional

information provided by the backward search.

The backward search in BiPPR (dubbed as reverse push) is origi-
nally proposed in [1], and is rather complicated. In a nutshell, the

reverse push starts from the target node t , and recursively propagate
residue and reserve values along the reverse directions of edges in
G . Initially, the residue is 1 for node t , and 0 for all other nodes. The
original reverse push [1] requires complete propagation until the

residues of all nodes become very small, which is rather inefficient

as pointed out in [15]. BiPPR performs the same backward propaga-

tions, but terminates early when the residues of all nodes are below

a pre-defined threshold. Then, the method performs forward search,

i.e., random walks, utilizing the residue and reserve information

computed during backward search. The main tricky part in BiPPR

is how to set this residue threshold to minimize computation costs,

while satisfying Inequality 1. Intuitively, if the residue threshold

is set too high, then the forward search requires numerous ran-

dom walks to reach the approximation guarantee; conversely, if

the residue threshold is too low, then the cost of backward search

dominates. Ref. [15] provides a careful analysis, and reports that

a residue threshold of O
(
ϵ ·

√
m ·δ

n ·log (1/pf )

)
strikes a good balance

between forward and backward searches, and achieves a low overall

cost for pair-wise PPR computation.

To extend BiPPR to SSPPR, one simple method is to enumerate

all nodes in G, and compute the PPR value for each of them with

respect to the source node s . The problem, however, is that the

residue threshold designed in [15] is not optimized for SSPPR, lead-

ing to poor performance. To explain, observe that applying BiPPR

for SSPPR involves one backward search at each node in G, but
only one single forward search from s . Therefore, we improve the

performance of BiPPR by tuning down overhead of each backward

search at the cost of a less efficient forward search. This optimiza-

tion turns out to be non-trivial, and we present it in Appendix B.1.

Nevertheless, the properly optimized version of BiPPR still involves

high costs since it either (i) degrades to the Monte-Carlo approach

if the residue threshold is large or (ii) incurs a large number of

backward searches if the residue threshold is small.

HubPPR [22] is an index structure based on BiPPR that features

an improved algorithm for top-k queries. Since HubPPR inherits

the deficiencies of the BiPPR, it is not suitable for SSPPR, either. We

will demonstrate this in our experiments in Section 5.

Forward Push. Forward Push [2] is an earlier solution that is not

as efficient as BiPPR and HubPPR. We describe it in detail here

since the proposed solution FORA uses its components. Specifically,

Forward Push can compute the exact PPR values at a high cost. It can

also be configured to terminate early, but without any guarantee on

result quality. Algorithm 1 shows the pseudo-code of Forward Push

for whole-graph SSPPR processing. It takes as inputG , a source node
s , a probability value α , and a threshold rmax ; its output consists

of two values for each node v in G: a reserve π◦(s,v) and a residue
r (s,v). The reserve π◦(s,v) is an approximation of π (s,v), while the
residue r (s,v) is a by-product of the algorithm. In the beginning of

the algorithm, it sets r (s, s) = 1 and π◦(s, s) = 0, and sets r (s,v) =
π◦(s,v) = 0 for any v , s (Lines 1-2 in Algorithm 1). Subsequently,

the residue of s is converted into other nodes’ reserves and residues
in an iterative process (Lines 3-7).

Specifically, in each iteration, the algorithm first identifies every

node v with
r (s,v)
|N out (v) | > rmax , where N out

denotes the set of

out-neighbors of v (Line 3). After that, it propagates part of v’s
residue to each u of v’s out-neighbors, increasing u’s residue by

(1 − α) · r (s,v)
|N out (v) | . Then, it increases v’s reserve by α · r (s,v), and

resets v’s residue to r (s,v) = 0. This iterative process terminates

when every node v has
r (s,v)
|N out (v) | ≤ rmax (Line 3).

Andersen et al. [2] show that Algorithm 1 runs in O(1/rmax )

time, and that the reserve π◦(s,v) can be regarded as an estimation

of π (s,v). This estimation, however, does not offer any worst-case

assurance in terms of absolute or relative error. As a consequence,

Algorithm 1 itself is insufficient for addressing the problem formu-

lated in Definitions 2.1 and 2.2.

3 FORA
This section presents the proposed FORA algorithm. We first de-

scribe a simpler version of FORA for whole-graph SSPPR (Defini-

tion 2.1) without indexing in Sections 3.1 and Sections 3.2. Then,

we present the indexing scheme of FORA in Section 3.3, and top-k
selection in Section 3.4.

3.1 Main Idea
As reviewed in Section 2.2, (i) MC is inefficient due to a large num-

ber of random walks required to satisfy the approximation guar-

antee, (ii) BiPPR and HubPPR either degrade to MC, or require

fewer forward random walks but still incur high cost due to numer-

ous backward search operations, and (iii) Forward Push with early

termination provides no formal guarantee on result quality. The pro-

posed solution FORA can be understood as a combination of these

methods. In particular, FORA first performs Forward Push with

early termination, and subsequently runs random walks. Similar to

BiPPR and HubPPR, FORA utilizes information obtained through



Algorithm 2: FORA for Whole-Graph SSPPR

Input: Graph G , source node s , probability α , threshold rmax
Output: Estimated PPR π̂ (s, v)for all v ∈ V

1 Invoke Algorithm 1 with input parameters G , s , α , and rmax ; let

r (s, vi ), π ◦(s, vi ) be the returned residue and reserve of node vi ;

2 Let rsum =
∑
vi ∈V r (s, vi ) and ω = rsum ·

(2ϵ/3+2)·log (2/pf )

ϵ 2 ·δ
;

3 Let π̂ (s, vi ) = π ◦(s, vi ) for all vi ∈ V ;

4 for vi ∈ V with r (s, vi ) > 0 do
5 Let ωi = ⌈r (s, vi ) · ω/rsum ⌉;

6 Let ai =
r (s,vi )
rsum · ωωi

;

7 for i = 1 to ωi do
8 Generate a random walkW from vi ;
9 Let t be the end point ofW ;

10 π̂ (s, t )+ = ai ·rsum
ω ;

11 return π̂ (s, v1), · · · , π̂ (s, vn );

Forward Push to significantly cut down the number of required

random walks while satisfying the same result quality guarantees.

