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ABSTRACT
Empirical variance is a fundamental concept widely used in data

management and data analytics, e.g., query optimization, approx-

imate query processing, and feature selection. A direct solution

to derive the empirical variance is scanning the whole data table,

which is expensive when the data size is huge. Hence, most cur-

rent works focus on approximate answers by sampling. For results

with approximation guarantees, the samples usually need to be

uniformly independent random, incurring high cache miss rates

especially in compact columnar style layouts. An alternative uses

block sampling to avoid this issue, which directly samples a block

of consecutive records fitting page sizes instead of sampling one

record each time. However, this provides no theoretical guaran-

tee. Existing studies show that the practical estimations can be

inaccurate as the records within a block can be correlated.

Motivated by this, we investigate how to provide approximation

guarantees for empirical variances with block sampling from a the-

oretical perspective. Our results shows that if the records stored in

a table are 4-wise independent to each other according to keys, a

slightly modified block sampling can provide the same approxima-

tion guarantee with the same asymptotic sampling cost as that of

independent random sampling. In practice, storing records via hash

clusters or hash organized tables are typical scenarios in modern

commercial database systems. Thus, for data analysis on tables in

the data lake or OLAP stores that are exported from such hash-

based storage, our strategy can be easily integrated to improve the

sampling efficiency. Based on our sampling strategy, we present an

approximate algorithm for empirical variance and an approximate

top-𝑘 algorithm to return the 𝑘 columns with the highest empirical

variance scores. Extensive experiments show that our solutions

outperform existing solutions by up to an order of magnitude.

CCS CONCEPTS
• Theory of computation → Design and analysis of algo-
rithms; Approximation algorithms analysis.
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1 INTRODUCTION
Empirical variance is a fundamental concept and is frequently

used in data management and data analytics. For instance, exist-

ing databases maintain statistics like average, empirical variance,

count, distinct values, and provide them to the query optimizers

[23, 29, 41, 42], e.g., the empirical variance of the salary for the fe-

male in an employees database. In data mining, empirical variance

is also an important method in analyzing the dispersion of the data

and has been used in feature selections [5, 8, 25, 30].

A direct solution to derive the exact empirical variance, say for

a column or an attribute 𝑋 of the table, is to make a full scan of

the table. This solution, however, incurs high computational costs

when the data size becomes huge as pinpointed in [9]. Another

straightforward solution is to maintain the mean E[𝑋 ] of attribute
𝑋 and the mean E[𝑋 2] of the square of the attribute values. These
results can be easily maintained during the updates of records.

Then, the empirical variance of attribute 𝑋 can be directly com-

puted as E[𝑋 2] − (E[𝑋 ])2. However, as indicated in [41], statistics

on individual columns/attributes are insufficient when processing

complicated queries or data analysis tasks that may involve pred-

icates, e.g., considering records of employees only falling into a

certain age group. In such cases, maintaining the mean and mean

of squares for each attribute no longer works.

In the literature, most existing works focus on approximate an-

swers via sampling records. However, uniformly random sampling

incurs extremely high cache miss rates especially in compact colum-

nar style layouts. For example, if we want to sample a record in the

columnar layout, we then need to sample the value stored in each

column, and record values reside in different pages for different

columns. For the next records to be sampled, the accessed pages

could be totally different, resulting in high cache miss rates. To al-

leviate such an issue, existing studies, e.g., [9, 16, 32], turn to block

sampling, which samples all the records that fall into the same block.

Clearly, block sampling makes full use of each accessed record and

significantly reduces the cache miss rates. It also brings randomness

in the block level. However, if the records within a block are highly

correlated, the estimation with block sampling becomes inaccurate

compared to the uniform random samples given the same number

of sampled records as indicated in [9]. Thus, Chaudhuri et al. [9] in-

vestigate the correlation within each block and present solutions to

adaptively adjust the sample size according to the cross-validation
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error within blocks. Nevertheless, their solution still provides no

theoretical guarantee on the returned approximate result.

Motivated by the limitations of existing solutions, we investigate

how to derive approximation guarantees for empirical variance by

block sampling from a theoretical perspective. In particular, our

theoretical results show that if the records stored in a table are

4-wise independent to each other according to the keys, then we

can randomly sample a position 𝑝 in the table and then retrieve

consecutive rows following 𝑝 that fit into the same page. For in-

stance, if a table has 𝑛 records, then we first randomly sample a

position 𝑝 . Next, if the records are stored in a columnar layout,

each column takes 4 bytes, and the block size is equal to a page size

(4096 bytes). Then we will retrieve the 𝑝-th to the ((𝑝 +1023)%𝑛)-th
entry for each column as a block. Notice that 4-wise independence

on the keys in the block does not necessarily indicate 4-wise inde-

pendence on other attribute values in the block since the attribute

values hashed to the same slot may have the same value. To tackle

this issue, we apply a slightly modified sampling trick to the block

to guarantee that for each attribute, the sampled values are still

4-wise independent. Given a block of 𝑏 records, our analysis shows

that if we sample 𝑏 records from the block with our modified block

sampling, the estimation error of the derived empirical variance can

be bounded by a small value depending on 𝑏 with a probability 𝑝 .

Meanwhile, the larger the block size 𝑏 is, the smaller the estimation

error is. With such properties, we design an estimation framework

as follows: Firstly, we sample 𝑂 (log𝑛) blocks to boost the success

probability from 𝑝 to 1 − 1/𝑛𝑐 (𝑐 ≥ 1) using the median-of-means

estimator. Then, if the estimation accuracy is insufficient, we dou-

ble the block size 𝑏, re-sample 𝑂 (log𝑛) blocks, and re-estimate the

empirical variance. This strategy guarantees that the estimated

result is becoming more and more accurate with a high success

probability. The estimation process of the empirical variance stops

when the required accuracy is achieved.

In practice, hash-based storage is a typical scenario in modern

commercial databases. For example, Oracle 12C supports storing

data with hash clusters [2] and DB2 supports storing data with

hash organized tables [1]. If the tables in the data lake or the OLAP

data stores are exported from such hash-based storage, then our

sampling strategies can be easily integrated to improve the prac-

tical efficiency without sacrificing the approximation guarantees.

Moreover, in data analysis, there exist many mining tables [13, 43]

that typically contain hundreds or even thousands of columns. An

important task on such mining tables is to select the appropriate

features for the downstream tasks. The top-𝑘 query on empirical

variance has been widely used in feature selection [8, 25, 30] and

is the built-in function in existing frameworks, like Ski-learn [30].

Thus, we further devise efficient approximate algorithms for the

top-𝑘 query on empirical variance. We experimentally evaluate

our proposed algorithms against alternatives on large-scale real-

world datasets. Experiments show that our proposed algorithms

outperform existing alternatives by up to an order of magnitude.

2 PRELIMINARIES
2.1 Problem Definition
Given a sequence of 𝑛 values 𝑥1, · · · , 𝑥𝑛 , let 𝜇 denote the mean of

these 𝑛 values. The empirical variance 𝜎2 and empirical standard

deviation 𝜎 are defined as:

𝜎2 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝜇)2 , 𝜎 =

√√
1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝜇)2 .

