
Influence Maximization Revisited: Efficient Reverse
Reachable Set Generation with Bound Tightened

Qintian Guo

The Chinese University of Hong Kong

qtguo@se.cuhk.edu.hk

Sibo Wang
∗

The Chinese University of Hong Kong

swang@se.cuhk.edu.hk

Zhewei Wei

Renmin University of China

zhewei@ruc.edu.cn

Ming Chen

Renmin University of China

chennnming@ruc.edu.cn

ABSTRACT
Given a social network G with n nodes andm edges, a pos-

itive integer k , and a cascade model C, the influence maxi-
mization (IM) problem asks for k nodes in G such that the

expected number of nodes influenced by the k nodes under

cascade model C is maximized. The state-of-the-art approx-

imate solutions run in O(k(n +m) logn/ϵ2) expected time

while returning a (1 − 1/e − ϵ) approximate solution with at

least 1− 1/n probability. A key phase of these IM algorithms

is the random reverse reachable (RR) set generation, and this

phase significantly affects the efficiency and scalability of

the state-of-the-art IM algorithms.

In this paper, we present a study on this key phase and

propose an efficient random RR set generation algorithm

under IC model. With the new algorithm, we show that the

expected running time of existing IM algorithms under IC

model can be improved to O(k · n logn/ϵ2), when for any

node v , the total weight of its incoming edges is no larger

than a constant. Moreover, existing approximate IM algo-

rithms suffer from scalability issues in high influence net-

works where the size of random RR sets is usually quite large.

We tackle this challenging issue by reducing the average size

of random RR sets without sacrificing the approximation

guarantee. The proposed solution is orders of magnitude

faster than states of the art as shown in our experiment.

∗
Sibo Wang and Zhewei Wei are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389740

CCS CONCEPTS
• Mathematics of computing → Graph algorithms.

KEYWORDS
Influence Maximization; Sampling

ACM Reference Format:
Qintian Guo, Sibo Wang, Zhewei Wei, and Ming Chen. 2020. In-

fluence Maximization Revisited: Efficient Reverse Reachable Set

Generation with Bound Tightened. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (SIG-
MOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3318464.3389740

1 INTRODUCTION
In social networks, cascade models the word-of-mouth effect

that users adopt certain products, take up some opinions

or receive certain information due to the influence of their

friends. Given a social networkG with n nodes andm edges,

a positive integer k , and a cascade model C, the influence
maximization (IM) problem asks for k nodes in G that can

infect the largest number of nodes in cascade model C. IM

finds important applications in viral marketing, a marketing

strategy that a company provides their product freely to a

few influential users in social networks, in the hope that they

will recommend the product to their friends.

Kempe et al. [26] present the first seminal work on IM, and

show that finding k users which maximizes the influence

is NP-hard. They consider two popular cascade models, the

Independent-Cascade (IC) model and Linear-Threshold (LT)
model, and provide a general greedy algorithm that provides

(1 − 1/e − ϵ)-approximate solutions for both cascade models.

However, the proposed solution requiresΩ(k ·m·n·poly(1/ϵ))
running time and is prohibitively expensive on large social

networks. A plethora of research works then study how to

improve the efficiency of the IM problem. Most algorithms

rely on heuristics to identify those highly influential nodes

but fail to provide the desired approximation guarantee.

https://doi.org/10.1145/3318464.3389740
https://doi.org/10.1145/3318464.3389740

To tackle this challenging issue, Borgs et al. [8] make a

theoretical breakthrough that reduces the time complexity

toO(k(m + n) log2 n/ϵ3), which is almost linear to the graph

size, while still providing (1 − 1/e − ϵ)-approximation under

the Independent Cascade model. They further prove a lower

bound Ω(m + n) for the expected running time on general

graphs under IC model. The key idea of their proposed so-

lution is to generate a sufficiently large number of random

reverse reachable (RR) sets, and then apply the greedy algo-

rithm to select the k nodes. A line of follow-up research work

then focuses on how to reduce the number of random reverse

reachable sets to achieve better efficiency while providing

the same approximation guarantee. The representatives in-

clude [34, 37–39]. Tang et al. [39] present TIM/TIM+, which
reduces the time complexity to O(k(m + n)ϵ−2 logn), and
further show that the idea of reverse reachable sets can be

applied to both IC and LT model. Later, Tang et al. [38] pro-

pose IMM, Nguyen et al. [34] develop SSA and D-SSA, and
Tang et al. propose OPIM-C [37] to further improve the em-

pirical efficiency by reducing the number of random RR sets

generated without improving the time complexity. This line

of RR set based solutions is shown to provide superb effi-

ciency on large scale social networks under several popular

cascade models. For instance, on Twitter network with 1.5

billion edges, OPIM-C can return an approximate answer

within 10 seconds. However, these IM algorithms, using RR

set as the backbone, suffer from scalability issues in high in-

fluence networks as evidenced by existing empirical studies

[7]. How to tackle this challenge is still an open problem.

Motivated by this, in this paper, we present an in-depth

study on the random RR set generation, the key phase for all

existing RR set based solutions. Instead of trying to reduce

the number of RR sets, we consider from a totally different

perspective, by reducing the computational cost for gener-

ating a random RR set. We improve the efficiency of RR set

generation by effective subset sampling and show that our

new RR set generation algorithm improves over the existing

RR set generation algorithm by up to an order of magnitude.

With the new algorithm, we show that the expected running

time of existing IM algorithms under IC model can be im-

proved to O(k · n logn/ϵ2)1, when for any node v , the total
weight of its incoming edges is no larger than a constant.