But unlike BiPPR and HubPPR, in FORA there is a single invocation

of Forward Push starting from the source node s , while BiPPR and

HubPPR invokes numerous backward search operations. The tricky

part in FORA is how to combine Forward Push with MC, explained

below.

Specifically, the reason that Forward Push with early termination

fails to obtain any result quality guarantee is that it uses π◦(s,v) to
approximate π (s,v), and yet, the two values are not guaranteed to

be close. To mitigate this deficiency, we aim to utilize the residue

r (s,v) to improve the accuracy of π◦(s,v). Towards this end, we
utilize the following result from [2]:

π (s, t) = π◦(s, t) +
∑
v ∈V

r (s,v) · π (v, t), (5)

for any s , t , v in G. Our idea is to derive a rough approximation of

π (v, t) for each node v (denoted as π ′(v, t)), and then combine it

with the reserve of each node to compute an estimation of π (s, t):

π (s, t) = π◦(s, t) +
∑
v ∈V

r (s,v) · π ′(v, t).

In particular, we derive π ′(v, t) by performing a number of random

walks from v , and set π ′(v, t) to the fraction of walks that ends at t .
It remains to answer two key questions in FORA: (i) how many

random walks do we need for each node v? and (ii) how should we

set the residue threshold rmax in Forward Push? It turns out that

although the FORA algorithm itself is simple, deriving the proper

values for its parameters is rather challenging, since they must

optimize efficiency while satisfying the result quality guarantee.

In the following, we first present the complete FORA and answer

question (i); then we answer question (ii) in Section 3.2.

Algorithm 2 illustrates the pseudo-code of FORA. Given G, a
source node s , a probability value α , and a residue threshold rmax ,

FORA first invokes Algorithm 2 onG to obtain a reserve π◦(s,vi )
and a residue r (s,vi ) for each nodevi (Line 1 in Algorithm 2). After

that, it computes the total residue of all nodes rsum , based on which

it derives a valueω that will be used to decide the number of random

walks required from each node vi (Line 2). Then, it initializes the

PPR estimation of each vi to be π̂ (s,vi ) = π
◦(s,vi ), and it proceeds

to inspect the nodes whose residues are larger than zero (Line 3-4).

For each vi of those nodes, it performs ωi random walks from

vi , where

ωi =

⌈
r (s,vi )

rsum
· ω

⌉
.

If a random walk ends at a node t , then FORA increases π̂ (s,vi )
by

ai ·rsum
ω , where

ai =
r (s,vi )

rsum
·
ω

ωi
.

After all vi are processed, the algorithm returns π̂ (s,vi ) as the
approximated PPR value for vi (Line 11).

To explain why FORA can provide accurate results, let us con-

sider the ωi random walks that it generates from a node vi . Let
X j (t) be a Bernoulli variable that takes value 1 if the j-th random

walk terminates at t , and value 0 otherwise. By definition,

E[X j ] = π (vi , t).

Then, based on the definition of ω, ωi , and ai , we have

E


rsum
ω
·

ωi∑
j=1

(
ai · X j

) = r (s,vi ) · π (vi , t). (6)

Observe that
rsum
ω ·

∑ωi
j=1

(
ai · X j

)
is exactly the amount of incre-

ment that π̂ (s, t) receives when FORA processes vi (see Lines 7-10
in Algorithm 2). We denote this increment asψi . It follows that

E

[ n∑
i=1

ψi

]
=

n∑
i=1

r (s,vi ) · π (vi , t). (7)

Combining Equations 5 and 7, we can see that FORA returns, for

each node v , an estimated PPR π̂ (s,v) whose expectation equals

π (s,v). Next, we will show that π̂ (s,v) is very close to π (s,v) with
a high probability. For this purpose, we utilize the following con-

centration bound:

Theorem 3.1 ([7]). Let X1, · · · ,Xω be independent random vari-
ables with

Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi .

Let X = 1

ω ·
∑ω
i=1 aiXi with ai > 0, and ν = 1

ω
∑ω
i=1 a

2

i · pi . Then,

Pr[|X − E[X ]| ≥ λ] ≤ 2 · exp

(
−

λ2 · ω

2ν + 2aλ/3

)
,

where a = max{a1, · · · ,aω }. �

To apply Theorem 3.1, let us consider the ω ′ =
∑n
i=1 ωi random

walks generated by FORA. Let bj = ai if the j-th random walk

starts from vi . Then, we have maxj bj = 1, and b2j ≤ bj for any j.

In addition, let Yj (t) be the a random variable that equals 1 if the

j-th walk terminates at t , and 0 otherwise. Then, by Theorem 3.1

and Equations 5 and 7, we have the following result.

