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ABSTRACT
Node embedding learns a low-dimensional representation for each

node in the graph. Recent progress on node embedding shows

that proximity matrix factorization methods gain superb perfor-

mance and scale to large graphs with millions of nodes. Existing

approaches first define a proximitymatrix and then learn the embed-

dings that fit the proximity by matrix factorization. Most existing

matrix factorization methods adopt the same proximity for differ-

ent tasks, while it is observed that different tasks and datasets may

require different proximity, limiting their representation power.

Motivated by this, we propose Lemane, a framework with train-

able proximity measures, which can be learned to best suit the

datasets and tasks at hand automatically. Our method is end-to-

end, which incorporates differentiable SVD in the pipeline so that

the parameters can be trained via backpropagation. However, this

learning process is still expensive on large graphs. To improve the

scalability, we train proximity measures only on carefully subsam-

pled graphs, and then apply standard proximity matrix factorization

on the original graph using the learned proximity. Note that, com-

puting the learned proximities for each pair is still expensive for

large graphs, and existing techniques for computing proximities

are not applicable to the learned proximities. Thus, we present

generalized push techniques to make our solution scalable to large

graphs with millions of nodes. Extensive experiments show that

our proposed solution outperforms existing solutions on both link

prediction and node classification tasks on almost all datasets.
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1 INTRODUCTION
Node embedding is the task to map nodes in the original graph

into low-dimensional representations. For each node, it outputs an

embedding vector and the embedding vectors play an important

role in preserving not only the structural information but also other

underlying properties in the graph. These vectors can be fed into

machine learning models, facilitating widespread machine learning

tasks, such as node classification [21, 34, 38], link prediction [41, 45],

graph reconstruction [46, 48], and recommendation [17, 49].

An important category of node embedding methods with superb

performance is the ones using proximity matrix factorization. For

such solutions, they first define the proximity matrix 𝑺 for the nodes
in the input graph where 𝑺 (𝑖, 𝑗) is the proximity measure of node

𝑗 with respect to node 𝑖 . Different methods may adopt different

proximity measures and personalized PageRank (PPR) is a popular
choice of proximity measure in node embedding. For example, PPR

is adopted in NRP [46] as the proximity. In STRAP [48], the authors

further propose to adopt 𝝅𝑢 (𝑣) + 𝝅𝑇𝑣 (𝑢) as the proximity where

𝝅𝑢 (𝑣) is the PPR of 𝑣 with respect to 𝑢 and 𝝅𝑇𝑣 (𝑢) is the PPR of

𝑢 with respect to 𝑣 on the transpose graph 𝐺𝑇 by reversing the

direction of each edge in 𝐺 . Given the proximity matrix 𝑺 , two
embedding vectors 𝒙𝑢 and𝒚𝑢 are derived such that 𝒙𝑢 ·𝒚𝑣 ∼ 𝑺 (𝑢, 𝑣).
For existing solutions in this category, the embedding vectors are

typically obtained by singular value decomposition (SVD) or eigen-

decomposition on 𝑺 or on a sparse matrix closely related to 𝑺 .
Despite their success, all existingmatrix factorization approaches

aim to learn an embedding that preserves the chosen proximity

without considering if the proximity is suitable for the task on

the dataset or not. However, it is observed that different tasks and

datasets may require different proximities to achieve high perfor-

mance, limiting the representation power of such solutions. In

addition, it is shown in existing node embedding methods, e.g.,

STRAP [48] and NetMF [37], that non-linear operations (such as

taking logarithm or softmax) on the proximity matrix can help

improve the representation power of the embedding. Nevertheless,

most latest matrix factorization methods, like HOPE [32], AROPE

[53], and NRP [46], do not explicitly derive the proximity matrix,

which limits their representation powers. For those methods that
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explicitly derive the proximity matrix, it indicates that the ma-

trix factorization needs to be taken on the final proximity matrix.

Thus, to derive trainable proximity measures, the model needs to be

end-to-end and includes the proximity computation as well as the

SVD decomposition into the training process. This further imposes

challenges especially when the input graph has millions of nodes.

Contribution. Motivated by the limitation of existing solutions,

we present an effective framework Lemane1 with trainable prox-

imity measures, which can be learned to best suit the datasets and

tasks at hand automatically. Our trainable proximity measure is

inspired by personalized PageRank (PPR) [33]. The PPR 𝝅𝑢 (𝑣) can
be defined as the probability that an 𝛼-discounted random walk

from 𝑢 stops at node 𝑣 , where an 𝛼-discounted random walk from

a source node 𝑢 has 𝛼 probability to stop at the current node and

has (1− 𝛼) probability to randomly jump to an out-neighbor of the

current node. For 𝛼-discounted random walks, the majority will

always be the one-hop random walks, which may not be the most

representative one for the task at hand. This motivates us to learn

a more representative random walk for our trainable proximity

measure. Instead of fixing the stopping probability as 𝛼 at each

step, our trainable proximity is defined on a supervised random

walk where the stopping probability at the 𝑙-th hop is learned by

our defined loss function. Then, our trainable proximity of node

𝑣 with respect to 𝑢, dubbed as the supervised PPR 𝑺 (𝑢, 𝑣), is the
probability that the supervised random walk from 𝑢 stops at 𝑣 .

To learn the stopping probabilities at each hop for the super-

vised random walk, we design different loss functions for different

tasks in order to learn a more representative proximity for the

task at hand. In this paper, we focus on two popular tasks of node

embedding: link prediction and node classification. Given the loss

functions and trainable parameters, we then design an end-to-end

method which incorporates a differentiable SVD in the pipeline

so that the parameters can be trained via backpropagation. Our

solution is mainly inspired by previous work on learning-based

low-rank approximations [24], which includes a differentiable SVD

that allows the gradients to flow easily in the framework to solve

the low-rank approximation problem. In our framework, with the

differentiable SVD, the gradients can easily flow from the loss func-

tion and differentiable SVD to our proximity matrix computation,

which is determined by the training parameters, i.e., the stopping

probabilities at each hop of the supervised random walk.

However, the above training process is too expensive and does

not scale to large graphs. To improve the scalability, we train the

stopping probabilities for the supervised random walk only on care-

fully subsampled graphs, and then apply standard proximity matrix

factorization on the original graph using the learned proximity. Our

main observation is that the stopping probabilities at each hop of

the supervised random walk are node-independent. Thus, with a

carefully subsampled graph, the learned stopping probability at

each hop for the task should still be similar to that on the input

graph. Motivated by this, we present an effective subgraph sam-

pling based method to train the parameters on multiple sampled

subgraphs, which improves the scalability of our Lemane.

1
Learning based Proximity Matrix Factorization for Node Embedding

Finally, given learned probabilities, computing learned proximi-

ties for each node-pair is still expensive for large graphs, and exist-

ing efficient algorithms for computing proximities, like PPR, are not

applicable to the learned proximities. Thus, we present generalized

push techniques to make our solution scalable to large graphs with

millions of nodes. Given a source node 𝑠 , our generalized push

algorithm computes an approximate supervised PPR score for each

node with respect to 𝑠 with 𝑂 ( 1
𝛿
) cost where 𝛿 is a parameter to

control the quality of approximate supervised PPR scores. Then,

the proximity matrix can be computed with 𝑂 ( 𝑛
𝛿
) cost and takes

𝑂 ( 𝑛
𝛿
) space. A sparse SVD algorithm is applied on the proximity

matrix 𝑺 to derive the final embedding with 𝑂 ( 𝑛
𝛿
+ 𝑛 · 𝑑2) running

cost, where 𝑑 is the embedding dimension.

In our experiment, we compare our Lemane against 15 existing

node embedding methods on the link prediction and node classifi-

cation tasks using 6 real datasets with up to 3 million nodes and

117 million edges. Extensive experiments show that our Lemane

outperforms existing methods on both link prediction and node

classification tasks on almost all datasets.

2 RELATEDWORK
There are three basic categories of node embedding methods: skip-

gram methods, matrix factorization methods, and neural network

methods. Next, We briefly review existing works for each category.

Skip-gram methods. The methods in this category are inspired

by the great success of the word2vec model [30] for natural lan-

guage processing. DeepWalk [34] first proposes to train embedding

vectors by feeding truncated random walks to the Skip-gram model.

The nodes sampled from the random walks are then treated as the

positive samples. Subsequent methods try to explore more represen-

tative random walks to feed into the Skip-gram model. LINE [38]

adopts one-hop and two-hop random walks while Node2vec [21]

proposes to explore higher-order random walks that exploits both

DFS and BFS nature of the graph. VERSE [41] and APP [54] adopt

𝛼-discounted random walks to obtain positive samples. Recently,

InfiniteWalk [9] studies DeepWalk in the limit as the window size

goes to infinite, linking DeepWalk to graph Laplacian matrix.

Matrix factorization methods. Another idea in node embedding

is to do matrix factorization on a chosen proximity matrix. To ex-

plicitly derive the proximity matrix, e.g., the case in NetMF [37],

it typically takes Θ(𝑛2) cost and is too expensive for large graphs.