We further show that without modifying the existing RR set

generation algorithm under LT model, the time complexity

can be improved to O(k · n logn/ϵ2) as well.
Moreover, in high influence networks, the size of a random

RR set tends to be extremely large, and it takes prohibitive

computational and memory costs. In such scenarios, even if

we apply our new algorithm to generate the random RR sets,

it is still too expensive since the size of a random RR set is

1
The lower bound in [8] only applies to general IC model.

Table 1: Frequently used notations.
Notation Description
G(V , E) a social network with node set V and edge set E

n,m n = |V |, andm = |E |

din (v) the in-degree of node v

IC(S) the expected influence of S

OPTk the maximal IC(S) for any size-k seed set

Sok an optimal seed set with IC(S
o
k) = OPTk

S∗k the size-k seed set returned by a certain algorithm

R a random RR set

R a set of random RR sets, that is, R = {R1,R2, . . .}

ΛR (S) the coverage of a seed set S with respect to R

I−
C
(S) a lower bound of the expected influence of S

I+
C
(Sok) an upper bound of the expected influence of Sok

too large. To remedy this deficiency, we propose a non-trivial

two-phase solution that significantly reduces the average

size of random RR sets, making our solution practical for

high influence networks. The main idea is that we first select

a set B of b nodes as the seeds and then select the remaining

k − b nodes. When we select the remaining k − b nodes, the

RR set generation process can immediately stop when any

node in B is reached. Thus, the average size of the random RR

sets can be reduced. The main challenge is how to retain the

approximation guarantee with this idea. We show that our

proposed solution still provides the same theoretical result

as existing solutions. Experimental results demonstrate that

with our solution, the average size of random RR sets can

be reduced by up to 700x. Our solution is further up to two

orders of magnitude faster than alternatives.

2 PRELIMINARIES
2.1 Problem Definition
Let G = (V , E) be a directed graph G with n nodes and m
edges representing a social network where each node v ∈ V
represents a user and each edge (u,v) ∈ E represents the re-

lationship, e.g., friendship, between u and v . If (u,v) ∈ E, we
say that u is the in-neighbor of v and v is the out-neighbor

of u. Assume that each edge e = (u,v) is associated with a

weight p(u,v) ∈ [0, 1], denoted as the propagation probabil-
ity. Given a set S of nodes in G, we consider the following
discrete-time stochastic cascade process C which applies to

both the Independent Cascade and Linear Threshold model:

• At timestamp 0, all the nodes in set S are activated and

the remaining nodes are inactive. A node activated will

remain activated in subsequent timestamps.

• If a node is activated at timestamp i , it has a chance to
activate its out-neighbors at timestamp i + 1 according to

some probability distribution (depending on the cascade

model), after which it cannot activate any node.

• The influence propagation terminates when none of the

activated nodes can activate other nodes.

Let IC (S) be the number of activated nodes in G for an in-

stance C of above stochastic propagation C. We denote set

S as the seed set and IC (S) as the influence of S in stochas-

tic propagation instance C , and denote IC(S) = EC ∈C[IC (S)]
as the expected influence of S under the cascade process C.
Table 1 lists the notations used frequently in this paper.

Definition 1 (Influence Maximization). Given a graph
G, a cascade model C, and an integer k , the influence maxi-
mization problem asks for a size-k seed set Sk with the largest
expected influence, i.e., Sk = argmaxS ′: |S ′ |=k IC(S

′).

Cascade Models. We focus on two widely adopted diffu-

sion models: the Independent Cascade (IC) model and Linear
Threshold (LT) model. Both models share the same discrete-

time cascade process as mentioned in Section 2.1 and the

main difference lies in how the inactive nodes get activated:

• IC model. Suppose node u gets activated at timestamp

i , then u has a single chance to activate its inactive out-

neighbor v with probability p(u,v) at timestamp i + 1.
• LT model. In the LT model, it assumes that for each node

v : (i) the sum of the propagation probability of its incom-

ing edges is no more than 1, and (ii) a probability λv is

selected uniformly at random from [0, 1]. If v is inactive

at timestamp i , then it becomes activated at timestamp

i + 1 if and only if

∑
u ∈A p(u,v) ≥ λv , where A is the set

of activated in-neighbor of v at timestamp i .

2.2 Existing Solutions
Asmentioned in Section 1, most existing scalable IMmethods

utilize a sampling technique called Reverse Influence Sampling
(RIS), proposed by Borgs et al. [8]. This technique is based on
the concept of random reverse reachable (RR) set. A random

RR set R is constructed in two steps: (i) randomly select a

node v ∈ V ; (ii) reversely sample the set R of nodes that can

activate v , such that for each node u ∈ V , the probability
that it appears in R equals the probability that u can activate

v . This set R is denoted as a reverse reachable set of v .
Under IC model, we can generate a random RR set as

follows: Generate a directed graph д by removing each edge

e with probability 1 − p(e) independently, and denote G as

the distribution of д. Given an instance д of distribution G

and a node v , the reverse reachable set R for v in д is the set

of nodes in д that can reach v . R is a random RR set if v is

sampled uniformly at random from V . Intuitively, if a set S
is highly influential, then there is a high chance that some

nodes in S appear in the RR set of a randomly generated node

Algorithm 1:Max-Coverage-Greedy(R,k)

1 S∗k = ∅;

2 for i = 1 to k do
3 v = argmaxv ′∈V (ΛR(S

∗
k ∪ {v

′})) − ΛR(S
∗
k);

4 S∗k ← S∗k ∪ {v};

5 return S∗k ;

v . Borgs et al. [8] establish the following connection between
the expected influence of S and a random RR sample.

Lemma 1. Let S ⊆ V be a seed set and R be a random RR
set generated with diffusion model C, then

IC[S] = n · Pr[S ∩ R , ∅].

Lemma 1 indicates that we can estimate the expected influ-

ence of an arbitrary seed set S using random RR sets. We say

S covers an RR set R if S ∩ R , ∅. Assume that we generate

a set R of random RR sets. Define the coverage ΛR(S) of a
seed S with respect to R as the number of RR sets in R that

is covered by S . Then, n · ΛR(S)/|R| provides an unbiased

estimation of the expected influence of S .

