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ABSTRACT

Given a directed graphG, a source node s , and a target node t , the

personalized PageRank (PPR) of t with respect to s is the probability

that a random walk starting from s terminates at t . The average of

the personalized PageRank score of t with respect to each source

node v ∈ V is exactly the PageRank score π (t) of node t , which
denotes the overall importance of node t in the graph. A heavy

hitter of node t is a node whose contribution to π (t) is above a ϕ
fraction, where ϕ is a value between 0 and 1. Finding heavy hitters

has important applications in link spam detection, classification of

web pages, and friend recommendations.

In this paper, we propose BLOG, an efficient framework for

three types of heavy hitter queries: the pairwise approximate heavy

hitter (AHH), the reverse AHH, and the multi-source reverse AHH

queries. For pairwise AHH queries, our algorithm combines the

Monte-Carlo approach and the backward propagation approach

to reduce the cost of both methods, and incorporates new tech-

niques to deal with high in-degree nodes. For reverse AHH and

multi-source reverse AHHqueries, our algorithm extends the ideas

behind the pairwise AHH algorithmwith a new “logarithmic buck-

eting” technique to improve the query efficiency. Extensive exper-

iments demonstrate that our BLOG is far more efficient than alter-

native solutions on the three queries.
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1 INTRODUCTION

Let G = (V , E) be a directed graph, and define n = |V |. Given
a source node s , and a target node t , the personalized PageRank

(PPR) of t with respect to s , denoted as π (s, t), is the probability

that a random walk starting from s terminates at t . Define π (t) =
∑

s ∈V π (s, t); π (t) is exactly n times the PageRank of t .

This work was motivated by an interesting observation: a large

π (s, t) implies that s and t are mutually important to each other:

• The first direction is straightforward: a higher π (s, t) sug-
gests greater importance of t to s , as is the rationale behind

PPR in the first place.

• The other direction is more subtle: a higher π (s, t) indicates
that s makes a larger contribution to the PageRank of t (i.e.,

n · π (t)), thus increasing the importance of s to t as well.

Although PPRs have been widely applied in social networking

services to make friend recommendations, this is usually done by

leveraging only the first “direction of importance”. To illustrate,

consider the standard setup where nodes correspond to users and

edges correspond to friendship relationships. Upon detecting that

π (s, t) is high and yet t is not a friend of s , a social networking ser-

vice (e.g., LinkedIn1) would recommend t to s . The issue, however,

is that t may simply ignore the request from s — resulting in a “si-

lence after request” situation — if t does not consider s important.

The second “direction of importance” offers a promising ap-

proach to enhance the effectiveness of recommendations. Contin-

uing the above setup, if π (s, t) also makes a heavy contribution to

π (t), the chance of t willing to accept s naturally increases. Thus,

by taking both directions into account, we would be able to avoid

at least some of the “silence after request” encountered previously.

We introduce a new notion called “PageRank heavy hitter” to

quantify importance of the second direction, and thereby, gives

a convenient way to harness this direction for recommendation.

Specifically, s is said to be a ϕ-heavy hitter of t if π (s, t) > ϕ · π (t),
whereϕ is a real number satisfying 0 < ϕ < 1. Accordingly, a social

networking site would now recommend s to t only when (i) π (s, t)
is high enough, and (ii) s is a ϕ-heavy hitter of t for an appropriate

ϕ. It is worth mentioning that, although we have used social net-

working as an example, similar recommendation operations are

also crucial in other applications like link spam detection [6, 16]

and classification of web pages [17]. Our proposition is meaning-

ful in those applications as well.

However, discovering heavy hitters is non-trivial, partly be-

cause PPRs —which underlie heavy hitters — are very expensive to

compute precisely with the algorithms known so far. On the other

1See https://databricks.com/session/random-walks-on-large-scale-graphs-with
-apache-spark
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hand, significant progress has been made in recent years on ap-

proximating PPR values with small errors. This creates hopes that

certain approximation variants of heavy hitters could also be ex-

tracted efficiently. We will show that this is indeed the case when

one is willing to relax ϕ by a constant factor 0 < c < 1. This

gives rise to c-approximate heavy hitter. Defined formally in Sec-

tion 2.1, this notion intuitively says that, for the purpose of find-

ing ϕ-heavy hitters of t approximately, a node s must (i) be re-

ported if π (s, t) > (1 + c) · ϕ · π (t), and (ii) not be reported when

π (s, t) < (1− c) ·ϕ · π (t). Created in between is a “don’t-care” case

when π (s, t) is in [(1− c)ϕ · π (t), (1+ c)ϕ ·π (t)]; it is this relaxation
that brings about significant savings in the computation cost.

Contributions. We propose BLOG2, an efficient framework for

processing three types of approximate heavy hitter (AHH) queries,

which can be intuitively understood as follows (formal definitions

will appear in Section 2.1):

• Pairwise AHH query: Given a pair of nodes s and t , decide

whether s is a c-approximate heavy hitter of t .

• Reverse AHH query: Given a node s and a set T of nodes,

find all nodes t ∈ T such that s is a c-approximate heavy

hitter of t , possibly ignoring the don’t-care case.

• Multi-source reverse AHH query: Given two sets S,T of

nodes, the query answers, for each s ∈ S , a reverse AHH

query with respect to s and T .

Note that the pairwise AHH query is a special case of the reverse

AHH query, which in turn is subsumed by the multi-source re-

verse AHH query. They correspond to different recommendation

scenarios: specifically, “point-to-point” (e.g., introducing Alice to

Bob?), “one-to-many” (e.g., for Alice, make recommendations from

the people in her company), and “many-to-many” (e.g., make rec-

ommendations between people in the database area, and those in

networking), respectively.

Although PageRank heavy hitter is a new concept, in Section 2.2

we show that several existing algorithms [1, 3] designed for approx-

imate PPR computation can be adapted to answer AHH queries as

well. Our technical novelty, however, lies in leveraging the specific

properties of AHH to improve the computational complexities of

those adapted algorithms:

• In Section 3, We combine the Monte-Carlo approach of [3]

and the backward propagation algorithm of [1] to obtain our

first algorithm for the pairwise AHH query. This algorithm

is in spirit similar to the bidirectional approach of [22] (for

PPR computation), but incorporates analysis tailored made

for AHHs.

• In Section 4, we enhance our pairwise-AHH algorithmwith

new techniques for handling high in-degree nodes. Those

techniques improve the algorithm’s time efficiency without

compromising its approximation guarantees.

• In Sections 5 and 6, we describe algorithms for answering

reverse AHHandmulti-source reverse AHHqueries, respec-

tively. These algorithms are built upon the ideas used to

solve pairwise AHH queries, but in addition deploy a new

technique we call “logarithmic bucketing” that significantly

reduces the time complexities.

2Bidirectional heavy hitter with Logarithmic bucketing.

Notice that a reverse AHH query can be reduced to several

pairwise AHH queries, and similarly, a multi-source reverse

AHH query to several reverse AHH queries. Our algorithms

in Sections 5 and 6 improve over those simple reductions;

in order words, better time complexities can be acquired by

utilizing the characteristics of each individual problem.

After surveying the related work in Section 7, we in Section 8

experimentally compare the proposed BLOG method against alter-

native solutions using 6 real large datasets with up to 1.5 billion

edges. The results demonstrate that our solutions outperform the

competitors by a factor up to orders of magnitude under the same

approximation guarantees. Finally, Section 9 concludes the paper

with a summary of our findings.

2 PRELIMINARIES

2.1 Problem Definition

Let G = (V ,E) be the input graph, and set n = |V |. Given a source

node s , and a decay factor α , a random walk from s is a traversal of

graphG from s such that at each step, it either stops at the current

node with probability α , or randomly jumps to an out-neighbour

of the current node.

Definition 2.1. The personalized PageRank (PPR) π (s, t) of node
t with respect to s is the probability that a random walk from s

terminates at t . �

The value of π (s, t) reflects the importance of t from the view-

point of s (i.e., the first direction of importance explained in Sec-

tion 1).

Definition 2.2. The PageRank of node t is 1
n

∑

s ∈V π (s, t), i.e., the
average personalized PageRank of t with respect to all s ∈ V . �

The PageRank of t indicates the overall importance of node t in

the graph. Define π (t) = ∑

s ∈V π (s, t). Note that π (t) scales up the
PageRank of t by a factor of n, and is in the range of [0,n].

Definition 2.3 (Heavy hitter). Given a real value 0 < ϕ < 1, we

say that a node s ∈ V is a ϕ-heavy hitter of a node t ∈ V if π (s, t) >
ϕ · π (t). �

We will consider only ϕ · π (t) ≤ 1; otherwise t has no heavy

hitters, because π (s, t) ≤ 1 for any s ∈ V . The smallest ϕ at which

s is a ϕ-heavy hitter of t reflects the importance of s to t (i.e., the

first direction of importance explained in Section 1).

Deriving ϕ-heavy hitters would require the exact PPR values,

which are expensive to compute. We instead work with O(1)-
approximate heavy hitters defined as:

Definition 2.4 (c-approximate heavy hitter). Given a real value

0 < ϕ < 1, a constant real value 0 < c < 1, two nodes s, t in V , we

say that s is:

• a c-absolute ϕ-heavy hitter of t if π (s, t) > (1 + c)ϕ · π (t);
• a c-permissibleϕ-heavy hitter of t if (1−c)ϕ ·π (t) ≤ π (s, t) ≤
(1 + c)ϕ · π (t);
• not a c-approximate ϕ-heavy hitter of t , otherwise. �

Example 2.5. Given three source nodes s1, s2, and s3, a target

node t , assume that π (s1, t) = 0.026,π (s2, t) = 0.021, π (s3, t) =
0.018, and π (t) = 0.23. Let ϕ = 0.1. Since π (s1, t) = 0.026 > ϕ ·
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π (t) = 0.1 · 0.23 = 0.023, s1 is a ϕ-heavy hitter of t . Similarly, we

can verify that neither s2 nor s3 is a ϕ-heavy hitter of t . Set c = 0.1.