Lemma 3.2. For any node v with π (s,v) > δ , Algorithm 2 returns
an approximated PPR π̂ (s,v) that satisfies Equation 1 with at least
1 − pf probability. �



3.2 Choosing rmax

Recall from Sections 2.2 and 3.1 that parameter rmax determines

how quickly we can terminate Forward Push. A high value for

rmax leads to low cost for Forward Push (since it can terminate

early), but high cost for random walks (since a large number of

them are required), and vice versa. Thus, finding the appropri-

ate value of rmax requires modelling the overall running time of

FORA. Recall that, the Forward Push runs in O
(

1

rmax

)
time. In

addition, the expected time complexity of the random walk phase

isO
(
rsum ·

(2ϵ/3+2)·log (2/pf )
ϵ 2

)
, since each random walk takesO(1)

expected time to generate. Observe that

rsum =
∑
vi ∈V

r (s,vi ) ≤
∑
vi ∈V

rmax · |N
out (vi )| =m · rmax .

Therefore, the expected running time of Algorithm 2 is

O
(

1

rmax
+m · rmax ·

(2ϵ/3+2)·log (2/pf )
ϵ 2 ·δ

)
.

Using the method of Lagrange multipliers, we can see that the

above time complexity is minimized when

rmax =
ϵ
√
m
·

√
δ

(2ϵ/3 + 2) · log (2/pf )
. (8)

Accordingly, the expected time complexity of Algorithm 2 becomes

O
(

1

ϵ ·
√
δ

√
m · (2ϵ/3 + 2) · log (2/pf )

)
.

When δ = O(1/n), pf = O(1/n), the above time complexity

becomes O
(
1

ϵ
√
m · n · logn

)
for general graphs. When the graph

is scale-free, in which casem/n = O(logn), the time complexity

becomes O
(
1

ϵ n · logn
)
, improving over the MC approach by 1/ϵ .

3.3 Indexing Scheme
Based on FORA, we propose a simple and effective index structure

to further improve the efficiency of whole-graph SSPPR queries.

The basic idea is to pre-compute a number of random walks from

each node v , and then store the destination of each walk. During

query processing, if FORA requires x performing random walks

from v , we would inspect the set S of random walk destinations

pre-computed for v , and then retrieve the first x nodes in S . As
such, we avoid generating any random walks on-the-fly, which

considerably reduces query overheads.

A natural question to ask is: how many random walks should

we pre-compute for each node v? To answer this question, we first

recall that, when the local update phase of FORA terminates, the

residue of each node v is at most |N out (v)| · rmax . Combining this

with Lemma 3.2, we can see that the number of random walks from

v required by FORA is⌈
|N out (v)| · rmax ·

(2ϵ/3 + 2) · log (2/pf )

ϵ2 · δ

⌉
. (9)

Since we set rmax according to Equation 8, we have

Eqn. 9 =

⌈
|N out (v)| ·

1

ϵ ·
√
m · δ

·

√
(2ϵ/3 + 2) · log (2/pf )

⌉
We use ωmax (v) to denote the r.h.s. of the above equation.

In summary, we pre-compute ωmax (v) random walks from each

node v , and record the last nodes of those walks in our index struc-

ture. The total space overhead incurred is∑
v
ωmax (v) =

∑
v

⌈
|N out (v)| ·

√
(2ϵ/3+2)·log (2/pf )

ϵ ·
√
m ·δ

⌉
≤ n +

√
m

ϵ ·
√
δ
·

√
(2ϵ/3 + 2) · log (2/pf ).

Therefore, we have the following lemma.

Lemma 3.3. The space consumption of our index structure is

O

(
n + 1

ϵ

√
m log (1/pf )

δ

)
. (10)

When δ = O(1/n), pf = O(1/n), and m/n = O(logn), the above

space complexity becomes O
(
1

ϵ n · logn
)
. �

Remark. One may wonder whether we can also pre-compute

the Forward Push result for each node, so that we can answer

each query by a simple combination of pre-processed Forward

Push and random walks, which could lead to higher query effi-

ciency. However, we note that storing the Forward Push results

for all nodes incurs significant space overheads. In particular, it

requires O (min{n, 1/rmax }) space for each node, where rmax is

set according to Equation 8. As such, the total space consumption

for preprocessing Forward Push results is

O

(
min

{
n2, nϵ ·

√
m ·log (1/pf )

δ

})
,

which is prohibitive for large graphs. Therefore, we do not store

Forward Push results in our index structure.

3.4 Top-k SSPPR
In this section, we discuss how FORA handles approximate top-k
SSPPR queries.

Rationale. A straightforward approach to answer a top-k SSPPR

query with FORA is to first apply it to perform a whole-graph

SSPPR query, and then returns the k nodes with the largest ap-

proximate PPR values. However, if we are to satisfy the accuracy

requirement described in Definition 2.2, we would need to set the

parameters of FORA according to the exact k-th largest PPR value

π (s,v∗k ), which is unknown in advance. To address this, a naive

solution is to conservatively set π (s,v∗k ) = 1/n, which, however,
would lead to unnecessary overheads.

To avoid the aforementioned overheads, we propose a trial-and-

error approach as follows. We first assume that π (s,v∗k ) is a large

value (e.g., 1/2), and we set the parameters of FORA accordingly

to perform a whole-graph SSPPR query. After that, we inspect the

results obtained to check whether the estimated PPR values are

indeed large. If they are not as large as we have assumed, then we re-

run FORA with more conservative parameters, and check the new

results returned. This process is conducted iteratively, until we are

confident that the results from FORA conform to the requirements

in Definition 2.2.

Algorithm. Algorithm 3 shows the pseudo-code of the top-k ex-

tension of FORA. The algorithm consists of at most logn iterations.