To avoid the Θ(𝑛2) running cost, HOPE [32], AROPE [53], and

NRP [46] are proposed to derive the embedding without explicitly

computing the proximity matrix. For instance, instead of comput-

ing all-pair proximity scores and then decomposing the proximity

matrix 𝑺 , NRP turns to do SVD on the adjacency matrix, which is

sparse for most real-life graphs, reducing the embedding computa-

tional cost. Another solution to avoid the Θ(𝑛2) cost is to calculate

a sparsified proximity matrix 𝑺 . The representative is STRAP [48],

which imposes a threshold 𝛿 and returns at most 𝑂 ( 1
𝛿
) proximity

scores no smaller than 𝛿 for each node, making the proximity matrix

of 𝑂 ( 𝑛
𝛿
) size. An SVD is then applied to the sparsified proximity

matrix. Since the second solution explicitly derives the proximity

matrix, it allows to take non-linear operations on the proximity

matrix, improving the representation powers.



Algorithm 1: Compute-Supervised-PPR(𝑷 , 𝐿)

1 𝑺 ← 0, 𝑹 ← 𝑰𝑛
2 for 𝑘 = 0 to 𝐿 do
3 𝑺 ← 𝑺 + 𝛼𝑘 · 𝑹
4 𝑹 ← (1 − 𝛼𝑘 ) · 𝑷 · 𝑹
5 return 𝑺

Neural network methods. Deep learning provides an alternative

solution to generate node embeddings. SDNE [44] and DNGR [8]

employ multi-layer auto-encoders with a target matrix to gener-

ate embeddings. DRNE [42] utilizes the layer normalized LSTM

[23] to generate node embeddings by aggregating the representa-

tions of neighbors of each node recursively. GraphGAN [45] adopts

the well-known generative adversarial networks [19] into graph

representation learning via an adversarial minimax game. AW [5]

proposes a novel attention model on the power series of the tran-

sition matrix, which guides the random walk to pay attention to

important positions within the random walks by optimizing an

upstream objective. The bottleneck of these solutions is the high

computational cost, which restricts these methods to small graphs.

Othermethods. There are also several methods that do not belong

to the above three categories. For example, GraphWave [14] learns

node representations by leveraging heat wavelet diffusion patterns

in an unsupervised way. NetHiex [29] captures the underlying hi-

erarchical taxonomy of the graph to learn node representations

with multiple components. RaRE [22] proposes a node embedding

method that considers both social rank and proximity of nodes,

and separately learns two representations for a node. AutoNE [43]

incorporates AutoML into node embedding, which can automat-

ically optimize the hyperparameters from the subgraphs of the

original graph. PBG [26] presents a distributed embedding system

that uses the block decomposition of the adjacency matrix as a

partition method to scale to arbitrary large graphs. A recent work,

GraphZOOM [12], first generates subgraphs based on a fused graph

and then applies existing approaches to generate node embeddings.

Since these methods do not preserve any node pair proximity, the

main concern is their insufficient effectiveness for downstream

tasks as we will show in our experiment.

There are also various graph embedding methods designed for

specific graphs, like dynamic graphs [20, 40] and heterogeneous

networks [13, 18]. In this paper, we focus on the most fundamental

case when the network is static and no feature vector is given.

3 LEMANE FRAMEWORK
In this section, we present our Lemane framework. Section 3.1

introduces the trainable proximity matrix and the training parame-

ters. Section 3.2 elaborates on the training process of Lemane and

introduces the loss functions used for link prediction and node

classification, respectively. Section 3.3 presents how to carefully

obtain the subsampled graphs to do training on large graphs.

3.1 Trainable Proximity Measure
Recap from Section 1 that, the personalized PageRank (PPR) 𝝅𝑢 (𝑣)
of node 𝑣 with respect to 𝑢 is the probability that an 𝛼-discounted

randomwalk from𝑢 stops at node 𝑣 , where an𝛼-discounted random

walk has 𝛼 probability to stop at the current node and (1 − 𝛼)
probability to randomly jump to one of its out-neighbors. Define

the transition matrix 𝑷 = 𝑫−1𝑨 where 𝑫 is the diagonal matrix

such that 𝑫 (𝑖, 𝑖) is the out-degree (resp. degree) of node 𝑖 if 𝐺 is

directed (resp. undirected), and 𝑨 is the adjacency matrix. Then,

the PPR proximity matrix can be expressed as:

𝑺 =

∞∑
𝑙=0

𝛼 · (1 − 𝛼)𝑙 · 𝑷𝑙 .

In our trainable proximity measure, instead of fixing the stopping

probability at each step to be 𝛼 , we allow the stopping probability

𝛼𝑙 of the random walk at the 𝑙-th hop to be trainable. Currently,

we assume that the stopping probability 𝛼𝑙 at the 𝑙-th step is given

and will show how to train 𝛼𝑙 in Section 3.2. A random walk that

follows such learned stopping probability at each step is denoted as

a supervised random walk and the proximity derived from the super-

vised random walk is denoted as supervised PPR. The supervised

PPR proximity matrix can be defined as:

𝑺 = 𝛼0𝑰𝑛 +
∞∑
𝑙=1

𝛼𝑙 ·
𝑙−1∏
𝑘=0

(1 − 𝛼𝑘 ) · 𝑷𝑙 . (1)

To explain, the probability that a supervised random walk stops at

exactly the 𝑙-th hop is 𝛼𝑙 ·
∏𝑙−1
𝑘=0
(1− 𝛼𝑘 ). Thus, by summing up the

probability to stop at each hop, we derive the supervised PPR score.

The exact supervised PPR score then can be computed with an

iterative manner as shown in Algorithm 1 when 𝐿 →∞. However,
we observe that when 𝐿 is sufficiently large, the probability that

the supervised random walk stops with a hop number larger than

𝐿 is close to zero. Hence, we discard all supervised random walks

that stop with a hop larger than 𝐿. The following theorem shows

the quality of calculated supervised PPR scores with Algorithm 1.

Theorem 1. Let 𝑺𝐿 be the supervised PPR proximitymatrix derived
by Algorithm 1. Let | |𝑴 | |∞ be the infinity-norm of matrix𝑴 , we have:

| |𝑺𝐿 − 𝑺 | |∞ ≤
𝐿∏
𝑘=0

(1 − 𝛼𝑘 ) | |𝑺 | |∞ .

All the proofs of our theorems can be found in the appendix.

According to our observation, the probability that the supervised

random walk stops at a hop greater than 𝐿 is almost zero when we

set 𝐿 = 15. Hence, 𝐿 is set to 15 in our experiment.

Algorithm 1 makes a tight connection between the supervised

PPR proximity matrix and our training parameters 𝛼𝑙 (0 ≤ 𝑙 ≤ 𝐿),

which allows the gradients to flow from the derived supervised PPR

proximity matrix 𝑺𝐿 to the training parameters via backpropagation.

Let 𝑛 and𝑚 denote the number of nodes and the number of edges,

respectively. The time complexity of the algorithm can be bounded

by 𝑂 (𝑚 · 𝑛 · 𝐿) since 𝑷 is a sparse matrix with𝑚 entries.

Remark. Note that the idea to learn the stopping probability for

each hop is not a new idea in graph neural networks, e.g., [10, 25].

It is much easier for neural networks as the stopping probabilities

can be treated as additional weights to learn. However, it is more

challenging to integrate this idea to node embedding, especially for

matrix factorization methods. We show an efficient and effective

solution that works for large graphs, which is non-trivial.



3.2 Training process of Lemane
Algorithm 2 shows the pseudo-code of the training process of Le-

mane. Firstly, it initializes the stopping probability 𝛼𝑘 for 0 ≤ 𝑘 ≤ 𝐿

such that the probability a randomwalk stops at the 𝑙-th hop follows

some standard distribution, e.g., uniform, geometric, or Poisson

(Line 1). Next, it uses the initial settings of these stopping proba-

bilities to derive the supervised PPR score by invoking Algorithm

1 (Line 3). Given the supervised PPR scores, it eliminates all the

proximity scores that are too small. A threshold 𝛿 is included and

all scores smaller than 𝛿 are set to zero (Lines 4-5). Then, a non-

linear operation, log( 𝑺
𝛿
), is applied to the proximity matrix 𝑺 . The

proximity scores are divided by 𝛿 to guarantee that each entry after

taking the log will be non-negative (Line 6). Thereafter, a differen-

tiable SVD, e.g., [24], is applied on the new matrix 𝑴 with input

parameter 𝑑 (Line 7). The SVD obtains two 𝑛 × 𝑑 matrices 𝑼 and

𝑽 , and a 𝑑 × 𝑑 diagonal matrix 𝚺 such that 𝑼𝚺𝑽𝑻 ≈ 𝑴 . Given the

three matrices, 𝑼
√
Σ is returned as the first embedding matrix 𝑿

and 𝑽
√
Σ is returned as the second embedding matrix 𝒀 .

Subsequently, the two embedding matrices are fed into the loss

function for the link prediction or node classification (Line 9). The

loss functions will be discussed shortly. Then, the stopping probabil-

ities are updated according to the loss function by backpropagation.

The training process terminates until the loss function converges

(Line 2). Notice that, due to the extremely long computational chain,

it is infeasible to write down the explicit form of the gradients. How-

ever, like modern deep neural networks, we can use the autograd

feature in PyTorch to numerically compute the gradients with re-

spect to the training parameters. Also, the builtin SVD in PyTorch

supports to compute the gradient and hence we directly adopt

the PyTorch implementation. In what follows, we elaborate on the

details of the loss functions.