We only consider the empirical variance since the empirical stan-

dard deviation can be easily derived given the empirical variance

score. In data analysis like approximate query processing [29] and

feature selection [6, 25], we are usually given a table and are in-

terested in the empirical variance of records in the table that sat-

isfy specific predicates, e.g., records of employees with age group

falling into 30 to 40, on each column or on certain columns. For-

mally, the given table consists of a set D of 𝑛′ records where each
record includes ℎ + 1 attributes 𝛼0, 𝛼1, · · · , 𝛼ℎ . One special attribute
𝛼𝑘𝑒𝑦 = 𝛼0 is the key of the records. Here we assume that the key is

a single attribute while it is easy to extend to the case when the key

is a set of attributes. In addition, the value 𝑥 of a record on each

attribute 𝛼𝑖 is assume to be normalized to the range of [0, 1] by
(𝑥 −𝑚𝑖𝑛)/(𝑚𝑎𝑥 −𝑚𝑖𝑛), a.k.a, the min-max normalization, where

𝑚𝑖𝑛 (resp.𝑚𝑎𝑥 ) is the min value (resp. max value) among all records

on attribute 𝛼𝑖 . Without normalization, the comparison of different

empirical variance scores might be meaningless since the score

might be mainly affected by the range of attribute values. To clarify

the queries with predicates, e.g., the age range as mentioned above,

we define the subset D𝑝 of D as the set of 𝑛 records satisfying

predicate 𝑝 and D𝑝 (𝛼) as attribute values of these records with
respect to attribute 𝛼 . In addition, we define the selectivity 𝜃 as

the ratio of the number 𝑛 of records satisfying the predicate to the

total number 𝑛′ of records, i.e., 𝜃 = 𝑛/𝑛′. We have 𝑛 = 𝑛′ if all
records in D satisfy the predicate. To derive the exact empirical

variance of D𝑝 (𝛼), the whole table needs to be scanned, which is

too expensive on massive datasets. With column store layouts, it

is possible to scan related attributes only, but the cost can still be

high on massive datasets. To avoid high computational costs, we

consider the 𝜖-approximate empirical variance defined as follows.

Definition 1 (𝜖-approximate empirical variance). Given an
error bound 𝜖 and a failure probability 𝑝 𝑓 , the 𝜖-approximate empiri-
cal variance returns an estimation �̂�2 of empirical variance such that
|�̂�2 − 𝜎2 | ≤ 𝜖 holds with 1 − 𝑝 𝑓 probability.

To explain, we aim to provide an 𝜖-absolute guarantee so that the

returned estimation is close to the exact value and differs by at most

𝜖 . We will consider how to design algorithms for 𝜖-approximate

empirical variance in Section 3.1.

As pinpointed in Section 1, many mining tables include a large

number of columns [13] and feature selection is usually required

to handle downstream tasks. A standard approach is to select the 𝑘

attributes/columns with the top-𝑘 highest empirical variance scores.

Denote 𝜎2 (𝛼𝑖 ) as the empirical variance over the 𝑖-th attribute 𝛼𝑖
(0 < 𝑖 ≤ ℎ) of the records satisfying predicate 𝑝 , i.e., D𝑝 (𝛼𝑖 ). Then
the top-𝑘 query on empirical variance is defined as follows.

Definition 2 (Top-𝑘 qery). Given the set D of records and a
positive integer 𝑘 , the top-𝑘 query on empirical variance returns the
𝑘 attributes with the 𝑘 highest empirical variance scores.

Deriving exact top-𝑘 answers is still expensive. Luckily, in feature

selection, approximate solutions are shown to be sufficient [18, 31].

Thus, we consider the approximate top-𝑘 query defined as follows.
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Definition 3 (Approximate top-𝑘 qery). Given the set D of
records, a positive integer 𝑘 , an error bound 𝜖 , and a failure probability
𝑝 𝑓 , the approximate top-𝑘 query on empirical variance returns 𝑘
attributes 𝛼 ′

1
, · · · , 𝛼 ′

𝑘
such that,

•
���̂�2 (𝛼 ′

𝑖
) − 𝜎2 (𝛼 ′

𝑖
)
�� ≤ 𝜖 for any 𝑖 ∈ [1, 𝑘]

•
����̂�2 (𝛼 ′

𝑘
) − 𝜎2 (𝛼∗

𝑘
)
��� ≤ 𝜖

hold with at least 1 − 𝑝 𝑓 probability, where 𝛼∗
𝑘
is the attribute whose

actual empirical variance 𝜎2 (𝛼∗
𝑘
) is the 𝑘-th largest.

In the above definition, the first condition indicates that the

estimated empirical variance of 𝛼 ′
𝑖
(1 ≤ 𝑖 ≤ 𝑘) is close to its exact

score. For the second condition, it indicates that the estimated

empirical variance of 𝛼 ′
𝑘
is close to the real 𝑘-th largest one. Note

that when 𝜖 < (𝜎2 (𝑎∗
𝑘
) − 𝜎2 (𝑎∗

𝑘+1))/2, the above definition returns

the exact top-𝑘 answer. When 𝜖 is getting closer and closer to

(𝜎2 (𝑎∗
𝑘
) − 𝜎2 (𝑎∗

𝑘+1))/2, the returned approximate top-𝑘 answers

are becoming more and more accurate. Thus the quality of the

approximate top-𝑘 query is guaranteed.

In our proposed solution, we will make use of 4-wise indepen-

dence to obtain approximation guarantees. The formal definition

of 𝑘-wise independence (4-wise is the case when 𝑘 = 4) and 𝑘-wise

independent hash functions are defined as follows.

Definition 4 (𝑘-Wise Independence). [19] Consider a set of
discrete random variables 𝑋1, · · · , 𝑋𝑛 . The random variables are 𝑘-
wise independent if for any set 𝐼 ⊆ {1, · · · , 𝑛} with |𝐼 | ≤ 𝑘 and any
values 𝑥𝑖 we have:

Pr(∧𝑖∈𝐼𝑋𝑖 = 𝑥𝑖 ) =
∏
𝑖∈𝐼

Pr(𝑋𝑖 = 𝑥𝑖 ) .

Definition 5 (𝑘-Wise Independent Hash Functions). [36]
A hash function 𝒽 is 𝑘-wise independent if for any distinct keys
𝑢1, · · · , 𝑢𝑘 ∈ {1, · · · , 𝑠} and hash values 𝑣1, · · · , 𝑣𝑘 ∈ {1, · · · , 𝑡}:

Pr(𝒽(𝑢1) = 𝑣1 ∧ · · · ∧𝒽(𝑢𝑘 ) = 𝑣𝑘 ) =
1

𝑡𝑘
.

Notice that 4-wise independent hash function can be easily de-

signed and takes only 𝑂 (1) cost to compute, which is simple and

efficient. It is widely used in big data analysis, such as query opti-

mization [4], streaming processing [14], and cardinally estimation

[20]. Table 1 lists the frequently used notations in this paper.

2.2 Existing Approximate Solutions
In this section, we discuss existing approximate solutions for em-

pirical variance that provide approximation guarantees.

Baseline solution by Chernoff bound.We first present a base-

line solution that derives the empirical variance by exploiting the

Chernoff bound [12]. Let 𝑋𝛼 and 𝑌𝛼 be random variables generated

as follows: (i) a record 𝑟𝑖 is first randomly sampled from D; (ii)
assign the value 𝑥𝑖 on attribute 𝛼 to 𝑋𝛼 and 𝑥2

𝑖
to 𝑌𝛼 . Let 𝜇𝛼 be the

mean of the values on attribute 𝛼 . Then, it is clear that E[𝑋𝛼 ] = 𝜇𝛼 .

Given 𝑋𝛼 and 𝑌𝛼 , we have the following equation.

E[𝑌𝛼 ] − (E[𝑋𝛼 ])2 =
1

𝑛

𝑛∑︁
𝑖=1

𝑥2𝑖 −
(
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖

)
2

= 𝜎2 (𝛼). (1)

Then, we can uniformly sample random records from D and

apply Chernoff bound to derive an estimation (with upper and

Table 1: Frequently used notations.
Notation Description
D The input set of records

D𝑝 The subset of records in D satisfying predicate 𝑝

𝑛 The number of records satisfying predicate 𝑝 inD
𝑛′ the number of records in D
𝜃 the ratio of 𝑛 to 𝑛′

ℎ the number of attributes in D
𝑚 the number of samples from D
𝑏, 𝑟 the block size and the number of blocks

𝛼,𝐴 attribute 𝛼 from the set 𝐴 of attributes in D
𝑝 𝑓 the failure probability of the algorithm

𝜎2 (𝛼) the empirical variance of 𝛼 in D
�̂�2 (𝛼) the estimation of 𝜎2 (𝛼)
𝜎2 (𝛼), 𝜎2 (𝛼) a lower and upper bound of 𝜎2 (𝛼)
𝜖 the error bound for approximate queries

lower bound) for E[𝑌𝛼 ] and E[𝑋𝛼 ]. Next, by Equation 1, we can

derive the estimation (with upper and lower bound) for 𝜎2 (𝛼). We

have the following lemma for the lower and upper bounds.