Algorithm 3: Top-k FORA

Input: Graph G , source node s , probability α
Output: k nodes with the highest approximate PPR scores

1 for δ = 1

2
, · · · , 1

n do
2 Invoke Algorithm 2 with G , s , α , and rmax set by Equation 8 and

fail probability p′f =
pf

n·logn ;

3 Let C = {v ′
1
, · · · , v ′k } be the set that contains the k nodes with

the top-k largest lower bounds (from Theorem 3.1);

4 Let LB(u) and U B(u) be the lower and upper bounds of π (s, u)
(from Theorem 3.1);

5 if U B(v ′i ) < (1 + ϵ ) · LB(v
′
i ) for i ∈ [1, k ] and LB(v ′k ) ≥ δ

then
6 Let U be the set of nodes u ∈ V \C such that

U B(u) > (1 + ϵ ) · LB(v ′k );
7 if �u ∈ U such that U B(u) < (1 + ϵ ) · LB(u)/(1 − ϵ ) then
8 return v ′

1
, v ′

2
, · · · , v ′k and their estimated PPR;

In the i-th iteration, we invoke Algorithm 2 with δ set to 1/2i , and

the failure probability set to p′f =
pf

n logn (Lines 1-2 in Algorithm 3.

(The reason for this setting will be explained shortly). After we

obtain the results from FORA, we compute an upper bound and

a lower bound of each node’s PPR value, and use them to decide

whether the current top-k results are sufficiently accurate (Lines

3-8). If the top-k results are accurate, then we return them as the

top-k answers (Line 8); otherwise, we proceed to the next iteration.

In the following, we elaborate how the upper and lower bounds of

each node’s PPR value is derived.

Define LB0(v) = 0 and UB0(v) = 1 for any v ∈ V . We have the

following theorem that establishes the lower bound LBj (v) and
upper bound UBj (v) of π (s,v) in the j-th iteration of Algorithm 3:

Theorem 3.4. In the j-th iteration of Algorithm 3, let ωj be the ω
calculated by FORA (Algorithm 2 Line 2) in this iteration, and π◦j (s,v)
and π̂j (s,v) be the reserve and estimated PPR of v . Define

ϵj =

√√√
3rsum · log (2/p

′
f )

ωj ·max{π◦j (s,v),LBj−1(s,v)}
, and λj =

2/3 log (2/p f ′)

2ωj

+

√
4

9
r2sum · log

2 (2/p′f ) + 8rsum · ωj · log (2/p
′
f ) ·UBj−1(v)

2ωj

Then, with at least 1 − p′f probability, the following two inequalities
hold simultaneously:

π̂j (s,v)/(1 + ϵj ) ≤π (s,v) ≤ π̂j (s,v)/(1 − ϵj )

π̂j (s,v) − λi ≤π (s,v) ≤ π̂j (s,v) + λi .

Theorem 3.4 enables us to derive tight lower and upper bounds

of each node’s PPR value in each iteration. In particular, we set

UBj (v) =min{1, π̂j (s,v)/(1 − ϵ), π̂j (s,v) + λi },

LBj (v) = max{π̂j (s,v)/(1 + ϵ), π̂j (s,v) − λi , 0}.

With these upper and lower bounds, the following theorem shows

that if Lines 5 and 7 in Algorithm 3 holds, then Algorithm 3 returns

the answer for the approximate top-k SSPPR query.

Theorem 3.5 (Approximate Top-k). Let v ′
1
, · · · ,v ′k be the k

nodes with the largest lower bounds in the j-th iteration of Algorithm 3.
LetU be the set of nodesu ∈ V \C such thatUBj (u) > (1+ϵ)·LBj (v

′
k ),

If UB(v ′i ) < (1 + ϵ) · LB(v
′
i ) for i ∈ [1,k], LBj (v

′
k ) ≥ δ , and there

exists no u ∈ U such that UBj (u) < (1 + ϵ) · LBj (u)/(1 − ϵ), then
returning v ′

1
, · · · ,v ′k and their estimated PPR values would satisfy

the requirements in Definition 2.2 with at least 1− j ·n ·p′f probability.

Now recall that the number of iterations in Algorithm 3 is logn,
and in each iteration, we assume that the upper and lower bounds

are correct. Hence, by applying union bound, the failure probability

will be at most n logn · p′f . Note that p′f =
pf

n logn . The failure

probability is hence no more than pf , and we guarantee that the

returned answer has approximation with at least 1 −pf probability.

4 OTHER RELATEDWORK
Apart from the methods discussed in Section 2.2 , there exists a

plethora of techniques for whole-graph and top-k SSPPR queries.

Those techniques, however, are either subsumed by BiPPR and

HubPPR or unable to provide worst-case accuracy guarantees. In

particular, a large number of techniques adopt the matrix-based ap-
proach, which formulates PPR values with the following equation:

πs = α · es + (1 − α) · πs · D
−1A, (11)

where πs is a vector whose i-th element equals π (s,vi ), A ∈
{0, 1}n×n is the adjacency matrix of G, and D ∈ Rn×n is a diag-

onal matrix in which each i-th element on its main diagonal equals

the out-degree of vi . Matrix-based methods typically starts from

an initial guess of πs , and then iteratively applies Equation 11 to

refine the initial guess, until converge is achieved. Recent work

that adopts this approach [10, 17, 21, 24] propose to decompose

the input graph into tree structures or sub-matrices, and utilize

the decomposition speedup the PPR queries. The state-of-the-art

approach for the single-source and top-k PPR queries in this line

of research work is BEAR proposed by Shin et al. [21]. However, as

shown in [22], the best of these methods is still inferior to HubPPR
[22] in terms of query efficiency and accuracy.