Loss function for link prediction. For link prediction, there are

two components in our loss function. The first component of the loss

function aims to ensure that the total information in the supervised

random walks started from node 𝑢 is closed to its out-degree. Let

𝜶 = (𝛼0, 𝛼1, · · · , 𝛼𝐿). The first part of the loss function is as follows:

L1 (𝜶 ;𝑨) = 1

𝑛2

∑
𝑢

∥
∑
𝑣≠𝑢

𝒙𝑢 · 𝒚𝑣 − 𝑑𝑜𝑢𝑡 (𝑢) ∥22, (2)

where 𝒙𝑢 is the 𝑢-th row of 𝑿 , 𝒚𝑣 is the 𝑣-th row of 𝒀 , and 𝑑𝑜𝑢𝑡 (𝑢)
is the out-degree of 𝑢. Equation 2 indicates that our learned embed-

ding by the supervised randomwalk should preserve the out-degree

information as much as possible.

The second part of the loss function for link prediction is the

average cross-entropy over all existing edges:

L2 (𝜶 ;𝑨) = − 1

𝑚

∑
𝑢

∑
𝑣

𝑨𝑢,𝑣 log(𝜎 (𝒙𝑢 · 𝒚𝑣)), (3)

where 𝜎 (𝑥) = 1/(1+exp(−𝑥)) is the sigmoid function and𝑨𝑢,𝑣 = 1

if edge (𝑢, 𝑣) exists in the input graph and 𝑨𝑢,𝑣 = 0 otherwise. The

final loss function for link prediction is:

Lp = 𝛽L1 + 𝛾L2, (4)

where 𝛽 and 𝛾 are two balancing hyperparameters.

Loss function for node classification. There are also two parts

in the loss function for node classification. We first concatenate two

Algorithm 2: Lemane-Trainining

Input:Matrix 𝑷 , maximum length 𝐿, threshold 𝛿 ,

embedding dimension 𝑑 , learning rate 𝜂

Output: stopping probabilities 𝛼0, ..., 𝛼𝐿
1 Initialize 𝛼𝑘 for 𝑘 = 0, 1, ..., 𝐿

2 while not convergence do
3 𝑺 ← Compute-Supervised-PPR(𝑷 , 𝐿)

4 if 𝑆 (𝑖, 𝑗) < 𝛿 , for ∀𝑆 (𝑖, 𝑗) ∈ 𝑆 then
5 𝑆 (𝑖, 𝑗) ← 0

6 Get matrix 𝑴 ← log ( 𝑺
𝛿
) for non-zero entries

7 [𝑼 , 𝚺, 𝑽 ] ← Differentiable-SVD(𝑴, 𝑑)
8 𝑿 ← 𝑼

√
𝚺, 𝒀 ← 𝑽

√
𝚺

9 Compute link prediction loss L𝑝 via Eq.4 or node

classification loss L𝑐 via Eq.7
10 for 𝑘 = 0, ..., 𝐿 do
11 𝛼𝑘 ← 𝛼𝑘 − 𝜂∇𝛼𝑘L

12 return 𝛼0, ..., 𝛼𝐿

output embedding matrices 𝑿 and 𝒀 together to get the unique em-

bedding matrix 𝒁 = concat(𝑿 , 𝒀 ). Then following the fact that two

randomly selected nodes have different labels with high probability,

we randomly sample a small set of negative node-pairsN ⊂ 𝑉 ×𝑉
for each iteration. Let 𝐻 = (𝑉 ,N) denotes the graph with edge

set N with unnormalized Laplacian matrix 𝑳𝐻 and𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘 )
be a complete graph formed by nodes in 𝐺 with the same label 𝑘 .

Inspired by the relaxation proposed in [51], the first loss function

for node classification is defined as follows:

L′
1
(𝜶 ;𝑨) =

∑𝑛𝑐
𝑘=1

∑
𝑢,𝑣∈𝑉𝑘 ∥𝒛𝑢 − 𝒛𝑣 ∥

2

2

𝑛𝑐 ·
∑
(𝑢,𝑣) ∈N ∥𝒛𝑢 − 𝒛𝑣 ∥22

=

∑𝑛𝑐
𝑘=1

Tr(𝒁⊤𝑳𝑘𝒁 )
𝑛𝑐Tr(𝒁⊤𝑳𝐻𝒁 )

, (5)

where 𝒛𝑢 is the concatenated representation of node 𝑢, 𝑛𝑐 is the

total number of class labels in the graph, and 𝐿𝑘 is the unnormalized

Laplacian matrix of𝐺𝑘 . The goal ofL′1 is to minimize pair-wise dis-

tances between node pairs with the same class label and maximize

pair-wise distances between negative samples.

Next, we employ an activation function to normalize the out-

put embedding to a probability distribution over predicted class

labels: 𝑝𝑢𝑘 = softmax(𝒁 ·𝑾 + 𝒃)𝑢𝑘 , where 𝑾 is a 2𝑑 × 𝑛𝑐 fixed
mapping matrix generated from uniform distribution, 𝒃 is the bias

term, 𝑝𝑢𝑘 denotes the probability that node 𝑢 has class label 𝑘 ,

and softmax(𝒙)𝑢𝑘 = exp(𝒙𝑢𝑘 )/(
∑𝑛𝑐
𝑐=1

exp(𝒙𝑢𝑐 )). Let Y denote the

𝑛 × 𝑛𝑐 label matrix, where Y𝑢,𝑘 = 1 if node 𝑢 has class label 𝑘 and

Y𝑢,𝑘 = 0 otherwise. Then, the second part of the loss function for

node classification is the average cross-entropy over all nodes:

L′
2
(𝜶 ;𝑨) = − 1

𝑛

∑
𝑢

𝑛𝑐∑
𝑘=1

Y𝑢,𝑘 log𝑝𝑢𝑘 . (6)

The final loss function for node classification is defined according

to L′
1
and L′

2
as follows:

Lc = 𝛽 ′L′
1
+ 𝛾 ′L′

2
, (7)

where 𝛽 ′ and 𝛾 ′ are two balancing hyperparameters.



Algorithm 3: Lemane-Generalized-Push

Input: Graph G, source node 𝑠 , threshold 𝛿 , stopping
probabilities 𝛼0, ..., 𝛼𝐿

Output: Approximate proximity vector 𝝅̂𝑠
1 Initialize 𝝅̂𝑠 ← 0, 𝒓 (𝑘)𝑠 ← 0 for 𝑘 = 0, 1, ..., 𝐿

2 Initialize 𝒓 (0)𝑠 (𝑠) ← 1

3 while ∃𝑣 ∈ 𝑉 , 0 ≤ 𝑘 ≤ 𝐿 such that 𝒓 (𝑘)𝑠 (𝑣) > 𝛿 · 𝑑𝑜𝑢𝑡 (𝑣) do
4 𝝅̂𝑠 (𝑣) ← 𝝅̂𝑠 (𝑣) + 𝛼𝑘 · 𝒓

(𝑘)
𝑠 (𝑣)

5 for 𝑢 ∈ 𝑁 (𝑣) do
6 𝒓 (𝑘+1)𝑠 (𝑢) ← 𝒓 (𝑘+1)𝑠 (𝑢) + (1 − 𝛼𝑘 ) ·

𝒓 (𝑘 )𝑠 (𝑣)
𝑑𝑜𝑢𝑡 (𝑣)

7 𝒓 (𝑘)𝑠 (𝑣) ← 0

8 return 𝝅̂𝑠

Remark. Notice that the training algorithm for Lemane on node

classification needs additional label information and we randomly

sample 5% of the labeled nodes for training. To make a fair com-

parison with our competitors, to train the classifiers, we will only

include (𝑥 − 5)% new training data if we split 𝑥% of the data for

training and the remaining (100 − 𝑥)% for testing. This guarantees

that our Lemane only accesses the same amount of labeled data

compared to other competitors.

3.3 Training Lemane with sub-sampling
The above-mentioned training process requires calculations on

a dense matrix of 𝑂 (𝑛2) size and requires 𝑂 (𝐿 · 𝑛 · 𝑚) running
cost, which makes it non-scalable to large graphs. However, such

cost seems unavoidable at first glance since we need to obtain the

proximity matrix to do backpropagation. After a careful analysis,

we make the following two observations to help us avoid the high

running costs. Our first key observation is that the parameters

that we need to train are only the stopping probabilities at each

hop, which are node-independent. That is to say, if we can find

a subgraph of the input graph 𝐺 such that the learned stopping

probabilities on the subgraph are identical to that on𝐺 for the same

task, we can simply learn the parameters on the subgraph with

smaller size and apply the learned parameters to the original graph

directly, reducing the computational costs. Another observation is

that a subgraph of𝐺 with similar connectivity should share similar

learning stopping probabilities as the input graph on the same task.

Motivated by this, we present our sub-sampling based training

method for Lemane on large graphs. Obviously, a straightforward

solution is to sample a number 𝑛𝑠 of nodes and then consider the

subgraph containing these 𝑛𝑠 nodes. However, such a solution

severely degrades the connectivity among the nodes. Simple edge

sampling strategies will face a similar dilemma which hampers the

connectivity among the sampled nodes.

To keep the connectivity among the sampled nodes, we apply

a BFS style traversal for subgraph sampling. Our goal is still to

sample a subgraph with a constant number 𝑛𝑠 of nodes. To sample

such a subgraph, firstly a source node 𝑢 is randomly sampled from

the input graph 𝐺 . Thereafter, a BFS traversal is applied from the

source 𝑢 to explore the local community of node 𝑢. If the number

of visited nodes by the BFS from 𝑢 is smaller than 𝑛𝑠 , another node

𝑣 is randomly sampled as the source to do BFS. The BFS sampling

stops as soon as in total 𝑛𝑠 nodes are visited.