Lemma 1. Given a random subset 𝑆 = {𝑋1, . . . , 𝑋𝑚} of𝑚 values
from D(𝛼), a failure probability 𝑝 ′

𝑓
, and 𝑎 = ln(4/𝑝 ′

𝑓
), we have the

lower bound 𝜎2 and upper bound 𝜎2 of 𝜎2:

𝜎2 =

(√︃∑𝑚
𝑖=1 𝑋

2

𝑖
+ 2𝑎

9
−

√︃
𝑎
2

)
2

− 𝑎
18

𝑚
−

(√︃∑𝑚
𝑖=1 𝑋𝑖 +

𝑎
2
+

√︃
𝑎
2

)
4

𝑚2
,

𝜎2 =

(√︃∑𝑚
𝑖=1 𝑋

2

𝑖
+ 𝑎

2
+

√︃
𝑎
2

)
2

𝑚
−

((√︃∑𝑚
𝑖=1 𝑋𝑖 +

2𝑎
9
−

√︃
𝑎
2

)
2

− 𝑎
18

)
2

𝑚2
,

with probability at least 1 − 𝑝 ′
𝑓
.

We omit the proof as it stands as our baseline and is not our focus.

State-of-the-art empirical variance bounds. The state-of-the-
art empirical variance bounds are proposed by Maurer et al. [28].

Based on a concentration inequality for self-bounding random

variables (Theorem 13 in [27]) and conditional expectations, they

establish concentration bounds as follows.

Lemma 2. Given a random subset 𝑆 = {𝑋1, . . . , 𝑋𝑚} of𝑚 values
from D(𝛼), a failure probability 𝑝 ′

𝑓
, and 𝑎 = ln(2/𝑝 ′

𝑓
), we have the

lower bound 𝜎2 and upper bound 𝜎2 of 𝜎2:

𝜎2 =
©«
√√√

1

𝑚 (𝑚 − 1)

𝑚∑︁
𝑖, 𝑗=1

(
𝑋𝑖 − 𝑋 𝑗

)
2

2

−
√︂

2𝑎

𝑚 − 1
ª®¬
2

𝜎2 =
©«
√√√

1

𝑚 (𝑚 − 1)

𝑚∑︁
𝑖, 𝑗=1

(
𝑋𝑖 − 𝑋 𝑗

)
2

2

+
√︂

2𝑎

𝑚 − 1
ª®¬
2

with probability at least 1 − 𝑝 ′
𝑓
.

Deficiency of existing solutions. Unfortunately, the approximate

algorithms based on the above bounds require the samples to be

uniformly random and independent. This severely degrades the

performance since uniformly random sampling incurs extremely
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high cache miss rates especially in compact columnar style lay-

outs. Motivated by the deficiency of existing solutions, we next

present our proposed solution which achieves high efficiency while

preserving the same approximation guarantee.

3 OUR SOLUTION
In this section, we investigate how to derive approximation guar-

antees for empirical variance by block sampling from a theoretical

perspective. We show that when the records are 4-wise indepen-

dent between each other according to the keys, we can sample with

a slightly modified block sampling strategy. This avoids the high

cache miss rates and our theoretical analysis shows that it provides

the same approximation guarantee with the same time complexity

as random sample based methods. As we mentioned in Section 1, in

practice, hash-based storage are typical scenarios in modern com-

mercial databases, e.g., Oracle 12C with hash clusters [2] and DB2

with hash organized tables [1]. If the tables in the data lake or the

OLAP data stores are exported from such hash-based storage, then

our analysis here can stand as the backbones for an efficient and

effective block sampling strategy with approximation guarantees.

In the following, we will focus on column-stores layout, which

suffers from high cache miss rates during the random sampling.

The high-level idea of our estimation framework is as follows.

We adopt block sampling by leveraging the 4-wise independence

property and present an error bounded estimation. However, the

probability that the estimation falls inside the correct range of 𝜖 ′

cannot be bounded with high probability, which motivates us to

use the Median-of-Mean (MoM) estimator to boost the success

probability. This ensures that the estimation is both efficient and

accurate. Based on the MoM estimator, we derive lower and upper

bounds of the empirical variance, which stands as the backbone

for 𝜖-approximate and approximate top-𝑘 algorithms to be intro-

duced later. The main idea behind these algorithms is doubling the

block size 𝑏 adaptively and having a more accurate estimation until

termination conditions are met.

3.1 Estimator of Empirical Variance
Recap that we use a 4-wise independent hash function to hash

the records of the original database based on their keys. With the

property of 4-wise independence, we will show that even when

we sample a block of records in consecutive slots, dubbed as block

sampling, to derive the estimation of the empirical variance, it still

has bounded error with probability guarantees.

Consider a non-key attribute 𝛼 in table D. The position of the

attribute is consistent with the key. In particular, if the position of

the key attribute of a record 𝑟 ′ is in position 𝑖 in the table, then the

position of the non-key attribute 𝛼 of record 𝑟 ′ is also in position

𝑖 . Next, we start a block 𝑙 by randomly sample a position 𝑝𝑜𝑠𝑠 in

D. From this position, we load a block of 𝑏 consecutive records. In

this block, we sample records with replacement if the consecutive

records have the same hash values and keep only the sampled

records satisfying the predicate in block 𝑙 . If not, we directly sample

them and keep the records satisfying the predicate in block 𝑙 . After

that, if there are less than 𝑏 records in block 𝑙 , we load one more

block, use the same sampling method and add records satisfying

the predicate to block 𝑙 . We terminate the sampling process for

block 𝑙 when there are 𝑏 records in it. This sampling strategy is

still very cache-friendly since consecutive records are maintained

in continuous memories.

We define a random variable 𝑋𝑖 as the attribute value with re-

spect to some key which is the 𝑖-th one added to the block, where

1 ≤ 𝑖 ≤ 𝑏. We will show that any four 𝑋𝑖 , 𝑋 𝑗 , 𝑋𝑘 , 𝑋𝑙 are 4-wise

independent using the following lemma.

Lemma 3. Given that records are four-wise independent with re-
spect to keys, using above block sampling strategy, any four 𝑋𝑖 sam-
pled from a given attribute 𝛼 in a block are still 4-wise independent.

All omitted proofs in this section are deferred to Appendix B.

Define 𝜇𝑙 as the average of𝑋1, . . . , 𝑋𝑏 , i.e., 𝜇𝑙 =
1

𝑏

∑𝑏
𝑖=1 𝑋𝑖 . Then we

can calculate an unbiased estimation �̂�2
𝑙
of the empirical variance

𝜎2 as �̂�2
𝑙
= 1

𝑏−1
∑𝑏
𝑖=1 (𝑋𝑖 − 𝜇𝑙 )2. We prove that �̂�2

𝑙
is an unbiased

estimation of 𝜎2 during the proof of Lemma 4. Thanks to the 4-

wise independence of the attribute values sampled within a block,

we have the following lemma to show that the estimation has a

probability guarantee to approach the actual empirical variance 𝜎2.

Lemma 4. If the variables 𝑋1, . . . , 𝑋𝑏 ∈ [0, 1] are 4-wise indepen-
dent, 𝜇𝑙 =

1

𝑏

∑𝑏
𝑖=1 𝑋𝑖 and �̂�

2

𝑙
= 1

𝑏−1
∑𝑏
𝑖=1 (𝑋𝑖 − 𝜇𝑙 )2, then

Pr( |�̂�2
𝑙
− 𝜎2 | > 𝜖 ′) ≤

𝜎2
(
1 − 𝑏−3

𝑏−1𝜎
2

)
𝑏𝜖 ′2

.