Since π (s1, t) = 0.026 > (1+c)·ϕ ·π (t) = (1+0.1)·0.1·0.23 = 0.0253,

s1 is a c-absolute ϕ-heavy hitter of t . For s2, π (s2, t) = 0.021 ≤
(1 + c)ϕ · π (t) = 0.0253, and π (s2, t) = 0.021 ≥ (1 − c) · ϕ · π (t) =
0.0207; hence, s2 is a c-permissableϕ-heavy hitter of t . For s3, since

π (s3, t) = 0.018 < (1−c)·ϕ ·π (t) = 0.0207, s3 is not a c-approximate

ϕ-heavy hitter of t . �

Next, we formalize the three types of approximate heavy hitter

queries to be studied, in ascending order of generality:

Definition 2.6 (Pairwise approximate heavy hitter (AHH) query).

Given a source node s ∈ V , a target node t ∈ V , a real value 0 <

ϕ < 1, and a constant real value 0 < c < 1, a pairwise AHH query

returns:

• true, if s is c-absolute ϕ-heavy hitter of t ;

• either true or false, if s is c-permissible ϕ-heavy hitter of t ;

• false, otherwise. �

Definition 2.7 (Reverse AHH query). Given a source node s ∈ V ,
a target setT ⊆ V , a real value 0 < ϕ < 1, and a constant real value

0 < c < 1, a reverse AHH query returns a set H ⊆ T such that, for

each node t ∈ T :
• if s is a c-absolute ϕ-heavy hitter of t , t must belong to H ;

• if s is a c-permissible ϕ-heavy hitter of t , t may or may not

belong to H ;

• otherwise, t must not belong to H . �

Definition 2.8 (Multi-source Reverse AHH query). Given a source

set S ⊆ V , a target set T ⊆, a real value 0 < ϕ < 1, and a constant

real value 0 < c < 1, a multi-source reverse AHH query returns, for

each node s ∈ S , a set Hs ⊆ T such that for each node t ∈ T :
• if s is a c-absolute ϕ-heavy hitter of t , t must belong to Hs ;

• if s is a c-permissable ϕ-heavy hitter of t , t may or may not

belong to Hs ;

• otherwise, t must not belong to Hs . �

In all three queries, ϕ is not fixed in advance, but instead, is

supplied at query time. This makes it infeasible to pre-compute

the results for all possible values of ϕ. Another straightforward

solution is to store the PPR value π (s, t) for all (s, t) ∈ V × V , but
its Θ(n2) space overhead is prohibitively expensive.

We, on the other hand, permit an algorithm to store the PageR-

ank value of each node t ∈ V (equivalently, π (t)), which requires

only O(n) space. These PageRank values can be computed with

the Power-Iteration method [26] in a pre-processing step. We also

require that the algorithm must be able to answer each query cor-

rectly with a probability at least 1 − 1/n.
Table 1 lists the notations frequently used in the paper (some

notations will appear in later sections).

Abbreviation Conventions. In subsequent discussions, we will

almost always concentrate on one specific query, whose values ofϕ

and c will be clear from the context, and remain the same through-

out the discussion. When this is true, we will refer to a c-absolute

ϕ-heavy hitter simply as an “absolute AHH”, and a c-permissible

ϕ-heavy hitter as a “permissible AHH”. Furthermore, by “a node s

Notation Description

G=(V , E) The input graph G with node set V and edge set E

n,m The number of nodes and edges inG , respectively

Out (v) The set of out-neighbors of node v

In(v) The set of in-neighbors of node v

π (s, t ) The exact PPR value of t with respect to s

α The decay factor in the random walk

ϕ The fraction threshold in heavy hitter definition (Ref.

Definition 2.3)

c The approximation factor in AHH definition (Ref. Def-

inition 2.4)

rmax The threshold to terminate backward propagation

d−max The maximum in-degree

r , p The two vectors maintained in the backward propaga-

tion (Ref. Section 2.2 for the detailed definition)

T The target set in the reverse AHH and multi-source

reverse AHH query

S The source set in themulti-source reverse AHH query

Table 1: Frequently used notations.

is an AHH of node t”, we mean that s is either an absolute or per-

missible AHH of t ; likewise, by “s is not an AHH of t”, we mean

that s is neither an absolute AHH nor a permissible AHH of t .

2.2 Adapting Existing Solutions

Monte Carlo. The classic solution for computing PPRs is the

Monte-Carlo approach. Given a source node s , the approach sam-

ples ω random walks, records the number c(t) of random walks

that terminate at t , and uses π̂ (s, t) = c(t )
ω as an estimate of π (s, t).

For the Monte-Carlo approach, we have the following lemma3:

Lemma 2.9 (Monte-Carlo). Let λ > 0 be an absolute error

threshold. When ω = (2 + λ) · log (1/pf )
λ2

, the Monte-Carlo approach

guarantees that |π̂ (s, t) − π (s, t)| ≤ λ holds with 1 − pf probability.

As a result, by setting λ = c ·ϕ ·π (t) and pf = 1/n, we can answer
the pairwise AHH querywithO

(

logn
(c ·ϕ ·π (t ))2

)

randomwalks. Given

a source node s and a target set T , define πmin = mint ∈T π (t).
Then, by sampling ω = O

(

logn
(c ·ϕ ·πmin )2

)

random walks from s , the

Monte-Carlo approach is able to answer the AHH query from s to

t , for any t ∈ T . Therefore, it also supports the reverse AHH query.

To support multi-source reverse AHH queries, it samples the same

number of random walks from each node s in the source set S .

Backward Propagation. The backward propagation algorithm is

proposed by Andersen et al. [1]. Instead of starting from the source

s , it starts from the target node t , and derives an estimation π̂ (v, t)
for each nodev ∈ V . The main idea is that given two nodes s and t ,

the personalized PageRank π (s, t) satisfies the following equation:

π (s, t) =
∑

v ∈In(t )

(1 − α) · π (s,v)
|Out(v)| +

{

α , if s = t ,

0, otherwise.
(1)

3All the omitted proofs can be found in Appendix A.
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Algorithm 1: Backward Propagation

Input: GraphG , target node t , probability α , residue threshold rmax

Output: p , r

1 r (t ) ← 1; r (v) ← 0 for all v , s ;

2 p ← 0;

3 while ∃v ∈ V such that r (v) > rmax do

4 p(v)+ = α · r (v);
5 r ′ = r (v); r (v) = 0;

6 for each u ∈ In(v) do
7 r (u)+ = r ′ · 1−α

|Out (u )| ;

The proof of this equation is shown in Appendix A. The equa-

tion indicates the relationships of the PPRs of different nodes with

respect to s , and we omit the source s in the following explana-

tion. The equation shows that the PPR of t can be represented with

the sum of the PPR of each v ∈ In(t), where In(t) is the set of in-
neighbours of t . Similarly, the PPR of v , where v is an in-neighbor

of node t , can be further represented with the sum of PPRs of the

in-neighbors of v . At the end, the PPR π (s, t) can be represented

by the sum of the PPRs of all nodes that can reach t with differ-

ent coefficients and a constant related to the source s . That is the

main intuition of the backward propagation. The pseudo-code of

the backward propagation is shown in Algorithm 1. The algorithm

maintains two vectors p and r , where r maintains the coefficient

part and p maintains the constant part for each source s . Initially,

it starts with p = 0 and r (v) = 0 for all v , t while r (t) = 1

(Algorithm 1 Lines 1-2). Then, the backward propagation applies a

series of pushback operations while maintaining that the following

equation holds for an arbitrary node s :

π (s, t) = p(s) +
∑

v ∈V
π (s,v) · r (v). (2)

The pushback operation adjusts the coefficient part r and the con-

stant part p based on Equation 1. The details of how they are ad-

justed is as shown in Algorithm 1 Lines 4-7. The backward propa-

gation terminates when for any node v ∈ V , r (v) is no larger than
rmax (Algorithm 1 Line 3). It is also proven in [1] that, when the

backward propagation finishes, the total number of pushback op-

erations can be bounded by
π (t )

α ·rmax
. Therefore, the backward prop-

agation algorithm has a time complexity of O
(

π (t )·cpush
rmax

)

, where

cpush is the cost of a pushback operation.

Notice that when the backward propagation finishes, it holds

that for any node v , r (v) < rmax . Combining with Equation 2, for

any node s , it holds that p(s) ≤ π (s, t) ≤ p(s) + rmax . Then, by

setting rmax = c · ϕ · π (t), we can answer pairwise AHH queries,

with a time complexity of O
(

cpush
c ·ϕ ·rmax

)

. To answer reverse AHH

queries or multi-source reverse AHH queries, we simply apply the

backward propagation algorithm from each target node t ∈ T .

3 PAIRWISE APPROXIMATE HEAVY HITTER

For pairwise AHH query, we first present an improved version of

the Monte-Carlo approach in Section 3.1. Next, inspired by BiPPR

[22], we apply a bidirectional approach to solve the pairwise ap-

proximate heavy hitter query in Section 3.2.

3.1 A Tighter Bound with Monte-Carlo

Recall that to solve the pairwise AHH query, the classic Monte-

Carlo approach works by setting λ = c · ϕ · π (t) and pf =

1/n, i.e., with a guarantee that the estimated PPR π̂ (s, t) satisfies
|π̂ (s, t)−π (s, t)| ≤ c ·ϕ ·π (t)with 1−1/n probability. Then, it can dis-
tinguish whether π (s, t) > (1+c) ·ϕ ·π (t) or π (s, t) < (1−c) ·ϕ ·π (t).
Next, we will show that we can provide a tighter bound if we want

to identify whether s is an AHH of t . The main rationale behind

the improved bound is that when the actual PPR is very large, then

it is not necessary to provide a bound λ = c · ϕ · π (t), and can

choose a looser bound to identify whether s is an AHH of t or

not. Clearly, with a loose bound, the amount of sampling required

by the Monte-Carlo approach will also decrease, which helps im-

prove the query efficiency. Next, we show with an example the

cases where we might be able to use a loose bound.

Example 3.1. Assume that ϕ, c are given and note that c < 1

according to Definition 2.4. Suppose for a given node s and node

t , it holds that π (s, t) > 100ϕ · π (t). Then, it suffices to set λ =

98c ·ϕ · π (t). To explain, by setting λ = 98c ·ϕ · π (t), we guarantee
that with 1 − 1/n probability, the estimated PPR follows that:

π̂ (s, t) > π (s, t) − 98c · ϕ · π (t) > 100ϕ · π (t) − 98c · ϕ · π (t)
> 2 · ϕ · π (t) > (1 + c) · ϕ · π (t).