However, the weights trained on a single subgraph might be bi-

ased andmakes the learned stopping probabilities non-generalizable

to the original input graph𝐺 . To make the learned parameters gen-

eralizable to the input graph, we sample multiple subgraphs by the

above strategy to learn the parameters. In particular, in each itera-

tion, we sample a subgraph by the BFS strategy and then update

the training parameters, i.e., the stopping probabilities, according

to the loss functions defined on this subgraph. The loss functions

on the subgraph are modified accordingly where the total number

𝑛 of nodes in Equations 2 and 6 are replaced by sample size 𝑛𝑠 ; the

total number𝑚 of edges in Equation 3 is also replaced by sample

size 𝑛𝑠 ; the set of nodes with label 𝑘 in Equation 5 is changed to

𝑉𝑆𝑘 = 𝑉𝑘 ∩ 𝑉𝑆 , where 𝑉𝑆 is the node set of the subgraph, 𝑉𝑘 is

the set of nodes with label 𝑘 in 𝐺 ; and the negative sample set in

Equation 5 is changed to NS ⊂ 𝑉𝑆 ×𝑉𝑆 .
With such a sampling technique, the time complexity of Algo-

rithm 2 can be bounded by 𝑂 (ℎ · 𝐿 · 𝑛3𝑠 ) where ℎ is the number of

training iterations by Algorithm 2 until it converges. Since 𝑛𝑠 is a

controllable constant, we set 𝑛𝑠 such that the proximity matrix can

be fed into the GPU memory for more efficient training.

4 GENERALIZED PUSH
Given the learned stopping probabilities, a straightforward solu-

tion is to invoke Algorithm 1 to derive the supervised PPR scores.

However, this incurs 𝑂 (𝐿 · 𝑛 ·𝑚) running cost, which is prohibi-

tive for large graphs. To tackle this issue, we present a generalized

push algorithm to efficiently compute the supervised PPR proxim-

ity matrix with 𝑂 ( 𝑛
𝛿
) cost, where 𝛿 is a parameter to control the

computational cost as well as the sparsity of the proximity matrix.

4.1 Generalized Push Algorithm
Our main idea to compute the supervised PPR proximity matrix is

to derive a sparsified proximity matrix such that the supervise PPR

scores no larger than 𝛿 can be safely discarded. But still, how much

cost should we take to derive a sufficiently accurate approximation

proximity score? In STRAP [48], the authors propose a solution to

derive the PPR estimations such that |𝝅𝑢 (𝑣) − 𝝅̂𝑢 (𝑣) | < 𝛿 with a

cost of 𝑂 (𝑚
𝛿
). But, can we further reduce the running cost without

sacrificing the embedding quality? Here, we give an affirmative

answer. Our solution is inspired by the local graph clustering algo-

rithm Local-Push [6] which returns approximate PPRs with respect

to a source 𝑠 in 𝑂 ( 1
𝛿
) running time and guarantees that

|𝝅𝑢 (𝑣) − 𝝅̂𝑢 (𝑣) |/𝑑𝑜𝑢𝑡 (𝑣) < 𝛿 , for any 𝑣 ∈ 𝑉 ,

on undirected graphs where 𝑑𝑜𝑢𝑡 (𝑣) is the degree of node 𝑣 . The
Local-Push algorithm suggests that if we only want to compute the

approximate PPR scores around the local graph cluster with respect

to a source, the running time can be reduced. In our case, the node

embedding aims to find nodes that are their representatives and the

nodes in their local graph cluster stand as perfect representatives.

However, the Local-Push algorithm only works for PPR, not for

our supervised PPR. Thus, we present a generalized push algorithm

that works for arbitrary stopping probabilities.



Algorithm 4: Lemane-Embedding

Input: Graph G, dimension 𝑑 , threshold 𝛿 , stopping

probability vector 𝜶
Output: Embedding matrices 𝑿 and 𝒀

1 Initialize the proximity matrix 𝑺 ← 0
2 for each node 𝑢 ∈ 𝑉 do
3 𝝅̂𝑢 ← Lemane-Generalized-Push(𝐺,𝑢, 𝛿,𝜶 )
4 𝝅̂𝑇𝑢 ← Lemane-Generalized-Push(𝐺𝑇 , 𝑢, 𝛿,𝜶 )
5 for each node 𝑣 in 𝑉 do
6 if 𝝅̂𝑢 (𝑣) > 𝛿 then
7 𝑺 (𝑢, 𝑣)+ = 𝝅̂𝑢 (𝑣)
8 if 𝝅̂𝑇𝑢 (𝑣) > 𝛿 then
9 𝑺 (𝑣,𝑢)+ = 𝝅̂𝑇𝑢 (𝑣)

10 𝑴 ← log( 𝑺
𝛿
) for non-zero entries

11 [𝑼 , 𝚺, 𝑽 ] ← SparseSVD(𝑴, 𝑑)
12 𝑿 ← 𝑼

√
𝚺, 𝒀 ← 𝑽

√
𝚺

13 return 𝑿 , 𝒀

Algorithm 3 shows the pseudo-code for our generalized push

algorithm. Given a source node 𝑠 , a vector 𝝅̂𝑠 is maintained to store

the portion of supervised random walks that has stopped at each

node, and is the estimated supervised PPR scores with respect to

source 𝑠 . Besides, for each hop 0 ≤ 𝑘 ≤ 𝐿, where 𝐿 is the maximum

length of a truncated supervised randomwalk introduced in Section

3.1, an additional residue vector 𝒓 (𝑘)𝑠 is maintained. The vector

𝒓 (𝑘)𝑠 indicates the portion of supervised random walks from 𝑠 that

currently stay at the 𝑘-th hop but have not stopped yet. Thus, if

the residue vectors are all zero, it returns the exact supervised PPR

scores. Initially, the residue vectors are all zero except for 𝒓 (0)𝑠 (𝑠) = 1

(Lines 1-2), indicating that the supervised random walks initially

all stay at 𝑠 and has not stopped yet. Then, if any entry 𝒓 (𝑘)𝑠 (𝑣) in
the 𝐿 residue vectors is above 𝛿 · 𝑑𝑜𝑢𝑡 (𝑣) (Line 3), a push operation

(Lines 4-7) is invoked. In particular, it first converts 𝛼𝑘 · 𝒓
(𝑘)
𝑠 (𝑣)

to 𝝅̂𝑠 (𝑣) (Line 4). To explain, 𝛼𝑘 portion of the 𝒓 (𝑘)𝑠 (𝑣) random
walks stop at the 𝑘-th hop. Next, the remaining (1 − 𝛼𝑘 ) portion
of the 𝒓 (𝑘)𝑠 (𝑣) random walks randomly jump to the out-neighbors

of 𝑣 (Lines 5-6). Thus, for each 𝑢 that is an out-neighbor of 𝑣 , the

residue 𝒓 (𝑘+1)𝑠 (𝑢) is incremented by (1−𝛼𝑘 ) ·𝒓
(𝑘)
𝑠 (𝑣)/𝑑𝑜𝑢𝑡 (𝑣). After

the push operation, the residue 𝒓 (𝑘)𝑠 (𝑣) is set to zero (Line 7). The

algorithm terminates when there exists no residue 𝒓 (𝑘)𝑠 (𝑣) for any
𝑘 such that it is larger than 𝑑𝑜𝑢𝑡 (𝑣) · 𝛿 .

Theorem 2. Algorithm 3 runs in 𝑂 ( 1
𝛿
) time.

Theorem 3. Let 𝝅𝐿𝑠 (𝑢) be the supervised PPR considering random
walks within 𝐿 hops. Then for undirected graphs, Algorithm 3 returns
an estimation 𝝅̂𝑠 (𝑢) of 𝝅𝐿𝑠 (𝑢) for each node 𝑢 such that:

|𝝅̂𝑠 (𝑢) − 𝝅𝐿𝑠 (𝑢) |/𝑑𝑜𝑢𝑡 (𝑢) ≤ 𝛿 · 𝐿.

By setting 𝛿 = 𝛿′
𝐿
, Algorithm 3 runs in 𝑂 ( 𝐿

𝛿′ ) time. At the same

time, the error bound in Algorithm 3 can be bounded by 𝐿 · 𝛿′
𝐿
= 𝛿 ′.

Since 𝐿 can be treated as a constant, the running time with 𝛿 = 𝛿′
𝐿

Table 1: Dataset statistics.

Name Type 𝑛 𝑚 labels

Wikipedia directed 4.78K 184.81K 40

WikiVote directed 7.12K 103.69K -

BlogCatalog undirected 10.31K 333.98K 39

Slashdot directed 82.17K 870.16K -

TWeibo directed 1.94M 50.66M 100

Orkut undirected 3.07M 117.19M 100

is still 𝑂 ( 1
𝛿′ ) and for any node 𝑢, we have that:

|𝝅̂𝑠 (𝑢) − 𝝅𝐿𝑠 (𝑢) |/𝑑𝑜𝑢𝑡 (𝑢) ≤ 𝛿 ′.

The above analysis shows that our generalized push algorithm

can provide identical result quality as the Local-Push algorithm

with the identical asymptotic running cost, thus returning high-

quality results for the representative nodes of the source node.