According to the above lemma, the more accurate estimation of

𝜎2 we require, the smaller 𝜖 ′ we should set. To keep the same failure

probability, the block size 𝑏 should be enlarged. The concentration

bound derived above in Lemma 4 is not tight enough. Intuitively,

when requiring a 1/𝑛𝑐 failure probability where 𝑐 is a constant no

smaller than 1, the block size 𝑏 should be linear to the number 𝑛

of records, which is impractical and motivates us to use the MoM

(median-of-means) estimator [11, 22, 24, 26]. By taking the median

of 𝑂 (log𝑛) sub-estimators, MoM can boost the success probability

to 1 − 1/𝑛𝑐 . For example, we have a sub-estimator that estimates in

the correct range of 𝜖 ′ with a probability no smaller than 0.6. When

using 𝑟 = 𝑂 (log𝑛) such sub-estimators and taking the median of

these 𝑟 answers, the final result will be in the correct range of 𝜖 ′

with probability 1 − 1/𝑛𝑐 . Next, we show the MoM estimator of the

empirical variance as follows.

We use 𝑟 sub-estimators of the empirical variance, where the

determination of 𝑟 is shown in Section 3.4. For each sub-estimator,

we sample a block of 𝑏 records as discussed before. With these 𝑟

blocks, we have 𝑟 estimations �̂�2
1
, . . . , �̂�2𝑟 of the empirical variance.

The MoM estimator takes the median of all these sub-estimators,

i.e., �̃�2 = median(�̂�2
1
, . . . , �̂�2𝑟 ). Then we want to show that the MoM

estimator gets close to the actual empirical variance 𝜎2 with a

probability guarantee. We define a variable 𝑍𝑙 for each sampling

block as 𝑍𝑙 = 1( |�̂�2
𝑙
− 𝜎2 | > 𝜖 ′) where 1 is an indicator function.

We also have E(𝑍𝑙 ) = Pr( |�̂�2
𝑙
− 𝜎2 | > 𝜖 ′). Let 𝑝𝜖′,𝑏 = 𝜎2 (1 −

𝑏−3
𝑏−1𝜎

2)/(𝑏𝜖 ′2). Then we have the following theorem, where the

proof is deferred to Appendix B.

Lemma 5. [11, 24] MoM estimator has the following property:

Pr( |�̃�2 − 𝜎2 | > 𝜖 ′) ≤ exp

(
−2𝑟

(
1

2

− 𝑝𝜖′,𝑏
)
2

)
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Algorithm 1: 𝜖-approximate Empirical Variance

Input: Set D, attribute 𝛼 , probability 𝑝 𝑓 , error bound 𝜖

Output: 𝜖-approximate empirical variance with respect to 𝛼

1 𝑏 ← 𝑏0, 𝑖max ← ⌈log2 𝑛′

𝑏0
⌉, 𝑝 ′

𝑓
← 𝑝 𝑓 /𝑖max;

2 while 𝑛𝑢𝑚𝑉𝑖𝑠𝑖𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑𝑠 < 𝑛′ do
3 Randomly sample 𝑟 blocks with block size 𝑏 from D;

4 Calculate 𝜎2 (𝛼), 𝜎2 (𝛼) by Lemma 1 with 𝑝 ′
𝑓
;

5 �̂�2 (𝛼) ← (𝜎2 (𝛼) + 𝜎2 (𝛼))/2;
6 if 𝜎2 (𝛼) − 𝜎2 (𝛼) ≤ 2𝜖 then
7 return �̂�2 (𝛼);
8 else
9 𝑏 ← 2𝑏;

10 return 𝜎2 (𝛼);

when we have 𝑝𝜖′,𝑏 < 1

2
.

Deriving lower and upper bounds of the empirical variance.
With Lemma 5, we can derive lower and upper bounds of the em-

pirical variance by the MoM estimator as follows.

Theorem 1. Given a sample of 𝑟 blocks where each block contains
𝑏 records, a failure probability 𝑝 ′

𝑓
, parameters 𝑎 = ln(1/𝑝 ′

𝑓
) and

𝑑 = 1

2
−

√︃
𝑎
2𝑟 , we have the lower and upper bounds of 𝜎

2:

𝜎2 ≥ 𝜎2 =

2𝑏𝑑�̃�2 + 1 −
√︂
1 + 4𝑏𝑑�̃�2

(
1 − 𝑏−3

𝑏−1 �̃�
2

)
2

(
𝑏𝑑 + 𝑏−3

𝑏−1

)

𝜎2 ≤ 𝜎2 =

2𝑏𝑑�̃�2 + 1 +
√︂
1 + 4𝑏𝑑�̃�2

(
1 − 𝑏−3

𝑏−1 �̃�
2

)
2

(
𝑏𝑑 + 𝑏−3

𝑏−1

)
with probability at least 1 − 𝑝 ′

𝑓
.

3.2 𝜖-Approximate Query
𝜖-approximate algorithm. We design an algorithm to return the

𝜖-approximate empirical variance given an attribute 𝛼 in set D.

Algorithm 1 shows the pseudo-code of this algorithm. It runs in

iterations. First, we randomly sample 𝑟 blocks where each block

contains 𝑏 records (Algorithm 1 Line 3). The block number 𝑟 is

fixed according to the analysis in Section 3.4. With these records,

we calculate the lower and upper bounds, i.e., 𝜎2 (𝛼) and 𝜎2 (𝛼), of
empirical variance 𝜎2 (𝛼) by Theorem 1 and then use the average of

them as the estimated empirical variance �̂�2 (𝛼) (Algorithm 1 Lines

4-5). If the difference between 𝜎2 (𝛼) and 𝜎2 (𝛼) is no larger than

2𝜖 , we return �̂�2 (𝛼) for the query (Algorithm 1 Lines 6-7). Else, we

double the block size 𝑏 (Algorithm 1 Lines 8-9). If the algorithm

does not terminate when the number of visited records (we visit

records and add them into blocks only if they satisfy the predicates)

is no smaller than the total number 𝑛′ of records, we calculate the
exact empirical variance 𝜎2 (𝛼) by scanning the related attributes

of all records and return it for the query (Algorithm 1 Line 10).

Algorithm 2: Approximate Top-𝑘 Empirical Variance

Input: Dataset D, 𝑘 , 𝑝 𝑓 , 𝜖

Output: An approximate top-𝑘 query answer

1 𝐶 ← 𝐴, 𝑏 ← 𝑏0, 𝑅 ← ∅, 𝑖max ← ⌈log2 𝑛′

𝑏0
⌉, 𝑝 ′

𝑓
← 𝑝𝑓

𝑖max ·ℎ ;

2 while 𝑛𝑢𝑚𝑉𝑖𝑠𝑖𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑𝑠 < 𝑛′ do
3 Randomly sample 𝑟 blocks with block size 𝑏 from D;

4 for 𝛼 ∈ 𝐶 do
5 Calculate 𝜎2 (𝛼), 𝜎2 (𝛼) by Lemma 1 with 𝑝 ′

𝑓
;

6 𝑅 ← top-𝑘 attributes from 𝐶 according to 𝜎2 (𝛼);
7 Sort 𝛼 ∈ 𝑅 as 𝑅 = {𝛼 ′

1
, . . . , 𝛼 ′

𝑘
} in a non-increasing order

by their lower bounds;

8 if 𝜎2 (𝛼 ′
𝑖
) − 𝜎2 (𝛼 ′

𝑖
) ≤ 2𝜖 for 𝑖 ∈ [1, 𝑘] then

9 return 𝑅;

10 else
11 𝑏 ← 2𝑏;

12 𝜎2 (𝛼 ′′
𝑘
) ← the 𝑘-th largest 𝜎2 (𝛼) for 𝛼 ∈ 𝐶;

13 for 𝛼 ∈ 𝐶 do
14 if 𝜎2 (𝛼) < 𝜎2 (𝛼 ′′

𝑘
) then

15 𝐶 ← 𝐶 \ {𝛼};

16 𝑅 ← top-𝑘 attributes from 𝐶 according to 𝜎2 (𝛼);
17 return 𝑅;

Theoretical Analysis.We will use the following theorem to show

that Algorithm 1 returns an answer satisfying the definition of

𝜖-approximate empirical variance with high probability.