Therefore, even if we set λ much looser than c ·ϕ ·π (t), we can still
correctly answer the pairwise AHH query. �

Inspired by the above observation, we present a new bound for

the Monte-Carlo approach and the new results are summarised as

shown in Proposition 3.2 .

Proposition 3.2. Let X be a random variable in the range of

[0, r ]. Given 0 < ϕ′ ≤ 1 and 0 ≤ c < 1, to distinguish:

• E[X ] > (1 + c) · ϕ′ · r ,
• E[X ] < (1 − c) · ϕ′ · r .

with a failure probability at most pf , it suffices to sample a number

O
(

log (1/pf )
ϕ ′

)

of random walks. �

With Proposition 3.2, it is not difficult to apply it on pairwise

AHH queries to derive a new bound. In particular, given a source s

and a target t , letX be a random variable such that if a randomwalk

starting from s terminates at t then X = 1 and otherwise X = 0.

Then, r = 1, and according to the definition of PPR, E[X ] = π (s, t).
Besides, let ϕ′ = ϕ · π (t) and pf = 1/n . Based on Definition 2.6,

the number of randomwalks required to answer the pairwise AHH

query can be bounded by O
(

logn
ϕ ·π (t )

)

. Also recall that ϕ · π (t) ≤ 1.

Compared to the trivial bound O
(

1
(ϕ ·π (t ))2 · logn

)

in Section 2.2,

the new bound improves over the trivial bound by 1
ϕ ·π (t ) .

3.2 Bidirectional Pairwise AHH

Next, we show how to use a bidirectional approach to solve pair-

wise AHH queries. The main idea of our proposed BLOG-P (BLOG

for Pairwise AHH) is to combine the Monte-Carlo approach and

the backward propagation algorithm to improve query efficiency.

Given a target node t , it first starts a backward propagation from
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t . The choice of rmax will be discussed later and recall that the

following equation holds when backward propagation terminates:

π (s, t) = p(s) +
∑

v ∈V
π (s,v) · r (v).

Besides, according to Algorithm 1, when the backward propaga-

tion terminates, r (v) < rmax for any node v ∈ V . Let X be a

random variable such that it takes r (v) if a random walk start-

ing from s terminates at v . According to the definition, E[X ] =
∑

v ∈V π (s,v) ·r(v). Also note that X ≤ rmax . Define Z = X/rmax ;

note that Z ∈ [0, 1]. After that, we can apply the following lemma

to derive an estimate of Z , and hence an estimate of π (s, t).

Lemma 3.3. LetX be a random variable in the range of [0, r ], y be

a positive real value. There is a value w such that w ≥ r + y. Given

0 < ϕ ≤ 1, 0 ≤ c < 1, to distinguish:

• y + E[X ] > (1 + c) · ϕ ·w ,

• y + E[X ] < (1 − c) · ϕ ·w ;

with a failure probability at most pf , it suffices to have:

• a number k = O
(

(ϕw−y
ϕ2w

+
1
ϕ
) rw log (1/pf )

)

of random sam-

ples of X , if ϕ ·w − y ≤ r , c · ϕ ·w ≤ r , and y ≤ ϕ ·w ;

• k = 0 samples otherwise.

Next, we show how to connect Lemma 3.3 to the pairwise AHH

query. To explain, after the backward propagation, let y = p(s),
w = π (t), r = rmax ,pf = 1/n, and recall that E[X ] = ∑

v ∈V π (s,v)·
r (v) according to our definition of the random variable X . Then,

based on Equation 2, y + E[X ] = π (s, t). Therefore, with Lemma

3.3, we can answer the pairwise AHH query, and the number of

random walks can be bounded byO
(

(ϕπ (t )−p (s)
ϕ2π (t ) +

1
ϕ
) rmax

π (t ) logn
)

.

Note that whenp(s) = 0 and rmax = 1, the new boundwill degrade

to the same as the one presented in Section 3.1.

Algorithm details. The pseudo-code of our BLOG-P algorithm is

as shown in Algorithm 2. Line 1 initializes rmax according to Equa-

tion 3. Algorithm 2 Lines 2-12 derives the estimated PPR π̂ (s, t) for
node t with respect to s . In Lines 2-8, the algorithm handles the

case when rmax is no larger than 1, and in Lines 9-12 it handles

the case when rmax > 1. Finally, Lines 13-16 identifies whether

return s as an AHH of t or not. In particular, if π̂ (s, t) is larger than
ϕ · π (t), then it returns true, and otherwise returns false.

Complexity Analysis. The cost of BLOG-P includes two parts:

the backward propagation and the forward random walks. Given

the backward threshold rmax , the backward propagation has a cost

ofO
(

π (t )·cpush
rmax

)

. Also in the forward random walks, according to

Proposition 3.3, the number of random walks can be bounded by

O
(

(ϕπ (t )−p (s)
ϕ2π (t ) +

1
ϕ
) rmax

π (t ) logn
)

. Note that 1
ϕ
≤ (ϕπ (t )−p (s)

ϕ2π (t ) +
1
ϕ
) ≤

2
ϕ
and the expected number of visited nodes in a randomwalk is 1

α ,

which is a constant. Hence, the expected cost of the forward ran-

dom walks can be bounded by O
(

rmax

ϕ ·π (t ) logn
)

. Combining these

two phases, we have that the total cost of BLOG-P algorithm is:

O

(

π (t) · cpush
rmax

+

rmax

ϕ · π (t) logn
)

.

When we set

rmax = π (t)

√

ϕ · cpush
logn

, (3)

the above complexity is minimized. However, notice that in back-

ward propagation, we need to set rmax ≤ 1, and otherwise the cost

of the backward propagation is zero and will not beO
(

π (t )·cpush
rmax

)

.

Therefore, it is possible that we do not achieve the minimized re-

sult since rmax derived according to Equation 3 may be larger than

1. Hence, we have the following two cases:

• Case 1: π (t)
√

ϕ ·cpush
logn

≤ 1. We do backward prop-

agation by setting rmax using Equation 3. Afterwards,

we do O
(√

1
ϕ
·
√

cpush · logn
)

random walks from s .

The time complexity of the bidirectional algorithm is

O
(√

1
ϕ
·
√

cpush · logn
)

;

• Case 2: π (t)
√

ϕ ·cpush
logn

> 1. In this case, we simply do

O
(

logn
ϕ ·π (t )

)

random walks from s .

Combining these two cases, we have that BLOG-P has a com-

plexity of O
(

min{
√

1
ϕ
·
√

cpush · logn,
logn
ϕ ·π (t ) }

)

. As we can see,

this cost reduces the term
logn
ϕ

of the Monte-Carlo approach to
√

logn
ϕ

but brings a new term
√
cpush . As we will see in our ex-

periments, in practice, the impact of the reduced term

√

logn
ϕ

is

more significant than the new term
√
cpush , and BLOG-P is three

orders of magnitude faster than the Monte-Carlo approach with

the tighter bound presented in Section 3.1.

4 DEALING WITH HIGH IN-DEGREE NODES

Recall that the cost of the backward propagation is
π (t )·cpush
αrmax

. In

the worst case, cpush can be d−max , i.e., the maximum in-degree of

nodes in the graph, which can be very large. For example, in Twit-

ter social graph, some celebrities may have millions of followers,

indicating a high in-degree for nodes representing celebrities. It is

desirable to handle such high in-degree nodes separately during

the backward propagation. For instance, we may pre-store back-

ward propagation results for such nodes. Yet if a backward prop-

agation starts from one of the followers of these high in-degree

nodes, we still need to do pushback on such nodes and it still incurs

high computational costs. In this section, we present techniques to

handle such high in-degree nodes to improve the worst case query

efficiency without compromising approximation guarantees.

4.1 Main idea

Usually, such high in-degree nodes, e.g., celebrities, only account

for a small portion of the total nodes. Therefore, if we can avoid

doing pushback operations on such a small portion of nodes

without compromising the approximation guarantee, the worst

case time complexity of our BLOG-P then can be improved. Let

(v1, · · · ,vk , · · · ,vn) be the sequence of nodes sorted in descending
order of their in-degrees. The idea is that for each node vi which
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Algorithm 2: BLOG-P Algorithm

Input: Graph G , source node s , target node t , probability α

Output:Whether t is an AHH of s or not

1 Calculate rmax according to Equation 3;

2 if rmax ≤ 1 then

3 Invoke Backward Propagation Algorithm (Algorithm 1);

4 Let k = 2(ϕπ (t )−p(s )(c ·ϕ )2π (t ) +
1
c ·ϕ )

rmax
π (t ) logn;

5 π̂ (s, t ) = p (s);
6 for i from 1 to k do

7 Sample a random walk starting from s . Let v the the ending

node of the random walk;

8 π̂ (s, t )+ = r (v )
k ;

9 else

10 Let k = 2( 1
c2
+

1
c ) ·

logn ·π (t )
ϕ

;

11 Sample k random walks, and let c be the number of random

walks terminate at t ;

12 π̂ (s, t ) = c/k ;
13 if π̂ (s, t ) > ϕ · π (t ) then
14 return true;

15 else

16 return false;

is one of the nodes with the top-k largest in-degrees, i.e., i ≤ k , we

pre-store the PPR π (s,vi ) of vi with respect to each source s ∈ V .
Then, during the backward propagation, we only do pushback op-

erations from nodes whose ranks are larger than k , and it termi-

nates as soon as r (v) is smaller than rmax for any node v with

rank larger than k . Clearly, with this strategy, we can avoid the

expensive pushback operations from nodes with high in-degrees.

It remains to show that the modified version of the backward

propagation, dubbed as light-weighted backward propagation (LBP),

can be used to derive the improved bound for BLOG-P. Recall that

the backward propagation always guarantees that:

π (s, t) = p(s) +
∑

v ∈V
r (v) · π (s,v).

The BLOG-P algorithm then generates a random variable X ∈
[0, rmax ] such that its expectation is equal to the term

∑

v ∈V r (v) ·
π (s,v) and hence can apply concentration inequalities to derive

approximation for π (s, t) so as to answer the pairwise AHH query.