4.2 Final Embedding
Given the generalized push algorithm, we finally show how to

output the embedding for the graph. Following STRAP [48], we

compute the supervised PPR on both the input graph 𝐺 and the

transpose graph 𝐺𝑇 by reversing the direction of each edge of 𝐺

and set 𝑺 (𝑢, 𝑣) as 𝝅𝑢 (𝑣) + 𝝅𝑇𝑣 (𝑢), where 𝝅𝑢 (𝑣) is the supervised
PPR of 𝑣 with respect to 𝑢 and 𝝅𝑇𝑣 (𝑢) is the supervised PPR of 𝑢

with respect to 𝑣 on the transpose graph 𝐺𝑇 . Note that we do not

bring this part into our training phase to reduce the computational

costs since we use the same stopping probabilities for both the

input graph 𝐺 and the transpose graph 𝐺𝑇 . Algorithm 4 shows

how to compute approximate proximity scores. For each node 𝑢,

we compute the approximate supervised PPR on the input graph

𝐺 and the transpose graph 𝐺𝑇 (Lines 3-4). For any approximate

supervised PPR score 𝝅̂𝑢 (𝑣), it is added to 𝑺 (𝑢, 𝑣) only if it is larger

than the threshold 𝛿 . Similarly, each approximate supervised PPR

score 𝝅̂𝑇𝑢 (𝑣) on the transpose graph 𝐺𝑇 is added to 𝑺 (𝑣,𝑢) only if

𝝅̂𝑇𝑢 (𝑣) is larger than 𝛿 (Lines 5-9). With such a pruning strategy, the

proximity matrix 𝑺 is sparsified to include 𝑂 ( 𝑛
𝛿
) non-zero entries.

Then, a non-linear operation log( 𝑺
𝛿
), is applied to 𝑺 . Notice that all

the entries are divided by 𝛿 before taking the logarithm to guarantee

that the values will be non-negative (Line 10). The resulting matrix

𝑴 is then fed to a sparse SVD to derive final embedding matrices 𝑿
and 𝒀 (Lines 11-12). We have the following theorem for the running

time and decomposition quality with respect to 𝑴 .

Theorem 4. Algorithm 4 runs in 𝑂 ( 𝑛
𝛿
+ 𝑛 ·𝑑2

𝜖4
) time to guarantee

that the embedding preserves the feeding matrix 𝑴 with (1 + 𝜖)-
approximation to the best rank-𝑑 matrix in terms of Frobenius-norm.

| |𝑴 − 𝑿𝒀𝑇 | |𝐹 ≤ (1 + 𝜖) min

𝑟𝑎𝑛𝑘 (𝑩) ≤𝑑
| |𝑴 − 𝑩 | |𝐹 .

Following previous work [48], we treat 𝜖 as a constant and use

the default setting of builtin SVD implementations. The running

time of Algorithm 4 is 𝑂 ( 𝑛
𝛿
+ 𝑛 · 𝑑2).

5 EXPERIMENTS
We compare our Lemane against alternative solutions on link pre-

diction and node classification tasks. All experiments are conducted



Table 2: Link prediction precision (%) on small datasets.

Method Wikipedia Wikivote BlogCatalog

DeepWalk 88.33 68.32 85.35

Node2vec 82.86 78.50 82.07

VERSE 88.09 82.82 88.49

InfiniteWalk 66.86 81.07 84.05

AROPE 84.27 62.08 88.30

RandNE 83.15 77.62 87.09

ProNE 52.06 66.22 57.87

NetSMF 72.01 72.64 47.92

STRAP 86.53 92.58 89.58

NRP 83.56 91.07 90.10

GraphGAN 70.33 71.76 71.83

AW 50.42 56.62 62.56

NetHiex 45.03 73.01 65.58

GraphZoom 84.73 82.10 86.82

Louvain 56.22 58.33 59.97

Lemane-F 87.79 92.78 89.92

on a Linux machine with an Intel Xeon(R) CPU clocked at 2.70GHz,

an NVIDIA GeForce RTX 2080 Super 8GB GPU, and 384GB memory.

5.1 Experimental settings
Datasets. We test on six real datasets that are used in recent

node embedding studies [21, 26, 34, 41, 46–48]. The statistics of

these datasets are shown in Table 1. BlogCatalog [39], Slashdot
[28], TWeibo [1] and Orkut [31] are four social networks in which

links represent a friendship/following relationship between users.

Wikipedia [2] is a co-occurrence network of words appearing in

the Wikipedia dump.Wikivote [27] is a who-votes-on-whom net-

work on Wikipedia. All datasets and the node labels (if any) can be

downloaded from public sources [1–4].

Competitors. We evaluate Lemane against 15 node embedding

methods, including some classic methods and several state-of-the-

art methods. We divide these methods into four groups as follows.

• Skip-gram methods: DeepWalk [34], Node2vec [21], VERSE [41],

and InfiniteWalk [9];

• Matrix factorization methods: AROPE [53], RandNE [52], ProNE

[50], NetSMF [36], STRAP [48], and NRP
2
[46];

• Neural network methods: GraphGAN [45] and AW [5];

• Other methods: NetHiex [29], GraphZOOM
3
[12], Louvain [7].

For our methods, we use Lemane-F to indicate the algorithm trained

on the entire graph and Lemane-S to indicate the algorithm trained

on subsampled graphs. Notice that Lemane-F is adopted for small

datasetsWikipedia,Wikivote, and BlogCatalog. Lemane-S is adopted

for large datasets Slashdot, TWeibo, and Orkut.

Parameter settings.We obtain the source code of all competitors

from GitHub and perform these methods with default parameter

settings suggested by their authors. Following previous studies

[34, 41, 48], we set the embedding dimensionality 𝑑 = 128. For our

Lemane-S, we set the sample size 𝑛𝑠 = 5000. For Lemane-F and

2
There were some implementation issues in the released code of NRP on undirected

graphs, which was fixed recently by the inventors.

3
We use the default embedding method DeepWalk for GraphZoom.

Table 3: Link prediction precision (%) on large datasets.

Method Slashdot Tweibo Orkut

AROPE 82.83 69.46 82.03

RandNE 81.03 70.74 79.45

ProNE 72.80 45.47 80.88

STRAP 83.07 94.58 85.73

NRP 80.98 93.87 86.34

Louvain 55.56 64.25 80.85

Lemane-S 84.13 94.89 89.15

Lemane-S, we use grid search to set 𝛽, 𝛽 ′, 𝛾, 𝛾 ′ from {0.01, 0.1, 0.5, 1, 2,

3}, learning rate from {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}, and threshold

𝛿 from {10
−7
,10
−6
,10
−5
,10
−4
}; we use JacobiSVD for Lemane-F and

frPCA [16] for Lemane-S, to generate final embeddings.

Since the backpropagation in Lemane is complicated, our objec-

tive function may easily fall into a local minimum. To tackle this

issue, the stopping probabilities are initialized with different distri-

butions. Specifically, we set 𝛼0, 𝛼1, · · · , 𝛼𝐿 such that the probability

that the supervised random walk stops at the 𝑙-th hop follows a

geometric distribution or Poisson distribution with respect to 𝑙 and

we report the best results of Lemane. The parameters of Lemane

are optimized by Stochastic Gradient Descent (SGD) optimizer.

5.2 Link Prediction
Link prediction aims to predict which pairs of nodes are likely to

form edges. Following previous work [46, 53], we randomly hide

30% of the edges for testing and train the embedding vectors on the

rest of the graph. Then, the testing set is generated by including

(i) the node pairs corresponding to the 30% removed edges, and

(ii) an equal number of node pairs that are not connected by any

edge in the original graph 𝐺 . Given a node pair (𝑢, 𝑣) in 𝐸𝑡𝑒𝑠𝑡 , we

compute a score for (𝑢, 𝑣) based on the embedding vectors, and

evaluate model performance using precision score.

Following previous work [46, 48], for DeepWalk, Node2vec,

VERSE, InfiniteWalk, GraphGAN, and Louvain, we use the edge-

feature approach introduced in [29]: (i) randomly select 30% existing

edges which are not in 𝐸𝑡𝑒𝑠𝑡 and the same number of non-existing

edges as training set 𝐸𝑡𝑟𝑎𝑖𝑛 on each dataset; (ii) for each node pair

(𝑢, 𝑣) ∈ 𝐸𝑡𝑟𝑎𝑖𝑛 ∪ 𝐸𝑡𝑒𝑠𝑡 , we concatenate 𝑑-dimension embedding

vectors of node 𝑢 and that of node 𝑣 ; (iii) we consider the 2𝑑-length
vectors as the features of node pairs in 𝐸𝑡𝑟𝑎𝑖𝑛 and feed them into a

binary logistic regression classifier; (iv) then the trained classifier

is used to perform link prediction on 𝐸𝑡𝑒𝑠𝑡 . For AROPE, RandNE,

ProNE, AW, NetHiex, and GraphZOOM, the score of a node pair

(𝑢, 𝑣) is the inner product of the embedding vector of node 𝑢 and

that of node 𝑣 ; for NetSMF, STRAP, NRP, and our Lemane, the score

of a node pair (𝑢, 𝑣) is the inner product of embedding 𝒙𝑢 from 𝑿
and 𝒚𝑣 from 𝒀 (Ref. to Section 3 for the definitions of 𝑿 and 𝒀 ).

