
HubPPR: Effective Indexing for Approximate Personalized
PageRank

Sibo Wang†, Youze Tang†, Xiaokui Xiao†, Yin Yang‡, Zengxiang Li§
†School of Computer Science and Engineering, Nanyang Technological University, Singapore

‡College of Science and Engineering, Hamad Bin Khalifa University, Qatar
§Institute of High Performance Computing, A*STAR, Singapore

†{wang0759, yztang, xkxiao}@ntu.edu.sg, ‡yyang@qf.org.qa, §liz@ihpc.a-star.edu.sg

ABSTRACT
Personalized PageRank (PPR) computation is a fundamental oper-
ation in web search, social networks, and graph analysis. Given a
graphG, a source s, and a target t, the PPR query π(s, t) returns the
probability that a random walk on G starting from s terminates at
t. Unlike global PageRank which can be effectively pre-computed
and materialized, the PPR result depends on both the source and the
target, rendering results materialization infeasible for large graphs.
Existing indexing techniques have rather limited effectiveness; in
fact, the current state-of-the-art solution, BiPPR, answers individ-
ual PPR queries without pre-computation or indexing, and yet it
outperforms all previous index-based solutions.

Motivated by this, we propose HubPPR, an effective indexing
scheme for PPR computation with controllable tradeoffs for ac-
curacy, query time, and memory consumption. The main idea is
to pre-compute and index auxiliary information for selected hub
nodes that are often involved in PPR processing. Going one step
further, we extend HubPPR to answer top-k PPR queries, which
returns the k nodes with the highest PPR values with respect to
a source s, among a given set T of target nodes. Extensive ex-
periments demonstrate that compared to the current best solution
BiPPR, HubPPR achieves up to 10x and 220x speedup for PPR
and top-k PPR processing, respectively, with moderate memory
consumption. Notably, with a single commodity server, HubPPR
answers a top-k PPR query in seconds on graphs with billions of
edges, with high accuracy and strong result quality guarantees.

1. INTRODUCTION
Personalized PageRank (PPR) [25] is a fundamental metric that

measures the relative importance of nodes in a graph from a par-
ticular user’s point of view. For instance, search engines use PPR
to rank web pages for a user with known preferences [25]. Mi-
croblogging sites such as Twitter use PPR to suggest to a user other
accounts that s/he might want to follow [16]. Additionally, PPR
can be used for predicting and recommending links in a social net-
work [5], and analyzing the relationship between different nodes
on large graph data such as protein networks [17].

Specifically, given a graph G, a source node s, and a target node
t, the PPR π(s, t) of t with respect to s is defined as the probabil-
ity that a random walk on G starting from s terminates at t. For
example, on a social networking site where nodes correspond to
user profiles, π(s, t) measures the importance of user t from user
s’s perspective; hence, if π(s, t) is high and s and t are not already
connected, the social networking site might want to recommend t
to s. Another important variant is top-k PPR, in which there are
a set T of target nodes, and the goal is to identify nodes among T
with the highest PPR values with respect to s. This can be applied,
for example, to the selection of the top web documents among those
retrieved through a keyword query [20].

As we explain in Section 2, exact PPR computation incurs enor-
mous costs for large graphs; hence, the majority of existing work
focuses on approximate PPR computation. Meanwhile, since the
PPR result depends on both the source and target nodes, it is pro-
hibitively expensive to materialize the results of all possible PPR
queries for a large graph. Accelerating PPR processing through
indexing is also a major challenge, and the effectiveness of pre-
vious indices has been shown to be rather limited [8, 9]. In fact,
the current state-of-the-art solution for PPR processing is BiPPR
[20], which answers each PPR query individually without any pre-
computation or indexing. It is mentioned in [20] that BiPPR could
benefit from materialization of partial results. However, as we ex-
plain in Section 2.2, doing so is not practical for large graphs due
to colossal space consumption.

Regarding top-k PPR processing, existing methods are either not
scalable, or fail to provide formal guarantees on result quality. Fur-
ther, as we describe in Section 2, similar to the case of PPR compu-
tation, for the top-k PPR query, an adaptation of BiPPR remains the
state of the art, which processes queries on the fly without indices.
In other words, to our knowledge no effective indexing scheme
exists for top-k PPR processing that can accelerate or outperform
BiPPR without sacrificing the query accuracy.

Motivated by this, we propose HubPPR, an effective index-
based solution for PPR and top-k PPR processing. Particularly for
top-k PPR, HubPPR contains a novel processing framework that
achieves rigorous guarantees on result quality; at the same time, it
is faster and more scalable than BiPPR even without using an in-
dex. HubPPR further accelerates PPR and top-k PPR through an
elastic hub index (EHI) that (i) adapts well to the amount of avail-
able memory and (ii) can be built by multiple machines in parallel.
These features render HubPPR a good fit for modern cloud com-
puting environments.

The EHI contains pre-computed aggregate random walk results
from a selected set of hub nodes which are likely to be involved
in PPR computations. Figure 1 shows an example graph with two

1

s1

s2 h

t2

t1u1

u2

u3

u4

Figure 1: Example of a hub node and random walks

random walk trajectories, one from node s1 to t1, and another from
s2 to t2. Node h appears in both trajectories. As we elaborate later,
if we select h as a hub, precompute and index random walk des-
tinations starting from h in the forward oracle of the EHI, then,
random walks, e.g., the two starting from s1 and s2, can terminate
as soon as they reach h, and HubPPR determines their final desti-
nations using the forward oracle. Similarly, the EHI also contains
a more sophisticated backward oracle storing additional aggregate
information about the hubs. To build an effective index with lim-
ited memory space, HubPPR addresses several important technical
challenges, including choosing the hubs, storing and compressing
their associated aggregates, and ensuring that the guarantees on re-
sult quality are satisfied.

Extensive experiments using real data demonstrate that with
moderate memory consumption, HubPPR achieves up to 10x (resp.
220x) reduction in query time for approximate PPR (resp. top-k
PPR) processing compared to the current best method BiPPR. No-
tably, using a single commodity server, HubPPR answers an ap-
proximate top-k PPR query in seconds on a billion-edge graph,
with high result quality.

2. PRELIMINARIES
Section 2.1 provides the necessary background on PPR and top-k

PPR. Section 2.2 presents our main competitor BiPPR, the current
state-of-the-art approach to PPR and top-k PPR processing. Table
1 lists the notations that will be frequently used in the paper.

2.1 Problem Definition
Personalized PageRank. Given a graph G = (V,E) where V
(resp. E) is the set of nodes (resp. edges) in G, a source node
s ∈ V , a target node t ∈ V , and a probability α, the personal-
ized PageRank (PPR) π(s, t) of t with respect to s is defined as the
probability that a random walk on G from s terminates at t. Ac-
cordingly, the PPR values for all nodes in the graph sum up to 1.
In particular, in each step of the random walk, let v be the current
node; with probability α, the random walk terminates at v; with
probability 1 − α, it picks an out edge (v, w) ∈ E of v uniformly
at random and follows this edge to reach nodew. The random walk
eventually terminates at a node in V , which we call the destination
of the walk.

The exact PPR values for all nodes in G with respect to a par-
ticular source node s can be computed by the power iterations
method described in the original paper on PPR [25], which re-
mains the basis of modern exact PPR processing methods [22]. In
a nutshell, power iterations can be understood as solving a matrix
equation. Specifically, let n denote the number of nodes in G, and
A ∈ {0, 1}n×n be the adjacency matrix of G. We define a diago-
nal matrix D ∈ Rn×n in which each element on its main diagonal
corresponds to a node v, and its value is the out degree of v. Then,
we have the following equation:

πs = α · es + (1− α) · πs ·D−1A. (1)

where es is the identity vector of s, and πs is the PPR vector for
node s that stores PPR of all nodes in V with respect to s. Solving
the above equation involves multiplying matrices of size n by n,

Table 1: Frequently used notations.

Notation Description
G=(V,E) Input graph, its node set and edge set
n,m The number of nodes and edges in G, respectively
π(s, t) Exact result of a PPR query with source s and target t
α Probability for a random walk to terminate at each step
δ, ε, pf Parameters for the result quality guarantee of an ap-

proximate PPR algorithm, described in Definition 1
r(v, t) The residue of v during backward search from t

πa(v, t) The reserve of v during backward search from t

rmax Residue threshold for backward propagation
F ,B Forward and backward oracles, respectively
ω Number of random walks during forward search

which takes O(nc) time, where the current lowest value for con-
stant c is c ≈ 2.37 [14]. This is immensely expensive for large
graphs. Another issue is that storing the adjacency matrix A takes
O(n2) space, which is prohibitively expensive for a graph with
a large number of nodes. Although there exist solutions for rep-
resenting A as a sparse matrix, e.g., [13], such methods increase
the cost of matrix multiplication, exacerbating the problem of high
query costs. Finally, since there are O(n2) possible PPR queries
with different source/target nodes, materializing the results for all
of them is clearly infeasible for large graphs.
Approximate PPR. Due to the high costs for computing the ex-
act PPR, most existing work focuses on approximate PPR com-
putation with result accuracy guarantees. It has been shown that
when the PPR value is small, it is difficult to obtain an approxima-
tion bound on accuracy [20, 21]. Meanwhile, large PPR results are
usually more important in many applications such as search result
ranking [25] and link prediction [5]. Hence, existing work focuses
on providing accuracy guarantees for PPR results that are not too
small. A popular definition for approximate PPR is as follows.

DEFINITION 1. Given a PPR query π(s, t), a result threshold
δ, an approximation ratio ε, and a probability α, an approximate
PPR algorithm guarantees that when π(s, t) > δ, with probability
at least 1− pf , we have:

|π̂(s, t)− π(s, t)| ≤ ε · π(s, t), (2)

where π̂(s, t) is the output of the approximate PPR algorithm. �

A common choice for δ is O(1/n), where n is the number of
nodes in the graph. The intuition is that if every node has the same
PPR value, then this value is 1/n, since the PPR values for all nodes
sum up to 1; hence, by setting δ to O(1/n), the approximation
bound focuses on nodes with above-average PPR values.

Top-k PPR. As mentioned in Section 1, top-k PPR concerns the
selection of k nodes with the highest PPR values among a given set
T of target nodes. As shown in [20], finding the exact answer to
a top-k query also incurs high costs, especially when the target set
T contains numerous nodes, e.g., web pages matching a popular
keyword. Meanwhile, materializing all possible top-k PPR results
is inapplicable, since the result depends on the target set T , whose
number can be exponential. Unlike the case for PPR queries, to
our knowledge no existing work provides any formal guarantee on
result quality for top-k PPR processing. In Section 4, we formally
define the problem of approximate top-k PPR, and present an effi-
cient solution with rigorous guarantees on result quality.

2.2 BiPPR
BiPPR [20] processes a PPR query through a bi-directional

search on the input graph. First, BiPPR performs a backward search
using a backward propagation algorithm originally described in [1].

2

v1

v3

t1

v2

v4 v5

node

reserve

t

0

v1 v2

0 0

v3

0

v4 v5

0 0

v1

v3

t

0.4 v2

v4 v5

node

reserve

t

0.2

v1 v2

0 0

v3

0

v4 v5

0 0

0.2
v1

v3

t

0.32

v2

v4 v5

node

reserve

t

0.2

v1

0.08

v3

0

v4 v5

0 0

0.16 0.16

v2

0.04

0.16

v1

v3

t

v2

v4 v5

node

reserve

t

0.2

v1

0.08

v3

0.064

v4 v5

0 0

0.16 0.16

v2

0.04

0.16

(a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4.
Figure 2: Example of backward search.

Then, it performs forward searches based on Monte Carlo simula-
tions [24]. Finally, it combines the results for both search direc-
tions, and estimates the PPR result. In the following, we explain
the forward and backward search of BiPPR, the combination of the
results, the extension to top-k PPR queries, as well as the possibil-
ity of accelerating BiPPR through materializing search results.
Forward search. The forward search performs ω random walks
starting from the source node s. Let hv be the number of random
walks that terminate at each node v ∈ V . Then, the forward search
estimates the PPR πf (s, v) = hv/ω. According to properties of
Monte Carlo simulations [24], πf (s, v) is an unbiased estimate of
the exact PPR π(s, t). Meanwhile, using the Chernoff bound [24],
we can prove that πf satisfies Inequality 2 when ω ≥ 3 log (2/pf)

ε2δ
,

where δ, ε, pf are result threshold, the approximation ratio and
failure probability, respectively, as in Definition 1. Note that when
δ = O(1/n) (as explained in Section 2), the number of random
walks is O(

n·log(1/pf)

ε2
), which is costly for large graphs.