Theorem 2. Algorithm 1 returns an 𝜖-approximate query of the
given attribute satisfying Definition 1 with 1 − 𝑝 𝑓 probability.

Theorem 3 shows the expected running time of Algorithm 1.

Theorem 3. The expected running time of Algorithm 1 to return
𝜖-approximate empirical variance is:

𝑂

(
min

{
𝑛′,

log(log𝑛/𝑝 𝑓 )
𝜖2𝜃

})
.

Remark. With a similar analysis, we can prove that if we use

Chernoff bound or the bounds proposed by Maurer et al. [28] to

derive upper and lower bounds (Algorithm 1 Line 4), the expected

time complexity of these methods is the same as ours. We omit their

proofs for the interest of space. This shows that the time complexity

of our proposed algorithm with block sampling is asymptotically

the same as state-of-the-art solutions via random sampling.

3.3 Approximate Top-𝑘 Query
Approximate top-𝑘 algorithm. Algorithm 2 shows the pseudo-

code of the algorithm to answer the approximate top-𝑘 query on

empirical variance. Initially, we include all attributes 𝛼 ∈ 𝐴 in a

candidate set 𝐶 (Algorithm 2 Line 1). Then, the algorithm runs in

iterations. At the beginning of each iteration, we randomly sample

𝑟 blocks with block size 𝑏 from D, where the total sample size is

𝑚 = 𝑟 · 𝑏. The setting of 𝑟 will be discussed in the next subsection.

Then we calculate the lower and upper bounds of the empirical
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variance, i.e., 𝜎2 (𝛼) and 𝜎2 (𝛼) for attributes in 𝐶 (Algorithm 2

Lines 4-5) by Theorem 1. According to 𝜎2 (𝛼), we find the top-𝑘

attributes and put them into the result set 𝑅. We then sort attributes

in 𝑅 by their lower bounds 𝜎2 (𝛼) and have 𝑅 = {𝛼 ′
1
, . . . , 𝛼 ′

𝑘
}. If

𝜎2 (𝛼 ′
𝑖
) − 𝜎2 (𝛼 ′

𝑖
) ≤ 2𝜖 for 𝑖 ∈ [1, 𝑘], we return 𝑅 as the answer

to the query (Algorithm 2 Lines 8-9). Else, we double the block

size 𝑏 (Algorithm 2 Lines 10-11). Besides, we prune the attributes

whose upper bound 𝜎2 (𝛼) is smaller than the 𝑘-th largest lower

bound 𝜎2 (𝛼 ′′
𝑘
), which are impossible to become the top-𝑘 attributes

(Algorithm 2 Lines 12-15). If we still cannot return 𝑅 when the

number of records we have visited is no smaller than the total

number 𝑛′ of records, we return top-𝑘 attributes from 𝐶 according

to their exact empirical variances (Algorithm 2 Lines 16-17).

Theoretical analysis. The following theorem will show that Algo-

rithm 2 returns the answer satisfying the definition of the approxi-

mate top-𝑘 query with high probability.

Theorem 4. Algorithm 2 returns a set 𝑅 = {𝛼 ′
1
, . . . , 𝛼 ′

𝑘
} of 𝑘

attributes. Then 𝑅 will be an approximate top-𝑘 answer satisfying
Definition 3 with at least 1 − 𝑝 𝑓 probability.

Theorem 5 shows the expected running time of Algorithm 2.

Theorem 5. The expected running time of Algorithm 2 to return
the approximate top-𝑘 query is:

𝑂

(
min

{
ℎ · 𝑛′,

ℎ · log(ℎ · log𝑛/𝑝 𝑓 )
𝜖2𝜃

})
.

Remark. Let 𝑎′ = log(ℎ · log𝑛/𝑝 𝑓 ), it can be proved that the ex-

pected time complexity is 𝑂

(
min

{
ℎ · 𝑛′, ℎ · (𝑎

′+𝑎′2𝜖+
√
𝑎′3𝜖)

𝜖2𝜃

})
if we

use Chernoff bound to derive upper and lower bounds (Algorithm 2

Line 5) and integrate it into our top-𝑘 algorithm. The time complex-

ity of the approximate top-𝑘 algorithm with the state-of-the-art

empirical variance bounds [28] is𝑂

(
min

{
ℎ · 𝑛′, ℎ ·log(ℎ ·log𝑛/𝑝𝑓 )

𝜖2𝜃

})
.

We omit the details for the interest of space. This shows that the

time complexity of our algorithm is asymptotically the same as

state-of-the-art solutions via random sampling.

3.4 Block Number
Now we discuss how to set the block number 𝑟 . According to the

proof of Theorem 1, we bound Pr( |𝜎2−�̃�2 | >
√︃
𝜎2 (1 − 𝑏−3

𝑏−1𝜎
2)/(𝑏𝑑))

with failure probability 𝑝 ′
𝑓
. The smaller

√︃
𝜎2 (1 − 𝑏−3

𝑏−1𝜎
2)/(𝑏𝑑) is,

the closer 𝜎2 and �̃�2 are. Given the number𝑚 of sampling records

satisfying the predicates, failure probability 𝑝 ′
𝑓
and 𝑎 = ln(1/𝑝 ′

𝑓
),

we require 𝑏𝑑 to be as large as possible. Since 𝑚 = 𝑟 · 𝑏 and

𝑑 = 1

2
−

√︃
𝑎
2𝑟 , we rewrite 𝑏𝑑 as

𝑚
𝑟 (

1

2
−

√︃
𝑎
2𝑟 ). To make sure that

1

2
−

√︃
𝑎
2𝑟 is positive, 𝑟 > 2𝑎. Defining 𝛽 (𝑟 ) = 1

𝑟 (
1

2
−

√︃
𝑎
2𝑟 ), we need

to derive the maximum of 𝛽 (𝑟 ) when 𝑟 > 2𝑎. The first derivative

𝛽 ′(𝑟 ) of 𝛽 (𝑟 ), is 𝛽 ′(𝑟 ) = − 1

2
𝑟−2 +

√︃
9𝑎
8
𝑟−

5

2 . 𝛽 ′(𝑟 ) is positive when
2𝑎 < 𝑟 < 4.5𝑎 and negative when 𝑟 > 4.5𝑎, and it gets 0 at 𝑟 = 4.5𝑎,

which means that we get the maximum of 𝛽 (𝑟 ) at 𝑟 = 4.5𝑎. Since

block number 𝑟 should be a positive integer, we use ⌈4.5𝑎⌉ as the
default value of 𝑟 in our solution.

3.5 Optimization: Estimating the Expectation
Notice that in the derivation of empirical variance bounds in Lemma

4, we use the fact that 𝜇4 =
1

𝑛

∑𝑛
𝑖=1 (𝑥𝑖 −𝜇)4 ≤

1

𝑛

∑𝑛
𝑖=1 (𝑥𝑖 −𝜇)2 = 𝜎2.