Borgs et al.’s solution. With Lemma 1, Borgs et al. [8] pro-

pose a two-step method for IM. Firstly, a sufficiently large

set R of random RR sets is generated. Given a node v and

the set R, define the marginal coverage of v w.r.t a set S as:

ΛR(v |S) = ΛR({v} ∪ S) − ΛR(S).

Then, in the second phase of their solution, it simply applies

the standard greedy algorithm as shown in Algorithm 1

that iteratively select the node with the maximum marginal

coverage with respect to the set of selected nodes in previous

iterations. Denote this set as S∗k and return S∗k as the solution.

Let Ŝok be the size-k seed set that covers the largest number

of RR sets in R and Sok be the optimal seed that provides

the highest expected influence. Then obviously, ΛR(Ŝ
o
k) ≥

ΛR(S
o
k). Then, the greedy algorithm guarantees that:

ΛR(S
∗
k) ≥ (1 − 1/e)ΛR(Ŝ

o
k) ≥ (1 − 1/e)ΛR(S

o
k).

Borgs et al. show that S∗k provides a (1−1/e−ϵ)-approximate

solution with probability at least 1 − 1/n if O(k(m +
n)ϵ−3 log2 n) edges are examined in the RR set generation.

TIM+ and IMM. Tang et al. [39] present an improved algo-

rithm TIM+ , which runs inO(k · (n+m)ϵ−2 · logn) time. The

main idea is to use Chernoff bound to decide if the number of

RR sets, instead of the number of edge examined, is sufficient

to provide an approximation guarantee. Later, Tang et al. [38]

present IMM that uses a martingale-based technique to allow

the random RR set to have some weak dependencies without

affecting the concentration bound. They apply below two

martingale-based concentration bounds tailed for IM.

Algorithm 2: RR set-Generation-IC(G)

1 Randomly sample a node v ∈ V and set R as {v};

2 Add v to queue Q and mark v as activated ;

3 while Q is not empty do
4 Let u be the top element of Q . Pop it from Q ;

5 for each in-neighborw of u do
6 if w is inactivated and rand() ≤ p(w,u) then
7 Addw to R;

8 Addw queue Q and markw as activated;

9 return R;

Lemma 2 ([38]). Given a fixed number θ of random RR sets
and a seed set S , for any λ > 0,

Pr

[
ΛR(S) − IC(S) ·

θ

n
≥ λ

]
≤ exp

(
−

λ2

2IC(S) ·
θ
n +

2

3
λ

)
,

Pr

[
ΛR(S) − IC(S) ·

θ

n
≤ −λ

]
≤ exp

(
−

λ2

2IC(S) ·
θ
n

)
.

As shown in [38], IMM offers the same guarantee as that of

TIM+, but gains better practical performance since it reduces

the number of RR set samples and thus the query time.

SSA and D-SSA.All previous methods are pessimistic about

the seed set selected in the greedy algorithm and thus apply

the union bound on the possible

(n
k

)
size-k seeds for the case

when the seed set selected does not provide an approximation

guarantee. Thus, the final time complexity will depend on

k and the larger k it is, the more RR sets are required to

provide the approximation ratio. Nguyen et al. [34] propose

SSA and D-SSA to alleviate the (empirical) dependency on k
by being optimistic about the seeds selected by Algorithm

1 and then use a validation phase to verify if the chosen

seed is good or not. They claim that they provide the same

theoretical result as IMM, but Huang et al. [24] show that the

theoretical analysis of SSA andD-SSA contains loopholes that

invalidate the claimed time complexity and approximation

guarantee. Huang et al. further present SSA-Fix to reassure

the (1 − 1/e − ϵ)-approximation guarantee with 1 − 1/n
probability and pinpoint that it is unclear how to provide

efficiency and approximation guarantee for D-SSA. Nguyen
et al. [33] further presentD-SSA-Fix to restore the (1−1/e−ϵ)-
approximation guarantee, but the efficiency guarantee of

D-SSA-Fix is still unclear, as pointed out in [24, 37].

OPIM-C. The latest RR set based solution for IM is theOPIM-
C algorithm [37].OPIM-C shares a similar spirit as SSA/D-SSA
in that they are both optimistic about the selected seed set

by the greedy algorithm. In OPIM-C, they first sample a set

R1 of RR sets to select the seed set S∗k and derive the upper

bound I+
C
(Sok) of IC(S

o
k). Next, they sample another set R2 of

random RR sets with |R2 | = |R1 | and derive a lower bound

I−
C
(S∗k) of IC(S

∗
k). The algorithm terminates as soon as

I−C(S
∗
k)/I

+
C(S

o
k) > (1 − 1/e − ϵ),

i.e., when the algorithm provides a (1− 1/e −ϵ)-approximate

solution. InOPIM-C, the authors present strategies to provide
a tighter upper bound I+

C
(Sok) of IC(S

o
k). With tighter bounds,

the number of RR set samples can be reduced, thus improving

the running time. By applying Lemma 2, Tang et al.[37]

derive the lower bound I−
C
(S∗k) as follows:

I−C(S
∗
k) =

©­«
(√

ΛR2 (S
∗
k) +

2ηl
9

−

√
ηl
2

)
2

−
ηl
18

ª®¬ · nθ2 , (1)

where ηl = ln(1/δl) and δl is the probability that the above

lower bound fails. By applying Lemma 2, the upper bound

I+
C
(Sok) is given as follows:

I+C(S
o
k) =

(√
Λu
R1
(Sok) +

ηu
2

+

√
ηu
2

)2
·
n

θ1
, (2)

where ηu = ln(1/δu) and δu is the probability that the above

upper bound fails; Λu
R1
(Sok), an upper bound of the coverage

of Sok with respect to R1, is derived as follows. Though the

optimal seed set Sok is unknown, the upper bound Λu
R1
(Sok)

can be obtained from the construction of S∗k due to the sub-

modular property of coverage function Λ(·). Let S∗i be the set
that contains the first i nodes selected by running the greedy
algorithm andmaxMC(S∗i , l) be the set of l nodes with the l
largest marginal coverage in R1 with respect to S∗i . Then,

Λu
R1
(Sok) = min

0≤i≤k

©­«ΛR1 (S∗i) +
∑

v ∈maxMC(S∗i ,k)

ΛR1 (v |S
∗
i)

ª®¬ .
2.3 RR Set Generation
All of the above solutions focus on reducing the number of

random RR sets and are identical in how random RR sets are

generated. Instead of first generating the graph д by flipping

a coin for each edge that incursO(m) cost, the existing RR set

generation algorithm for IC model, as shown in Algorithm 2,

starts a traversal fromv following the reverse direction of its

edges. Such an approach only examines the in-coming edges

of nodes in R, and thus significantly reduces the running

cost for generating an RR set. We refer readers to [37] on

how to generate a random RR set under LT model.