However, for the LBP, there are mainly two issues: (i) Could LBP

terminate and provide the same time complexity as the original

backward propagation algorithm? (ii)Could we still apply the bidi-

rectional approach to derive an approximation for the PPR so as to

answer the AHH query? For the second issue, on one hand, if we

pre-store the PPRs for the high degree nodes, and stop doing push-

back operations from the top-k nodes, the maximum r (v) value
among all v ∈ V may exceed rmax and can be as high as 1, in

which case we cannot apply Equation 3 to derive the improved

bound. On the other hand, it will be difficult to generate a random

variable whose expectation is equal to the term
∑

v ∈V r (v) ·π (s,v).
Then, we may not be able to apply the concentration inequalities

to derive approximation for π (s, t) so as to answer the pairwise

AHH query. Next, we present the analysis of the proposed LBP

and resolve the two issues in the analysis.

4.2 Analysis of LBP

Wefirst show that the LBP algorithm can terminate and finish with

at most
π (t )

αrmax
pushback operations. The analysis mainly follows

the ones presented in [1]. Observe that in the LBP algorithm, after

each pushback operation, the L1 norm of p increases by at least

rmax · α . To explain, in each pushback operation, suppose this op-

eration starts from v , then r (v) > rmax and α portion of r (v) is
transferred to p(v). Also, note that p(v) ≤ π (v, t). Hence, the L1
norm ofp will not exceed sums of the PPR of t with respect to each

source s ∈ V , which is equal to π (t) according toDefinition 2.2, and
the number of pushback operations can be bounded by

π (t )
αrmax

.

Next, we explain how to extend the LBP to the bidirectional ap-

proach for the pairwise AHHquery. LetH be the set of vertices that

are among the nodes with top-k in-degrees. Rewrite the backward

propagation invariant as follows.

π (s, t) = p(s) +
∑

v ∈V \H
r (v) · π (s,v) +

∑

v ∈H
r (v) · π (s,v),

Note that the term
∑

v ∈H r (v) · π (s,v) can be directly obtained

with O(|H |) time by accessing the pre-stored PPRs. Regarding the

term
∑

v ∈V \H r (v) ·π (s,v), it is non-trivial to define a random vari-

able such that its expectation is equal to
∑

v ∈V \H r (v) · π (s,v),
which is the key idea behind the bidirectional approach for the

pairwise AHH query. However, we show that after a reformula-

tion, we can still apply the solution as proposed in Section 3.2. In

particular, we redefine:

r
′(v) =

{

r (v), if v ∈ V \ H ,

0, otherwise.
. (4)

Then,
∑

v ∈V \H r (v) · π (s,v) = ∑

v ∈V r
′(v) · π (s,v). Also, for

any node v ∈ V , r ′(v) ≤ rmax . Therefore, we can apply the simi-

lar analysis in Section 3.2 to obtain the similar result for BLOG-P

Algorithm. In particular, we can further define a random variable

whose expectation is
∑

v ∈V r
′(v) ·π (s,v) and apply the concentra-

tion inequalities to derive an approximate result for
∑

v ∈V \H r (v) ·
π (s,v) = ∑

v ∈V r
′(v) ·π (s,v) and hence the approximate result for

π (s, t). Then, the maximum in-degree of the node in V \H is d−
k+1

,

and the cost of a pushback operation in the worst case can be re-

duced from d−max to d−
k+1

.

5 REVERSE APPROXIMATE HEAVY HITTER

In this section, we present the proposed solution for the reverse

approximate heavy hitter query algorithm. Recall that the reverse

AHH query also takes as input a source node s . However, different

from the pairwise AHH query, it takes as input a target set T in-

stead a single target node. Then, the query asks for the set H such

that (i) if s is an absolute AHH of node t ∈ T , then node s must

exist in H , and (ii) if s is not an AHH, then s must not exist in H .

Clearly, a naive solution to reverse AHH queries is to apply the

BLOG-P algorithm for each target t ∈ T with respect to s . However,
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the complexity of this approach will be linear to the size of T , i.e.,

O

(

|T | ·min{
√

1

ϕ
·
√

cpush · logn,
logn

ϕ · π (t) }
)

,

which is not a favourable choice.

However, it is worth noting that the Monte-Carlo approach pro-

posed in Section 3.1, which is an inferior solution for the pairwise

AHH query, actually works quite well for the reverse AHH query.

To explain, for the Monte-Carlo approach, it derives an estimation

of π (s,v) for eachv ∈ V . Let tm be the node who has the minimum

PageRank of all nodes in T . Then, if we can guarantee that for tm ,

we answer an AHHquery, so will be the case for all the other nodes

in T . Hence, to answer reverse AHH queries, it suffices to sample

O
(

logn
ϕ ·π (tm )

)

random walks. This approach, as we will see in the

experiment, is still slow given a target set T with |T | ≪ |V |.
In this section, we will first demonstrate in Section 5.1 our core

idea, the logarithmic bucketing approach, which is a generalized

technique that can be applied to both reverse AHH queries and

multi-source reverse AHH queries. Then, in Sections 5.2 and 5.3,

we present how our BLOG-R (BLOG for reverse AHH) handles the

reverse AHH queries with our logarithmic bucketing approach.

The pseudo-code of BLOG-R is shown in Appendix B.

5.1 Logarithmic bucketing

The main observation of our logarithmic bucketing approach is

that in the naive solution, which applies the pairwise BLOG-P for

s and each node t ∈ T , all the pairwise AHH queries will need

to do the backward propagation algorithm from each target node,

resulting in increased overhead. However, note that we can share

the forward random walks and it is not necessary to repeat the

forward random walks |T | times. As a result, it is possible to tune

up the forward random walk cost and tune down the backward

propagation cost to achieve better query efficiency. However, the

main challenge is that for each target node t , the cost to do the

backward propagation from t will depend on π (t). If we simply set

the same rmax for all the nodes, it will be difficult to bound the

π (t) part since in the worst case their sum will beO(n).
Our logarithmic bucketing approach is proposed to tackle this

challenging issue. The high level idea of the logarithmic bucketing

approach is to divide the nodes into buckets in a logarithmic man-

ner as follows. Let πmin be the minimum PageRank of all nodes in

T . Then, we divide the interval [πmin ,n] into b = ⌈log2 (n/πmin)⌉
disjoint intervals as (n/2,n], (n/4,n/2], · · · , [n/2b ,n/2b−1]. Let Tj
be the set of nodes whose PageRank fall in the j-th interval. For

nodes inTj , we use the same rmax to do the backward propagation.

With this approach, we can bound the cost of backward propaga-

tions within bucket Tj since the cost will differ by at most a factor

of 2. By setting different rmax for different buckets, we can avoid

the issue mentioned in the beginning, i.e., the total cost depends

on the sum of π (t) for t ∈ T , which is O(n) in the worst case.

With the logarithmic bucketing approach, we further demon-

strate that when taking into consideration of all the buckets, the

final time complexity of our query algorithm BLOG-R for answer-

ing reverse AHH queries improves over the naive pairwise BLOG-

P algorithm by a factor of
√

|T |. As we will see in our experiment,

the logarithmic bucketing approach is so effective such that it is at

least an order of magnitude faster than the pairwise approach.

Besides, our logarithmic bucketing idea can be further general-

ized to the multi-source reverse AHH queries. With the logarith-

mic bucketing approach, we can further reduce the dependency on

the size of the source set |S | to
√
S . The details will be explained in

Section 6. In the following, we will explain our BLOG-R algorithm

for answering the reverse AHH queries.

5.2 Reverse AHH within a Bucket

We first consider the subproblem that handles the case when all

the target nodes are within the same bucket.

Problem 1. Given a subsetTs ⊆ T of vertices with the guarantee

that π (t) ∈ [w ′, 2w ′] for all t ∈ Ts . Given a source vertex s , we want
to report a subset R ⊆ Ts such that for each t ∈ Ts , it guarantees

that:

• if s is an absolute AHH of t , then t must belong to R.

• if s ia a permissible AHH of t , then t may (not) belong to R.

• otherwise, t must not belong to R.

with a success probability of 1 − 1/n. �

To solve this subproblem,we still apply a bidirectional approach

which gains a balance between the randomwalk cost and the back-

ward propagation cost. Note that for each node t ∈ Ts , if we apply
the BLOG-P algorithm, their PageRanks and the value of rmax are

different, which makes the backward propagation cost differ from

each other. Our strategy is to apply the same rmax for all backward

propagations. Then, since π (t) ∈ [w ′, 2w ′], the backward propaga-
tion cost can be bounded by O

(

|Ts | ·
w ′ ·cpush
rmax

)

. In the meantime,

to guarantee that for any node t ∈ Ts , we can determine whether

t is an AHH of s or not, it suffices to sample O
(

rmax

ϕ ·w ′ logn
)

ran-

dom walks. Therefore, by adding the cost together, we have that

the total cost to solve Problem 1 can be bounded by:

O

(

|Ts | ·
w ′ · cpush
rmax

+

rmax

ϕ ·w ′ logn
)

. (5)

It can be verified that when rmax = w ′
√

|Ts | ·cpush ·ϕ
logn ,

the time complexity in Equation 5 is minimized, which is

O
(√

1
ϕ

√

|Ts | · cpush · logn
)

. However, recall that rmax should not

be larger than 1. When rmax > 1, we still apply the Monte-Carlo

approach, which samples O
(

logn
ϕ ·w ′

)

random walks. Note that in

this case,

√

|Ts | ·cpush ·ϕ
logn > 1/w ′, which means O

(

logn
ϕ ·w ′

)

can be

bounded byO
(√

1
ϕ

√

|Ts | · cpush · logn
)

. Therefore, Problem 1 can

be solved withO
(√

1
ϕ

√

|Ts | · cpush · logn
)

time.