There also exist methods that follow similar approaches to the

forward search method [2] described in Section 2.2. Berkin et al.

[6] propose to pre-compute the Forward Push results from several

important nodes, and then use these results to speedup the query

performance. Ohsaka et al. [18] and Zhang et al. [23] further design

algorithms to update the stored Forward Push results on dynamic

graphs. Jeh et al. [13] propose the backward search algorithm, which

(i) is the reverse variant of the Forward Push method, and (ii) can

calculates the estimated PPRs from all nodes to a target node t .
Zhang et al. [23] also design the algorithms to update the stored

backward push results on dynamic graphs. Nonetheless, none of

these solutions in this category provide approximation guarantees

for single-source or top-k PPR queries on directed graphs.

In addition, there are techniques based on theMonte-Carlo frame-

work. Fogaras et al. [8] propose techniques to pre-store the ran-

dom walk results, and use them to speedup the query processing.

Nonetheless, the large space consumption of the technique renders

it applicable only on small graphs. Bahmani et al. [4] and Sarma et

al. [20] investigate the acceleration of the Monte-Carlo approach

in distributed environments. Lofgren et al. propose FastPPR [16],



Name n m Type Linking Site
DBLP 613.6K 2.0M undirected www.dblp.com

Web-St 281.9K 2.3M directed www.stanford.edu

Pokec 1.6M 30.6M directed pokec.azet.sk

LJ 4.8M 69.0M directed www.livejournal.com

Orkut 3.1M 117.2M undirected www.orkut.com

Twitter 41.7M 1.5B directed twitter.com

Table 2: Datasets. (K = 10
3,M = 10

6,B = 10
9)

which significantly outperforms the Monte-Carlo method in terms

of query time. However, FastPPR in turn is subsumed by BiPPR [15]

in terms of query efficiency. In [14], Lofgren further proposes to

combine a modified version of Forward Push, random walks, and

the back search algorithm to reduce the processing time of pairwise

PPR queries. Nevertheless, the time complexity of the method re-

mains unclear, since [14] does not provide any theoretical analysis

on the asymptotic performance of the method.

Finally, Ref. [3, 5, 9–11, 15] present studies on the top-k PPR

queries. Gupta et al. [11] propose to use Forward Push to return

the top-k answers. However, their solutions do not provide any

approximation guarantee. Avrachenkov et al. [3] study how to use

Monte-Carlo approach to find the top-k nodes. Nevertheless, the

solution does not return estimated PPR values and does not provide

any worst-case assurance. Fujiwara et al. [9, 10] and Shin et al.[21]

investigate how to speedup the top-k PPR queries with the matrix

decomposition approach. These approaches either cannot scale to

large graphs or do not provide approximation guarantees.

5 EXPERIMENTS
In this section, we experimentally evaluate FORA and its index-

based variant, referred to as FORA+, against the states of the art.
All experiments are conducted on a Linux machine with an Intel

2.6GHz CPU and 64GB memory.

5.1 Experimental Settings
Datasets and query sets. We use 6 real graphs: DBLP, Web-St,
Pokec, LJ, Orkut, and Twitter, which are benchmark datasets used

in recent work [15, 22]. Table 2 summarizes the statistics of the

data. For each dataset, we choose 50 source nodes uniformly at

random, and we generate an SSPPR query from each chosen node.

In addition, we also generate 5 top-k queries from each source node,

with k varying in {100, 200, 300, 400, 500}. Note that the maximum

k is set to 500 in accordance to Twitter’s Who-To-Follow service

[12], whose first step requires deriving top-500 PPR results.

Methods. For whole-graph SSPPR queries, we compare our pro-

posed FORA and FORA+ against three methods: (i) the Monte-Carlo
approach, dubbed asMC; (ii) the optimized BiPPR for SSPPR queries

described in Appendix B.1; (iii) HubPPR, which is the indexed ver-

sion of BiPPR. For fair comparison, the index size of HubPPR is

set to be the same as that of FORA+. For top-k SSPPR queries, we

compare our algorithm with the existing approximate solutions:

the single-source MC, the single-source BiPPR, as well as the top-k
algorithm for HubPPR in [22]. We also include the Forward Push
as a baseline for top-k SSPPR queries, and we tune its parameter

rmax on each dataset separately, so that its precision for top-k PPR

MC BiPPR HubPPR FORA FORA+
DBLP 12.9 3.5 2.4 0.7 0.07

Web-St 5.0 3.5 1.5 0.03 0.01

Pokec 66.4 23.7 19.2 12.1 0.8

LJ 144.7 57.8 48.3 21.0 1.8

Orkut 241.4 168.7 133.2 46.4 4.9

Twitter 4.6K 3.3K 2.8K 891.5 103.1

Table 3: Whole-graph SSPPR performance (s). (K = 10
3)

queries is the same as FORA on each dataset. Following previous

work[15, 16, 22], we set δ = 1/n,pf = 1/n, and ϵ = 0.5.

5.2 Whole-Graph SSPPR Queries
In our first set of experiments, we evaluate the efficiency of each

method for whole-graph SSPPR queries. Table 3 reports the average

query time of each method. Observe that both FORA and BiPPR
achieve better query performance than MC, which is consistent

with our analysis that the time complexity of FORA and BiPPR is

better than that of MC. Moreover, FORA is at least 3 times faster

than BiPPR on most of the datasets.

The reason, as we explain in Section 3.2, is that BiPPR either

degrades to the MC approach when the backward threshold is

large, or requires conducting a backward search from each node

v in G, even if π (s,v) is extremely small. In contrast, FORA avoids

degrading to MC and tends to omit nodes with small PPR values,

which helps improve efficiency.