Backward search. The backward search in BiPPR starts from the
target node t and propagates information along the reverse direction
of the edges. The search iteratively updates two properties for each
node v: its residue r(v, t), and reserve πa(v, t) [1]. The former
represents information to be propagated to other nodes, and the lat-
ter denotes the estimated PPR value of target t with respect to node
v. The search starts from the state in which (i) every node in the
graph has zero reserve, (ii) every node, except for the target node
t, has zero residue as well and (iii) t has a residue of r(t, t) = 1.
In each iteration, residues are propagated between nodes and con-
verted to reserves. The goal is to eventually deplete the residue
for every node, i.e., r(v, t) = 0 for all v ∈ V , at which point the
search completes. It has been proven that if we follow the propaga-
tion rules in [1] that will be explained shortly, then after the search
finishes, the reserve for each node v equals the exact PPR of t with
respect to v, i.e., πa(v, t) = π(v, t) [1]. BiPPR does not complete
the backward search, which is expensive; instead, it sets a maxi-
mum residue rmax, and terminates the search as soon as every node
v satisfies r(v, t) < rmax [20]. Next we clarify the residue prop-
agation and conversion rules. For each iteration of the backward
search, for every v ∈ V with sufficient residue r(v, t) > rmax,
BiPPR converts α portion of the residue to its reserve, i.e., πa(v, t)
is incremented by α · r(v, t). Then, the remaining residue is prop-
agated along the reverse direction of in-edges of v. In particular,
for each edge (u, v) ∈ E, let dout(u) be the out degree of node u;
BiPPR increments its residue r(u, t) by (1−α)·r(v,t)

dout(u)
. After finish-

ing the propagation along all in-edges of v, BiPPR sets r(v, t) to
zero. In case v does not have any in-edge, BiPPR will not propa-
gate information and directly set r(v, t) to zero. We demonstrate
how the backward search works with the following example.

EXAMPLE 1. Consider graph G in Figure 2(a). Assume that
t is the target node, α = 0.2, and rmax = 0.18. The backward
search starts with t with r(t, t) = 1, and r(v, t) = 0 for every
remaining node v. We illustrate the non-zero residues alongside
the corresponding nodes, and we list the reserve of each node in
the table below each figure.

In the first iteration (i.e., Figure 2(b)), t has residue r(t, t) >
rmax. Therefore, it converts α · rmax(t, t) to its reserve, i.e.,
πa(t, t) = 0.2. Afterwards, it propagates the remaining residue
to its in-neighbors, i.e., v1 and v2. As v1 has two out-neighbors,
r(v1, t) is incremented by 0.8/2 = 0.4. Similarly, r(v2, t) is in-
cremented by 0.2. Afterwards, as v1 has residue larger than rmax,
it converts 0.2 ∗ 0.4 = 0.08 residue to its reserve. It then propa-
gates the remaining residue to its only in-neighbor (i.e., v3), which
increases r(v3, t) to 0.32. Similary, as v2 also has residue larger
than rmax, it converts 0.2 portion of its residue to its reserve, and
then propagates the remaining residue to its in-neighbors. The re-
sults after the two propagations are shown in Figure 2(c).

Observe that v3 still has residue larger than rmax. As v3 has
no in-neighbors, it simply increments its reserve by 0.32 ∗ 0.2 =
0.064, and sets its residue r(v3, t) = 0. At this stage, every node v
has r(v, t) < rmax. Hence, the backward propagation terminates.
Figure 2(d) shows the final results. �

Combining forward and backward search results. As men-
tioned earlier, BiPPR first performs a backward search with residue
threshold rmax, which obtains the reserve πa(v, t) and residue
r(v, t) < rmax for each node v. Regarding πa(v, t) and r(v, t), it
is proven in [20] that the following equation holds.

π(s, t) = πa(s, t) +
∑

v∈V
π(s, v) · r(v, t). (3)

Based on Equation 3, BiPPR answers the PPR query using the
following equation.

π̂(s, t) = πa(s, t) +
∑

v∈V
πf (s, v) · r(v, t). (4)

It is proven in [20] that (i) BiPPR satisfies Definition 1 with
ω = O

(
rmax
ε2δ

log 1
pf

)
random walks during the forward search,

and (ii) if the target node t is chosen uniformly at random, then
the average running time of the backward search is O(m

nαrmax
),

where n and m are the number of nodes and number of edges in
the graph, respectively1. By combing the costs of both the for-
ward search and backward search, the average query time of BiPPR
is O

(
m

nαrmax
+ rmax

αε2δ
log 1

pf

)
. Lofgren et al. [20] recommends

setting rmax to
√

m·ε2δ
n log (1/pf)

, which leads to an average time com-

plexity of O
(

1
αε

√
m
nδ

log 1
pf

)
.

Materialization of search results. Ref. [20] mentions that BiPPR
could be accelerated by pre-computing and materializing the bi-
directional search results. Specifically, for forward search, BiPPR
could simply materialize the final destinations of the ω random
walks for each node v ∈ V . The space consumption, however,
is O

(
1
ε

√
mn
δ

log 1
pf

)
. As δ = O(1/n), the space complexity is

hence O
(
n
ε

√
m log 1

pf

)
, which is impractical for large graphs.

Regarding backward search, BiPPR could perform a backward
search starting from each node t during pre-processing, and mate-
rialize the residues and reserves of all nodes. According to [20],

1The worst-case running time of the backward search is Θ(n).

3

the total space consumption is O
(

m
rmax

)
=
(

1
ε

√
mn
δ

log 1
pf

)
.

When δ = O(1/n), the space complexity is O
(
n
ε

√
m log 1

pf

)
,

which is also infeasible for large graphs.

Top-k PPR processing. Observe that BiPPR can also be applied
to top-k PPR in a straightforward manner: given a target set T , we
can employ forward and backward searches to estimate the PPR
score of each node in T , and return the k nodes with the highest
scores. This approach, however, is rather inefficient as it requires
performing |T | PPR queries. To improve efficiency, Lofgren et
al. [20] consider the restricted case when T is selected from a small
number of possible choices, and propose preprocessing techniques
leveraging the knowledge of T to accelerate queries. Nevertheless,
those techniques are inapplicable when T is arbitrary and is given
only at query time. Therefore, efficient processing of top-k PPR
queries for arbitrary target set T remains a challenging problem.

3. HUBPPR
Similar to BiPPR described in Section 2.2, HubPPR performs

forward and backward searches, and combines their results to an-
swer a PPR query. The main distinction of HubPPR is that it
performs forward (resp. backward) search with the help of a pre-
computed index structure called the forward oracle (resp. backward
oracle). To facilitate fast processing of PPR queries, we assume
that the index resides in main memory, which has limited capacity.
This section focuses on the HubPPR algorithm; the data structures
for forward and backward oracles are described later in Section 5.
In the following, Sections 3.1 and 3.2 describe index-based for-
ward and backward searches in HubPPR, respectively. Section 3.3
presents the complete HubPPR algorithm, proves its correctness,
and analyzes its time complexity.

3.1 Forward Search
We first focus on the forward search. Recall from Section 2.2 that

the forward search performs a number of random walks. HubPPR
accelerates a random walk based on its memorylessness property,
stated as follows.

LEMMA 1 (MEMORYLESSNESS OF A RANDOM WALK). Let
v ∈ V be any node reachable from the source node s, and Bv
denote the event that a random walk P starting from s reaches v.
Then, for any node t, Pr[P terminates at t | Bv] = π(v, t). �

Our forward oracle is motivated by Lemma 1, defined as follows.
DEFINITION 2 (FORWARD ORACLE). A forward oracle F is

a data structure that for any input node v ∈ V , F either returns
NULL, or the destination node w ∈ V of a random walk starting
from s that reaches v. �

Note that in the above definition, it is possible that F returns
different results for different probes with the same input node v,
which correspond to different random walk destinations. Given a
forward oracle F , HubPPR accelerates the forward search as fol-
lows. When performing a random walk during forward search,
whenever HubPPR reaches a node v, it probes F with v. If F
returns NULL, HubPPR continues the random walk. Otherwise,
i.e., F returns a node w, HubPPR terminates the random walk and
returns w as its destination.

EXAMPLE 2. Assume that we perform a forward search from
node s2 in Figure 1, and the sequence of nodes to be traversed in the
random walk is s2, u1, u2, h, u3, u4, t2 (as illustrated in the dashed
line in Figure 1). Then, the forward search first probes F with s2.
If F returns NULL, the forward search would continue the random
walk from s2 and jumps to u1, after which it probes F with u2.
If F still returns NULL, the forward search jumps from u2 to h,

and probes F with h. Assume that F returns t1. Then, the random
walk terminates immediately and returns t1 as the destination. �

Challenges in designing F . There are three main requirements
in the design of F . First, F must be effective in reducing random
walk costs; in particular, it should minimize NULL responses. Sec-
ond, F should be space efficient as it resides in memory. Third, F
should also be time efficient in responding to probes; in particular,
F must process each probe in constant time (in order not to increase
the time complexity of forward search), and the constant must be
small (in order not to defeat the purpose of indexing).

A naive solution is to materialize ω random walk destinations
for each node, which incurs prohibitive memory consumption, as
explained in Section 2.2. To conserve space, we can store random
walks destinations selectively, and in a compressed format. On the
other hand, selective storage may compromise indexing efficiency,
and compression may lead to probing overhead. What should we
materialize to best utilize the available memory? Besides, how
should we store this information to minimize space consumption
within acceptable probing overhead? These are the main challenges
addressed by our elastic hub index, detailed in Section 5.1.

3.2 Backward Search
Next, we clarify the backward search in HubPPR. Effective in-

dexing for the backward search is much more challenging than
for forward search, for two reasons. First, unlike random walks,
back propagations are stateful, i.e., each node v is associated with
a residue r(v, t). The effects of each propagation, i.e., modifica-
tions to v’s reserve value and to the residues of neighboring nodes,
depend on the value of r(v, t). In particular, when r(v, t) < rmax,
node v does not perform backward propagation at all. Second, un-
like a random walk that has only one result (i.e., its destination), a
backward propagation can potentially affect all nodes in the graph.

HubPPR accelerates backward search by pre-computing results
for fractional backward propagations (FBPs). An FBP is per-
formed using the backward propagation algorithm described in
Section 2.2, with one modification: in the initial step, an FBP
can assign an arbitrary residue τ ≤ 1 to any node u ∈ V . Let
FBP (u, τ) denote the FBP with initial residue τ assigned to node
u. For each node v ∈ V , let r(v, u, τ) (resp. πa(v, u, τ)) denote
the final residue (resp. reserve) after FBP (u, τ) terminates. The
following lemma describes how pre-computed fractional backward
propagation results can be utilized in backward search.

LEMMA 2. Suppose that, given a node u and an initial residue
τ , the results of a fractional backward propagation FBP (u, τ)
consist of final residue r(v, u, τ) and reserve πa(v, u, τ) for each
node v ∈ V . If at any point during a backward search from target
node t, u’s residue r(u, t) satisfies rmax < r(u, t) ≤ τ , then, re-
cursively propagating u’s residue is equivalent to (i) setting residue
r(u, t) to r(u,t)

τ
· r(u, u, τ), and (ii) for each node v 6= u, incre-

menting residue r(v, t) by r(u,t)
τ
· r(v, u, τ), and reserve πa(v, t)

by r(u,t)
τ
· πa(v, u, τ). �

PROOF SKETCH. From the definition of backward search, if an
unit information is propagated from u, then eventually π(s, u) is
propagated to node s. By scaling it with τ , it can be derived that,
if τ information is propagated from u, eventually τ · π(s, u) is
propagated to s. As a result, we have the following equation.