5.3 Putting it together

Next, we explain how to combine the cost of all buckets and derive

an improved bound. Let πmin be the minimum PageRank in T , it

is worth noting that πmin ≥ α , since π (t) is the sum of the PPR

of each node with respect to t , and t itself has a PPR no smaller

than α . Then, the total number b of buckets can be bounded by
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b = log2 (n/πmin) ≤ log2 (n/α) = O(logn). Let Tj be the set of

nodes in the j-th bucket. The total cost C can then be bounded by:

C = O(
b

∑

j=1

(
√

1

ϕ

√

|Tj | · cpush · logn)

= O(
√

1

ϕ
·
√

cpush · logn ·
b

∑

j=1

√

|Tj |)

Note that (x1 + · · · + xk )2 ≤ k · (x21 + · · · + x
2
k
), we have that:

C ≤ O(
√

1

ϕ

√

cpush · logn ·
√
b ·

√

√

√

√ b
∑

j=1

|Tj |)

= O(
√

1

ϕ

√

|T | · cpush · logn).

Here, it still needs further discussion to derive the final complex-

ity for the reverse AHH problem.

• Case 1. |T | > 1
ϕ ·cpush . In this case, we then simply use the

Monte-Carlo approach as proposed in Section 3.1, which has

a complexity of O
(

logn
πmin ·ϕ

)

, where πmin = mint ∈T π (t).
• Case 2. |T | ≤ 1

ϕ ·cpush . In this case, we use the loga-

rithmic bucketing approach, which has a complexity of

O(
√

1
ϕ

√

|T | · cpush · logn).
Combining the two cases, we have the final time com-

plexity of BLOG-R for the reverse AHH query, which is

O
(

min{ logn
ϕ ·πmin

,

√

1
ϕ

√

|T | · cpush · logn}
)

, improving over the so-

lution using BLOG-P algorithm by
√

|T | when |T | ≤ 1
ϕ ·cpush .

6 MULTI-SOURCE REVERSE AHH

In this section, we show how to apply our logarithmic bucket-

ing idea to answer multi-source reverse AHH queries, in which

case, the source is a set S instead of a single node compared to

reverse AHH queries. The query outputs the reverse AHH query

with the target set T for each source s ∈ S . A naive solution is

to apply the BLOG-R algorithm |S | times and the time complexity

isO
(

|S |min{ logn
ϕ ·πmin

,

√

1
ϕ

√

|T | · cpush · logn}
)

which depends lin-

ear to the size of S . As wewill show, by carefully balancing forward

and backward cost with our logarithmic bucketing approach, we

can improve over the naive solution by up to
√

|S |. The proposed
algorithm is denoted as BLOG-M (BLOG for multi-source reverse

AHH). The pseudo-code of BLOG-M is shown in Appendix B.

Rationale. The main observation is that in BLOG-R, the forward

cost O( rmax

ϕ ·w ′ logn) does not depend on the source node, and is the

same for any given source node. Therefore, given a source set S ,

the forward cost can be bounded by O(|S | rmax

ϕ ·w ′ logn). With this,

we can adjust rmax so as to balance the forward and backward cost

within a bucket. To consider the forward and backward cost within

a bucket, it is still suffices to consider the following subproblem.

Problem 2. Given a subsetTs of vertices with the guarantee that

π (t) ∈ [w ′, 2w ′] for all t ∈ Ts . Given every source vertex s ∈ S ,

we want to report a subset Rs ∈ Ts , such that for each t ∈ Ts , it

guarantees that:

• if s is an absolute AHH of t , then t must belong to Rs .

• if s is a permissible AHH of t , then t may (not) belong to Rs .

• otherwise, t must not belong to Rs .

with a success probability of 1 − 1/n.

For the above problem, the forward random walks will have a

cost of O
(

rmax · |S |
ϕ ·w ′ · logn

)

, while the backward propagation from

each target node has a cost of O
(

w ′ ·cpush · |Ts |
rmax

)

, and in total, the

subproblem can be solved with a time complexity of :

O

(

rmax · |S |
ϕ ·w ′ · logn + ·

w ′ · cpush · |Ts |
rmax

)

(6)

By setting rmax = w ′
√

ϕ ·cpush
logn ·

√

|Ts |
|S | , Equation 6 obtains

the minimized complexityO
(√

1
ϕ

√

|S | · |Ts | · cpush · logn
)

. Recall

that it requires rmax to be no larger than 1 to run the backward

propagation algorithm.When rmax > 1, i.e.,w ′
√

cpush
λ ·logn

√

|Ts |
|S | > 1,

we can simply run the Monte-Carlo approach from each source

node in S , which has a cost of O
(

logn · |S |
ϕ ·w ′ ·

)

. It is easy to ver-

ify that when rmax > 1, O
(

|S |
ϕ ·w ′ · logn

)

can be bounded by

O
(√

1
ϕ

√

|S | · |Ts | · cpush · logn
)

. Therefore, the cost to solve Prob-

lem 2 can be bounded by O
(√

1
ϕ

√

|S | · |Ts | · cpush · logn
)

.

Comparing the cost of Problem 2 and Problem 1, Problem 2

brings an additional
√

|S | term. Nevertheless, to consider the cost of

all buckets, we can still apply the similar approach as mentioned in

Section 5.3 since
√

|S | is a constant for a given multi-source AHH

query. Recall that the total cost of of reverse AHH query can be

bounded byO(
√

1
ϕ

√

|T | · cpush logn). Since themulti-source AHH

query only brings an additional
√

|S | term, the cost of multi-source

AHH query can then be bounded byO(
√

1
ϕ

√

|S | · |T | · cpush logn).
Define πmin = mint ∈T π (t), then, we have two cases:
• |T | ·cpush >

|S |
ϕ
, in this case, we can simply apply theMonte-

Carlo approach |S | times, which has a cost ofO( |S | ·logn
ϕ ·πmin

).
• |T | · cpush ≤ |S |

ϕ
, in this case, we apply the log-

arithmic bucketing approach, and derive the bound

O(
√

1
ϕ

√

|S | · |T | · cpush · logn).

The total cost of our BLOG-M for answering themulti-source re-

verse AHH query isO(min{ |S | ·logn
ϕπmin

,

√

1
ϕ

√

|S | · |T | · cpush · logn}),
improving over the naive solution, which invokes BLOG-R |S |
times, by a factor of

√

|S |. The pseudo-code and description of the

code can be found in Appendix.

7 RELATED WORK

PageRank and personalized PageRank are two fundamental met-

rics proposed by Page et al. [26] to measure the importance of a

node in the graph. For the interest of space, we refer readers to a
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detailed survey on PageRank [7], and focus on existing works on

personalized PageRank. Existing solutions for personalized PageR-

ank can be roughly divided into three categories: matrix-based

[8, 9, 12, 18, 19, 24, 32], local-update based [2, 7, 13, 14, 18, 25, 31],

and Monte-Carlo based approaches [5, 11, 22, 23, 27, 29].

The matrix-based approach, mainly relies on the matrix based

definition of personalized PageRank as follows:

πs = α · es + (1 − α) · ATD−1πs , (7)

where πs is the PPR vector with the i-th entry storing π (s,vi ), α
is the decay factor defined in Section 2, es is a unit vector with a

single nonzero entry at s , A is the adjacency matrix, and D is a di-

agonal matrix where the i-th entry equals the out-degree of node

vi . The main idea is to make an initial guess on πs and repeatedly

use Equation 7 to get new estimations of πs . The research work in

this category [12, 19, 20, 24, 28, 32] mainly exploit the characteris-

tics of graph structures, and decompose the adjacent matrix into

sub-matrices so as to improve the matrix multiplication efficiency.

The state-of-the-art solution in this category is BePI [19], which ex-

ploits the hub-and-spike structure for node reordering and block

elimination. They further sparsify a matrix term used in the PPR

calculation and apply a pre-conditioner to the iterative method to

improve the query efficiency. Their approach is shown to scale to

billion node graphs. Nevertheless, such methods are not applicable

to our problem since they will compute the PPRs for all the nodes

with respect to a source, resulting in high computational costs.

Another category is the local-update based approaches. The rep-

resentatives are the backward propagation algorithm [1, 18] and the

forward push algorithm [2]. There exist a lot of follow-up research

works based on these two algorithms. The first line of research

work [7, 13] mainly focus on how to improve the query efficiency

by indexing or using distributed computing. The other line of re-

search work [14, 25, 31] focus on applying these two algorithms

on dynamic graphs. They assume that all the forward push or the

backward propagation results are pre-computed and study how to

update the pre-stored results so as to reflect the graph changes.

However, only backward propagation algorithm can solve our prob-

lem, and as shown in our experiment, ourBLOG framework ismore

efficient than backward propagation in all three queries.

Finally, there exist a plethora of research work that apply the

Monte-Carlo approach to solve the personalized PageRank prob-

lem. The solutions in this category mainly rely on the random

walk based definition of personalized PageRank. The first line of

research work [4, 11, 27] study on how to improve the query

efficiency using purely random walk based solution through in-

dexing or distributed computing. Another line of research work

[22, 23, 29, 30] study on how to combine randomwalks with the lo-

cate update algorithms so as to improve the query efficiency. BiPPR

[22] is the state of the art for answering pairwise PPR queries with-

out indexing techniques. The main idea is to combine the random

walks and the backward propagation algorithm. However, simply

applying BiPPR with absolute error guarantees will result in infe-

rior performance according to our analysis in Section 3.1. Besides,

we present new techniques to handle high in-degree nodes so as

to improve the worst case query efficiency. Moreover, simply ap-

plying BiPPR to reverse AHH queries or the multi-source reverse

Name n m Type Max. in-degree

DBLP 613.6K 2.0M undirected 588

Youtube 3.2M 8.9M undirected 91751

Pokec 1.6M 30.6M directed 13,733

Flickr 2.3M 33.1M directed 21,001

LiveJournal 4.8M 69.0M directed 13,905

Orkut 3.1M 117.2M undirected 33,313

Twitter 41.7M 1.5B directed 770,155

Table 2: Datasets. (K = 103,M = 106,B = 109)

AHH queries will be very inefficient, and we demonstrate tech-

niques to tackle such issues. HubPPR subsumes BiPPR, and is an

indexing based solution to improve the efficiency of the pairwise

PPR query. The index structure also include pre-storing backward

propagation results from some hub nodes. However, the solution

cannot be similarly applied to our problem since in our problem

ϕ can be given at the query time, while in HubPPR the pre-stored

results depend on the input relative error guarantee. Most recently,

Wang et al. [30] propose to combine the forward push and random

walks to improve the query efficiency on top-k PPR queries, which

returns top-k nodes with highest PPRs with respect to a source s .