Table 2 reports the performance of Lemane-F against the 15

competitors on three small datasets. Table 3 further reports the

performance of Lemane-S against 6 methods which scale to large

graphs. For the other 9 methods, they either cannot finish train-

ing in 24 hours or run out of memory on the large graphs. As we

can observe, our Lemane shows the best performance on 4 social

networks where link prediction finds extensive applications. On



Table 4: Node Classification Micro-F1 (%) on Wikipedia.

Method 0.1 0.3 0.5 0.7 0.9

DeepWalk 42.02 46.12 48.46 49.39 49.35

Node2vec 44.75 48.08 49.82 50.69 50.41

VERSE 38.76 41.92 43.84 44.92 44.31

InfiniteWalk 38.96 42.64 45.94 47.73 48.24

AROPE 45.82 50.59 52.47 53.36 52.16

RandNE 34.51 32.83 43.25 45.55 45.93

ProNE 44.49 50.45 53.15 54.38 54.43

NetSMF 40.29 42.56 43.68 44.08 44.12

STRAP 46.51 50.77 52.44 52.64 52.37

NRP 48.04 52.71 54.39 55.20 54.30

GraphGAN 32.87 35.43 36.47 37.68 37.50

AW 40.70 40.70 40.44 40.30 39.47

NetHiex 45.58 47.95 49.39 49.77 49.20

GraphZoom 40.76 41.03 41.18 41.07 40.54

Louvain 40.86 40.99 40.72 41.25 40.69

Lemane-F 47.79 52.39 54.34 54.67 54.25

Table 5: Node Classification Micro-F1 (%) on BlogCatalog.

Method 0.1 0.3 0.5 0.7 0.9

DeepWalk 33.01 36.97 38.70 39.87 41.31

Node2vec 35.01 37.16 37.97 38.51 39.13

VERSE 32.76 36.32 38.18 39.09 40.71

InfiniteWalk 34.30 38.00 40.21 41.87 43.14

AROPE 29.12 32.78 34.12 34.95 35.77

RandNE 26.75 31.56 36.20 38.34 39.93

ProNE 36.38 40.33 41.56 42.32 42.28

NetSMF 34.95 37.99 39.30 40.19 40.72

STRAP 38.62 41.80 42.96 43.39 43.97

NRP 38.73 41.65 42.36 43.15 43.34

GraphGAN 14.97 17.23 18.81 20.07 21.16

AW 16.52 16.91 16.98 17.25 17.39

NetHiex 37.46 40.06 40.63 41.43 42.33

GraphZoom 22.02 25.59 27.75 29.37 30.70

Louvain 19.16 19.88 21.12 21.30 21.74

Lemane-F 39.64 42.38 43.34 44.03 44.37

the Wikipedia dataset, a co-occurrence network of words appear-

ing in the Wikipedia, our Lemane still achieves high performance

and is the best method among all matrix factorization methods.

Compared to two state-of-the-art matrix factorization methods

STRAP and NRP, our Lemane takes the lead by more than 1% on

Wikipedia and Slashdot, and takes the lead by almost 3% on Orkut.

This demonstrates the effectiveness of our learning based method.

5.3 Node Classification
Node classification task aims to predict the label(s) of each node

based on the embeddings. As we mentioned in Section 3, we first

randomly sample 5% labeled nodes for parameter training. Then

the classification task is performed with the following steps: (i)
following [46], for Lemane and other matrix factorization methods

Table 6: Node classification Micro-F1 (%) on TWeibo.

Method 0.1 0.3 0.5 0.7 0.9

AROPE 33.96 34.11 34.18 34.24 34.29

RandNE 34.64 34.67 34.80 34.92 34.96

ProNE 35.27 35.37 35.43 35.48 35.52

STRAP 35.75 35.97 36.03 36.04 36.04

NRP 35.73 35.97 36.03 36.04 36.04

Louvain 34.14 34.29 34.33 34.38 34.42

Lemane-S 35.77 36.03 36.04 36.05 36.05

Table 7: Node classification Micro-F1 (%) on Orkut.

Method 0.1 0.3 0.5 0.7 0.9

AROPE 49.11 50.86 51.55 51.89 52.22

RandNE 44.94 49.35 50.47 51.11 51.53

ProNE 36.09 37.13 38.32 38.81 39.44

STRAP 70.37 73.09 74.04 74.60 75.08

NRP 72.47 75.58 76.69 77.36 77.98

Louvain 29.16 36.00 36.51 36.85 36.63

Lemane-S 73.32 76.27 77.26 77.89 78.14

4
, we first normalize the embedding vector

5 𝒙𝑣 from 𝑿 and embed-

ding vector 𝒚𝑣 from 𝒀 of each node 𝑣 , and then concatenate them

to get the representation of 𝑣 ; (ii) for methods without factorization

operation, we use the embedding vector of node 𝑣 as its represen-

tation. Specifically, we randomly split the node and label sets into

the training set and testing set and the training ratio varies from

10% to 90%. To make a fair comparison, note that if the training

ratio is 𝑥%, then for Lemane, it will sample an additional (𝑥 − 5)%
and include the 5% labeled nodes to train the classifiers. Following

previous work [21, 34], we employ a one-vs-rest logistic regression

classifier implemented by LIBLINEAR [15] with default parameters

for all methods. Micro-F1 score is used as the evaluation metric for

the classification task.

For node classification, we test on four datasets Wikipedia, Blog-

Catalog, TWeibo, and Orkut, which include label information. Table

4 and Table 5 show the performance of our Lemane-F against all

15 methods on the two small datasets: Wikipedia and BlogCata-

log, respectively. Table 6 and Table 7 show the performance of our

Lemane-S against 6 methods that scale to TWeibo and Orkut.

Wemake the following observations. Firstly, our Lemane achieves

the best Micro-F1 scores on three datasets BlogCatalog, Tweibo,

and Orkut in all of the tested training ratios. Besides, compared to

STRAP, which takes PPRwithout training the stopping probabilities,

our Lemane achieves more than 1% lead on Wikipedia datasets and

up to 3% on the Orkut dataset. Compared to the second-best matrix

factorization method NRP, our Lemane further achieves about 1%

lead on the BlogCatalog dataset in all of the tested training ratios.

4
For matrix factorization based methods, there was some implementation issues in

the evaluation code for node classification on directed graphs. We have rerun the

experiment for matrix factorization based methods on directed graphs.

5
We observe some significant improvement on Orkut dataset when normalization is

applied. Thus, we take normalization for the embedding vectors on all datasets.



In summary, experimental studies reveal that our Lemane can

learn proximity measures that most suit the task in most scenarios.

Compared to other matrix factorization methods, e.g., STRAP [48]

and NRP [46], that take personalized PageRank as the proximity

measure without learning, our Lemane can train the proximity

measure, i.e., the supervised PPR, to gain better performance.

6 CONCLUSION
In this paper, we present Lemane that learns trainable proximity

measures to best suit the datasets and tasks at hand automatically.

Experimental results reveal that Lemane can learn more represen-

tative embeddings compared with state-of-the-art approaches.
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A PROOFS
Proof of Theorem 1. We first prove the following lemma.

Lemma 1. The probability that a supervised random walk stops at
exactly the 𝑘-th hop is 𝛼𝑘

∏𝑘−1
𝑙=0
(1 − 𝛼𝑙 ) and for any k, we have

𝛼𝑘 +
∞∑
𝑙=1

𝛼𝑘+𝑙

𝑘+𝑙−1∏
𝑗=0

(1 − 𝛼 𝑗 ) = 1.

Proof. Define 𝑃𝑟𝑜𝑏𝑘 (𝐿) = 𝛼𝑘 +
∑𝐿
𝑙=1

𝛼𝑘+𝑙
∏𝑘+𝑙−1
𝑗=0 (1 − 𝛼 𝑗 ). We

claim that 1 − 𝑃𝑟𝑜𝑏𝑘 (𝐿) =
∏𝐿
𝑗=0 (1 − 𝛼𝑘+𝑗 ), implying that (1 −

𝑃𝑟𝑜𝑏𝑘 (𝐿)) → 0 when 𝐿 → ∞ and thus, 𝑃𝑟𝑜𝑏𝑘 (𝐿) → 1 when

𝐿 →∞. Nowwe justify 1−𝑃𝑟𝑜𝑏𝑘 (𝐿) =
∏𝐿
𝑗=0 (1−𝛼𝑘+𝑗 ) by induction.

When 𝐿 = 0, 1 − 𝑃𝑟𝑜𝑏𝑘 (0) = 1 − 𝛼𝑘 holds obviously. Suppose

1 − 𝑃𝑟𝑜𝑏𝑘 (𝑡) =
∏𝑡
𝑗=0 (1 − 𝛼𝑘+𝑗 ) holds. Then for 𝑃𝑟𝑜𝑏𝑘 (𝑡 + 1) =

𝑃𝑟𝑜𝑏𝑘 (𝑡) + 𝛼𝑘+𝑡+1 (1 − 𝑃𝑟𝑜𝑏𝑘 (𝑡)), we can derive that:

1 − 𝑃𝑟𝑜𝑏𝑘 (𝑡 + 1) = 1 − 𝑃𝑟𝑜𝑏𝑘 (𝑡) − 𝛼𝑘+𝑡+1 (1 − 𝑃𝑟𝑜𝑏𝑘 (𝑡))

= (1 − 𝛼𝑘+𝑡+1) (1 − 𝑃𝑟𝑜𝑏𝑘 (𝑡)) =
𝑡+1∏
𝑗=0

(1 − 𝛼𝑘+𝑗 ) .