π(s, u) =
1

τ
· πa(s, u, τ) +

1

τ
·
∑
v∈V

π(v, u) · r(v, u, τ).

Then by applying Equation 3 with the current residue and reserve
states, and replacing π(s, u) with the above equation, we obtain the
desired results in Lemma 2.

4

Based on Lemma 2, we define the backward oracle as follows.
DEFINITION 3 (BACKWARD ORACLE). A backward oracle

B is a data structure such that for any input node u ∈ V and
its current residue r(u, t) > rmax, B either returns NULL, or
(i) an initial residue τ ≥ r(u, t), and (ii) results of FBP (u, τ),
i.e., r(v, u, τ) and πa(v, u, τ) for each node v ∈ V with either
r(v, u, τ) > 0 or πa(v, u, τ) > 0. �

Given a backward oracle B, HubPPR accelerates backward
search as follows. When the search needs to propagate a node u’s
residue r(u, t), HubPPR probes B with the pair 〈u, r(u, t)〉. If B
returns NULL, HubPPR executes the propagation as usual. Other-
wise, HubPPR skips the propagation of node u and all subsequent
steps, and directly updates each node’s residue and reserve accord-
ing to Lemma 2.

EXAMPLE 3. Consider the backward search in Figure 2. The
search starts from t, and probes the backward oracle B with 〈t, 1〉.
IfB returns NULL, then the search propagates 0.4 and 0.2 informa-
tion to v1 and v2, respectively. Afterwards, r(v1, t) becomes 0.4.
Assume that the next backward search starts from v1, and it probes
B with 〈v1, 0.4〉. Suppose that B returns 0.5 for τ , πa(v3, v1, τ) =
0.08, r(v3, v1, τ) = 0, πa(v1, v1, τ) = 0.1, and the residue and
reserve for all other nodes are zero. Then, by Lemma 2, we can di-
rectly derive that πa(v3, t) = 0+ 0.4

0.5
·0.08 = 0.064, r(v3, t) = 0,

and πa(v1, t) = 0.4
0.5
·0.1 = 0.08. Afterwards, the search continues

backward propagations until all residue are less than rmax. �

Challenges in designing B. Similar to the case of F , B needs to
be effective in reducing backward propagation costs, and efficient
in terms of both space and time. Compare to F , B is more compli-
cated since each probe contains not only a node but also a residue
value, which drastically increases the space of possible probes. Fur-
ther, in order for B to respond to a probe with a non-NULL value,
it must contain the corresponding residue and reserve values as in
Definition 3, possibly for all nodes in the graph. Hence, it is a chal-
lenge to design any non-trivial B within limited memory space.

Furthermore, the overhead of probing B and updating residue
and reserve values using Lemma 2 should not exceed the cost of
performing the corresponding backward propagation. This is not
always true for all B outputs. For instance, if r(u, t) is small and
B returns a much larger τ , the corresponding FBP results may in-
volve considerably more nodes than the actual backward propaga-
tion from u. These challenges are addressed later in Section 5.3.

3.3 Complete Algorithm and Analysis
Algorithm 1 demonstrates the pseudo-code of our HubPPR al-

gorithm for approximate PPR computation. The algorithm takes
as input a forward oracle F and a backward oracle B, and uses
them during forward (lines 9-16) and backward searches (lines 1-
8) respectively. Specifically, HubPPR utilizes B to prune backward
propagation operations (line 8), and F to terminate a random walk
early (line 16). Note that the oracles do not contain complete in-
formation and can return NULL for certain probes, in which case
HubPPR proceeds as in BiPPR. The following theorems establish
the correctness and time complexity of HubPPR algorithm.

THEOREM 1 (CORRECTNESS OF HUBPPR). Given a result
threshold δ, an approximation ratio ε, and a failure probability pf ,

with rmax =
√

m·ε2δ
n log (1/pf)

and ω = O
(
rmax
ε2δ

log 1
pf

)
, HubPPR

is an approximate algorithm for PPR queries. �
PROOF. Lemma 1 (resp. Lemma 2) shows that the forward

(resp. backward) search with the forward (resp. backward) oracle
provides identical results as the forward (resp. backward) search in
BiPPR. Therefore, given the same parameter setting, HubPPR and
BiPPR provide the same approximation guarantee.

Algorithm 1: HubPPR
input : s, t, graph G, F and B
output: π(s, t)

1 Initialize residue r(t, t) to 1 and r(v, t) to 0 for all node v 6= t;
2 Initialize reserve πa(v, t) to 0 for all v in G;
3 while ∃u satisfying r(u, t) > rmax do
4 Prob B with 〈u, r(u, t)〉;
5 if B returns NULL then
6 Perform backward propagation for u;

7 else
8 Update the residue and reserve for each node v in G

according to Lemma 2;

9 for i = 1 to ω do
10 Start a new random walk P at node s;
11 while P does not terminate do
12 Probe F with the current node of P ;
13 if F returns NULL then
14 Perform one step of random walk on P ;

15 else
16 Terminate P at the destination node returned by F ;

17 Combine backward (lines 1-8) and forward search (lines 9-16) results
to answer the PPR query with Equation 4;

THEOREM 2 (TIME COMPLEXITY OF HUBPPR). Suppose
that each probe of F takes constant time, and the time complexity
of probing B does not exceed that of performing the corresponding
backward propagation. Then, HubPPR answers an approximate
PPR query in O

(
1
αε

√
m
nδ

log 1
pf

)
amortized time. �

PROOF. Note that HubPPR improves over BiPPR with the use
of the forward and backward oracles, neither of which increases its
time complexity. As our index could be arbitrary small, in the worst
case the amortized time complexity is the same as BiPPR. Hence,
the time complexity of HubPPR is the same as that of BiPPR.

For Theorem 2 to hold, the forward and backward oracles must sat-
isfy the corresponding requirements in the theorem. This is realized
in our elastic hub index, clarified in Section 5.

4. TOP-K PERSONALIZED PAGERANK
This section clarifies how HubPPR processes top-k PPR queries.

Since exact PPR values are computationally expensive to obtain,
we focus on deriving approximate top-k answers, in a manner sim-
ilar to Definition 1. Given a source node s and a target node set T ,
let t∗i be the node with the i-th (k ≥ i ≥ 1) largest PPR value from
s. We aim to derive a sequence of k nodes t1, t2, . . . , tk, and their
estimated PPR values π̂(s, t1), π̂(s, t2), . . . , π̂(tk) such that

|π̂(s, ti)− π(s, ti)| ≤ ε/2 · π(s, ti), (5)
|π(s, ti)− π(s, t∗i)| ≤ ε · π(s, t∗i), (6)

holds with at least 1− pf probability for any π(s, t∗i) > δ.

4.1 Overview
As mentioned in Section 2, a naive approach to answer an ap-

proximate top-k PPR query is to (i) perform one approximate PPR
query for each node in T , and then (ii) return the k nodes with
the largest approximate PPR. However, this incurs significant over-
heads, due to the large number of approximate PPR queries per-
formed. To address this issue, we propose an iterative approach for
top-k queries, such that each iteration (i) eliminates some nodes in
T that cannot be top-k results, and (ii) refines the PPR values of
the remaining nodes before feeding them to the next iterations. In

5

other words, we pay relatively small processing costs on the nodes
that are not top-k results, which helps improve query efficiency.

Specifically, for each node t in the target set T , we maintain a
lower bound LB(t) and an upper bound UB(t) of its PPR. Let
π̂(s, t) = (LB(t) + UB(t))/2. We have the following lemma:

LEMMA 3. If (1 + ε) · LB(ti) ≥ UB(ti), then π(s, ti) and
π̂(s, ti) satisfy that:

(1− ε/2) · π(s, ti) ≤ π̂(s, ti) ≤ (1 + ε/2) · π(s, ti), (7)
(1− ε) · π(s, t∗i) ≤ π(s, ti) ≤ (1 + ε) · π(s, t∗i), (8)

where ti is the node with the i-th largest PPR lower bound, and t∗i
is the node with the i-th largest exact PPR value. �

In other words, if (1 + ε) · LB(ti) ≥ UB(ti) holds for every
i ∈ [1, k], then we can return the k nodes in T with the largest
PPR lower bounds, and their estimation π̂(s, ti) as the answer of
the approximate top-k PPR query.

4.2 Algorithm
Recall that our top-k method runs in an iterative manner. In a

nutshell, the i-th iteration of this method consists of three phases:
• Forward phase. This phase performs forward searches from

the source node s using 2i random walks.
• Backward phase. This phase performs backward searches

from selected target nodes in T , such that rmax value for each
selected node is half of its value in the (i − 1)-th iteration.
(The initial rmax value for each node is set to 1.) In other
words, it increases the accuracy of the backward searches for
the selected nodes.
• Bound estimation. This phase updates the PPR lower and up-

per bounds of all target nodes, and decides whether the algo-
rithm should terminate, based on Lemma 3.

Algorithm 2 shows the pseudo-code of our approximate top-k PPR
query algorithm. Initially, the number of random walks is set to
1, and rmax for each target t in T is set to the maximum value 1
(Line 1). Afterwards, the algorithm initializes the costs fc (resp.
bc) for the forward (resp. backward) phase to zero (Line 2), where
the forward (resp. backward) cost is defined as the total number of
jumps during the random walks (resp. the total number of residual
/ reserve updates in the backward phase). Then, the two costs are
updated in each iteration, and the algorithm alternates between the
forward and backward phases in a manner that balances their com-
putation costs, which is important to preserve the time complexity
as will be shown in Theorem 3.

A list C is maintained to include the nodes t′ that are candidates
for the top-k answers, and is initialized to include all nodes (Line
3). In each iteration, it eliminates the nodes that will not be the
top-k answers, i.e., UB(t′) < LB(tk) (Line 18). This strategy it-
eratively eliminates the nodes that are not top-k answers, and saves
the query time. Lines 6-9 of Algorithm 2 demonstrate the back-
ward phase in an iteration. It repeatedly selects the node t from C
such that the gap ratio between its lower bound and upper bound is
minimum (Line 6), i.e., the node that has the most loose bound in
C. Then, it halves the rmax value. Let rmax(t, i) denote the rmax
value of node t in the i-th iteration. It then continues the backward
propagation from t until the residual for all nodes are smaller than
rmax(t, i), and updates the backward cost bc. The backward phase
continues until the backward cost bc is no smaller than the forward
cost fc. When the backward phase finishes, the forward phase then
generates 2i random walks and updates the forward cost fc (Lines
11-12). Finally, it derives the lower and upper bounds for each
node in T (Lines 13-17). The details of how to derive the bounds
are more involved, and we elaborate on it in Section 4.3.

Algorithm 2: Approximate top-k query algorithm (s, T)
Input: source s, target set T
Output: k nodes with the highest k PPR score in T

1 Let ω ← 1, rmax(t, 0)← 1 for all t ∈ T ;
2 forward cost fc ← 0, backward cost bc ← 0;
3 initialize the candidate list C to include all nodes in T ;
4 for i = 1 to∞ do
5 while fc > bc do
6 Select a candidate node t from C such that LB(t)/UB(t) is

the minimum among all nodes in T ;
7 rmax(t, i)← max(rmax(t, i− 1)/2, rmax);
8 Continue the backward propagation until the reserve of each

node t′ is smaller than rmax(t′, i);
9 bc ← bc + b′, where b′ denotes the backward cost;

10 Generate ωi = 2i random walk from s ;
11 Let fω be the cost for the ωi random walks, fc ← fc + fω ;
12 Compute LB(t), UB(t) for each t in C using Lemma 5;
13 Let tj be the node with the j-th largest LB in C;
14 if LB(tj) · (1 + ε) ≥ UB(tj) for all j ∈ [1, k] then
15 return the k nodes in decreasing order of LB(t);

16 if ∀t ∈ T , ωi ≥ 2rmax
ε2·δ · log(2 · k/pf) ∧ rmax(t) ≤ rmax

then
17 return k random nodes;

18 Eliminate the nodes t′ from C such that UB(t′) < LB(tk);

The above description does not take into account the forward or-
acle F and backward oracle B. When F and B are present, the
algorithm utilizes them similarly as in Algorithm 1. In particular,
each forward search exploits F to accelerate random walks; each
backward search uses pre-computed fractional backward propaga-
tions to reduce search costs. We omit the details for brevity.