According to [8, 39], a random RR set can be constructed

inO(mn · IC(v
∗)) expected time, where IC(v

∗) is the expected

influence of a node v∗ sampled from V where each v is sam-

pled with a probability of din(v)/m. However, no further

research has presented any theoretical study on this RR set

generation phase. We next present a study to fill this gap.

Algorithm 3: SUBSIM(G)

1 Randomly sample a node v ∈ V and set R as {v};

2 Add v to queue Q and mark v as activated;

3 while Q is not empty do
4 Let u be the top element of Q . Pop it from Q ;

5 Let u[i] (i = 1, 2, . . .) be the ith in-neighbor of u;

6 p ← 1

din (u)
under WC;

7 i ← ⌈log(rand())/log(1 − p)⌉;

8 while i ≤ din(u) do
9 w ← u[i];

10 if w is not activated then
11 Addw to R;

12 Addw to queue Q and markw as

activated;

13 i += ⌈log(rand())/log(1 − p)⌉;

14 return R;

3 SUBSIM
This section presents our SUBSIM (Subset Sampling with

Influence Maximization) framework for IM. We present an

efficient RR set generation scheme underWC and Uniform IC

model in Section 3.1 and show improved theoretical results

on IM algorithms with this new scheme in Section 3.2. We

extend our SUBSIM to general IC model in Section 3.3.

3.1 A New RR set Generation Scheme
In the existing RR set generation algorithm (Algorithm 2), an

expensive step is that when a node gets activated, it examines

all of its in-neighbors and tries to activate each of them once

(Algorithm 2 Line 6). In particular, it generates a random

number for each incoming edge to determine if each of its

in-coming neighbors will be activated or not. That is actually

why the time complexity of existing IM algorithms depends

on the average degree, i.e.,m/n. With subset sampling, we

show algorithms such that the expected cost to sample an

edge e under IC model can be reduced to O (p(e)).
Connection with Subset Sampling. We make a connec-

tion between subset sampling with the selection of in-

neighbors. Given a set S = {x1, x2, x3, · · · , xh} of h elements,

and each with a weight 0 ≤ p(xi) ≤ 1. Denote µ as the

sum of all the weights, i.e., µ =
∑h

i=1 p(xi). The independent
subset sampling problem asks to sample a random subset X
such that each element xi in S will be independently added

to set R with probability p(xi). The problem of activating

the in-neighbors of a node v can be directly mapped to the

subset sampling problem. We first consider the case where

all weights are equal and denote this weight as p, which cov-

ers the scenarios of WC, where the weights of the incoming

edges of the same nodev are 1/din(v), and Uniform IC where

all edges have the same weight p.
When the probabilities are the same, the subset sampling

can be effectively solved with geometric distribution sam-

pling. In particular, we are interested in the event that we

successfully sample the first element from S after X trials.

The probability distribution of X follows the geometric dis-

tribution G(p) and the probability is given as follows:

Pr(X = i) = (1 − p)i−1 · p,

where i = 1, 2, 3, · · · . If i > h, it indicates that no element

is sampled from set S . Notice that in distribution G(p), all
trials are assumed to be independent, and therefore it still

guarantees that the sampling of each in-neighbor should be

independent. This leads to our RR set generation algorithm

for WC and Uniform IC model as shown in Algorithm 3. The

main difference fromAlgorithm 2 is Lines 7 and 13, where the

algorithm jumps to skip nodes that are not sampled, saving

computational costs. Assume that an h′ ≤ h is sampled

from distribution G(p), the first h′ − 1 elements are skipped

and it directly jumps to the h′-position, sampling element

xh′ . Then, it continues to sample the first element from the

remaining h − h′ nodes. This process is repeated until the

sampled h′ is larger than the number of remaining elements.

Note that there exist constant time solutions [27] to sample

from distribution G(p): Given a U generated uniformly at

random from (0, 1), we can sample h′ from G(p) as

h′ = ⌈logU /log(1 − p)⌉ .

To explain, h′ = i if and only if U ∈ [(1 − p)i , (1 − p)i−1),
which has a probability of (1−p)i−1 − (1−p)i = (1−p)i−1 ·p,
i.e., following distribution G(p). Therefore, the expected cost
of the sampling phase only depends on the number of times

we do geometric sampling and we have the following lemma.

Lemma 3. Given a set S of h elements each to be sampled
independently with probability p, then the expected cost for
sampling a subset R is O(1 + µ), where µ = h · p.

Proof. Based on the new sampling strategy, each record is

sampled with probability p. For all h records, the probability

to sample each edge is h ·p. Since we need to generate at least
one random number, the cost is O(1 + h · p) = O(1 + µ). �

Given above results, new bounds can be derived for IM.

3.2 Influence Maximization: A New Bound
With SUBSIM for RR set generation, we show that the time

complexity of existing IM algorithms can be tightened. We

first analyze the running cost of SUBSIM for RR set gener-

ation. The running cost can be bounded by the number of
edges examined during the RR set generation. Denote θ (x)
as a function depending only on x , we have the following
lemma to bound the running cost of SUBSIM.