Is there a tighter bound of 𝜇4? We observe that
1

𝑛

∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇)4 ≤

1

𝑛

∑𝑛
𝑖=1 ((𝑥𝑖 −𝜇)2 · (max𝑥𝑖 |𝑥𝑖 −𝜇 |)2) = (max𝑥𝑖 |𝑥𝑖 −𝜇 |)2 1𝑛

∑𝑛
𝑖=1 (𝑥𝑖 −

𝜇)2 = (max𝑥𝑖 |𝑥𝑖 − 𝜇 |)2𝜎2. However, we cannot have 𝜇 and the 𝑥𝑖
with max distance to 𝜇 before scanning all records. So we need

an upper bound 𝑐 ′ of (max𝑥𝑖 |𝑥𝑖 − 𝜇 |)2 based on the estimation

of 𝜇. For the lower (resp. upper) bound 𝜇 (resp. 𝜇) of 𝜇, we use

another MoM estimator based on 𝑟 estimators 𝜇1, . . . , 𝜇𝑟 , i.e., �̃� =

median(𝜇1, . . . , 𝜇𝑟 ). We will show the details of deriving 𝜇 and 𝜇

later. Since 𝑥𝑖 ∈ [0, 1], we can define 𝑐 ′ as 𝑐 ′ = (max{𝜇, 1 − 𝜇})2.
With the definition of 𝑐 ′, we have 𝜇4 ≤ 𝑐 ′𝜎2. Notice that when 𝑐 ′

gets its maximum value 1, we still have 𝜇4 ≤ 𝜎2 as before.

Similar to the derivation of the empirical variance bounds, we

first derive the concentration inequality to bound the gap between

the estimator 𝜇 and the expectation 𝜇.

Lemma 6. If the variables 𝑋1, . . . , 𝑋𝑏 ∈ [0, 1] are 4-wise indepen-
dent, 𝜇𝑙 =

1

𝑏

∑𝑏
𝑖=1 𝑋𝑖 , then

Pr( |𝜇𝑙 − 𝜇 | > 𝜖 ′) ≤ 𝜇 (1 − 𝜇) + 3𝑏𝜇2 (1 − 𝜇)2

𝑏3𝜖 ′4
.

Define a variable 𝑍 ′
𝑙
for each sampling block as 𝑍 ′

𝑙
= 1( |𝜇𝑙 −

𝜇2 | > 𝜖 ′) where 1 is an indicator function. Then we have E(𝑍 ′
𝑙
) =

Pr( |𝜇2
𝑙
− 𝜇2 | > 𝜖 ′). When setting 𝑝 ′

𝜖′,𝑏
as 𝑝 ′

𝜖′,𝑏
=

𝜇 (1−𝜇)+3𝑏𝜇2 (1−𝜇)2
𝑏3𝜖′4

,

we have the following lemma.

Lemma 7. [11, 24] MoM estimator has the following property:

Pr( |�̃� − 𝜇 | > 𝜖 ′) ≤ exp

(
−2𝑟

(
1

2

− 𝑝 ′
𝜖′,𝑏

)
2

)
when we have 𝑝 ′

𝜖′,𝑏
< 1

2
.

Deriving lower and upper bounds of the expectation. We can

derive lower and upper bounds of the expectation by the MoM

estimator as the following lemma.

Lemma 8. Given a sample of 𝑟 blocks where each block contains
𝑏 records, a failure probability 𝑝 ′

𝑓
, parameters 𝑎 = ln(2/𝑝 ′

𝑓
) and

𝑑 = 1

2
−

√︃
𝑎
2𝑟 , we have the lower bound of 𝜇:

𝜇 ≥ 𝜇 =

2�̃� +
√
3

𝑏
√
𝑑
−

√︂
3

𝑏2𝑑
+ 4

√
3�̃� (1−�̃�)
𝑏
√
𝑑
+ 2

𝑏2
√
3𝑑
+ 2

𝑏3𝑑

2

(
1 +

√
3

𝑏
√
𝑑

)
and the upper bound:

𝜇 ≤ 𝜇 =

2�̃� +
√
3

𝑏
√
𝑑
+

√︂
3

𝑏2𝑑
+ 4

√
3�̃� (1−�̃�)
𝑏
√
𝑑
+ 2

𝑏2
√
3𝑑
+ 2

𝑏3𝑑

2

(
1 +

√
3

𝑏
√
𝑑

)
with probability at least 1 − 𝑝 ′

𝑓
/2.

With the lower and upper bounds of the expectation, we have

the value of 𝑐 ′, i.e., 𝑐 ′ = (max{𝜇, 1 − 𝜇})2. Using 𝜇4 ≤ 𝑐 ′𝜎2, we
derive the tighter bounds of the empirical variance as follows.
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Table 2: Summary of datasets
Dataset Rows Columns
Enem 49,609,963 110

Census American Housing 79,728,345 130

Census American Population 109,869,032 142

Airline Reporting Carrier On-Time 199,874,820 56

Lemma 9. Given a sample of 𝑟 blocks where each block contains
𝑏 records, a failure probability 𝑝 ′

𝑓
, parameters 𝑎 = ln(2/𝑝 ′

𝑓
) and

𝑑 = 1

2
−

√︃
𝑎
2𝑟 , we have the lower and upper bounds of 𝜎

2:

𝜎2 ≥ 𝜎2 =

2𝑏𝑑�̃�2 + 𝑐 ′ −
√︂
𝑐 ′2 + 4𝑏𝑑�̃�2

(
𝑐 ′ − 𝑏−3

𝑏−1 �̃�
2

)
2

(
𝑏𝑑 + 𝑏−3

𝑏−1

)

𝜎2 ≤ 𝜎2 =

2𝑏𝑑�̃�2 + 𝑐 ′ +
√︂
𝑐 ′2 + 4𝑏𝑑�̃�2

(
𝑐 ′ − 𝑏−3

𝑏−1 �̃�
2

)
2

(
𝑏𝑑 + 𝑏−3

𝑏−1

)
with probability at least 1 − 𝑝 ′

𝑓
.

The time complexity of the algorithms with the optimization is

omitted for conciseness since when setting 𝑐 ′ as its upper bound 1,

the above bounds return back to Theorem 1.

4 EXPERIMENTS
In this section, we experimentally evaluate our proposed algorithms

against alternatives. All experiments are conducted on a Linux

machine with an Intel Xeon 3.7GHz CPU and 256GB memory.

4.1 Experimental Settings
Datasets. We use four large real datasets: Enem, Census American

Housing (hus), Census American Population (pus) and Airline Re-

porting Carrier On-Time (airline), where each includes more than

10M records. These four datasets are publicly available and tested

in [37, 38]. Each attribute in the datasets is linearly scaled to the

interval [0, 1] using the min-max normalizer. Table 2 shows the

summary of these four large real datasets. We use a 4-wise inde-

pendent hash function to hash records into hash clusters following

Oracle 12C [2] and then export the tables to a compact columnar

layout for each dataset. Then, we test all methods on these exported

tables. In the experiments, each metric is averaged over 10 cases.

Algorithms. We compare the 𝜖-approximate empirical variance

and approximate top-𝑘 empirical variance algorithms using differ-

ent bounds, i.e., Chernoff bound (dubbed as Baseline), the state-of-
the-art empirical variance bounds [28] (dubbed as COLT-Bound),
and bounds derived with our hashed block sampling (dubbed as

Hash-BS). For algorithms with Baseline (resp. COLT-Bound), the
steps are the same as Algorithms 1 and 2 except how upper and

lower bounds are derived and how records are sampled. For Baseline
(resp. COLT-Bound), it uses Lemma 1 (resp. 2) rather than Theorem 1

to derive 𝜎2 (𝛼) and 𝜎2 (𝛼); both methods sample records randomly

while ours samples by blocks. In addition, we include the exact

solution by scanning all records (dubbed as Exact). All algorithms

are implemented with C++ and compiled with full optimization.

Parameter settings. All approximate algorithms include a failure

probability 𝑝 𝑓 . We set 𝑝 𝑓 = 1/𝑛′ for the 𝜖-approximate and approx-

imate top-𝑘 algorithms using different bounds, i.e., Chernoff bound,

the state-of-the-art empirical variance bounds, and bounds derived

by our hashed block sampling. These three approximate algorithms

for approximate top-𝑘 empirical variance queries include an error

parameter 𝜖 to have a trade-off between the query efficiency and

accuracy. We tune 𝜖 in Appendix A. Experimental results show that

𝜖 = 0.01 achieves the best trade-off between the query efficiency

and accuracy on top-𝑘 queries in our algorithms. So we set 𝜖 = 0.01

as the default value in the rest of the experiments for top-𝑘 queries.