4.3 Bound Estimation
In what follows, we clarify how we derive the PPR lower bound

LB(t) and upper bound UB(t) for each node t ∈ T . Our deriva-
tion is based on martingales [28]:

DEFINITION 4 (MARTINGALE). A sequence of random vari-
ables Y1, Y2, Y3, · · · is a martingale iff E[|Yj |] ≤ +∞ and
E[Yj |Y1, Y2, · · · , Yj−1] = E[Yj−1]. �

Given the backward propagation results r(v, t) for v ∈ V with
target node t, let Z1, Z2, · · · , Zj , · · · be the ending nodes of the
random walks generated in Algorithm 2, we define a sequnce of
random variables X1, X2, · · · , Xj , · · · such that Xj = r(Zj , t)−∑
v∈V r(v, t) · π(s, v). Then it is easy to verify that E[Xj] = 0.

Define Mj = X1 +X2 · · ·+Xj . We have E[Xj] = E[Mj] = 0.
As the new sampled random walks is independent from all previous
sampled random walks (although the decision of whether generat-
ing the j-th random walk depends on X1, X2, · · ·Xj−1), we have
E[Mj | M1,M2, · · · ,Mj−1] = E[Mj−1]. As a consequence,
M1,M2, · · · ,Mj , · · · , is a sequence of martingale. The follow-
ing lemma shows an important property of martingales:

LEMMA 4 ([10]). Let Y1, Y2, Y3 · · · be a martingale, such
that for any i (1 ≤ i ≤ ω), we have |Yi − Yi−1| ≤ ai + ∆, and
Var[Yi | Y1, Y2, · · · , Yi−1] ≤ σ2

i . Then,

Pr[|Yω − E[Yω]| ≥ λ] ≤ exp

(
− λ2

2(
∑ω

j=1(σ2
j +a2

j)+∆·λ/3)

)
.

Next, we demonstrate how to make a connection from our problem
to Lemma 4. Let Ωi be the total number of random walks sampled
in the first i iterations. Then, our goal is to derive the lower and
upper bounds for each node in T in the i-th iteration. Denote the
rmax value for target t in the i-th iteration as rmax(t, i). Then, in
the i-th iteration, we set ∆ = rmax(t, i). We further set aj = 0.

6

With this setting, it can be guaranteed that |Mj−Mj−1| ≤ aj+∆.
Meanwhile, for Mj , we also have the following equation:

Var[Mj |M1,M2, · · · ,Mj−1] ≤ rmax(t, i)2/4.

Then, for each j, we set σ2
j = rmax(t, i)2/4. Let b =

∑ω
j=1(σ2

j +

a2
j) and MΩi =

∑Ωi
j=1 r(Zi, t). Applying Lemma 4, we have

Lemma 5.

LEMMA 5. Let p∗f =
pf

2|T |·log(n2·α·|T |) , and

λ =

√(
2·∆
3

ln p∗f

)2

− 2b · ln p∗f −
2·∆
3

ln p∗f .

Then, with 1− p∗f probability, in the i-th iteration, we have

max{0,MΩi−λ}/Ωi ≤ π(s, t)−πa(s, t) ≤ min{1,MΩi+λ}/Ωi.
Based on Lemma 5, we set LB(t) = πa(s, t) + max(0,MΩi −
λ)/Ωi and UB(t) = πa(s, t) + min(1,MΩi + λ)/Ωi, which are
correct bounds for π(s, t) with at least 1− p∗f probability.

4.4 Approximation Guarantee
As shown in Algorithm 2, we calculate LB(t) and UB(t) mul-

tiple times, and we need to guarantee that all the calculated bounds
are correct so as to provide the approximate answer. The following
corollary demonstrates the probability that all the LB (resp. UB)
bounds in Algorithm 2 are correct.

COROLLARY 1. When Algorithm 2 terminates, the probability
that PPR bounds for all target nodes are correct is at least 1−pf/2.

Given all the correct bounds, to return the approximate top-k an-
swers, it requires that Algorithm 2 terminates at Line 15 instead of
Line 17. We have the following lemma to show the probability that
Algorithm 2 terminates at Line 15.

LEMMA 6. Algorithm 2 terminates at Line 15 with at least 1−
pf/2 probability.

Combining Lemma 3, Lemma 6, and Corollary 1, we have the fol-
lowing theorem for the approximation guarantee and the average
time complexity for our top-k PPR query algorithm.

THEOREM 3. Algorithm 2 returns k nodes t1, t2, · · · , tk, such
that Equations 5 and 6 hold for all t∗i (i ∈ [1, k]) whose PPR
π(s, t∗i) > δ with at least 1 − pf probability, and has an average

running time of O
(

1
α·ε

√
m·|T |
nδ

log k
pf

)
, when the nodes in T are

chosen uniformly at random. �

PROOF SKETCH. Based on Lemma 6 and Corollary 1, it can
be verified that the returned nodes satisfy the approximation with
probability at least 1 − pf . Meanwhile, the amortized time com-
plexity of the algorithm can be bounded based on (i) the number
of random walks shown in Lemma 6 and (ii) the amortized cost
O
(
m·|T |
n·δ·α

)
for performing backward search from |T | nodes.

5. ELASTIC HUB INDEX
The elastic hub index (EHI) contains both a forward oracle and

a backward oracle, whose functionalities and requirements are ex-
plained in Section 3. The EHI resides in main memory, and it can
utilize any amount of available memory space; meanwhile, the size
of the EHI can be dynamically adjusted by shrinking or expanding
the oracles. In particular, both forward and backward oracles con-
tain information on hub nodes, and their size can be controlled by
adjusting the number of hubs. Meanwhile, information on differ-
ent hubs can be computed in parallel. In the following, Sections
5.1 and 5.2 present the forward oracle and the selections of hubs
therein. Sections 5.3 and 5.4 deal with the backward oracle.

5.1 Forward Oracle
The forward oracle F contains pre-computed random walk des-

tinations for a selected set of nodes Hf , which we call forward
hubs. Specifically, for each forward hub h ∈ Hf , F contains
µ = ω destinations of random walks starting from node v, denoted
as F(h). Note that ω is the maximum number of destinations to
store at each hub, which ensures that a random walk reaching the
hub can immediately terminate. As will be shown in Section 5.2,
forward hubs added earlier to the index are expected to have higher
pruning power than later ones. Therefore, intuitively earlier hubs
should be allocated more destinations than later ones, and the cur-
rent design of always allocating the maximum number of destina-
tions is based on this observation.

When probed with a non-hub node v /∈ Hf , F always returns
NULL; otherwise, i.e., when probed with a hub node h ∈ Hf , F
returns a different destination in F(h) for each such probe. Note
that F can respond to probes with h at most µ times; after that, F
returns NULL for any further probes with h.

Next we focus on the data structure for F(h). As mentioned
in Section 3.1, storing F(h) as a list wastes space due to dupli-
cates. One may wonder whether we can compress this list into a
multiset, in which each entry is a pair 〈v, cv〉 consisting of a des-
tination v and a counter cv recording the number of times that v
appears in F(h). For example, if the destinations pre-computed
for h are v1, v1, v2, v1. Then with multiset, it can be stored as
S = {〈v1, 3〉, 〈v2, 1〉}. The problem with this approach, however,
is that the multiset loses the information on the order of the desti-
nations. For example, if we directly return the first two nodes in S
as the destinations for the two probes, the random walks are then
not independent, violating the requirement for Chernoff bound, and
can not provide the approximation guarantee.

To address the above problem, first we observe that F can return
destinations in F(h) in any random order, as follows.

OBSERVATION 1. Given a forward hub h ∈ Hf and the corre-
sponding random walk destinations F(h), for each probe with h,
F can select and return a random node v ∈ F(h) among those that
have not been used to answer previous probes, without affecting the
correctness of HubPPR.

One way to report all µ nodes represented by a multiset in a
random order is to (i) draw a random node v from the multiset for
each probe with probability proportional to its associated counter
cv , and (ii) decrease cv for v by 1 if cv > 1, or delete 〈v, cv〉 from
the multiset if cv = 1. The problem with this method, however,
is that deleting an element from a multiset takes O(logµ) time,
which violates the constant-time probe requirement. Hence, we
need a more sophisticated data structure than a multiset. We next
make the following observation.

OBSERVATION 2. When F responds to a probe with a random
walk destination v, it can do so asynchronously, i.e., it first notifies
HubPPR that its response is not NULL, and then returns v after all
random walks terminate in the forward search.

According to the above observation, for each forward hub h ∈
Hf , F can collect the number of probes kh with h, and return
a batch of kh random destinations in F(h) to HubPPR towards
the end of the forward search. To simplify our notations, in the
following we focus on a particular hub h and omit the subscript h,
e.g., we assume that h is probed k times.

The main idea of the proposed data structure for F to divide
F(hf) into several disjoint multi-sets S = {F1, F2, · · · , Fi} such
that F1 ∪ F2 ∪ · · · ∪ Fi = F(hf). When selecting k nodes from

7

F(hf), we find some different multi-setF ′1, F ′2, · · ·F ′j from S such
that for their merged multi-set F ′ = {F ′1∪F ′2∪· · ·F ′j}, it satisfies
that |F ′| = k. Note that as long as we are selecting k different
random walks, they are guaranteed to be independent, meaning that
they do not affect the correctness of HubPPR.

Next we clarify how we divideF(hf). The solution should guar-
antee that for an arbitrary k, we can always find some different
multi-sets in S such that the size of their merged result is k. To
achieve this, we propose to divide F(hf) into u = 1 + blog2 `c
multi-sets S = {F1, F2, · · · , Fu}, where the i-th multi-set Fi
contains 2i−1 nodes for 1 ≤ i ≤ u, and the last multi-set Fu
contains the remaining ` + 1 − 2u−1 nodes. Regarding S ′ =
{F1, F2, · · · , Fu−1}, we have the following theorem.

THEOREM 4. For any number k ≤ 2u−1− 1, we can find a set
C′ ⊆ S ′, such that the

∑
Fi∈C′ |Fi| = k.

PROOF. Let the binary code of k be X . Clearly, the number of
digits in X is no more than u − 1. If the j-th (1 ≤ j ≤ u − 1)
digit is 1, then Fj is selected. Note that if the j-th digit is 1, it
contributes 2j to the final sum, i.e., k. Meanwhile, the size of Fj is
exactly 2j . Let C′ be the set of multi-sets that we selected. Then it
is guaranteed that

∑
Fi∈C′ |Fi| = k, which finishes the proof.

With the above theorem, for any k ≤ 2u−1 − 1, we can easily
find some multi-sets in S ′ such that the size of their merged result
is k. For a k > 2u−1 − 1, we proceed in the following way. We
first select Fu; then we select k − |Fu| nodes using Theorem 4.
The reason is that k − |Fu| will always be no larger than 2u−1 −
1, which makes it satisfy the condition of Theorem 4. When the
sets are selected, we merge them and return the merged set. It is
guaranteed that F includes k sampled node from F(hf), and they
are all independent.

To analyze the cost, to find the multi-sets, it requires O(log k)
cost. To return the set of k ending nodes, it requires to merge the
result from several different multi-sets, which can be bounded by
O(k). As a consequence, the total cost for selecting k random
nodes is O(k).

It remains to clarify how to store the disjoint multi-sets in S. As
we record multi-set with different sizes, the tuple based solution
may not be ideal. For example, when we store a set which only
includes two different nodes, then we require 4 × 4 = 16 bytes to
store it with the tuple based solution, assuming that it requires four
bytes to record the nodes / counts. In contrast, if we use an array
to store the nodes, it only consumes 4 × 2 = 8 bytes to store the
nodes. As a result, we adopt a hybrid scheme to store each multi-
set: when the space consumption of an array-based solution is less
than the tuple-based solution, then we use the array-based storage;
otherwise, we adopt the tuple-based solution. The following exam-
ple shows how the compression scheme works.