The solution is still ineffective to our problem since the solution

still calculates the PPRs for all nodes with respect to the source s .

8 EXPERIMENTS

In this section, we experimentally evaluate our proposed BLOG

framework for the three types of heavy hitter queries against the

states of the art. All the algorithms are implemented with C++ com-

piled with O3 optimization. All the experiments are conducted on

a Linux machine with an Intel 2.9GHz CPU and 400GB memory.

8.1 Experimental setting

Datasets and query sets. We use 6 real datasets: DBLP, Pokec,

Flickr, Livejournal, Orkut, and Twitter which are datasets widely

used in existing research work [19, 22, 23, 28–30] on personalized

PageRank. Table 2 summarizes the statistics of the datasets. To eval-

uate the pairwise AHH query, we randomly generate 1000 queries

with source node and target node uniformly chosen as the query

set. For the reverse AHH query, we first randomly generate 50

sources, and then for each source node, we vary the size of the tar-

get setT to examine the impact of |T | to the performance of each al-

gorithm. We vary |T | with {100, 200, 400, 800, 1600, 3200, 6400} for
each dataset. The nodes in the target setT is also uniformly chosen

fromV . For the multi-source reverse AHH query, we have two sets

of experiments. In the first set of experiments, we fix |T | to 800 and
vary the source set size with {100, 200, 400, 800, 1600, 3200, 6400}.
In the second set of experiments, we fix |S | to 800 and vary the

target set size with {100, 200, 400, 800, 1600, 3200, 6400}. We gener-

ate 50 queries for each set of the experiments to evaluate the per-

formance of the multi-source reverse AHH queries. We report the

average running time as the query performance of each method.

Methods. For all the three queries, we include the Monte-Carlo

approach with the tighter bound (Ref. Section 3.1), the backward

propagation algorithm (Ref. Section 2.2) as the baseline solutions.
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Figure 1: Number of heavy hitters with respect to ϕ.

Besides, we also include BiPPR, the state-of-the-art method to es-

timate pairwise PPR scores as our competitor. Notice that BiPPR

only provides relative guarantee on the estimated PPR. We derive

the solution (Ref. Appendix C for the details) so that it can provide

absolute guarantee to the PPRs and therefore can be used to an-

swer our heavy hitter problem. For reverse and multi-source AHH

queries, we apply our logarithmic bucketing approach to BiPPR

such that the forward cost and backward cost is balanced. For the

pairwise AHH query, we mainly evaluate the query efficiency of

our proposed BLOG-P against the three baseline solutions. For the

reverse AHH query, we compare our BLOG-R against the three

baseline solutions. Besides, we also include our pairwise algorithm

BLOG-P as a baseline, which simply applies the BLOG-P algorithm

multiple times for each target t in the target set of the reverse AHH

query. For the multi-source reverse AHH query, we further com-

pare our proposed BLOG-M against the three baseline solutions.

Besides, we also include our BLOG-R as a baseline, which applies

the BLOG-R algorithmmultiple times for each source in the source

set of the multi-source reverse AHH query.

Parameter settings. Recall that in random walks, there is a decay

factor α , which is usually set in the range [0.15, 0.2]. Following
previous work [22, 23, 23, 29], we set α = 0.2. Besides, in the back-

ward propagation, we have the cpush parameter as the average cost

of a pushback operation. To estimate the value, we randomly se-

lect 10000 target node and do the backward propagation algorithm

from each target node. Then, we use the average cost of a pushback

operation as cpush . Also, in the heavy hitter query, we have an in-

put ϕ as the threshold to distinguish nodes who contribute more

than ϕ portion of the PageRank of a target node. To have a under-

standing on the choice ofϕ, we have the following experiment. We

randomly select 1000 nodes and calculate their maximum ϕ to re-

turn {100, 200, 300, 400, 500} heavy hitters, and report the average

ϕ. As shown in Figure 1, the x-axis shows the number of heavy

hitters, and the y-axis shows the highest ϕ to return the required

number of heavy hitters. Note that y-axis is in log-scale. Interest-

ingly, to obtain a sufficient number of heavy hitters, e.g., 500 (this

number is also used in the Who-To-Follow service in Twitter), ϕ

needs to be set as low as 1× 10−5. In our following experiment, we

set ϕ to be 1× 10−5 according to this observation. Also, recall that
the AHH definition requires an input of constant c . We set c = 0.1,

in which case it guarantees that we will not admit a node s as an

AHH of t if π (s, t) is below 0.9ϕ portion of π (t).

OrkutFlickr Twitter
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Figure 2: Improvement to worst case query efficiency.

MC Backward BiPPR BLOG-P

DBLP 56.1K 158.1 4.1K 5.8

Pokec 86.9K 2.02K 11.7K 9.8

Flickr 83.2K 524.8 11.9K 7.7

LiveJournal 98.7K 722.1 18.2K 14.3

Orkut 158.2K 9.1K 25.8K 21.4

Twitter 424.8K 1.2K 91.4K 40.2

Table 3: Pairwise AHH query performance (ms). (K = 103)

8.2 Pairwise AHH queries

For the pairwise AHH queries, we have two sets of experiment. In

the first set of experiment, we examine the average performance

of our BLOG-P against existing solutions. Then, in the second set

of experiment, we examine the effectiveness of our LBP algorithm

to deal with high in-degree nodes on worst case query efficiency.

Table 3 reports the query efficiency of our BLOG-P, the Monte-

Carlo approach (dubbed as MC in Table 3), the backward propaga-

tion algorithm (dubbed as Backward in Table 3) and BiPPR. As we

can observe, our BLOG-P is always themost efficient algorithm and

outperforms the competitors by orders of magnitude. In particular,

our BLOG-P is at least three orders of magnitude faster than the

Monte-Carlo approach on all the tested datasets, an order of mag-

nitude faster than the backward propagation algorithm, and two

order of magnitude faster than BiPPR. Despite the fact that BiPPR

is the state-of-the-art approach to estimate PPRs, it achieves infe-

rior performance on heavy hitter queries since it discards the fact

that in heavy hitter queries, we only need to check whether the

PPR is larger or smaller than the pre-defined threshold. In contrast,

our BLOG-P captures this feature and significantly helps improve

the query efficiency for the pairwise AHH queries. This demon-

strates the effectiveness of the our BLOG-P algorithm.

Next, we further examine the worst case query efficiency

of our BLOG-P algorithm. We evaluate the performance by

pre-storing the PPR for the top {⌈log2 n⌉, 2⌈log2 n⌉, 4⌈log2 n⌉,
8⌈log2 n⌉, 16⌈log2 n⌉, 32⌈log2 n⌉} nodes and use the techniques in

Section 4 to handle the queries. Figure 2(a) reports the decrease of

theworst case cpush on three representative datasets: Flickr, Orkut,

and Twitter. As we can see, when we use the technique in Section

4, the worst case cpush can be reduced by an order of magnitude

on all the tested datasets when we pre-store the PPRs for the top

32⌈log2 n⌉ nodes. In case where the query efficiency is the most

important concern, e.g., for web services need real-time responses,
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our proposed solution can be applied so as to improve user expe-

riences. We further empirically evaluate the impact of our meth-

ods to the improvement of our solution to the worst case query

efficiency. However, it is rather difficult to design an effective ap-

proach to examine the improvement of our solution to the worst

case query efficiency since it is not clear which node will result

in the worst case. Therefore, we design the following qualitative

analysis. We randomly generate 100, 000 queries, and report the av-

erage query time of the slowest 1%. Figure 2(b) shows the relative

performance using our solution with the increase of the number of

pre-stored nodes. As we can see, the average query time reduces

with the increase of the pre-stored nodes, and with our technique,

BLOG-P can save up to 60% query timewhenwe pre-store the PPRs

for the top 32⌈log2 n⌉ nodes. This qualitatively evaluation further

confirms the effectiveness of our solution on improving the worst

case query efficiency. In Appendix D, we also include the experi-

mental evaluation of the preprocessing costs of our LBP.

In summary, the experimental result suggests that our BLOG-P

is a preferred choice on the pairwise AHH queries. Besides, our

technique to handle the high in-degree nodes is also effective to

improve the worst case query efficiency.

8.3 Reverse AHH queries

In the second set of experiments, we evaluate the query perfor-

mance of all the methods for reverse AHH queries. Figures 3 re-

ports the average query time of each method on four representa-

tive datasets: Pokec, Flickr, Orkut, and Twitter. In this set of ex-

periments, we mainly examine the effectiveness of our proposed

logarithmic bucketing approach with varying target set sizes.

From Figures 3(a)-(d). The main observation is that our BLOG-R,

designed for answering reverse AHHqueries, achieves the best per-

formance on all the datasets. For instance, on Pokec, our BLOG-R

is two orders of magnitude faster than the Monte-Carlo approach

when |T | = 100, and is still 5x faster than the Monte-Carlo ap-

proach when the size of the target set increases to 6400. Compared

to the backward propagation algorithm, our BLOG-R is two orders

of magnitude faster. Moreover, BLOG-R is at least 5x faster than

BLOG-P in most datasets when the target set size reaches 6400.

This is because our BLOG-R applies the logarithmic bucketing ap-

proach, and adjusts the cost of the backward propagation by taking

into account the number of nodes within a bucket to provide bet-

ter query efficiency. Our BLOG-P, which is designed for the pair-

wise AHH query, is also very competitive and outperformsMonte-

Carlo, backward propagation, and BiPPR in all cases.

In summary, the experimental result suggests that our logarith-

mic bucketing approach is very effective, and BLOG-R is the pre-

ferred choice to answer the reverse AHH query.

8.4 Multi-source reverse AHH queries

Finally, we evaluate our BLOG-M algorithm against other com-

petitors for multi-source reverse AHH queries. We still report the

results on four representative datasets: Pokec, Flickr, Orkut, and

Twitter. We have two sets of experiments. The first set of experi-

ments varies the size of the target size from 100 to 6400with a fixed

size of source set |S | = 800. The results are as shown in Figure 4.