In addition, FORA+ achieves significant speedup over FORA, and
is around 10 times faster than the latter on most of the datasets.

The HubPPR also improves over BiPPR, but the improvement is far

less than what FORA+ achieves over FORA. Moreover, even without

any index, FORA is still more efficient than HubPPR.

5.3 Top-k SSPPR Queries
In our second set of experiments, we evaluate the efficiency and

accuracy of each method for top-k SSPPR queries. Figures 1 re-

ports the average query time of each method on four representative

datasets: DBLP, Pokec, Orkut, and Twitter. (The results on the other

two datasets are qualitatively similar, and are omitted due to the

space constraint.) Note that the y-axis is in log-scale. The main

observation is that FORA and FORA+ both considerably outperform

competitors. In particular, FORA is up to two orders of magnitude

faster than MC and BiPPR. This is expected since our top-k algo-

rithm applies an iterative approach to refine the top-k answers

and terminates immediately whenever the answer could provide

the desired approximation guarantee. HubPPR’s top-k algorithm

has a similar early-termination mechanism, but it is still outper-

formed by our FORA by more than an order of magnitude, since

HubPPR inherits the deficiences of BiPPR on SSPPR queries. Recall

that Forward Push provides no approximation guarantee, and we

tune the rmax on each dataset separately, so that it provides the

same precison for top-500 SSPPR queries as our FORA algorithm

does. Observe that, when both algorithms provide the identical

precision, the performance of the proposed FORA and Forward Push
is roughly comparable on small and medium size graphs, e.g., on

DBLP, Pokec, and Orkut. When the graph size increases, however,
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Figure 1: Top-k SSPPR query efficiency: varying k .

BiPPR HubPPR FORA FORA+MC Forward Push

0.96

0.97

0.98

0.99

1.0

100 200 300 400 500

k

precision

0.96

0.97

0.98

0.99

1.0

100 200 300 400 500

k

precision

0.96

0.97

0.98

0.99

1.0

100 200 300 400 500

k

precision

0.96

0.97

0.98

0.99

1.0

100 200 300 400 500

k

precision

(a) DBLP (b) Pokec (c) Orkut (d) Twitter

Figure 2: Top-k SSPPR query accuracy: varying k .

Datasets
Preprocessing
time (sec)

Space overhead of
HubPPR & FORA+

HubPPR FORA+ Index size Graph size

DBLP 28.7 4.9 90.8MB 18.4MB

Web-St 11.8 2.0 45.5MB 10.4MB

Pokec 112.3 38.6 411.9MB 130.8MB

LJ 307.9 97.1 1.1GB 295.2MB

Orkut 582.2 204.9 1.6GB 950.1MB

Twitter 5849.0 3335.1 12.6GB 6.2GB

Table 4: Preprocessing costs.

FORA dominates the Forward Push in terms of the query efficiency.

In particular, on Twitter, FORA is faster than Forward Push by an

order of magnitude.

To compare the accuracy of the top-k results returned by each

method, we first calculate the ground-truth answer of the top-k
queries using the Power Iteration [19] method with 100 iterations.

Afterwards, we evaluate the top-k results of each algorithm by their

precision with respect to the ground truth. Note that the precision

and recall are the same for the top-k SSPPR queries. Figure 2 shows

the accuracy of the top-k query algorithms on four datasets: DBLP,
Pokec, Orkut, and Twitter. Observe that all methods provide high

precisions, and FORA, FORA+, BiPPR, and HubPPR are all slightly

more accurate than MC.

5.4 Preprocessing Costs
Finally, we inspect the preprocessing costs of the two index-based

methods, FORA+ and HubPPR. Recall that we set the index size of
HubPPR the same as the proposed FORA+. As shown in Table 4, the

preprocessing time of FORA and HubPPR are both moderate, and

the cost of FORA is much smaller than that of HubPPR. In addition,

even on the largest dataset Twitter, FORA+ can finish the index

construction in less than an hour. Table 4 also reports the index

size of FORA+ and HubPPR. We also add the space consumption

of the input graph as the reference values. As we can observe, the

index size of FORA+ is no more than 4 times the original graph in

general. In particular, on Orkut, the index size of FORA+ is only 1.7

times the input graph, and yet, as we show in Sections 5.2 and 5.3, it

can speedup the query efficiency of whole-graph and top-k SSPPR

queries by around 10 times. This demonstrates the effectiveness

and efficiency of our indexing scheme.

6 CONCLUSION
We present FORA, a novel algorithm for approximate single-source

personalized PageRank computation. The main ideas include (i)

combining Monte-Carlo random walks with Forward Push in a

non-trivial and optimized way (ii) pre-computing and indexing

random walk results and (iii) additional pruning based on top-k
selection. Compared to existing solutions, FORA involves a reduced

number of random walks, avoids expensive backward searches, and

provides rigorous guarantees on result quality. Extensive experi-

ments demonstrate that FORA outperforms existing solutions by a

large margin, and enables fast responses for top-k SSPPR searches

on very large graphs with little computational resource.
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APPENDIX
A PROOF OF THEOREM

Proof of Lemma 3.2. Firstly, let X j be the j-th random walk.

Define Y ′ = 1

ω′
∑ω′
j=1 bjX j , and ν =

1

ω′
∑ω′
j=1 b

2

j E[X j ]. Let a =

max{b1, · · · ,bω′}. By definition, b2j ≤ 1, and hence, ν ≤ E[Y ′] and

a ≤ 1. By Theorem 3.1, Pr[|Y ′ −E[Y ′]| ≥ λ] ≤ 2 · exp

(
− λ2 ·ω′
2ν+2aλ/3

)
.