EXAMPLE 4. Given h1 ∈ Hf , suppose that 12 random
walks are generated from node h1, and the ending nodes are
{v1, v1, v1, v1, v1, v1, v1, v1, v3, v3, v3, v3}. Then the nodes are
first divided into four parts, i.e., F1 = {v1}, F2 = {v1, v1}, F3 =
{v1, v1, v1, v1}, F4 = {v1, v3, v3, v3, v3}. For each part, the
nodes are stored as a multi-set with the hybrid scheme, i.e.,
{v1}, {(v1, 2)}, {(v1, 4)}, {(v1, 1), (v3, 4)}. Observe that with
our hybrid scheme, the space consumption is 9 × 4 bytes, while
the list based solution requires at least 12× 4 bytes.

Assume that we have 9 out of ω random walks that end at h1

and let F be the set to contain the ending nodes of 9 random walks.
We first derive the binary code of 9, which is 1001. Here, we can
calculate that u = 1 + blog2 `c = 4 and 9 > 2u−1 − 1 = 7. So

Algorithm 3: Forward Hub Selection
Input: Graph G, probabilityα, the number of forward hubs κ
Output: The set of forward hub Hf

1 Hf ← ∅;
2 Generate ω′ =

3 log (2/pf)

δε2
random walks.

3 For each node v, compute the total number of saved hops B(v) by v.
4 do
5 Select a node v with highest B(v) score and add it into Hf ;
6 for each random walk W that visits v do
7 Let l denote the number of visited nodes in W ;
8 Let i denote the position that v first appears in W ;
9 Let uc denote the vertex that appears firstly in the c-th

position in W ;
10 if c < i then
11 B(uc)← B(uc)− (l − i);
12 else
13 B(uc)← B(uc)− (l − c);
14 Update W by removing the nodes from i-th position to the

l-th position ;

15 while |F| ≤ Lf ;

we first add the nodes in F4 into F and then select 9 − |F4| = 4
nodes. As the binary code of 4 is 100, we add the nodes in F3 into
F , ending up with F = {(v1, 5), (v3, 4)}. �

5.2 Selection of Forward Hubs
Next, we present how to select the forward hubs. Let Lf be the

memory size allocated to the forward oracle. Our goal is to to max-
imize the effectiveness of the forward oracleF within Lf space. In
particular, we model this goal as an optimization problem that aims
to maximize the expected number of eliminated hops during the
random walks during forward search, under space constraint Lf .
This optimization problem, however, is difficult to solve exactly,
since the number of possible random walks can be exponential to
graph size. Therefore, we use a sampling-based greedy algorithm
to select the forward hubs, as shown in Algorithm 3.

Initially, we sample ω random walks and record the total number
of hops B(v) that can be saved by node v if v is selected as a
forward hub (Lines 2-3). In particular, for each random walk W ,
let c be the first position that v appears in the random walk W =
(v1, v2, · · · , vi, · · · , vl), the number of saved hops on W is then
l− c. As a result, we incrementB(v) by l− c for random walkW .

After B(v) is initiated for each node v, Algorithm 3 iteratively
selects the node that has the maximumB(v) as a forward hub (Line
5). When a node is selected in an iteration, the number of saved
hops for other nodes are updated (Lines 7-14). Specifically, for
each random walk W that visits v, it updates B(v) for all the other
nodes. Let l be the number of nodes visited by W , and i be the
position that v first appears in W . For each node uc that first ap-
pears at position c ∈ W , if c is smaller than i, then when random
walks stops and v, it will stop, and the number of saved hops for
uc is reduced by l − k (Algorithm 3 Lines 10-11). Otherwise, uc
is a successor of v, and the random walk will not visit this node,
and the number of saved hops for random walk W is l− c before v
is selected as a forward hub, so the number of saved hops for uc is
reduced by l − c (Algorithm 5 Lines 12-13). Afterwards, the ran-
dom walk W is truncated by removing the subsequent nodes from
the i-th position, i.e., the position that v first appears, to the ending
nodes of W . Finally, if the index size does not exceed Lf , it con-
tinues the next iteration and repeats until no more forward hubs can
be added.

EXAMPLE 5. Consider Figure 3. Assume that 4 random

8

W1 W2 W3 W4

v5

v2

v3

v4

v1

v6

v7

v8

v9

v10

Figure 3: Example of forward hub selection

walks are sampled by Algorithm 3. Then the score for
B(v1), · · · , B(v10) are initialized to: B(v1) = 3, B(v2) =
5, B(v3) = 3, B(v4) = 4, B(v5) = 7, B(v6) = 2, B(v7) =
2, B(v8) = 0, B(v9) = 1, B(v10) = 0. As v5 has the high-
est score B(v5), it is selected as a forward hub. Meanwhile, the
benefit score for other nodes are updated. Specifically, the score
for v6, v7, v9 are updated to zero since the random walks that visit
these nodes will stop at v5 and not reach these nodes. Meanwhile,
for v2,B(v2) is updated to 3 sinceW3 goes through v2 and v5, and
if v2 is selected as a hub, it will only save 1 hop for W3. Similarly,
B(v3) andB(v4) are updated to 1 and 2, respectively. In addition,
B(v1) remains untouched since the random walk that goes across
v1 does not go through v5. Finally, Algorithm 3 checks whether the
size of F exceeds the threshold Lf , and continues if more forward
hubs can be added. �

5.3 Backward Oracle
As described in Section 3.2, the backward oracle B answers

probes with both a node u and a residue r(u, t), and it returns ei-
ther NULL, or an initial residue τ and the results of FBP (u, τ).
Similar to the case of the forward oracle, we select a set of back-
ward hubs Hb, and for each such hub h ∈ Hb we store the results
of multiple FBPs originating from h with different initial residue τ
which we call snapshots.

We first focus on how to determine the snapshots for a given
backward hub h. Since we need to materialize results of an FBP for
each snapshot, the number of stored snapshots should be minimized
to save space. On the other hand, having too few snapshots may
violate the probe efficiency requirement. As described in Section
3.2, if the returned τ is much larger than h’s residue r(h, t), using
B might lead to a high cost since it involves numerous nodes. To
these issues, the propose index construction algorithm (i) builds
multiple snapshots for each h ∈ Hb; and (ii) guarantees that the
index size is at most twice of that of a single snapshot.

Algorithm 4 shows algorithm for selecting different initial resid-
ual values for each h ∈ Hb (Line 1). In particular, we start with
initial residual τ = 1 and perform backward propagation from h
(Line 2). We store the snapshot into B(h) and record the size of
the snapshot. Afterwards, we proceed an FBP from h with initial
residual 0.5, and check if the size of the snapshot is larger than half
of the snapshot S(h, 1)’s size. If so, we discard the former snap-
shot. Otherwise, we add it to B(h) and record its size (Lines 4-10).
Afterwards, we repeatedly set the initial residue τ to half of that
in previous iteration (Line 11), until the initial residue falls below
rmax (Line 3).

Because the size of a stored snapshot for h is always no more
than half the size of the previous stored snapshot, the total size
of all stored snapshots is no larger than twice of the size of the
first snapshot, i.e., S(h, 1), which satisfies the space consumption
bound. Finally, we establish the time efficiency of the proposed
backward oracle through the following lemma:

LEMMA 7 (BACKWARD ORACLE COMPLEXITY). Given a
backward oracle B returned by Algorithm 4, it is guaranteed that
the amortized cost of the backward search using B isO(m

n·α·rmax
).

Algorithm 4: Backward Oracle Construction
Input: Hb the set of backward hubs
Output: Backward Oracle B

1 for each node h in Hb do
2 Let τ ← 1
3 while τ > rmax do
4 Perform FBP (h, τ);
5 Let S(h, τ) denote the snapshot of FBP (h, τ);
6 Let S(h, τ ′) denote the last added snapshot in B(h);
7 if |S(h, τ)| < |S(hb, τ ′)|/2 then
8 Add S(h, τ) into B(hb);
9 else

10 Ignore this snapshot;

11 Let τ ← τ/2;

12 return B

5.4 Selection of Backward Hubs
Next we clarify the selection of backward hubs. There are two

major considerations for deciding whether to add a node h to B: (i)
the space consumption incurred by h’s snapshots; and (ii) benefit
in terms of query time reduction caused by h as a backward hub.
Given a randomly selected target node t, letX be a random variable
to denote the number of saved backward propagation operations
with h’s snapshot, and Y be a random variable to denote the size
of the chosen h’s snapshot. Then the benefit can be calculated as
β ·E[X]−γ ·E[Y], where β and γ are the cost for a single backward
propagation operation and for updating the residue and reserve on
one node, respectively.

We restrict the size of B to be no more than a given value
Lb. Suppose the benefit can be efficiently calculated, then we can
model backward hub selection as a knapsack problem, and solve
it with a greedy algorithm. Specifically, each time, we select the
node v with maximum benefit to cost ratio: β·E[Xv]−γ·E[Yv]

c·E[Yv]
, where

c is the number of snapshots a backward hub holds. Meanwhile, the
number of snapshots for important nodes, i.e., those with high prun-
ing power, are roughly similar (≈ blog2

1
rmax

c). Hence, the key
is then how to calculate or approximate E[Xv]/E[Yv] efficiently.
This is rather difficult, however, since for different residue values
for h, the selected snapshot for updating will be different, and the
number of saved backward propagation operations will be differ-
ent. This motivates us to devise a heuristic solution to estimate this
score.

Our main observations are (i) that the more message that has
been propagated from v, the higher the probability it is that could
help prune backward push operations, and (ii) the larger the aver-
age snapshot size B̄(v) is for a node v, the larger the number of
backward push operations can be saved. Our heuristic then use
E[Mv] · E[Yv] to indicate the expected pruning efficiency E[Xv]

for node v. Then, E[Xv]/E[Yv] can be estimated as E[Mv]·E[Yv]
E[Yv]

=

E[Mv], which can be efficiently approximated with Monte-Carlo
methods. Algorithm 5 shows the pseudo-code for how we select
the backward hubs. We first initialize the total propagated mes-
sage l(v) for each node v to zero (Line 1). Next, we randomly
select ω ending nodes, proceed backward propagation from these
nodes, and record the size l′(v) of the propagated message from
each node v for the ω backward propagations (Lines 3-4). After-
wards, we update l(v) for each node by adding l′(v) into it (Line
5). Subsequently, we repeatedly select the node v with the highest
l(v) score , and generate the snapshots for v (Lines 8-11). Finally
the algorithm stops when the size of the Backward Oracle exceeds
the pre-defined threshold Lb (Line 12).

9

Algorithm 5: Backward Hub Selection
Input: Graph G, probability α
Output: the set Hb of backward hubs

1 l(v)← 0 for all v ∈ V ;
2 Randomly select ω nodes as the target set T ;
3 Proceed a backward search with all initial reserve as zero, and initial

residues r(v, T) = 1 if v ∈ T and r(v, T) = 0 otherwise;
4 Record the propagated message l(v) from each node v;
5 do
6 Select the node v with highest l(v) score;
7 Invoke Algorithm 4 Lines 2-11 to generate snapshots for node v;
8 Add v into Hb;
9 Create an entry B(v) and add the generated snapshots into B(v);

10 while |B| ≤ Lb;

5.5 Elastic Adjustment
Next, we explain how EHI can be dynamically adjusted.
First, note that the elastic hub index (EHI) in HubPPR can be

constructed incrementally upon an existing one. For example,
when we have an EHI with 5x space ratio, and we want to con-
struct an EHI with 10x space ratio, it does not need to construct the
new index from scratch. To explain, we can first calculate a total or-
der for the nodes to indicate its importance in forward (resp. back-
ward) search using the sampling based approach in forward (resp.
backward) hub selection algorithm. Afterwards, the index can be
constructed incrementally based on these two total orders. Given a
5x space HubPPR index constructed based the two total orders, as-
suming that the last forward (resp. backward) hub in the index has
a total order i (resp. j), then we can reuse the 5x space HubPPR
index, and start constructing the forward oracle (resp. backward or-
acle) from the node whose total order is i+ 1 (resp. j + 1), and in-
crease the index size until the newly added index reaches 5x space,
adding up to 10x space in total.