Lemma 4. If θ is a concave function and for any node v ,∑
(u ,v)∈E p(u,v) ≤ θ (din(v)), the cost to generate a random

RR set under WC and Uniform IC model can be bounded by
θ (m/n) · IC({v

∗}), where v∗ is sampled from a distribution
where node v has θ (din (v))∑

w∈V θ (din (w))
probability to be sampled.

Proof. We first consider the cost to generate an RR set

with a fixed target node v . Let Pr[v
R
−→ u] denote the prob-

ability that u is included in the RR set, i.e., u is activated in

the reverse stochastic traverse from v; let Pr[v
R
−→ (w,u)]

indicate the probability that (w,u) is examined. Then, (w,u)
is examined if and only if u is activated by v , and with the

fact that the expected cost to examine (w,u) is p(w,u) under
geometric sampling, we can derive that:

Pr[v
R
−→ (w,u)] = Pr[v

R
−→ u] · p(w,u).

The expected cost to generate an RR set with respect to target

node v , denoted as E[R(v)], is:

E[R(v)] =
∑
(w ,u)∈E

Pr[v
R
−→ (w,u)] =

∑
(w ,u)∈E

Pr[v
R
−→ u] · p(w,u)

=
∑
u ∈V

Pr[v
R
−→ u] ·

∑
(w ,u)∈E

p(w,u) ≤
∑
u ∈V

θ (din(u)) · Pr[v
R
−→ u]

Now consider the cost of a random RR set, denoted as ER .

ER =
1

n

∑
v ∈V

E[R(v)] ≤
1

n

∑
v ∈V

∑
u ∈V

θ (din(u)) · Pr[v
R
−→ u]

Further observe that Pr[v
R
−→ u] is equal to the probability

that u can influence v , denoted as Pr[u → v]. Let θ (V) =∑
w ∈V θ (din(w)). Then, we can derive that:

ER ≤
θ (V)

n

∑
v ∈V

∑
u ∈V

θ (din(u))

θ (V)
· Pr[u → v]

=
θ (V)

n

∑
u ∈V

θ (din(u))

θ (V)

∑
v ∈V

Pr[u → v]

Notice that

∑
v ∈V Pr[u → v] indicates the expected influ-

ence of node u. Further let node v∗ be a node sampled from

a distribution where each nodev is sampled with probability

θ (din (v))
θ (V) . We can further derive that:

ER ≤
θ (V)

n

∑
u ∈V

θ (din(u))

θ (V)
IC({u})

=
θ (V)

n
· IC({v

∗}) ≤ θ (m/n) · IC({v
∗})

where the last inequality is due to the concavity of the func-

tion θ . This finishes the proof. �

Theorem 1. If θ is a concave function and for any node
v ,

∑
(u ,v)∈E p(u,v) ≤ θ (din(v)), the time complexity of IM

algorithms under WC and Uniform IC model to provide a (1 −

1/e − ϵ)-approximate solution with 1 − 1/n probability can be
bounded by O(k · θ (m/n) · n · logn/ϵ2).

Proof. Note from [38] that, the number of RR sets can be

bounded by O(
k ·n ·logn
OPTk ·ϵ 2

), where OPTk is the largest expected

influence among all seed sets with size no more than k . Then,
since IC({v

∗}) ≤ OPTk , we know thatER = O(θ (m/n)·OPTk).
Combining them together, we derive the time complexity:

O(
k · n · logn

OPTk · ϵ2
· ER) = O(k · θ (m/n) · n · logn/ϵ

2).

This finishes the proof. �

With Theorem 1, we immediately have the following conclu-

sions for three useful cases.

• Case 1: θ(x) = O(1).WC model falls into this case, and

the time complexity becomesO(k ·n · logn/ϵ2), improving

over existing solutions by O(m/n).
• Case 2: θ(x) = O(log(x)). The time complexity becomes

O(k · log(m/n) · n · logn/ϵ2), which still improves over

existing solutions by O(m/n/log(m/n)).
• Case 3: θ(x) = O(p · x). Uniform IC falls into this case,

and the time complexity becomesO(p ·k ·(m+n)·logn/ϵ2),
improving over existing solutions by O(p).

Extensions to LT model. Notice that under LT model, the

cost to sample an edge is also proportional to its weight

[37, 38], and it naturally holds that

∑
u ∈I N (v) p(u,v) ≤ 1,

where IN (v) is the set of the in-neighbors of v . By following

the proof of Lemma 4 and Theorem 1, it can be easily derived

that the time complexity of existing IM algorithms under LT

model can be reduced to O(k · n · logn · ϵ−2).

3.3 Extension to General IC Model
In Section 3.1, we only discuss WC and Uniform IC, where

the weights of the incoming edges of the same node are

equal. However, in practice, the weights might be skewed,

e.g., following exponential distribution, Weibull distribution

[38], or by learning from data [19, 20]. In this section, we

discuss how to handle general IC model. We still map the

selection of in-neighbors to subset sampling and have the

following lemma from [9] to bound its expected cost.

Lemma 5. Given a set S = {x1, x2, · · · , xh} of h elements
where xi is independently sampled with pi probability, the
expected running time to sample a subset X can be bounded
by O(1 + µ) with O(h) preprocessing time, where µ =

∑h
i=1 pi .