Apply ν ≤ E[Y ′], we have

Pr[|Y ′ − E[Y ′]| ≥ λ] ≤ 2 · exp

(
−

λ2 · ω ′

2E[Y ′] + 2aλ/3

)
.

By Equation 6 and E[Y ′] ≤ ω
ω′ ·rsum · π (s, t),

Pr[|π (s, t)−π̂ (s, t)| ≥
ω ′ · rsum

ω
λ] ≤ 2·exp

©­«− λ2 · ω ′

2
ω ·π (s,t )
ω′ ·rsum + 2aλ/3

ª®¬ .

Let λ = ω ·ϵ ·π (s,t )
ω′ ·rsum , we have

Pr[|π (s, t)− π̂ (s, t)| ≥ ϵ ·π (s, t)] ≤ 2 · exp

(
−

ϵ2 · ω · π (s, t)

rsum · (2 + 2a · ϵ/3)

)
.

As we only consider approximation for π (s, t) > δ and a ≤ 1,

Pr[|π (s, t) − π̂ (s, t)| ≥ ϵ · π (s, t)] ≤ 2 · exp

(
−

ϵ2 · ω · δ

rsum · (2 + 2ϵ/3)

)
.

Since ω = rsum ·
(2ϵ/3+2)·log (2/pf )

ϵ 2 ·δ , we can conclude that

Pr[|π (s, t) − π̂ (s, t)| ≥ ϵ · π (s, t)] ≤ pf

holds for π (s, t) > δ . Also notice that the target t is arbitrarily
chosen, and we can derive this bound for all nodes v ∈ V . Hence,
the returned answer for the single-source PPR query satisfies Defi-

nition 2.1, which finishes the proof. �

Proof of Theorem 3.4. Given ωj , we can derive that:

Pr[|π (s, t) − π̂ (s, t)| ≥ ϵ · π (s, t)] ≤ 2 · exp

(
−
ϵ2 · ωj · π (s, t)

2 + 2a · ϵ/3

)
.

Since a ≤ 1 and π (s, t) ≥ π◦(s, t), and π (s, t) ≥ LBj−1(t), we can
derive that:

Pr[|π (s, t) − π̂ (s, t)| ≥ ϵ · π (s, t)] ≤

2 exp

(
−
ϵ2 · ωj ·max{π◦j (s,v),LBj−1(s,v)}

2 + 2ϵ/3

)
.

Let p′f equal the RHS of the above inequality. We have ϵ ≥√
3 log (2/p′f )

ωj ·max{π ◦j (s,v),LBj−1(s,v)}
.

By setting ϵj =

√
3 log (2/p′f )

ωj ·max{π ◦j (s,v),LBj−1(s,v)}
, we can derive that

π̂j (s,v)/(1 + ϵj ) ≤ π (s,v) ≤ π̂j (s,v)/(1 − ϵj ) holds with 1 − p′f
probability. Similarly, we have

Pr[|π (s, t)−π̂ (s, t)| ≥ ϵ ·π (s, t)] ≤ 2 exp

(
−

λ2 · ω

rsum · (2π (s, t) + 2λ/3)

)
Let p′f equal the RHS of the above inequality, and note that π (s, t) ≤

UBj−1(t). This helps us derive the designed bound for λj . �

Proof of Theorem 3.5. We apply a similar technique in [22]. If

LBj (v
′
i ) · (1 + ϵ) > UBj (v

′
i ). Then, it can be derived that

π̂ (v ′i ) ≤ UBj (v
′
i ) ≤ LBj (v

′
i ) · (1 + ϵ) ≤ (1 + ϵ) · π (s,v

′
i ).

π̂ (v ′i ) ≥ LBj (v
′
i ) ≥ UBj (v

′
i )/(1 + ϵ) ≥ (1 − ϵ) · π (s,v

′
i ).

Hence, v ′
1
, · · · ,v ′k satisfy Equation 2. Let v1, · · · ,vk be the k

nodes that have the top-k exact PPR values. Assume that all bounds

are correct, then as LB(v ′l ) ≥ δ , it indicates that the top-k PPR

values are no smaller than δ . In this case, all the top-k nodes should

satisfy ϵ-approximation guarantee, i.e., they satisfy that UB(vi ) <
(1 + ϵ) · LB(vi )/(1 − ϵ).

Let UB′j (1),UB′j (2), · · ·UB′j (k) be the top-k largest PPR upper

bounds in the j-th iteration. Note that, the i-th largest PPR satisfy

thatUB′j (i) ≥ π (s,vi ) ≥ LBj (s,v
′
i ).

Now assume that one of the upper bounds say UB′j (i) is not

from UB(v1), · · · ,UB(vk ). If it satisfies that LBj (v
′
k ) · (1 + ϵ) ≥

UB′j (i), it indicates that LBj (v
′
i ) · (1 + ϵ) ≥ UB′j (i) for all nodes.

http://www.vldb.org/pvldb/vol10/p205-wang.pdf


Hence, we update the node whose upper bound is minimum among

UBj (v
′
1
), · · · ,UBj (v

′
1
), we can still guarantee that LBj (v

′
i ) · (1+ϵ) >

UBj (v
′
i ). We repeat this process untilUBj (v

′
1
), · · · ,UBj (v

′
k ) are the

top-k upper bounds. On the other hand, letU be the set of nodes

such that, the node u ∈ U satisfies thatUBj (u) < LBj (v
′
k ). Then it

is still possible that these nodes are from the exact top−k answers.