Besides, to shrink the index, we could simply stop loading the
index when it reaches the specified memory capacity. For example,
given an EHI with 5x graph size, and one wants to use only 4x-
graph-size memory, then, we can load the index hub by hub, and
stop loading the index when it reaches the space threshold.

6. OTHER RELATED WORK
PageRank and Personalized PageRank are first introduced by

Page et al. [25]. The former measures the global importance of a
node in the graph, and the latter measures the importance of a node
with respect to another node. Both problems have been extensively
studied. We focus on the Personalized PageRank, and refer readers
to [7, 23] for detailed surveys on PageRank.

In [25], Page et al. propose the power iterations approach to cal-
culate the exact PPR vector with respect to a source node s using
Equation 1, where the PPR vector includes the PPR values for all
v ∈ V with respect to s. As explained in Section 2.2, this meth-
ods involves matrix operations on the adjacency matrix, which in-
curs high space and time costs for large graphs. Subsequently, a
branch of research work focuses on developing algorithms to effi-
ciently compute PPR vectors [8,9,11,13,18,22,29]. Jeh et al. [18]
propose the backward search solution as discussed in Section 2.2,
which is further optimized in [2, 11]. Berkhin [8], Chakrabarti [9],
and Zhu et al. [29] propose to (i) pre-compte the PPR vectors for
some selected hub nodes, and then (ii) use the pre-computed results
to answer PPR queries. However, Berkhin’s method is limited to
the case when the source is a distribution where all non-hub nodes
have zero probabilities; Chakrabarti’s and Zhu et al.’s techniques
are based on variants of power iterations [25] for PPR computa-
tion, and, thus, inherit its inefficiency for large graphs. Fujiwara

Table 2: Datasets. (K = 103,M = 106, B = 109)

Name n m Type Linking Site
DBLP 613.6K 2.0M undirected www.dblp.com

Web-St 281.9K 2.3M directed www.stanford.edu

Pokec 1.6M 30.6M directed pokec.azet.sk

LJ 4.8M 69.0M directed www.livejournal.com

Orkut 3.1M 117.2M undirected www.orkut.com

Twitter 41.7M 1.5B directed twitter.com

UkWeb 105.9M 3.7B directed —

et al. [13] propose to pre-compute a QR decomposition of the adja-
cency matrixA (see Section 2), and then utilize the results to accel-
erate PPR queries; nonetheless, the method incurs prohibitive pre-
processing costs on million-node graphs. Later, Maehara et al. [22]
present a method that (i) decomposes the input graph into a core
part and several tree-like structures, and then (ii) exploits the de-
composition to speed up the computation of exact PPR vectors.
Shin et al. [27] propose BEAR to reorder the adjacency matrix of the
input graph G to obtain several easy-to-invert sparse sub-matrices.
The sub-matrices are then stored as the index, and used to improve
PPR query processing. This approach incurs prohibitive space con-
sumption, and they further propose BEAR-Approx to reduce the in-
dex size by dropping values that are less than a dropout threshold γ
in the sub-matrices and setting them to zero. Nevertheless, as will
be shown in our experiment, BEAR-Approx still incurs prohibitive
preprocessing costs, and is not scalable to large graphs.

In addition, the random walk based definition of PPR inspires a
line of research work [6,11,20,21,26] that utilizes the Monte-Carlo
approach to derive approximate PPR results. In particular, Bahmani
et al. [5] and Sarma et al. [26] investigate the acceleration of the
Monte-Carlo approach in distributed environments. Fogaras et al.
[11] presents a technique that pre-computes compressed random
walks for PPR query processing, but the large space consumption
of the technique renders it applicable only on small graphs. Lofgren
et al. propose FastPPR [21], which significantly outperforms the
Monte-Carlo method in terms of query time. FastPPR, in turn, is
subsumed by BiPPR [20] in terms of query efficiency.

There also exists a line of research work [4, 6, 12, 13, 15, 20] that
investigates top-k PPR queries. Nevertheless, almost all existing
methods require that the target set T = V , i.e., the set of all nodes
in the input graph. The only algorithm that supports arbitrary T
is BiPPR. In the next section, we show that HubPPR significantly
outperforms BiPPR through extensive experimental results.

7. EXPERIMENTS
In this section, we experimentally evaluate the HubPPR frame-

work for both PPR and top-k PPR queries. Section 7.1 explains
the experimental settings. Section 7.2 evaluates HubPPR for PPR
queries against the state-of-the-art methods. Section 7.3 evaluates
HubPPR for top-k PPR processing. Section 7.4 provides insights
for choosing the appropriate index size for HubPPR.

7.1 Experimental Settings
All the experiments are tested on a Linux machine with an Intel

Xeon 2.4GHz CPU and 256GB RAM. We repeat each experiment
5 times and report the average results.
Datasets. We use 7 real datasets in our evaluations, contain-
ing all 6 datasets used in [20, 21]. Among them, DBLP, Pokec,
LiveJournal (abbreviated as LJ), Orkut, and Twitter are social net-
works, whereas UKWeb is a web graph. Besides these, we use one
more web graph: Web-Stanford (denoted as Web-St), adopted from
SNAP [19]. Table 2 summarizes the statistics of the 7 datasets.

10

Table 3: Query performance (ms). (K = 103,M = 106)

MC FP BiPPR HubPPR BEAR-A BI
DBLP 11.5K 82.8 19.7 3.1 0.8K 0.1
Web-St 6.1K 0.2K 37.0 8.1 0.1K 0.4
Pokec 0.1M 0.7K 26.9 4.2 - -
LJ 0.5M 1.0K 59.8 9.1 - -
Orkut 0.4M 1.4K 0.4K 30.8 - -
Twitter 2.5M 0.1M 21.5K 3.3K - -
UKWeb 2.2M 0.1M 25.9K 3.5K - -

Query sets. We first describe how we generate the query set for
PPR queries. For each dataset, we generate 1000 queries with
source and target chosen uniformly at random. For top-k PPR
queries, there are 12 query sets. The first 5 query sets have k = 16,
and target set sizes 100, 200, 400, 800, 1600, respectively. The
remaining 7 query sets have a common target set size of 400, and
varying k values: 1, 2, 4, 8, 16, 32, 64. For each query set, we
generate 100 queries, with target nodes chosen uniformly with re-
placement.
Parameter Setting. Following previous work [20, 21], we set α to
0.2, pf to 1/n, and δ to 1/n. In Section 7.4, we further evaluate
the impact of ε and the EHI index size to our HubPPR. We find
that ε = 0.5 leads to a good balance between the query accuracy
and query performance. Besides, when the index size of HubPPR
is 5 times the graph size, it strikes a good trade-off between the
space consumption and query efficiency. Hence, in the rest of our
experiments, we set ε = 0.5 and the index size of HubPPR to 5
times the graph size. For other competitors, we use their default
setting in case that they include additional parameters.
Methods. For the PPR query, we compare HubPPR against BiPPR
[20], FastPPR [21], and a baseline Monte-Carlo approach [3]. For
indexing methods, we include a version for BiPPR (denoted as
BiPPR-I) that pre-computes and materializes forward and back-
ward phases for all nodes. All of the above methods are imple-
mented in C++, and compiled with full optimizations. Moreover,
we compare HubPPR against the state-of-the-art index-based solu-
tion BEAR-Approx [27] with dropout threshold γ (ref. Section 6)
set to 1/n. Note that (i) unlike other methods, BEAR-Approx pro-
vides no formal guarantee on the accuracy of its results; (ii) BEAR-
Approx computes the PPR vector from a source node s, while other
competitors except for the Monte-Carlo approach computes the
PPR score from a source s to a target t. We obtained the binary ex-
ecutables of BEAR-Approx from the authors, which is implemented
with C++ and Matlab, and compiled with full optimizations. As we
will see, HubPPR significantly outperforms Bear-Approx in terms
of index size, query accuracy, query time, and preprocessing time.
Among these results, the comparisons on index size and query ac-
curacy are more important due to the fact that Bear-Approx is par-
tially implemented with Matlab.

For the top-k PPR query, we evaluate two versions of the pro-
posed top-k PPR algorithm described in Section 4: one without any
index, dubbed as TM (top-k martingale), and the other leverages
the HubPPR indexing framework, dubbed as TM-Hub. For com-
petitors, we compare with BEAR-Approx [27] and the top-k PPR
algorithm by Lofgren et al. [20], denoted as BiPPR-Baseline. In
addition, we compare with a solution that leverages their BiPPR al-
gorithm with our HubPPR indexing framework, dubbed as BiPPR-
Hub. We also inspect the accuracy of all methods in compari-
son. In particular, we report the average recall2 for each query
set with different k values and target sizes. Note that it is com-
putational expensive to derive the exact answer for graphs with bil-

2The precision and recall are the same for top-k PPR queries.

HubPPRBiPPR

100

101

102

103

0.1 0.3 0.5 0.7 0.9
ε

query time (ms)

103

104

105

106

0.1 0.3 0.5 0.7 0.9
ε

query time (ms)

(a) LJ (d) UKWeb
Figure 8: Impact of ε to PPR query efficiency.

lion edges, e.g., UKWeb. As a result, we apply the Monte-Carlo
method for each target node in target set T to derive highly accu-
rate results. In particular, we first set the number of random walks
to O(|T | · n · log(n)), calculate the PPR values for all nodes in T ,
and select the top-k nodes. Afterwards, we repeatedly double the
number of random walks, and recalculate the top-k nodes, until the
answer no longer changes.

7.2 PPR Query Efficiency
This section focuses on PPR processing. Table 3 demonstrate

the PPR query performance of all solutions on the query set, where
MC, FP, BEAR-A, and BI are short for Monte-Carlo, FastPPR,
BEAR-Approx and BiPPR-I algorithms, respectively.

We first inspect the results for index-based approaches, i.e.,
HubPPR, BiPPR-I and BEAR-Approx. Besides query time, we fur-
ther report their preprocessing costs in Table 4. Both BiPPR-I and
BEAR-Approx consume an enormous amount of space, and, thus,
are only feasible on the smaller DBLP and Web-St datasets un-
der 256GB memory capacity. With the complete materialization of
forward and backward search results, BiPPR-I achieves the highest
query efficiency among all methods. However, the increased per-
formance comes with prohibitive preprocessing costs as shown in
Table 4, which renders it inapplicable for large graphs. As BEAR-
Approx preprocesses the index by constructing sparse sub-matrices,
its index size and preprocessing time highly depend on the topology
of the input graph. For example, on the DBLP and Web-St datasets,
the index size of BEAR-Approx is 400x and 10x the original graph,
respectively. Meanwhile, the preprocessing time on the DBLP and
Web-St datasets are over 24 hours and around 200 seconds, respec-
tively. Compared to the proposed solution HubPPR, BEAR-Approx
consumes over 80x (resp. 2x) space, and yet 250x (resp. 10x)
higher query time on DBLP (resp. Web-St). Further, even on the
largest dataset UKWeb with 3.7 billion edges, the preprocessing
time of HubPPR is less than 24 hours on a single machine, which
can be further reduced through parallel computation.

Table 4 also demonstrates the compression ratio of our disjoint
compression algorithm. The observation is that our disjoint multi-
set structure is highly effective and it can save up to 99.7% of the
space incurred by the list based solution.

Among all the other methods, HubPPR is the most efficient one
on all of the tested datasets. In particular, HubPPR is 6 to 10
times faster than BiPPR with only 5x additional space consump-
tion, which demonstrates the efficiency of our HubPPR index. In
addition, both HubPPR and BiPPR are at least one order of magni-
tude faster than FastPPR and the Monte-Carlo approach, which is
consistent with the experimental result in [20].

In summary, HubPPR achieves a good balance between the
query efficiency and preprocessing costs, which renders it a pre-
ferred choice for PPR queries within practical memory capacity.