The main idea of Lemma 5 is to first divide the probability

into different buckets such that pi falls into a bucket Bk if

2
−k ≥ pi ≥ 2

−k−1
(resp. 2

−k ≥ pi), where 0 ≤ k ≤ ⌈log
2
h⌉−1

(resp. k = ⌈log
2
h⌉). Then, in each bucket Bk , we first treat all

probability in the bucket to be 2
−k
, and then apply geometric

sampling to sample a position h′. When h′ ≤ |Bk |, we skip

h′ − 1 elements (like Algorithm 3) and try to sample the

h′-th element in Bk . However, we further generate a random
variableU and successfully sample the h′-the element only

ifU is no larger than ph′/2
−k

where ph′ is the probability of

the h′-th element in Bk . By this strategy, the h′-th element

is still guaranteed to be sampled with 2
−k · ph′/2

−k = ph′
probability. For each bucket, the expected sampling cost

increases by at most twice (For the last bucket, it increases

to at most 1/h). Therefore, the total expected cost can be

bounded by O(1 + µ + logh), where the logh term comes

from sampling in O(logh) buckets.
Next, we show how to further reduce the logh term. Firstly,

we calculate the probability to do at least one geometric

sampling from each bucket. Since each bucket Bk includes

at least one geometric sampling can be calculated as p ′k =

1−(1−2−k) |Bk | . This can be calculated withO(logh) time as it

includes O(logh) bucket. Then, the problem becomes a new

subset set sampling problem, where we are independently

sampling each bucketBk with probabilityp
′
k . To avoid testing

for each bucket, an L × L table can be maintained where

T [i, j] records the probability that Bi is the current sampled

bucket and Bj (i < j) is the next bucket after i that will
be sampled. We can calculate the probability of table T in

O(L2) = O(log2 h) time. Also, given a current position i , we
can sample according to the probability T [i, i + 1],T [i, i +
2], · · ·T [i,h] inO(1) time using alias sampling [41]. Then, we

can sample the buckets first with O(1 + µ) time, and sample

within each bucket next. The total cost to sample in each

bucket can be bounded byO(1+µ) time. Hence, the total cost

to sample a subset X from set S can be bounded by O(1 + µ).
By Lemma 5 and Theorem 1, we have the following theorem.

Theorem 2. If θ is a concave function and for any node
v ,

∑
(u ,v)∈E p(u,v) ≤ θ (din(v)), the time complexity of IM

algorithms under general IC model can be bounded by O(k ·
θ (m/n)·n ·logn/ϵ2) so as to provide a (1−1/e−ϵ)-approximate
solution with 1 − 1/n probability.

However, to achieve O(1 + µ) expected running time, it

requires complicated preprocessing indices, which may ham-

per the practical performance on sparse graphs. To tackle

this issue, we present an index-free solution that runs in

O(k · log(m/n) · n · logn/ϵ2) expected time with existing IM

algorithms if

∑
(u ,v)∈E p(u,v) = O(log(din(v))) for any node

v . The solution only requires the incoming edges of the same

node to be sorted in descending order of their weights.

Index-free method. According to [9], if the elements

x1, x2, · · · , xh of set S are sorted in descending order of their

probability (p1,p2, · · · ,ph , respectively), one can do subset

sampling as follows to achieve O(1 + µ + logh) expected
sampling cost. In particular, we do bucketing by their sorted

positions such that elements whose positions fall into the

range [2k , 2k+1) belong to bucket Bk . Then, for bucket Bk , we

Algorithm 4: HIST(G,k, ϵ, δ)

1 ϵ1 = ϵ2 = ϵ/2, δ1 = δ2 = δ/2;

2 S∗b = SentinelSet(G,k, ϵ1, δ1);

3 S∗k = IM-Sentinel(G,k, ϵ, S∗b , ϵ2, δ2) ;

4 return S∗k ;

use p
2
k as the probability for geometric distributionG(p

2
k).

Whenh′ is sampled fromG(p
2
k), if 2k+h′ ≥ 2

k+1
, no element

is sampled from bucket Bk . Otherwise, it skipsh
′−1 elements

and jumps to position 2
k +h′. To guarantee that the probabil-

ity to samplex
2
k+h′ is stillp2k+h′ , we further sample a random

number U and only sample element x
2
k+h′ if U is no more

than p
2
k+h′/p2k . Since px ≤ p ⌈x/2⌉ , we can bound the total

expected cost to sample from each bucket toO(1+ µ + logh),
where the logh term comes from the number of buckets. The

above strategy can be easily implemented without additional

indices. When

∑
(u ,v)∈E p(u,v) = O(log(din(v))), the total

cost to sample the in-neighbors of nodev can be bounded by

O(log(din(v))). We can immediately apply Theorem 1 and

obtain that existing IM algorithms can achieve a time com-

plexity ofO(k · log(m/n) ·n · logn/ϵ2) when using the above

sampling strategy in RR set generation.

4 HIGHLY INFLUENTIAL SCENARIOS
In highly influential scenarios, i.e., high influence networks,

one of the biggest challenges of existing RR set based solu-

tions is that the average size of random RR sets is usually

very large, which is the main cause of high running time and

memory consumption. Therefore, one natural question is:

can we reduce the average size of random RR sets? If the an-

swer is yes, then such a new solution is likely to outperform

existing solutions. Motivated by this, we propose Hit-and-
Stop (HIST) algorithm to overcome the weakness of existing

RR set based IM algorithms by dramatically decreasing the

average size of random RR sets. In particular, a sentinel set

S∗b is selected in the first phase of HIST, and with the help

of S∗b , subsequent RR sets can be generated efficiently in the

second phase of HIST since the generation of an RR set can

stop as soon as it reaches any node in S∗b . We denote this

RR set generation algorithm to terminate when it reaches a

sentinel set as RR set-with-Sentinel algorithm (Algorithm 5).

At a high level, HIST consists of two phases as follows:

• Sentinel Set Selection. This phase seeks for a size-b node

set S∗b that satisfies IC(S
∗
b) ≥ (1 − (1 − 1/k)

b − ϵ1) · IC(S
o
k)

with high probability, where Sok is the optimal seed set.

• IM-Sentinel. This phase computes a size-(k − b) seed set

S∗k−b , and returns S∗k−b ∪ S
∗
b as the final result S∗k .