As for initial block size 𝑏0, we set 𝑏0 = 512 corresponding to the

number of values in a memory page, where the page size is 4KB

and each double value takes 8 bytes. Also, the initial sample size of

the approximate alternatives is set as𝑚0 = 512.

4.2 Effectiveness of 𝜖-Approximate Query
In the first set of experiments, we vary 𝜖 from 0.0025 to 0.05 and re-

port the results when 𝜖 is {0.0025, 0.005, 0.01, 0.025, 0.05} to validate
the query efficiency and accuracy of the 𝜖-approximate empirical

variance queries on four datasets. We fix the selectivity 𝜃 = 0.25

and examine the impact of 𝜖 . Figure 1 shows the running time of

our Hash-BS and the alternatives. We observe that our Hash-BS
outperforms the alternatives in all cases. Notably, our Hash-BS is
up to 569× faster than Exact when 𝜖 = 0.05 on dataset airline. Com-

pared with Baseline, Hash-BS achieves up to 75× speedup when

𝜖 = 0.01 on dataset enem. Also, our method is up to 16× faster than

COLT-Bound when 𝜖 = 0.0025 on dataset enem.

In the second set of experiments, we vary the selectivity 𝜃 from

0.1 to 1 and report the results when 𝜃 is {0.1, 0.25, 0.5, 1} to validate
the impact of 𝜃 on the query. At the same time, 𝜖 is fixed as 0.01.

As Figure 2 shows, our algorithm consistently outperforms the

alternatives in all cases again. Remarkably, our algorithm Hash-BS
has an up to 373× speedup over Exact when 𝜃 = 0.5 on dataset

airline. Comparing with Baseline, our method has an up to 75×
speedup when 𝜃 = 0.25 on dataset enem. Besides, our Hash-BS is
up to 16× faster than COLT-Bound when 𝜃 = 0.25 on dataset enem.

We further examine the average absolute error of all methods in

above two sets of experiments. Interested readers are referred to the

appendix for the details. The experiments show that our solution

achieves the best efficiency and smallest average absolute error in

all experiments, demonstrating the effectiveness of our Hash-BS.

4.3 Effectiveness of Top-𝑘 Query
Firstly, we evaluate the query efficiency of the empirical variance

top-𝑘 queries on all four datasets by varying 𝑘 from 1 to 16 and fix 𝜃

as 0.25. We show the results when 𝑘 is equal to {1, 2, 4, 8, 16}. Figure
3 shows the running time of our Hash-BS against the alternatives.
We observe that Hash-BS outperforms the alternatives in all cases,

which is up to 373× faster than Exact when 𝑘 = 1 on dataset pus.
In the comparison with Baseline, our Hash-BS is up to 74× faster

when 𝑘 = 4 on dataset enem. Besides, Hash-BS achieves an up to

23× speedup over COLT-Bound when 𝑘 = 1 on dataset pus.
Next, we vary the selectivity 𝜃 from 0.1 to 1 fixing 𝑘 as 4 and

report the results when 𝜃 is {0.1, 0.25, 0.5, 1}. Figure 4 compares

the running time of each algorithm. Our Hash-BS outperforms all
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Figure 1: Varying 𝜖: Running time of 𝜖-approximate empirical variance algorithms.
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Figure 2: Varying 𝜃 : Running time of 𝜖-approximate empirical variance algorithms.
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Figure 3: Varying 𝑘: Running time of empirical variance top-𝑘 algorithms.
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Figure 4: Varying 𝜃 : Running time of empirical variance top-𝑘 algorithms.

Table 3: Cache miss statistics (cache-misses/103 records)
Method enem hus pus airline
Exact 0.560 0.541 0.593 0.659

Baseline 16.8 17.6 18.7 25.2

COLT-Bound 17.5 17.1 18.3 25.2

Hash-BS 1.17 1.04 1.09 1.49

alternatives in all cases. Remarkbly, our method is up to 636× (resp.

29×) faster than Exact (resp. COLT-Bound) when 𝜃 = 0.5 on dataset

airline. Compared with Baseline, Hash-BS has an up to 92× speedup
when 𝜃 = 0.5 on dataset enem.

In addition, we evaluate the precision for two sets of experiments

about the top-𝑘 query. Due to the space limit, we defer the results

in Appendix A. Experiments show that our Hash-BS have the best
efficiency and report exact top-𝑘 answers with 100% precision.

4.4 Cache Miss Analysis
Finally, we conduct a set of experiments to do cachemiss analysis on

𝜖-approximate empirical variance query using different algorithms

with all four datasets. We fix 𝜖 as 0.01 and 𝜃 as 0.25 and report the

number of cache misses for every 10
3
records we retrieve in Table 3.

Compared with Exact, our method has a little bit more cache misses

every 10
3
records since the sequential scan used in Exact is cache-

friendly. Significantly, Hash-BS has one order of magnitude less

cache miss rates than Baseline and COLT-Bound among all datasets,

which contribute to our improvements over these alternatives.

5 RELATEDWORK
In feature selection, some techniques are proposed to select a small

number of relevant features [8, 25]. According to whether the labels

are available or not, feature selection methods are divided into

supervised and unsupervised methods. Typical supervised feature

selection methods include information gain [15], gini index [25] and

Fisher score [17]. Without the labels, unsupervised feature selection

methods are Laplacian Score [25], empirical variance [5, 8, 25, 30]

and so on. In particular, a plethora of work use empirical variance

in feature selection for text mining [5] and a discriminated feature

gets high empirical variance.

Finding the confidence interval for the variance of a popula-

tion has been studied for a rich history. If 𝑋1, . . . , 𝑋𝑛 are normally
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distributed following 𝑁 (𝜇, 𝜎2), an (1 − 𝛼) confidence interval for
𝜎2 is (𝑛 − 1)𝑠2/𝜒2

1−𝛼/2,𝑛−1 ≤ 𝜎2 ≤ (𝑛 − 1)𝑠2/𝜒2
𝛼/2,𝑛−1 proposed

by Tate and Klett [35] in 1959, where 𝑠2 =
∑𝑛
𝑖=1 (𝑋𝑖 − 𝜇)2/(𝑛 − 1),

𝜇 =
∑𝑛
𝑖=1 𝑋𝑖/𝑛 and 𝜒2

𝑝,𝑑𝑓
is the point on a central chi-squares dis-

tribution with 𝑑𝑓 degrees of freedom exceeded with probability

𝑝 . Burch [7] derives distribution-dependent and distribution-free

confidence intervals for the variance of a population, which are

asymptotically consistent. Also, some variance estimators [33, 34]

without confidence intervals are proposed. Since we need to calcu-

late the confidence interval with sample guarantees for the empiri-

cal variance, the methods above are not proper. The state-of-the-art

empirical variance bounds [28] are proposed by Maurer et al. based

on a concentration inequality for self-bounding random variables

[27], which is one of our main competitors.

Also, there exists a plethora of work focusing on approximate top-

𝑘 queries, such as [10, 21, 39, 40]. Chen et al. [10] propose efficient

algorithms for approximate top-𝑘 empirical entropy and mutual

information queries. Kim et al. [21] take advantage of 𝑞-grams and

inverted 𝑞-gram indexes available to find the approximate top-𝑘

substring matches. Wang et al. [39, 40] consider the approximate

top-𝑘 personalized PageRank queries.

6 CONCLUSION
This paper presents a hashed block sampling framework leverag-

ing the 4-wise independence property to estimate the empirical

variance efficiently. Experimental results show that our proposed

solution gains up to an order of magnitude speedup over the state-

of-the-art solution while providing more accurate results.
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A SUPPLEMENTARY EXPERIMENTS
Accuracy of 𝜖-Approximate Query. For the accuracy of the 𝜖-

approximate query with various 𝜖 , we measure the average absolute

error (dubbed as AAE) of the returned values shown in Figure 5. We

can observe that the average relative error is remarkably smaller

than the 𝜖 we set and our solution has a smaller average absolute

error than the alternative approximate solutions. As for the accuracy

of 𝜖-approximate query with various 𝜃 , all approximate methods

provide similarly accurate results as shown in Figure 6.