In the second set of experiments, the size of the target set is fixed

to 800, and the size of the source set varies from 100 to 6400. Fig-

ure 5 reports the query efficiency of all the methods on the second

set of experiments. Note that y-axis is in log-scale. We note that

on some datasets, the performance of the Monte-Carlo approach

is not reported since it cannot finish one query within 12 hours.

Firstly, observe from Figures 4(a)-(d) that our BLOG-M is the

most efficient algorithm among all the competitors no matter how

we vary the size of the target set. In particular, our BLOG-M is

up to three orders of magnitude faster than backward propagation

algorithm, four orders of magnitude than BiPPR, and five orders

of magnitude than Monte-Carlo algorithm. Our BLOG-M is also

an order of magnitude faster than the naive BLOG-R since BLOG-

M applies the logarithmic bucketing approach and considers both

the source set size and the target set size to balance the costs.

When we vary the size of the source set, as shown in Figures

5(a)-(d), our BLOG-M is still the most efficient algorithm and is or-

ders of magnitude faster than other competitors. In particular, our

BLOG-M is four orders of magnitude faster than the Monte-Carlo

approach, three orders of magnitude faster than BiPPR, and up to

two order of magnitude faster than the backward propagation al-

gorithm. Besides, BLOG-M is up to two order of magnitude faster

than BLOG-R, since BLOG-M, which further demonstrates the ef-

fectiveness of the proposed logarithmic bucketing approach.

In summary, the experimental results suggest that our BLOG-M

algorithm is effective for multi-source reverse AHH queries, and is

the preferred choice for multi-source reverse AHH queries.

8.5 Heavy Hitter for friend recommendation

Finally, we examine the effectiveness of heavy hitters in personal-

ized PageRank for friend recommendations. Our experimental set-

tings are as follows: we test on the Flickr dataset, which includes

additional timestamp information on each edge. Following previ-

ous work [21], we use the edges before a timestamp t to predict the

existence of a certain edge after timestamp t . In our experiment, we

set t such that 95% of the edges exist before t . Then, we consider

the set U of users with at least 5 new edges after t , and randomly

select 1000 users fromU . Then, the evaluated method recommends

a set R of 500 users to each user u in U , and if there indeed exists

an edge from u to v ∈ R, we say that the prediction hits a rec-

ommendation. The intuition is that the larger the number of hit

prediction is, the more accurate the recommendation algorithm is.

We use the hit prediction as an indicator of the effectiveness of a

recommendation algorithm. We report the number of hit predic-

tion, and also the hit ratio, i.e., the number of hit predictions over

the total number of predictions of each method, in our experiment.

For personalized PageRank, we select the top-500 users with the

highest PPR with respect to a user u and recommend these 500

users to user u . As we mentioned in Section 1, PPR only considers

one direction of importance. For heavy hitters, we consider two

directions of importance. In particular, we first sort the nodes in

decreasing order of their PPR values with respect to u , and this or-

der indicates the importance of each user from the view point of u .

Then, we calculate the ratio r (v) of PPR π (u,v) to the global PageR-
ank π (v) for each node v , and then sort the nodes in descending

order of the ratio. This order indicates the importance of u from

the viewpoint of each user. Then, we simultaneously scan these
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Figure 3: Reverse AHH query efficiency.
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Figure 4: Multi-source reverse AHH query efficiency: varying |T |.
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Figure 5: Multi-source reverse AHH query efficiency: varying |S |.

# of hit predictions hit ratio

# of new edges PPR HH PPR HH

54615 8396 8981 1.68% 1.80%

Table 4: Recommendation effectiveness on Flickr dataset.

two lists in order and record the number of common nodes in these

two lists. The scan stops as soon as there are 500 common nodes

that appear in the scanned part of both lists. Then, these 500 users

are recommended to u .

The results are shown in Table 4. For the 1000 selected users,

there are in total 54615 new edges added. By using heavy hitters

(denoted as HH in Table 4), the number of hit prediction is 8981,

improving over PPR by around 7%. As we can see, the hit ratio

of both methods are less than 2%, which is consistently with the

findings in [15]. As suggested in our experiment, by considering

two directions of importance, heavy hitters can help improve the

recommendation accuracy over PPR. This demonstrates the effec-

tiveness of heavy hitters for friend recommendations.

9 CONCLUSION

This paper presents BLOG, an efficient framework for answering

three types of approximate heavy hitter (AHH) queries. For pair-

wise AHHqueries, we present how to combine theMonte-Carlo ap-

proach and the backward propagation tailored for pairwise AHH

queries; we show how to handle high in-degree nodes to improve

worst case query efficiency but still provide approximation guar-

antees. We further propose the logarithmic bucketing approach,

which groups target nodes with similar PageRanks together and

handle them in a batch to improve query efficiency of both reverse

AHH queries and multi-source reverse AHH queries. Extensive ex-

periments show that our solutions are orders of magnitude faster

than alternatives under the same approximation guarantee.
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APPENDIX

A THEOREMS AND PROOFS

Theorem A.1 (Chernoff Bound[10]). Let Ŷ be the average of

ω i.i.d random variables sampled from a distribution on [0, 1], with
a mean E[Y ], for any ϵ ,

Pr [Ŷ − E[Y ] ≥ ϵ · E[Y ]] ≤ exp

(

− ϵ2

2 + ϵ
ω · E[Y ]

)

,

Pr [Ŷ − E[Y ] ≤ −ϵ · E[Y ] ≤ exp

(

−ϵ
2

2
ω · E[Y ]

)

.

Proof of Lemma 2.9. Let Y be the random variable depending a

randomwalk R from s , and its value is 1 if it terminates at t and oth-

erwise 0. According to Definition 2.1, we know that E[Y ] = π (s, t),
and is in the range [0, 1]. Let ϵ = λ

π (s,t ) . According to Theorem

A.1, we have that:

Pr [| ˆπ (s, t) − π (s, t)| ≥ ϵ · E[Y ]] ≤ exp

(

− ϵ2

2 + ϵ
ω · E[Y ]

)

⇔Pr [| ˆπ (s, t) − π (s, t)| ≥ λ] ≤ exp

(

− λ2

2π (s, t) + λω
)

Since π (s, t) ≤ 1 and we need to provide guarantee for arbitrarily

given s and t , we can further derive that:

Pr [| ˆπ (s, t) − π (s, t)| ≥ λ] ≤ exp

(

− λ2

2 + λ
ω

)

Let exp
(

− λ2

2+λ
ω
)

= pf . Then we haveω = (2+λ) ·
log (1/pf )

λ2
, which

finishes the proof. �

Proof of Equation 1. We first prove for the case s , t . For each

in-neighbour v of node t , let X be an event that a random walk

from s reaches v but does not stop at v . It is easy to verify that the

probability is
(1−α )·π (s,v)

α . Given event X , consider an event Y that

the random walk stops at node t , since it has 1
|Out (v) | probability

chances to jump to t , and the probability that it terminates at t is

α , then the probability of event Y under X is:

Pr [Y |X ] = π (s,v) · (1 − α)
α

· α

|Out(v)| = π (s,v) · (1 − α)|Out(v)| | .

Adding them together for each in-neighbour of node t derives

Equation 1. When s = t , α portion of the random walk will ter-

minates at s , and hence an additional α should be added in the

equation. �

Proof of Proposition 3.2. Firstly, obtain a sequence X1,

X2, · · · ,Xω of samples of X , and define X̂ = 1
ω

∑ω
i=1Xi . Return

"yes" if X̂ > ϕ′ · r and "no" otherwise. According the definition

of pairwise AHH query, we want to guarantee that if E[X ] >
(1+c) ·ϕ′ ·r we return yes, i.e., X̂ > ϕ′ ·r , and if E[X ] < (1−c) ·ϕ′ ·r
we return no, i.e., X̂ < ϕ′ · r , with high probability. We next

prove that with the above answering method, we can distinguish

E[X ] > (1 + c) · ϕ′ · r and E[X ] < (1 − c) · ϕ′ · r with high proba-

bility. Define Y = X/r , Ŷ = X̂/r , then Y ∈ [0, 1]. First consider the
case E[X ] > (1 + c) · ϕ′ · r , we want to guarantee X̂ > ϕ′ · r with
1 − pf probability. It is the same to consider E[Y ] > (1 + c) · ϕ′,
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Algorithm 3: BLOG-R Algorithm

Input: Graph G , source node s , a target set T , probability α

Output:Whether t is an AHH of s or not for each t ∈ T
1 Let y(v) = 0 for v ∈ T ;
2 if |T | > 1

ϕ ·cpush
then

3 Use Monte-Carlo to calculate π̂ (s, t ) for each t ∈ T ;
4 y(t ) ← 1 if π̂ (s, t ) > ϕ · π (t ) and return y ;

5 Let Ti be a empty set for i = 1 to ⌊log2 (n/α )⌋ ;
6 for each t ∈ T do

7 Add t to set T[⌊log2 (n/π (t ))⌋] ;

8 Let ω = 0;

9 for i = 1 to ⌊log2 (n/α )⌋ do
10 Calculate r imax according to Equation 5 wherew ′ = n/2i and

|Ts | = |Ti |;
11 Record the number ωi of random walks required for bucket Ti ;

12 if ω i
> ω then

13 ω ← ωi ;

14 Sample ω random walks from s ;

15 for i = 1 to ⌊log2 (n/α )⌋ do
16 Let r imax = ω/ωi · r imax ;

17 for t ∈ Ti do
18 Invoke Algorithm 1 with t as target and rmax set to r imax ;

19 Calculate π̂ (s, t ) according to Equation 2;

20 if π̂ (s, t ) > ϕ · π (t ) then
21 y(t ) ← 1;

22 return y ;

and we want to guarantee that Ŷ > ϕ′ with 1 − pf probability. Let

ϵ = 1 − ϕ′/E[Y ]. Then, according to the Chernoff bound, we have:

Pr [Ŷ − E[Y ] ≤ −ϵ · E[Y ]] ≤ exp

(

−ϵ
2

2
ω · E[Y ]

)

⇔Pr [Ŷ ≤ ϕ′] ≤ exp

(

−(1 − ϕ
′/E[Y ])2
2

ω · E[Y ]
)

⇔Pr [Ŷ ≤ ϕ′] ≤ exp

(

−(E[Y ] − ϕ
′)2

2E[Y ] ω

)

Let exp
(

− (E[Y ]−ϕ
′)2

2E[Y ] ω
)

= pf , i.e., ω =
2E[Y ]·log (1/pf )
(E[Y ]−ϕ ′)2 . Then, we

guarantee that Ŷ > ϕ′ with 1 − pf probability. It suffices to derive

a upper bound of ω and it can be verified that f (z) = 2z ·log (1/pf )
(z−ϕ ′)2

is monotonically decreasing when z > ϕ′. Since E[Y ] > (1+ c) ·ϕ′,
it suffices to sample 2( 1

c2
+

1
c )

log (1/pf )
ϕ ′ random walks to provide

the correct answer with 1 − pf probability.