Thus 1−𝑃𝑟𝑜𝑏𝑘 (𝐿) =
∏𝐿
𝑗=0 (1−𝛼𝑘+𝑗 ) holds for any𝐿. Proof done. □

Note that the transition matrix 𝑷 is a row-stochastic matrix, i.e.
𝑷 (𝑖, 𝑗) ≥ 0 for any 𝑖, 𝑗 = 1, 2, · · · , 𝑛, and ∑𝑛

𝑗=1 𝑷 (𝑖, 𝑗) = 1 for any

𝑖 = 1, 2, · · · , 𝑛. Following these properties, we can easily derive that

𝑷𝑙 is also row-stochastic, where 𝑙 is the power of the matrix. Now

we first look at the r.h.s. of the inequality in Theorem 1. Recall

that the infinity-norm of matrix is the maximum absolute row sum,

i.e., | |𝑴 | |∞ = max1≤𝑖≤𝑛
∑𝑛
𝑗=1 |𝑴 (𝑖, 𝑗) |. Then, by Lemma 1, for any

𝑖 = 1, 2, · · · , 𝑛, we have
𝑛∑
𝑗=1

𝑺 (𝑖, 𝑗) = 𝛼0

𝑛∑
𝑗=1

𝑷0 (𝑖, 𝑗) + 𝛼1 (1 − 𝛼0)
𝑛∑
𝑗=1

𝑷1 (𝑖, 𝑗) + · · ·

= 𝛼0 +
∞∑
𝑙=1

𝛼𝑙

𝑙−1∏
𝑘=0

(1 − 𝛼𝑘 ) = 1.

In terms of the l.h.s. of the inequality in Theorem 1, for any 𝑖-th

row of matrix 𝑺 − 𝑺𝐿 , we have that:
𝑛∑
𝑗=1

(𝑺 − 𝑺𝐿) (𝑖, 𝑗)

=

∞∑
𝑙=𝐿+1

𝛼𝑙

𝑙−1∏
𝑘=0

(1 − 𝛼𝑘 )
𝑛∑
𝑗=1

𝑷𝐿+1 (𝑖, 𝑗) =
∞∑

𝑙=𝐿+1
𝛼𝑙 ·

𝑙−1∏
𝑘=0

(1 − 𝛼𝑘 )

=

𝐿∏
𝑘=0

(1 − 𝛼𝑘 ) (𝛼𝐿+1 + 𝛼𝐿+2 (1 − 𝛼𝐿+1) + · · · ) ≤
𝐿∏
𝑘=0

(1 − 𝛼𝑘 ) .

By combining the above derivations,

𝑛∑
𝑗=1

(𝑺 − 𝑺𝐿) (𝑖, 𝑗) ≤
𝐿∏
𝑘=0

(1 − 𝛼𝑘 ) ·
𝑛∑
𝑗=1

𝑺 (𝑖, 𝑗)

holds for any 𝑖 = 1, 2, · · · , 𝑛. Thus, it clearly holds that

| |𝑺 − 𝑺𝐿 | |∞ ≤
𝐿∏
𝑘=0

(1 − 𝛼𝑘 ) | |𝑺 | |∞ .

The theorem is proved.

Proof of Theorem 2. The cost of Algorithm 3 is dominated by

the number of push operations. Recall that the push operation is

invoked only if there exists an entry 𝒓 (𝑘)𝑠 (𝑣) in residue vectors such

that 𝒓 (𝑘)𝑠 (𝑣) ≥ 𝛿 · 𝑑𝑜𝑢𝑡 (𝑣). Let 𝝅 (𝑙)𝑠 (𝑣) denote the 𝑙-hop supervised

PPRwhose value is the probability that the 𝑙-hop supervised random

walk from 𝑠 stops at 𝑣 . Then the total number of push operations

caused by the residue value 𝒓 (𝑙)𝑠 (𝑣) can be bounded by
𝝅 (𝑙 )𝑠 (𝑣)

𝛼𝑙𝛿 ·𝑑𝑜𝑢𝑡 (𝑣) .
In addition, since in each push operation, the node 𝑣 will pass its

residue to its out-neighbors, the cost for a push operation at 𝑣 is

bounded by𝑂 (𝑑𝑜𝑢𝑡 (𝑣)). Thus, the total cost of the push operations

on entry 𝒓 (𝑙)𝑠 (𝑣) is bounded by
𝝅 (𝑙 )𝑠 (𝑣)

𝛼𝑙𝛿 ·𝑑𝑜𝑢𝑡 (𝑣) · 𝑑𝑜𝑢𝑡 (𝑣). Based on the

above analysis, the time cost of Algorithm 3 is:

𝐿∑
𝑙=0

∑
𝑣∈𝑉

𝝅 (𝑙)𝑠 (𝑣)
𝛼𝑙𝛿 · 𝑑𝑜𝑢𝑡 (𝑣)

·𝑑𝑜𝑢𝑡 (𝑣) ≤
1

𝛼𝑚𝑖𝑛𝛿

𝐿∑
𝑙=0

∑
𝑣∈𝑉

𝝅 (𝑙)𝑠 (𝑣) ≤
1

𝛼𝑚𝑖𝑛𝛿
,

where 𝛼𝑚𝑖𝑛 = min{𝛼1, · · · , 𝛼𝐿} can be treated as a constant. Thus,

Algorithm 3 runs in 𝑂 ( 1

𝛼𝑚𝑖𝑛𝛿
) = 𝑂 ( 1

𝛿
) time and the proof is done.

Proof of Theorem 3. The following lemmas are used in the proof.

Lemma 2. [35] For undirected graph 𝐺 and any two nodes 𝑢 and
𝑣 in 𝐺 , let 𝑷𝑘 (𝑢, 𝑣) (resp. 𝑷𝑘 (𝑣,𝑢)) be the probability of going from
𝑢 to 𝑣 (resp. from 𝑣 to 𝑢) through a random walk of fixed length 𝑘 .
Then,

𝑷𝑘 (𝑢, 𝑣)
𝑑𝑜𝑢𝑡 (𝑣)

=
𝑷𝑘 (𝑣,𝑢)
𝑑𝑜𝑢𝑡 (𝑢)

.

Lemma 3. Let 𝝅𝐿𝑠 (𝑢) denote the supervised PPR within 𝐿 hops.
Then, after the end of every iteration in Algorithm 3, for 𝝅̂𝑠 (𝑢) and
the residue vectors 𝒓 (0)𝑠 , · · · 𝒓 (𝐿)𝑠 , we have

𝝅𝐿𝑠 (𝑢) ≤ 𝝅̂𝑠 (𝑢) +
𝐿∑
𝑘=0

∑
𝑣∈𝑉

𝒓 (𝑘)𝑠 (𝑣) · ℎ𝑘𝑢 (𝑣), (8)

where ℎ𝑘𝑢 (𝑣) = 𝛼𝑘𝒆𝑢 (𝑣) +
∑∞
𝑙=1

𝛼𝑘+𝑙
∏𝑘+𝑙−1
𝑗=𝑘

(1−𝛼 𝑗 )𝑷𝑙 (𝑣,𝑢), and 𝒆𝑢
is a unit vector in which the 𝑢-th entry of 𝒆𝑢 is 1 and others are all 0.

Proof. We prove Lemma 3 by induction. First, at the begin of

Algorithm 3, vector 𝝅̂𝑠 and all residue vectors are set to 0 except
for 𝒓 (0)𝑠 (𝑠) = 1. Then we have

𝝅̂𝑠 (𝑢) +
𝐾∑
𝑘=0

∑
𝑣∈𝑉

𝒓 (𝑘)𝑠 (𝑣) · ℎ𝑘𝑢 (𝑣)

=𝛼0 +
∞∑
𝑙=1

𝛼𝑙

𝑙−1∏
𝑗=0

(1 − 𝛼 𝑗 )𝑷𝑙 (𝑠,𝑢) = 𝝅𝑠 (𝑢),

which implies that Equation 8 holds under the initial condition since

𝝅𝐿𝑠 (𝑢) ≤ 𝝅𝑠 (𝑢). Now suppose that Equation 8 holds at the end of

𝑖-th iteration. Suppose further that during (𝑖 + 1)-th iteration, entry

𝒓 (𝑤)𝑠 (𝑞) ≥ 𝛿 · 𝑑𝑜𝑢𝑡 (𝑞) is detected and push operation is invoked

here. If the change of l.h.s of Equation 8 after the push operation is

zero, then Equation 8 holds at the end of (𝑙 + 1)-th iteration.



Table 8: Hyperparameters of Lemane for link prediction.