Accuracy of Top-𝑘 Query. As shown in Figure 7, our Hash-BS
reports the exact top-𝑘 answers with 100% precision for the approx-

imate top-𝑘 query with 𝑘 from 1 to 16. In the set of experiments

analysing the impact of 𝜃 , Hash-BS still reports the exact top-𝑘

answers with 100% precision as shown in Figure 8.

Tuning Error Bound 𝜖 of Top-𝑘 Query. We also examine the

trade-off between the query efficiency and accuracy of our Hash-
BS for the approximate top-𝑘 query on empirical variance. We

vary 𝜖 with {0.0025, 0.005, 0.01, 0.025, 0.05} when fixing 𝑘 = 4 and

𝜃 = 0.25) on all datasets. Figure 9 shows the results when tuning 𝜖 .

As 𝜖 increases, the running time decreases on all datasets. Besides,

𝜖 influences the accuracy, e.g., precision, of the queries. As shown

in Figure 9(b), when 𝜖 increases from 0.01 to 0.025, the precision

starts to become smaller than 100% on dataset hus. Therefore, we
choose 𝜖 = 0.01 as the default value for top-𝑘 queries.

B PROOFS
In this section, we provide some omitted proofs in Section 3. We

defer the proofs of Theorems 4-5 and Lemmas 3-9 to the technical

report, which is included in the supplementary material [3].

Proof of Theorem 1. We discuss the lower and upper bounds

of the empirical variance as follows. For conciseness, we define a

temporary variable 𝛾 as 𝛾 =

√︂
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Pr

©«(𝜎2)2 − 2𝜎2�̃�2 + (�̃�2)2 >

𝜎2
(
1 − 𝑏−3

𝑏−1𝜎
2

)
𝑏𝑑

ª®®¬
=Pr

©«|𝜎
2 − �̃�2 | >

√√
𝜎2

(
1 − 𝑏−3

𝑏−1𝜎
2

)
𝑏𝑑

ª®®®¬ .
Let 𝜖 ′ =

√︂
𝜎2

(
1−𝑏−3

𝑏−1𝜎
2

)
𝑏𝑑

and we have 𝑝𝜖′,𝑏 = 𝑏𝑑
𝑏

= 𝑑 = 1

2
−
√︃

𝑎
2𝑟 < 1

2
.

Applying Lemma 5, we have

Pr( |�̃�2 − 𝜎2 | > 𝜖 ′) ≤ exp

(
−2𝑟

(√︂
𝑎

2𝑟

)2)
= exp(−𝑎) = 𝑝 ′

𝑓
,

which completes the proof of Theorem 1. □

Proof of Theorem 2. Since we only answer the query for one at-

tribute 𝛼 , we omit the bracket including 𝛼 for conciseness. Consider

the first case that we return the estimation �̂�2 as the answer when

the difference between 𝜎2 and 𝜎2 is no larger than 2𝜖 . Recall that �̂�2

is the average of 𝜎2 and 𝜎2. Besides, we have 𝜎2 ≤ 𝜎2 ≤ 𝜎2. So the

distance between �̂�2 and 𝜎2 is at most half of the difference between

𝜎2 and 𝜎2, i.e., |�̂�2 − 𝜎2 | ≤ (𝜎2 − 𝜎2)/2. Since 𝜎2 − 𝜎2 ≤ 2𝜖 in this

case, we have |�̂�2 − 𝜎2 | ≤ 𝜖 , satisfying Definition 1. In the second

case we return 𝜎2 for the query. Obviously, the exact solution will

satisfy Definition 1.

The above analysis requires that the derived bounds hold for

all iterations. Since the probability of 𝜎2 ∉ [𝜎2, 𝜎2] is at most 𝑝 ′
𝑓

and there are at most 𝑖max = ⌈log
2
(𝑛′/𝑏0)⌉ iterations, the total

failure probability is at most 𝑖max · 𝑝 ′𝑓 = 𝑝 𝑓 . Therefore, Algorithm 1

will return an 𝜖-approximate empirical variance answer satisfying

Definition 1 with at least 1 − 𝑝 𝑓 probability. □

Proof of Theorem 3. For a given attribute 𝛼 , the first termination

condition of Algorithm 1 is that the difference between the upper

and lower bounds of the empirical variance, i.e., 𝜎2−𝜎2, is no larger
than 2𝜖 . Recall the expressions of the lower and upper bounds in

Theorem 1. Then we require that

𝜎2 − 𝜎2 =

√︂
1 + 4𝑏𝑑�̃�2

(
1 − 𝑏−3

𝑏−1 �̃�
2

)
𝑏𝑑 + 𝑏−3

𝑏−1
≤
√
1 + 4𝑏𝑑�̃�2

𝑏𝑑
≤ 2𝜖

where 𝑑 = 1

2
−

√︃
𝑎
2𝑟 and 𝑎 = ln(1/𝑝 ′

𝑓
). The above inequality is

equivalent to 4𝑏2𝑑2𝜖2 − 4𝑏𝑑�̃�2 − 1 ≥ 0. Solving this inequality, then

we require block size

𝑏 ≥ �̃�2 +
√︁
(�̃�2)2 + 𝜖2
2𝑑𝜖2

.

We also have

�̃�2 +
√︁
(�̃�2)2 + 𝜖2
2𝑑𝜖2

≤ �̃�2 +
√︁
(�̃�2)2 +

√
𝜖2

2𝑑𝜖2
≤ 𝜖 + 2

2𝑑𝜖2
.

When the number 𝑚 = 𝑟 · 𝑏 of sampling records satisfying the

predicates is no smaller than 𝑟 (𝜖 + 2)/(2𝑑𝜖2) ≜ 𝑚∗, we have 𝜎2 −
𝜎2 ≤ 2𝜖 and the stopping condition in this case will be satisfied.
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Figure 5: Varying 𝜖: Average absolute error of 𝜖-approximate empirical variance algorithms.
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Figure 6: Varying 𝜃 : Average absolute error of 𝜖-approximate empirical variance algorithms.
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Figure 7: Varying 𝑘: Query Precision of empirical variance top-𝑘 algorithms.
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Figure 8: Varying 𝜃 : Query Precision of empirical variance top-𝑘 algorithms.
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Figure 9: Tuning 𝜖: approximate top-𝑘 .

In the algorithm, the sample size𝑚 will double in each iteration

and check whether𝑚 is large enough to satisfy the termination con-

dition. So the algorithm terminateswith𝑚 ≤ 2𝑚∗ with at least 1−𝑝 𝑓
probability. The total number 𝑀∗ of records we have ever added to

the blocks for an attribute is at most 4𝑚∗ since we resample and dou-

ble the number of records for each iteration, which is 𝑂

(
𝑟

𝑑𝜖2

)
. Ac-

cording to the previous analysis, 𝑟 = ⌈4.5𝑎⌉ and 𝑑 is a constant with

this setting where 𝑎 = ln(1/𝑝 ′
𝑓
). In Algorithm 1, 𝑖max = log

2
⌈𝑛/𝑏0⌉

and 𝑝 ′
𝑓
= 𝑝 𝑓 /𝑖max. So𝑀

∗
is 𝑂 (log(log𝑛/𝑝 𝑓 )/𝜖2).

The second stopping condition indicates that the number of

records we have visited is no larger than the total number 𝑛′ of
records. Recall that 𝜃 is the ratio of the number of records satisfying

the predicates to the total number of records. Since all records are

hashed and we use the block sampling strategy, the ratio of𝑀∗ to
the total number of sampled records is also 𝜃 in expectation. Then

the expected running time of the 𝜖-approximate algorithm is

𝑂

(
min

{
𝑛′,

log(log𝑛/𝑝 𝑓 )
𝜖2𝜃

})
,

which completes the proof of the theorem. □
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