7.3 Top-k Query Efficiency and Accuracy

11

Datasets
Preprocessing time (sec) Index size Compression ratio

HubPPR BEAR-Approx BiPPR-I HubPPR BEAR-Approx BiPPR-I Disjoint multi-set
HS IC TP

DBLP 80.4 110.2 190.6 99.4K 8.4K 92.1MB 7.5GB 3.2GB 0.8%
Web-St 18.8 74.9 93.7 175.2 12.7K 51.9MB 113.5MB 6.5GB 0.5%
Pokec 140.5 675.2 815.7 - - 653.8MB - - 2.1%
LJ 419.6 1.5K 1.9K - - 1.5GB - - 0.8%
Orkut 547.5 6.0K 6.5K - - 4.7GB - - 2.3%
Twitter 10.9K 30.2K 41.1K - - 29.8GB - - 0.9%
UKWeb 17.6K 45.1K 62.7K - - 77.0GB - - 0.3%

Table 4: Preprocessing statistics (K = 103). The preprocessing time of HubPPR includes the time for hub
selection (HS), and the time for index construction (IC). The total preprocessing time (TP) of HubPPR is
the sum of these two costs.

100

101

102

103

100 200 400 800 1600

query time (ms)

|T|

101

102

103

104

105

100 200 400 800 1600
|T|

query time (ms)

102

103

104

105

106

100 200 400 800 1600
|T|

query time (ms)

103

104

105

106

107

100 200 400 800 1600
|T|

query time (ms)

(a) DBLP (b) Pokec (c) Orkut (d) UKWeb
Figure 4: Top-k PPR query efficiency: varying |T |.

TMBiPPR-HubBiPPR-Baseline TM-HubBEAR-Approx

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 400 800 1600

Recall

|T|

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 400 800 1600

Recall

|T|

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 400 800 1600

Recall

|T|

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 400 800 1600

Recall

|T|

(a) DBLP (b) Pokec (c) Orkut (d) UKWeb
Figure 5: Top-k PPR query accuracy: varying |T |.

100

101

102

103

1 2 4 8 16 32 64

query time (ms)

k

101

102

103

104

105

1 2 4 8 16 32 64
k

query time (ms)

102

103

104

105

1 2 4 8 16 32 64
k

query time (ms)

103

104

105

106

107

1 2 4 8 16 32 64
k

query time (ms)

(a) DBLP (b) Pokec (c) Orkut (d) UKWeb
Figure 6: Top-k PPR query efficiency: varying k.

TMBiPPR-HubBiPPR-Baseline TM-HubBEAR-Approx

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64

Recall

k

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64

Recall

k

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64

Recall

k

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64

Recall

k

(a) DBLP (b) Pokec (c) Orkut (d) UKWeb
Figure 7: Top-k PPR query accuracy: varying k.

Next we evaluate top-k PPR processing algorithms. For brevity,
we only show the evaluation results on four representative datasets:
DBLP, Pokec, Orkut, and UKWeb. Note that BEAR-Approx is only
feasible on DBLP under 256GB memory capacity among the four
datasets.

Figure 4 shows the query efficiency with varying target set size.
As we can observe, as the size of the target set T increases, the

query latency of TM, TM-Hub, BiPPR-Baseline, and BiPPR-Hub
all increases. Note that TM and TM-Hub are less sensitive to the
size of T than BiPPR-Baseline and BiPPR-Hub. For example, on
the Orkut dataset, when the size of the target set increases from
100 to 1600, the query latency increases by around 5x for TM
and TM-Hub. In contrast, the query time of BiPPR-Baseline and
BiPPR-Hub increases by around 20x. This is due to our advanced

12

Pokec

UKWeb

DBLP

Orkut

LJWeb-St

Twitter

10-1
100
101
102
103
104
105

 0 10 20 30 40 50 60 70 80

query time (ms)

Space ratio

100
101
102
103
104
105

 0 10 20 30 40 50 60 70 80

query time (ms)

Space ratio

Figure 9: Impact of space to PPR query efficiency.

approximate top-k PPR query algorithm, which iteratively refines
the top-k nodes by pruning target nodes that are less likely to be
the top-k results.

Specifically, the proposed method TM-Hub is up to 220x faster
than BiPPR-Baseline, and up to 80x faster than BiPPR-Hub. For
example, on the Pokec dataset, when the size of the target set is
800, TM-Hub improves over BiPPR-Baseline and BiPPR-Hub by
150x and 50x, respectively. Even without any index, TM is still
up to 90x faster than BiPPR-Baseline and 50x faster than BiPPR-
Hub. In addition, on UKWeb dataset, which includes 3.7 billion
edges, our TM-Hub can answer the top-k PPR query with target
size |T | = 800 with only 6 seconds, which demonstrates the effi-
ciency and scalability of our proposed top-k PPR query algorithm
and index scheme. Besides, with the proposed HubPPR indexing
scheme, the query efficiency of both TM-Hub and BiPPR-Hub are
improved several times over their non-index counterparts, which
demonstrates the effectiveness of HubPPR indexing.

Regarding the query accuracy, TM, TM-Hub, BiPPR-Baseline,
and BiPPR-Hub all show similarly high recall on the four datasets.
This is expected, since (i) the proposed algorithms provide formal
and controllable guarantees over the result quality of the top-k PPR
query and (ii) BiPPR-Baseline also provides approximation guar-
antee for each PPR value with respect to the source node and an
arbitrary target nodes in T , making the selected k nodes of compa-
rably high quality, and (iii) the HubPPR indexing framework does
not affect result accuracy.

Next, we compare the proposed methods TM and TM-Hub
against BEAR-Approx. Note that the query time of BEAR-Approx
is not affected by the target size |T | since it directly computes the
PPR vector for the source node regardless of the targets. Conse-
quently, BEAR-Approx incurs unnecessarily hight costs for a small
target size |T |. For example, when |T | is 100, TM and TM-Hub
are about 160x and 350x faster than BEAR-Approx, respectively.
Despite the fact that the query performance of BEAR-Approx is not
affected by the target size |T |, the accuracy of BEAR-Approx al-
gorithm drops significantly with the increase of |T |. In particular,
when |T | increases to 1600, the recall drops to 0.35, producing far
less accurate query answer than the other four methods. Note that
BEAR-Approx is only feasible for the DBLP dataset due to its high
indexing costs.

Figure 6 shows the evaluation results on top-k PPR query effi-
ciency with varying values of k. Observe that the proposed meth-
ods TM and TM-Hub estimate the top-k PPR queries in an adaptive
manner: when k is smaller, both TM and TM-Hub incur lower query
overhead. This behavior is desirable in many real-world applica-
tions such as web search. In contrast, the costs for BiPPR-Baseline
when k = 1 and k = 64 are the same, which indicates that it
incurs a large amount of unnecessary computations for k = 1 to
derive the top-k PPR queries. The same is true for BiPPR-Hub and
BEAR-Approx. Figure 6 reports the recall for all methods with
varying values of k. As expected, TM, TM-Hub, BiPPR-Base, and

BiPPR-Hub again demonstrate similarly high recall, i.e., over 95%
on the majority of datasets when k reaches 8. In contrast, the recall
of BEAR-Approx drops with decreasing k, and its recall can be as
low as around 20%.

In summary, TM and TM-HubPPR achieves high query effi-
ciency for top-k PPR queries without sacrificing query accuracy,
and are adaptive to the choice of k. Their query latency is less sen-
sitive compared to Bi-PPR-Baseline with varying target set size.
TM-HubPPR is often the preferred solution, due to its high query
efficiency, formal guarantees on result quality, and moderate space
consumption.

7.4 Tuning Parameters
Next we examine the impact of ε and index size on the query

efficiency of HubPPR. For brevity, we only demonstrate the re-
sults on PPR query, and omit the results for top-k PPR queries.
Figures 8(a) and 8(b) demonstrate the impact of ε on PPR query
efficiency on LJ and UKWeb datasets, respectively. For complete-
ness, we also include BiPPR in the figures. As we can observe, as
ε decreases, the query efficiency increases for both HubPPR and
BiPPR. In the meantime, the benefit of indexing for HubPPR in-
creases with growing ε. For example, the improvement of HubPPR
increases from 4.5x times to 8x over BiPPR on the UKWeb dataset
when ε increases from 0.1 to 0.9. In addition, the effect of ε fol-
lows a similar trend regardless of the graph size, as shown in the
results on the two datasets with very different sizes. We set ε to 0.5
since it strikes a good balance between query efficiency and query
accuracy.

Finally, Figure 9 shows the impact of the index size on the query
efficiency on all the datasets. The x-axis is the ratio of the index
size to the input graph size, which we call the space ratio. Note
that some of the results for Twitter and UKWeb are missing due to
limited memory capacity of our testing machine, i.e., 256GB.

As we can observe, the query efficiency of HubPPR increases
with its index size. This is expected, since a larger index can ac-
commodate more hubs, which is more likely to reduce the cost for
both forward search and backward search. The improvement of
the query efficiency is more pronounced when the space ratio in-
creases from 1 to 5. For example, on the Web-St dataset, the query
efficiency is improved by 10x when the space ratio increases from
1 to 5. On the other hand, the query efficiency grows slowly with
the space ratio when the latter becomes larger. In particular, when
the space ratio increases from 5 to 80, i.e, 16x index size, the query
performance improves by only around 8x. To explain, our forward
oracle (resp. backward oracle) iteratively includes the hub that is
(estimated to be) the most effective in reducing the cost of random
walks (resp. backward propagations). Consequently, as more hubs
are included in the index, the marginal benefit in terms of query
cost reduction gradually diminishes, since each newly added hub is
expected to be less effective in cutting query costs than the ones al-
ready selected by the index. We set our index size to 5x of the input
graph size, which according to our evaluation results strikes a good
tradeoff between the query efficiency and space consumption.

8. CONCLUSION
This paper presents HubPPR, an efficient indexing scheme for

approximate PPR computation with controllable tradeoffs for ac-
curacy. Our indexing framework includes both a forward oracle
and a backward oracle which increase the efficiency of random
walks, and the efficiency of the backward propagation, respectively.
Meanwhile, we further study how to efficiently answer approxi-
mate top-k PPR queries. We present an iterative approach which
gradually refines the approximation guarantee for the top-k nodes,

13

and with bounded time returns the desired results. Extensive ex-
periments show that our HubPPR improves over existing state-of-
the-art PPR query algorithm by 6 to 10 times with only 5 times
space consumption. Moreover, our top-k PPR query algorithm im-
proves over the state-of-the-art top-k PPR query algorithm by up
to 220 times, which demonstrates the effectiveness of our proposed
approximate top-k PPR query algorithm. As future work, we plan
to investigate (i) how to devise forward oracle that also considers
graph skewness, e.g., allocating different numbers of destinations
to different forward hubs; (ii) how to build indices to efficiently
process PPR and top-k PPR queries on dynamic graphs; (iii) how
to devise effective indexing techniques to improve the PPR vector
computation for large graphs without compromising query accu-
racy.

9. ACKNOWLEDGMENTS
This research is supported by grants MOE2015-T2-2-069 from

MOE, Singapore and NPRP9-466-1-103 from QNRF, Qatar.

10. REFERENCES
[1] R. Andersen, C. Borgs, J. T. Chayes, J. E. Hopcroft, V. S. Mirrokni,

and S. Teng. Local computation of pagerank contributions. In WAW,
pages 150–165, 2007.

[2] R. Andersen, F. R. K. Chung, and K. J. Lang. Local graph
partitioning using pagerank vectors. In FOCS, pages 475–486, 2006.

[3] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte
carlo methods in pagerank computation: When one iteration is
sufficient. SIAM J. Numerical Analysis, 45(2):890–904, 2007.

[4] K. Avrachenkov, N. Litvak, D. Nemirovsky, E. Smirnova, and
M. Sokol. Quick detection of top-k personalized pagerank lists. In
WAW, pages 50–61, 2011.

[5] L. Backstrom and J. Leskovec. Supervised random walks: predicting
and recommending links in social networks. In WSDM, pages
635–644, 2011.

[6] B. Bahmani, K. Chakrabarti, and D. Xin. Fast personalized pagerank
on mapreduce. In SIGMOD, pages 973–984, 2011.

[7] P. Berkhin. Survey: A survey on pagerank computing. Internet
Mathematics, 2(1):73–120, 2005.

[8] P. Berkhin. Bookmark-coloring algorithm for personalized pagerank
computing. Internet Mathematics, 3(1):41–62, 2006.

[9] S. Chakrabarti. Dynamic personalized pagerank in entity-relation
graphs. In WWW, pages 571–580, 2007.