In the sentinel set selection phase, we aim to use only a small

number of samples to find a sentinel set S∗b of b nodes. When

Algorithm 5: RR set-with-Sentinel(G, S∗b)

1 The steps are similar to that of Algorithm 2 except

that it terminates the traversal and returns the RR

set when a node v ∈ S∗b is activated.

b = k , the sentinel set selection phase falls into existing

IM algorithms that provides a (1 − (1 − 1/k)k − ϵ) (≈ 1 −

1/e − ϵ) approximate solution. When b < k , even though

the sentinel set selection phase cannot provide a 1 − 1/e − ϵ
approximate solution, it can still provide 1 − (1 − 1/k)b − ϵ
approximate solution (as we will prove in Lemma 6). When

b is sufficiently small (much smaller than k), we only need to
provide a very loose approximation for set S∗b , and it allows

us to use a much smaller number of random RR sets to find a

size-b seed set that provides 1 − (1 − 1/k)b − ϵ approximate

solution compared to solving the IM problem. As we will see,

with such a loose approximation on S∗b , we can still provide

approximation guarantee after the second phase, i.e., the

IM-sentinel phase. To explain, we will compensate the first

phase by sampling more random RR sets in the second phase.

However, in the second phase, the generation of a random

RR set can terminate as soon as any node in sentinel set S∗b
is hit. Therefore, the cost to generate a random RR set can

be significantly reduced. Our HIST achieves up to 2 orders

of magnitude speedup over existing solutions, which shows

the effectiveness of our proposed solution. The pseudo-code

of the HIST algorithm is shown in Algorithm 4, which is

self-explanatory. Notice that we set ϵ1 = ϵ2 = ϵ/2 so that the
final error can be bounded by 1 − 1/e − ϵ1 − ϵ2 = 1 − 1/e − ϵ .
Similarly, we set δ1 = δ2 = δ/2 since both phases have a

failure probability of δ/2, and by taking a union bound, the

failure probability of the HIST algorithm is δ1 +δ2 = δ . Next,
we present more details of the two phases.

4.1 Sentinel Set Selection Phase
Algorithm 7 shows the pseudo-code for the sentinel set se-

lection phase. The main framework is similar to existing IM

algorithms in that we sample a certain number of RR sets

to see if the approximation ratio is satisfied. If not, we dou-

ble the number of RR sets and continue the steps until the

bound holds. In each iteration, we select nodes with greedy

algorithms and choose a sentinel set S∗b with proper size b.

Node selection with modified greedy. Algorithm 7 Lines

5-15 show the process of finding a sentinel set. If the size b is

fixed, we will include the first b nodes selected by the greedy

algorithm and make them as the candidate of the sentient set.

If this candidate set provides the approximation guarantee

(Algorithm 7 Lines 11-12), we return it as the sentinel set.

Recap that the sentinel set we select will be used to facili-

tate the second phase. In particular, any RR set in the second

Algorithm 6: Revised-Greedy(G,R,k)

1 The steps are similar to that of Algorithm 1 except

Line 3: if multiple nodes have maximum marginal

coverage, choose the one with the largest out-degree.

phase will terminate when it hits a node in the sentinel set. In

the standard greedy algorithm, however, it only cares about

the marginal coverage (Ref. the definition in Section 2.2) in

each iteration, and selects the node with the maximum mar-

ginal coverage with respect to the set of nodes selected in

previous iterations. This does not differentiate two nodes

when they share the same maximum marginal coverage but

one node has a larger out-degree than the other. However, in

our case, the node with a larger out-degree is obviously more

preferred since it is more likely to be hit, especially when

we only select a sentinel set with a small size. Therefore, we

modify the greedy algorithm slightly (Algorithm 6) so as to

better achieve the goal. When two nodes share the samemar-
ginal coverage, we select the node with a larger out-degree.

Notice that this brings at most additionalO(k · n · logn) cost
and does not affect the final time complexity of the HIST

algorithm. In this case, we are more likely to select influential

nodes (that get hit it selects) in Algorithm 6 compared to Al-

gorithm 1 which regards all nodes with the same importance

as long as their marginal coverage is the same.

Choosing the sentinel set S∗b with proper size. A naive

way to determine the size of the sentinel set is to choose

a constant and apply it to all choice of k . However, such a

strategy may not make full use of the pruning power of the

sentinel set. Therefore, we aim to automate the process of the

choice of b. Notice that there is a trade-off between the size b
and the speedup of the query efficiency. On the one hand, if b
is too small, we have less chance to hit the sentinel set in the

second phase, providing inferior speedup. Hence, we hope

that the size b to be as large as possible. On the other hand, if

b is too large, it is similar to solving the original IM problem.

Hence, a small sample size will not help provide the required

approximation ratio. To get a good trade-off of these two,

i.e., the cost of sampling in the first phase and the benefit

we can bring to the second phase, we provide a solution to

automatically find the choice of b as large as possible that

can satisfy the constraint given the generated RR sets. To

explain, given the set R1 of RR sets, we first apply Algorithm

6 to select a seed set S∗k , and we denote S∗a (1 ≤ a ≤ k) as the
set of nodes selected by the first a iterations in the modified

greedy algorithm. Then, we apply Equation 2 to derive an

upper bound I+
C
(Sok) for IC(S

o
k). However, we can not use R1

to derive a lower bound of IC(S
∗
a). To explain, the selected

set S∗a depends on R1 and we cannot apply the concentration

bounds to S∗a . Therefore, we apply the concentration bound

Algorithm 7: SentinelSet(G,k, ϵ1, δ1)

1 Set θ0 = 3 · ln (1/δ1) and θmax according to Eqn. 3;

2 Generate random RR sets R1 with |R1 | = θ0;

3 imax ← ⌈log2
θmax
θ0
⌉ ;

4 for i = 1 to imax do
5 Generate a size-k seed set S∗k by invoking

Algorithm 6 with R1 as the input;

6 Estimate the lower bound
ˆI−
C
(S∗a) based on the

result of Line 5, where a ∈ {1 . . .k};

7 Compute I+
C
(Sok) by Eqn. 2, setting δu =

δ1
3imax

;

8 Let b be the maximum a such that

ˆI−
C
(S∗a)/I

+
C
(Sok) > (1 − (1 −

1

k)
a − ϵ1);

9 Generate a set R2 of random RR sets with

|R2 | = |R1 | by invoking RR set-with-Sentinel ;