Dataset Hyperparameters

Wikipedia

initialization: 𝜙ℎ𝑘 (𝑙) with 𝑡 = 5,

learning rate: 0.001, 𝛿 : 10−5, 𝛽 : 0.01, 𝛾 : 1,
SVD used for push: JacobiSVD

Wikivote

initialization: 𝜙ℎ𝑘 (𝑙) with 𝑡 = 1,

learning rate: 0.5, 𝛿 : 10−6, 𝛽 : 0.5, 𝛾 : 1,
SVD used for push: frPCA

BlogCatalog

initialization: 𝜙𝑔𝑒 (𝑙) with 𝛼 = 0.5,

learning rate: 0.1, 𝛿 : 10−7, 𝛽 : 0.01, 𝛾 : 1,
SVD used for push: frPCA

Slashdot

initialization: 𝜙ℎ𝑘 (𝑙) with 𝑡 = 5,

learning rate: 0.001, 𝛿 : 10−5, 𝛽 : 0.1, 𝛾 : 1,
SVD used for push: frPCA

Tweibo

initialization: 𝜙𝑔𝑒 (𝑙) with 𝛼 = 0.5,

learning rate: 0.01, 𝛿 : 10−5, 𝛽 : 0.1, 𝛾 : 1,
SVD used for push: frPCA

Orkut

initialization: 𝜙ℎ𝑘 (𝑙) with 𝑡 = 1,

learning rate: 0.01, 𝛿 : 10−4, 𝛽 : 1, 𝛾 : 1,
SVD used for push: frPCA

Table 9: Hyperparameters of Lemane for node classification.

Dataset Hyperparameters

Wikipedia

initialization: 𝜙ℎ𝑘 (𝑙) with 𝑡 = 5,

learning rate: 0.05, 𝛿 : 10−5, 𝛽 ′: 1, 𝛾 ′: 0.5,
SVD used for push: JacobiSVD

BlogCatalog

initialization: 𝜙ℎ𝑘 (𝑙) with 𝑡 = 5,

learning rate: 0.01, 𝛿 : 10−5, 𝛽 ′: 1, 𝛾 ′: 0.5,
SVD used for push: JacobiSVD

TWeibo

initialization: 𝜙ℎ𝑘 (𝑙) with 𝑡 = 5,

learning rate: 0.05, 𝛿 : 10−5, 𝛽 ′: 1, 𝛾 ′: 3,
SVD used for push: frPCA, 𝑋 and 𝑌 are

normalized before concatenation in

loss function L′
1

Orkut

initialization: 𝜙ℎ𝑘 (𝑙) with 𝑡 = 1,

learning rate: 0.5 , 𝛿 : 10−5, 𝛽 ′: 1, 𝛾 ′: 2,
SVD used for push: frPCA, 𝑋 and 𝑌 are

normalized before concatenation in

loss function L′
1

For the convenience of analysis of the change, let 𝝅̂ ′𝑠 , ¤𝒓
(𝑤)
𝑠 (resp.

𝝅̂ ′′𝑠 , ¥𝒓
(𝑤)
𝑠 ) be the corresponding vectors at the end of 𝑖-th itera-

tion(resp. (𝑖 + 1)-th iteration). Then after performing the push

operation in the (𝑖 + 1)-th ieration, we have

𝝅̂ ′′𝑠 (𝑞) − 𝝅̂ ′𝑠 (𝑞) = 𝛼𝑤 · ¤𝒓 (𝑤)𝑠 (𝑞),

¥𝒓 (𝑤)𝑠 (𝑞) − ¤𝒓 (𝑤)𝑠 (𝑞) = −¤𝒓 (𝑤)𝑠 (𝑞) .
Recap 𝑁 (𝑞) is the set of 𝑞’s out-neighbors, for 𝑜 ∈ 𝑁 (𝑞), we have

¥𝒓 (𝑤+1)𝑠 (𝑜) − ¤𝒓 (𝑤+1)𝑠 (𝑜) = (1 − 𝛼𝑤)
¤𝒓 (𝑤)𝑠 (𝑞)
𝑑𝑜𝑢𝑡 (𝑞)

.

Then the change between 𝑖-th iteration and (𝑖 + 1)-th iteration is

𝝅̂ ′′𝑠 (𝑢) − 𝝅̂ ′𝑠 (𝑢) + ¥𝒓
(𝑤)
𝑠 (𝑞) · ℎ𝑤𝑢 (𝑞) − ¤𝒓 (𝑤)𝑠 (𝑞) · ℎ𝑤𝑢 (𝑞)+∑

𝑜∈𝑁 (𝑞)
¥𝒓 (𝑤+1)𝑠 (𝑜) · ℎ𝑤+1𝑢 (𝑜) −

∑
𝑜∈𝑁 (𝑞)

¤𝒓 (𝑤+1)𝑠 (𝑜) · ℎ𝑤+1𝑢 (𝑜)

= 𝝅̂ ′′𝑠 (𝑢) − 𝝅̂ ′𝑠 (𝑢) − ¤𝒓 (𝑤)𝑠 (𝑞) · ℎ𝑤𝑢 (𝑞)+

(1 − 𝛼𝑤)
¤𝒓 (𝑤)𝑠 (𝑞)
𝑑𝑜𝑢𝑡 (𝑞)

∑
𝑜∈𝑁 (𝑞)

ℎ𝑤+1𝑢 (𝑜)

= 𝝅̂ ′′𝑠 (𝑢) − 𝝅̂ ′𝑠 (𝑢) − ¤𝒓 (𝑤)𝑠 (𝑞) · ℎ𝑤𝑢 (𝑞) + ¤𝒓
(𝑤)
𝑠 (𝑞) (ℎ𝑤𝑢 (𝑞) − 𝛼𝑤𝒆𝑢 (𝑞))

= 𝝅̂ ′′𝑠 (𝑢) − 𝝅̂ ′𝑠 (𝑢) − 𝛼𝑤𝒆𝑢 (𝑞) ¤𝒓
(𝑤)
𝑠 (𝑞) = 0.

Therefore, the change of l.h.s of Equation 8 after (𝑖 + 1)-th itera-

tion is zero, which implies that Equation 8 also holds at the end of

(𝑖 + 1)-th iteration. The lemma is proved. □

Next, we prove Theorem 3. By Equation 8 in Lemma 3, we have:

|𝝅𝐿𝑠 (𝑢) − 𝝅̂𝑠 (𝑢) |/𝑑𝑜𝑢𝑡 (𝑢) ≤
𝐿∑
𝑘=0

∑
𝑣∈𝑉

𝒓 (𝑘)𝑠 (𝑣)
𝑑𝑜𝑢𝑡 (𝑢)

· ℎ𝑘𝑢 (𝑣)

≤ 𝛿
𝐿∑
𝑘=0

∑
𝑣∈𝑉
(𝛼𝑘𝒆𝑢 (𝑣) +

∞∑
𝑙=1

𝛼𝑘+𝑙

𝑘+𝑙−1∏
𝑗=𝑘

(1 − 𝛼 𝑗 )𝑷𝑙 (𝑣,𝑢))

=𝛿

𝐿∑
𝑘=0

(𝛼𝑘 +
∞∑
𝑙=1

𝛼𝑘+𝑙

𝑘+𝑙−1∏
𝑗=𝑘

(1 − 𝛼 𝑗 )) = 𝐿 · 𝛿,

where the last equation holds by Lemma 1. The theorem is proved.

Proof of Theorem4. The time complexities of Algorithm 4 depend

on two parts: Generalized Push and SparseSVD. From the results in

Theorem 2, for each source 𝑠 ∈ 𝑉 , the cost of the push operations is

𝑂 ( 1
𝛿
). Thus, the total cost of push operations on 𝑛 nodes is bounded

by 𝑂 ( 𝑛
𝛿
). Then, we need the following theorem [11] to analyze the

cost of SparseSVD.

Theorem 5. Let 𝑨 denote an 𝑛 × 𝑛 matrix, there is an algorithm
that, with failure probability 1/10, finds two 𝑛 × 𝑑 matrices 𝑼 , 𝑽
with orthonormal columns, and a 𝑑 × 𝑑 diagonal matrix 𝚺, so that��|𝑨 − 𝑼𝚺𝑽𝑇 �� |𝐹 ≤ (1 + 𝜖) | |𝑨 − [𝑨]𝑑 | |𝐹 , where [𝑨]𝑑 denotes the
best rank-𝑑 approximation to 𝑨. The algorithm runs in time

𝑂

(
nnz(𝑨) + 𝑂̃

(
𝑛𝑑2𝜖−4 + 𝑑3𝜖−5

))
.

Racall that for any approximate supervised PPR score 𝝅̂𝑢 (𝑣), it
is add to 𝑺 only if it is larger than the error parameter 𝛿 . Thus the

total number of non-zero entries in 𝑺 is nnz(𝑺) = 𝑂 ( 𝑛
𝛿
). The cost of

SparseSVD is bounded by𝑂 ( 𝑛
𝛿
+ 𝑛𝑑2
𝜖4
). Finally, combining these two

parts, the running cost of Algorithm 4 is bounded by 𝑂 ( 𝑛
𝛿
+ 𝑛𝑑2

𝜖4
),

which completes our proof.

B HYPER-PARAMETERS SETTINGS
Table 8 and Table 9 summarize the hyperparameter settings of

Lemane on each dataset. The searching hyperparameters include

initialized distribution 𝜙 (𝑙) to indicate the probability that the su-

pervised random walk stops at the 𝑙-th hop, the loss function co-

efficients 𝛽,𝛾, 𝛽 ′, 𝛾 ′, error parameter 𝛿 , learning rate, and buildin

SVDs used in generalized push. For the initialization of distribution

𝜙 (𝑙), two standard distribution functions are used, namely the geo-

metric distribution 𝜙𝑔𝑒 (𝑙) = 𝛼 (1 − 𝛼)𝑙 and the Poisson distribution

𝜙ℎ𝑘 (𝑙) = 𝑒−𝑡 𝑡𝑙

𝑙 !
.
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