Next, we consider the other case, i.e., when E[X ] < (1 − c) ·ϕ′r ,
and we want to guarantee that X̂ < ϕ′ · r with 1 − pf probability.

It is the same to consider E[Y ] < (1 − c) · ϕ′, and guarantee that

Ŷ < ϕ′ with 1 − pf probability. Let ϵ = ϕ′/E[Y ] − 1. According to

the Chernoff bound, we have that:

Pr[Ŷ − E[Y ] ≥ ϵ · E[Y ]] ≤ exp

(

− ϵ2

2 + ϵ
ω · E[Y ]

)

,

Since ϵ = ϕ′/E[Y ]−1, it can be derived that E[Y ]+ϵ ·E[Y ] = ϕ′.
Therefore, to consider the probability Pr[Ŷ − E[Y ] ≥ ϵ · E[Y ]], it is

equivalent to consider the probability Pr[Ŷ > ϕ′], and we have:

Pr[Ŷ ≥ ϕ′] ≤ exp

(

− (ϕ
′/E[Y ] − 1)2

2 + ϕ′/E[Y ] − 1ω · E[Y ]
)

⇔ Pr[Ŷ ≥ ϕ′] ≤ exp

(

−(ϕ
′ − E[Y ])2
ϕ′ + E[Y ] ω

)

Let exp
(

− (ϕ
′−E[Y ])2
ϕ ′+E[Y ] ω

)

= 1/pf , i.e., ω =
(ϕ ′+E[Y ])·log (1/pf )
(ϕ ′−E[Y ])2 .

Then we guarantee that Ŷ < ϕ′ with 1 − pf probability. Simi-

larly, we only need to derive an upper bound of ω. Let f ′(z) =
(ϕ ′+z)·log (1/pf )
(ϕ ′−z)2 . When 0 < z < ϕ′, it can be verified that f ′(z) is

monotonically increasing. Then, by setting z = (1− c) ·ϕ, we have
the maximum number of samples required to provide the guaran-

tee. The number of random walks required is ( 2
c2
− 1

c ) ·
log (1/pf )

ϕ ′ .

Since c is a constant, it suffices to sample O( log (1/pf )
ϕ ′ ) random

walks to guarantee both cases, which finishes the proof. �

Proof of Lemma 3.3. Firstly, ify > w , we know thaty+E[X ] > w ,

and hence, we always return "yes". Next consider y ≤ ϕ · w . If

w · ϕ − y > r or c · ϕ ·w > r , (1 + c) · ϕ ·w − y exceeds r (making

y + E[X ] > (1 + c) · ϕ ·w impossible), and we always return "no".

Therefore, we only need to focus on the case when ϕ ·w − y ≤ r ,

c · ϕ ·w ≤ r , and ϕ ·w ≥ y. To distinguish:

E[X ] > (1 + c) · ϕ ·w − y
E[X ] < (1 − c) · ϕ ·w − y

It is equivalent to distinguish:

E[X ] > (ϕ ·w − y
r

+

c · ϕ ·w
r
) · r

E[X ] < (ϕ ·w − y
r

− c · ϕ ·w
r
) · r

By setting ϕ′ = ϕ ·w−y
r and c ′ = c ·ϕ ·w

r ·ϕ ′ , we can still use Proposi-

tion 3.2. The total number of random walks required is at most:

2( 1

c ′2ϕ′
+

1

c ′ϕ′
) · log (1/pf )

By replacing the values of ϕ′ and c ′, we have that the total num-

ber of random walks is:

2(ϕ ·w − y
c2ϕ2 ·w

+

1

c · ϕ ) ·
r

w
· log (1/pf )

Since c is a constant, we can further have the final complexity as

O
(

(ϕw−y
ϕ2w

+
1
ϕ
) rw log (1/pf )

)

. �

B ALGORITHM DETAILS OF BLOG-R AND
BLOG-M

BLOG-R. Algorithm 3 shows the pseudo-code of our BLOG-R al-

gorithm.We first checkwhether |T | > 1
ϕ ·cpush , and if the condition

is true, BLOG-R simply runs the Monte-Carlo method and return

the answer for the target set (Lines 2-4). Otherwise, BLOG-R ap-

plies the logarithmic bucketing approach to handle the query. In

particular, given the target setT , it first divides the nodes inT into

different buckets (Lines 5-7). Then, for each bucket, it calculates

the backward threshold r imax and the number ωi of random walks

required to achieve the approximation guarantee for each node in
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Algorithm 4: BLOG-M Algorithm

Input: Graph G , source set S , a target set T , probability α

Output:Whether t is an AHH of s or not for each s ∈ S, t ∈ T
1 Let y(s, t ) = 0 for s ∈ S, t ∈ T ;
2 if |T | > |S |

ϕ ·cpush
then

3 for each s in S do

4 Use Monte-Carlo to calculate π̂ (s, t ) for each t ∈ T ;
5 y(s, t ) ← 1 if π̂ (s, t ) > ϕ · π (t );
6 return y ;

7 Identical to Algorithm 3 Lines 5-13 except that r imax is set according

to Equation 6;

8 for each s ∈ S do

9 Sample ω random walks from s ;

10 Identical to Algorithm 3 Lines 14-21 except that we sample random

walks from each source (Line 14), and obtain y(s, t ) for each s ∈ S
and t ∈ T ;

11 return y ;

OrkutFlickr Twitter

10
1

10
2

10
3

10
4

10
5

10
6

0 4 8 16 32

Preprocessing time (sec)

k (× log(n))

10
−1

10
0

10
1

0 4 8 16 32

Index size / graph size

k (× log(n))

(a) (b)

Figure 6: Preprocessing cost of LBP.

the bucket (Line 10-11). Meanwhile, it records the maximum num-

ber ω of random walks required to achieve approximation guar-

antee for each bucket and sample ω random walks from s (Line

12-14). Then, BLOG-R runs the backward propagation from each

bucket. For bucket i , BLOG-R first tunes down r imax without com-

promising the approximation guarantee (Line 16), since it selects

the maximum number of random walks required to start from s .

With this strategy, it further reduces the backward cost from the

target nodes in bucket i since r imax is set to a larger value and

hence help reduces the backward cost. If the estimated PPR π̂ (s,v)
is above ϕ · π (v), BLOG-R sets its answer to yes, and otherwise

zero (Lines 20-21), and returns the answer for the entire target set

in Line 22.

BLOG-M. Algorithm 4 shows the pseudo-code of the proposed

BLOG-M. The key idea is similar to BLOG-R and the main differ-

ence is how to set rmax for each bucket. In particular, for each

bucket, rmax is set according to Equation 6, which balances the

cost of forward random walks and the backward propagation cost

within the bucket. Then, BLOG-M samples random walks from

each source in S . The backward propagation is similar to that of

BLOG-R, i.e., applies the same r imax for the nodes bucket Ti . Fi-

nally, it obtains the estimation π̂ (s, t) for each s ∈ S and t ∈ T ,

checks if s is AHH of t , and returns the final answer for the query.

C EXTENDING BIPPR TO HEAVY HITTER
QUERIES

In this section, we demonstrate how to extend BiPPR to answer

the AHH queries. In particular, given a source s , a target t , an ab-

solute error threshold λ, we extend BiPPR so that it provides an

estimated PPR score π̂ (s, t) satisfying that |π̂ (s, t) − π (s, t)| < λ. In

BiPPR, it first proceeds the backward propagation from t with a

pre-defined rmax , and then start random walks from s to derive

the estimation of π (s, t). According to Equation 2, we can define a

random variable X as follows: it starts a random walk from s , and

it stops at t , then X is r (v, t), otherwise is zero. Then, the expec-

tation of X is
∑

v ∈V r (v, t) · π (s,v). Also, note that r (v, t) < rmax .

Therefore, define Y = X/rmax , we know that Y can be bounded by

[0, 1], and to provide λ guarantee for PPR score, it suffices to pro-

vide λ/rmax guarantee forY . Apply the similar technique as shown

in Proof of Lemma 2.9, it can be proved that it suffices to sample
3rmax ·log (1/pf )

λ2
random walks. Recall that the cost of backward

propagation is O
(

π (t )·cpush
rmax

)

. Therefore, the total cost of BiPPR

is:

O

(

π (t) · cpush
rmax

+

3rmax · log (1/pf )
λ2

)

.

By setting rmax = λ ·
√

π (t )·cpush
3 log (1/pf ) , BiPPR derives the minimized

time complexity, which is O( 1
λ

√

π (t) · cpush · log (1/pf )). By set-

ting λ = c · ϕ · π (t), BiPPR can be extended to answer the pairwise

AHH queries.

D ADDITIONAL EXPERIMENTS

In this set of experiment, we present the preprocessing cost of the

LBP algorithm (ref. Section 4). Figures 6(a)-(b) demonstrate the pre-

processing time and space, respectively, of LBP on three represen-

tative datasets. As we can observe from Figure 6(a), with the in-

crease of k , i.e., the number of top-k highest in-degree nodes with

pre-stored PPRs, the preprocessing time also increases. The pre-

processing time is high but is still acceptable since we only need

to pre-calculate once and reuse the results for handing queries. Be-

sides, the preprocessing can be further improved with multi-core

parallelization. For the preprocessing cost, we report the ratio of

the index size to the graph size. As we can observe, when k reaches

32⌈log (n)⌉, the index size is around 10 times that of the graph size.

Recall that the worst case time complexity decreases by more than

an order of magnitude when k reaches 32⌈log (n)⌉, this demon-

strates the effectiveness of the LBP algorithm.
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