[10] F. R. K. Chung and L. Lu. Survey: Concentration inequalities and
martingale inequalities: A survey. Internet Mathematics,
3(1):79–127, 2006.

[11] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós. Towards scaling
fully personalized pagerank: Algorithms, lower bounds, and
experiments. Internet Mathematics, 2(3):333–358, 2005.

[12] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima, and
M. Onizuka. Efficient ad-hoc search for personalized pagerank. In
SIGMOD 2013, pages 445–456, 2013.

[13] Y. Fujiwara, M. Nakatsuji, T. Yamamuro, H. Shiokawa, and
M. Onizuka. Efficient personalized pagerank with accuracy
assurance. In KDD, pages 15–23, 2012.

[14] F. L. Gall. Powers of tensors and fast matrix multiplication. In
International Symposium on Symbolic and Algebraic Computation,
ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages 296–303, 2014.

[15] M. S. Gupta, A. Pathak, and S. Chakrabarti. Fast algorithms for topk
personalized pagerank queries. In WWW, pages 1225–1226, 2008.

[16] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. Wtf:
The who to follow service at twitter. In WWW, pages 505–514, 2013.

[17] G. Iván and V. Grolmusz. When the web meets the cell: using
personalized pagerank for analyzing protein interaction networks.
Bioinformatics, 27(3):405–407, 2011.

[18] G. Jeh and J. Widom. Scaling personalized web search. In WWW,
pages 271–279, 2003.

[19] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June
2014.

[20] P. Lofgren, S. Banerjee, and A. Goel. Personalized pagerank
estimation and search: A bidirectional approach. In WSDM, pages
163–172, 2016.

[21] P. A. Lofgren, S. Banerjee, A. Goel, and C. Seshadhri. Fast-ppr:
Scaling personalized pagerank estimation for large graphs. In KDD,
pages 1436–1445, 2014.

[22] T. Maehara, T. Akiba, Y. Iwata, and K.-i. Kawarabayashi. Computing
personalized pagerank quickly by exploiting graph structures.
PVLDB, 7(12):1023–1034, 2014.

[23] I. Mitliagkas, M. Borokhovich, A. G. Dimakis, and C. Caramanis.
Frogwild! - fast pagerank approximations on graph engines. PVLDB,
8(8):874–885, 2015.

[24] R. Motwani and P. Raghavan. Randomized algorithms. Chapman &
Hall/CRC, 2010.

[25] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: bringing order to the web. 1999.

[26] A. D. Sarma, A. R. Molla, G. Pandurangan, and E. Upfal. Fast
distributed pagerank computation. In ICDCN, pages 11–26, 2013.

[27] K. Shin, J. Jung, L. Sael, and U. Kang. BEAR: block elimination
approach for random walk with restart on large graphs. In SIGMOD
2015, pages 1571–1585, 2015.

[28] D. Williams. Probability with martingales. Cambridge university
press, 1991.

[29] F. Zhu, Y. Fang, K. C. Chang, and J. Ying. Incremental and
accuracy-aware personalized pagerank through scheduled
approximation. PVLDB, 6(6):481–492, 2013.

APPENDIX
Proof of Lemma 2. From the definition of backward search, if
an unit information is propagated from u, then eventually π(s, u)
is propagated to node s. By scaling it with τ , it can be derived
that, if τ information is propagated from u, eventually τ · π(s, u)
is propagated to s. As a result, we have the following equation.

π(s, u) =
1

τ
· πa(s, u, τ) +

1

τ
·
∑
v∈V

π(s, v) · r(v, u, τ).

Then by applying Equation 3 with the current residue and reserve
states, and replacing π(s, u) with the above equation, we have

π(s, t) =
∑

v∈V \{u}

π(s, v) · (r(v, t) +
r(u, t)

τ
· r(v, u, τ))

+ π(s, u) · r(u, t)
τ
· r(u, u, τ) + (πa(s, t) +

r(u, t)

τ
πa(s, u, τ))

(9)

Equation 9 exactly describes the property of Lemma 2, which fin-
ishes the proof. �

Proof of Lemma 3. First, we prove that if (1 + ε) · LB(ti) ≥
UB(ti), then

(1− ε/2) · π(s, ti) ≤ π̂(s, ti) ≤ (1 + ε/2) · π(s, ti). (10)

As π̂(s, ti) = (LB(ti) + UB(ti))/2, it can be derived that:

π̂(s, ti) ≤ (LB(ti) + (1 + ε) · LB(ti))/2

= (1 + ε/2) · LB(ti)

≤ (1 + ε/2) · π(s, ti).

At the meantime,

π̂(s, ti) ≥ (
1

1 + ε
· UB(ti) + UB(ti))/2

≥ ((1− ε) + 1)/2 · UB(ti)

≥ (1− ε/2) · π(s, ti).

14

This finishes the proof for Equation 10. Next we prove that if
(1 + ε) · LB(ti) ≥ UB(ti), then

(1− ε) · π(s, t∗i) ≤ π̂(s, ti) ≤ (1 + ε) · π(s, t∗i). (11)

We first have the following observation: Let ti (resp. t′i) be the
node with the i-th largest PPR lower (resp. upper) bound in T . If
(1 + ε) · LB(ti) ≥ UB(ti), then (1 + ε) · LB(ti) ≥ UB(t′i).

To prove, we first obtain two ordered sequences. One sequence
S1 is LB(t1), LB(t2), · · · , LB(tk), and the other one S2 is
UB(t1), UB(t2), · · · , UB(tk). We then apply the bubble sort on
S2 in decreasing order of the element values in S2, in which case
S2 finally becomes UB(t′1), UB(t′2), · · · , UB(t′k). We consider
the gap ratio between the i-th item in S1(i) and S2(i). Initially, it
can be guaranteed that S2(i)/S1(i) ≤ 1 + ε for all 1 ≤ i ≤ k.
Our main target is to show that through the sorting process, it al-
ways guarantee that S2(i)/S1(i) ≤ 1 + ε. We prove by induction.
Initially, it is clear that S2(i)/S1(i) ≤ 1 + ε. Then, if two ele-
ments, say S2(j) and S2(j + 1) are swapped, then we know that
S2(j) < S2(j + 1). Meanwhile, S1(j) > S1(j + 1) from its
definition. Then

S2(j)

S1(j + 1)
≤ S2(j + 1)

S1(j + 1)
≤ 1 + ε.

S2(j + 1)

S1(j)
≤ S2(j + 1)

S1(j + 1)
≤ 1 + ε. (12)

Hence, after the swapping of elements in S2, it is still guaranteed
that S2(i)/S1(i) ≤ 1 + ε. By induction, it can be proved that
when the sorting finishes, S2(i)/S1(i) ≤ 1 + ε still holds, i.e.,
(1 + ε) · LB(ti) ≥ UB(t′i).

Let t∗i be the node with the i-th highest PPR value. It is clear
that LB(ti) ≤ π(s, t∗i) ≤ UB(t′i), LB(ti) ≤ π(s, ti) ≤ UB(ti).
Then,

π(s, ti) ≤ UB(ti) ≤ LB(ti) · (1 + ε) ≤ π(s, t∗i) · (1 + ε).

Meanwhile,

π(s, ti) ≥ LB(ti) ≥
1

1 + ε
· UB(t′i)

≥ (1− ε) · UB(t′i) ≥ (1− ε) · π(s, t∗i).

This finishes the proof.
�

Proof of Lemma 5. First note that λ =√(
2M
3

ln p∗f

)2

− 2b · ln p∗f −
2M
3

ln p∗f is the root of equa-

tion λ2 + 2b · ln p∗f + 2M·λ
3
· ln p∗f=0. Then apply Theorem 4, we

have that with probability p∗f :

Pr[|MΩi − (π(s, t)− πa(s, t)) · Ωi| ≥ λ] ≤ exp

(
− λ2

2b+ 2M · λ/3

)
= exp(ln p∗f) = p∗f

As a result, we have
MΩi

−λ
Ωi

≤ π(s, t) − πa(s, t) ≤ MΩi
+λ

Ωi
.

Moreover, as 0 ≤ π(s, t) ≤ 1, we have the desired bound, which
finishes the proof of Lemma 5. �

Proof of Corollary 1. Consider the backward search cost for each
target node. As the worst case running time for the backward search
from a target node t is Θ(n). We use n2 as a upper bound for the
backward search cost. Then, the total number of sampled random
walks is bounded by n2 · α. As a result, our algorithm invokes
Lemma 5 at most log(n2 · α · |T |) · |T | times.

By applying union bound, we have: the probability that all
bounds are correct bounds is no less than 1 − p∗f · log(n2 · α ·
|T |) · |T | = 1− pf

2
, which finishes the proof. �

Proof of Lemma 6. Suppose either ω ≥ 2 · rmax
ε2·δ · log 2k

pf
or

rmax(t) ≤ rmax does not hold for all target nodes, and Algorithm
2 terminates, then it terminates at Line 15. Hence, if we can prove
that when ω ≥ 2· rmax

ε2·δ ·log 2k
pf

and rmax(t) ≤ rmax, it has at least
1 − pf/2 probability that it terminates at Line 15, then Algorithm
2 has at least 1− pf/2 probability that it terminates at Line 15.

Consider the last iteration of our top-k PPR query algorithm.
Based on how random walks are generated, it can be verified that
half of the total sampled random walks are generated in the last
iteration. As a result, in the last iteration, it generates at leastω/2 =
rmax
ε2·δ · log 2k

pf
random walks. In addition, for any target node t in

T , it satisfies that rmax(t) ≤ rmax. In addition, we have

Pr[(1 + ε) · LB(ti) ≥ UB(ti)] ≥
Pr[|π(s, t∗i)− π(s, ti)| ≤ επ(s, t∗i)].

Then, based on the correctness of BiPPR, we have: with probability
of 1− pf

2k
, for an arbitrary i (1 ≤ i ≤ k), the i-th estimation satisfies

the approximation ratio, i.e., satisfying Line 14. Then by applying
the union bound on the top-k nodes, the algorithm will terminates
at Line 15 with at least 1− pf

2k
∗ k = 1− pf/2 probability, which

finishes the proof. �

Proof of Theorem 3. Based on Lemma 5, Lemma 6, and Corollary
1, we can derive that the probability that the returned top-k nodes
bears at most ε relative error is no more than 1−2 ·pf/2 = 1−pf ,
which finishes the proof of the approximation guarantee.

Next, consider the time complexity of our top-k PPR query
algorithm. For the forward phase, our algorithm samples
at most 2rmax

ε2·δ · log 2k
pf

random walks, which has a cost of

O
(
rmax
αε2·δ · log k

pf

)
. Besides, as the average running time for a

single backward search with a random target is O
(

m
n·α·rmax

)
[20], then the average running time of the backward phase is
O
(
m·|T |
n·δ·α

)
, since it proceeds at most |T | backward searches. As

a result, the average running time of our top-k PPR query al-
gorithm is O

(
rmax
αε2·δ · log k

pf
+ m·|T |

n·α·rmax

)
. By setting rmax =√

ε2·δ·m·|T |
n·log(k/pf)

, we have the desired running time complexity

O
(

1
α·ε

√
m·|T |
nδ

log k
pf

)
. �

Proof of Lemma 7. When a snapshot S(hb, τ) is used to speedup
the backward search, the cost of the updating is at most |S(hb, τ)|.
At the meantime, notice that if the initial residual from hb is τ ′

before the update, then the cost of the backward search from hb
with message size τ ′ without index is no smaller than the back-
ward search cost with τi (τi ≤ τ ′ < τi−1), where τi is the initial
residual of the i-th snapshot in B(hb). Next, we consider the cost
of the update with snapshot τi. Since if a node has non-zero reserve
/ residue, the node would be at least involved in a backward prop-
agation, then the update cost is no more than twice the backward
search cost. Meanwhile, given an initial message τ ′, the snapshot
that is to be chosen is at most twice as large as |S(hb, τi)|, indi-
cating the update cost is bounded by the backward search cost. As
a consequence, the backward search with B has the similar cost as
the backward phase in BiPPR. In summary, the amortized cost of
our backward search with backward oracle is identical to the case
without index, which is O(m

n·α·rmax
). �

15