However, recall that if a node u ∈ U is from the top-k , it should
satisfy that UB(u) < (1 + ϵ) · LB(u)/(1 − ϵ). As a result, if there

exists no node u ∈ U such thatUB(u) < (1+ϵ) ·LB(u)/(1−ϵ), then
no node u ∈ U is from the top-k answers, in which case it will not

affect the approximation guarantee.

Afterwards, we proceed a bubble sort on the top-k upper bounds

in decreasing order. If we replace two upper bounds UBj (v
′
x ) and

UBj (v
′
y ) with x < y, then UBj (v

′
x ) < UBj (v

′
y ). Also LBj (v

′
x ) >

LBj (v
′
y ) from the definition. As

UBj (v
′
x )/LBj (v

′
y ) < UBj (v

′
y )/LBj (v

′
y ) ≤ (1 + ϵ)

UBj (v
′
y )/LBj (v

′
x ) < UBj (v

′
y )/LBj (v

′
y ) ≤ (1 + ϵ)

When the sort finishes, the inequations still hold. We then have

UB′j (1) ≤ (1 + ϵ) · LBj (v
′
i ) · · · ,UB′j (k) ≤ (1 + ϵ) · LBj (v

′
k ).

Also note that

π̂ (v ′i ) ≥ LBj (v
′
i ) ≥

1

1 + ϵ
UB′j (i) ≥ (1 − ϵ) · π (s,vi ),

for all i ∈ [1,k]. So, the answer provides approximation guarantee

if the bounds from the first to the j-th iteration are all correct. By

applying the union bound, we can obtain that the approximation is

guaranteed with probability at least 1 − n · j · p′f .

B EXTENSIONS
B.1 Extending BiPPR to Whole-Graph SSPPR
Recall from Section 2.2 that in BiPPR, it includes both a forward

phase and a backward phase. It is proved in [1] that the amortized

time complexity for the backward phase isO
(

m
n ·rmax

)
, and in [15],

it shows that the forward phase requires O
( rmax ·log (1/pf )

ϵ 2 ·δ

)
time,

given the backward phase threshold rmax . Afterwards, they choose

rmax = O
(
ϵ ·

√
m ·δ

n ·log (1/pf )

)
to minimize the time complexity for

the pairwise PPR query, which is O

(
1

ϵ

√
m ·log (1/pf )

n ·δ

)
. To apply

BiPPR for whole-graph SSPPR queries, a straightforward approach

is to use it to answer n point-to-point PPR queries (i.e., from s to
every other node). This, however, leads to a total time complexity

of O

(
1

ϵ

√
mn ·log (1/pf )

δ

)
, which is a factor of

√
n larger than that of

the whole-graph SSPPR FORA.

To improve this, we observe that then point-to-point PPR queries

share the same forward phase, and hence, we can conduct the for-

ward phase once and then re-use its results for all n backward phase.

In addition, to reduce the total cost of n backward phases, we can

set rmax to a larger value; although it would require more random

walks to be generated in the forward phase, the tradeoff is still fa-

vorable as the overhead of the forward phase has been significantly

reduced by the re-usage of results. Since the backward phase (for

all target nodes) has a cost of O
(

m
rmax

)
, it can be verified that, by

setting rmax = O
(
ϵ ·

√
m ·δ

log (1/pf )

)
, the expected time complexity

of this optimized version of BiPPR (for SSPPR queries) is

O

(
1

ϵ ·
√
δ

√
m · log (1/pf )

)
,

which is identical to that of single-source FORA.

However, as we show in Section 5, the optimized BiPPR is signif-

icantly outperformed by Whole-Graph SSPPR FORA. The reason

is that, even after the aforementioned optimization, BiPPR either

degrades to MC when rmax is large, or still requires performing a

backward phase from each node v inG , even if π (s,v) is extremely

small and can be omitted. In contrast, single-source FORA does

not suffer from these deficiencies, and avoid examining nodes with

very small PPR values. Instead, it performs a forward search phase,

followed by a number of random walks from the nodes visited in

the search; this process tends to avoid examining nodes with very

small PPR values, since those nodes are unlikely to be visited by

the forward push or the random walks.

B.2 Extending FORA to Source Distributions
In many real applications of the personalized PageRank, the source

s can be a distribution (e.g., on a set of bookmark pages) instead of

a single node. We show that our algorithms for single-source-node

FORA can be extended to the case of arbitrary source distributions.

Let σ be the node distribution that the source node s is sampled

from. For any target node t , its personalized PageRank with respect

to σ is defined as [15]:

π (σ , t) =
∑
v ∈V

σ (v) · π (v, t),

whereσ (v) is the probability that a sample fromσ equalsv . To apply
our algorithms, we modify Line 1 of Algorithm 1 to set the initial

residue of each node v as σ (v). Let π◦(σ ,v) (resp. r (σ ,v)) denote
the reserve (resp. residue) of node v in the modified version of

Forward Push. Then, it is easy to prove that the following invariant

holds for the modified version of Forward Push:

π (σ , t) = π◦(σ , t) +
∑
v ∈V

r (σ ,v) · π (v, t).

In particular, the initial states satisfy the above invariant, and by

induction, it can be proved that the invariant still holds after every

push operation. Given the above invariant, our algorithms can be

applied to compute π (σ , t) without compromising their asymptotic

guarantees. Besides, the indexing scheme presented in Section 3.3

is still applicable, since the maximum number of random walks

required for each node is identical to that in the single-source-node

algorithms.
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