10 Compute I−
C
(S∗b) by Eqn. 1; set δl =

δ1
6imax

;

11 if I−
C
(S∗b)/I

+
C
(Sok) > (1 − (1 −

1

k)
b − ϵ1) then

12 return S∗b ;

13 Increase the size of R2 to 4|R1 | and compute

I−
C
(S∗b) again;

14 if I−
C
(S∗b)/I

+
C
(Sok) > (1 − (1 −

1

k)
b − ϵ1) then

15 return S∗b ;

16 double the size of R1;

17 return S∗b ;

to derive an estimation of the lower bound on IC(S
∗
a), denoted

as
ˆI−
C
(S∗a), as if R1 and S

∗
a were independent. Then, we select

the maximum a (Algorithm 7 Line 8) such that:

ˆI−C(S
∗
a)/I

+
C(S

o
k) ≥ (1 − (1 −

1

k
)a − ϵ1)),

and set b to this maximum a. However, since this is only
an estimation of the lower bound, we generate another set

R2 of RR set and R2 is independent of S
∗
b . Then, we can apply

concentration bound to derive the lower bound I−
C
(S∗b) using

Equation 1. Given I−
C
(S∗b), we are able to check if S∗b satisfies

the approximation ratio (Algorithm 7 Line 11), i.e.,

I−C(S
∗
b)/I

+
C(S

o
k) ≥ (1 − (1 −

1

k
)a − ϵ1).

If the approximation ratio is not satisfied, with the existing

paradigm, we will simply double the size of R1 and repeat

above process. However, since now we are only to estimate

the influence of S∗b , we can stop when any node in this set is

hit. Hence, the RR set-with-Sentinel algorithm can be applied

here and tends to save much time. To take this advantage,

if we find that S∗b violates the approximation guarantee, we

first increase the size of R2 and try to provide a tighter lower

bound I−
C
(S∗b) for S

∗
b (Algorithm 7 Lines 13-15). We increase

the size of R2 until |R2 | = 4 · |R1 | and stop increasing after-

wards since it actually indicates that S∗b we selected is most

likely not good enough to provide the approximation ratio.

Therefore, we select another set S∗b by doubling the size of

R1 (Algorithm 7 Line 16) and repeat the whole process until

we find the seed set S∗b satisfying the approximation ratio.

Stopping condition. We now give the following lemma to

establish the stopping condition of Algorithm 7. It provides

a bound on the number of random RR sets required in R1 in

the sentinel set selection phase.

Lemma 6. Let R1 be the set of random RR sets generated by
Algorithm 7 and S∗b be a size-b node set selected by Algorithm
6 on R1. Given ϵ ′ and δ ′, if the size of R1 satisfies

|R1 | ≥

2n

(
(1 − xb)

√
ln

2

δ ′ +

√
(1 − xb)(ln

(n
b

)
+ ln 2

δ ′)

)
2

ϵ ′2 · IC(S
o
k)

,

where x = 1 − 1

k , then with at least 1 − δ ′ probability,

IC(S
∗
b) ≥ (1 − (1 − 1/k)

b − ϵ ′)IC(S
o
k).

Further notice that the size ofR2 solely depends onR1, and is

only constant times the size of R1, and therefore we omit its

discussion. According to Lemma 6, by replacing IC(S
o
k)withk ,

ln

(n
b

)
with ln

(n
k

)
, 1−xb with 1, and setting ϵ ′ = ϵ1, δ

′ = δ1/3,
we define the maximum number of random RR sets θmax as:

θmax =
2n

(√
ln

6

δ1
+

√
(ln

(n
k

)
+ ln 6

δ1
)

)
2

ϵ2
1
· k

. (3)

That is, if the size of the set R1 is θmax , the seed set S∗b
selected by Algorithm 6 guarantees (1 − (1 − 1/k)b − ϵ1)
approximation of IC(S

o
k) with at least 1 − δ1/3 probability.

The reason of choosing the probability of 1 − δ1/3, rather
than 1 − δ1, will be explained shortly.

In terms of the initial setting, for a random variable in the

range of [0, 1] with an expectation to be µ, the Monte-Carlo

method requires at least 3 ln (1/δ)/µ/ϵ2 [16] so as to provide
an estimation of µ with ϵ-relative error guarantee. Hence,
we set the initial number θ0 to be 3 ln (1/δ1) (Algorithm 7

Line 1), which is the case when the random variable has an

expectation of 1 and the relative error is close to 1.

Failure probability. Here we explain why Algorithm 7

ensures (1 − (1 − 1/k)b − ϵ1) approximation with at least

1 − δ1. The algorithm has at most imax iterations. In the

last iteration, no matter whether I−
C
(S∗b)/I

+
C
(Sok) reaches the

approximation threshold or not, it returns S∗b as the fi-

nal seed set. As shown in Lemma 6, θmax RR samples en-

sure that the failure probability of S∗b being unqualified, i.e.

IC(S
∗
b) < (1− (1− 1/k)

b −ϵ1)IC(S
o
k), is less than δ1/3. In each

of the first imax −1 iterations, by the union bound, the failure

probability that the algorithm terminates with an unqualified

set S∗b is at most
δ1

3imax
+ 2 ·

δ1
6imax

=
2δ1

3imax
(the lower bound

is computed twice at most). The total failure probability of

the first imax − 1 iterations is at most 2δ1/3. Therefore, the
failure probability of Algorithm 7 is at most δ1.

4.2 IM-Sentinel Phase
Algorithm 8 shows the pseudo-code of the IM-Sentinel phase.

In this phase, we apply Algorithm 5 to sample randomRR sets

and immediately terminate when the RR set reaches a node

in S∗b . For the remaining parts, they are similar to that of the

first phase. In particular, Algorithm 8 initializes the sample

size of the RR sets to be 3 ln (1/δ2) and set the maximum

number of RR set according to Equation 4 (Algorithm 8 Line

1). Then, in each iteration, it samples a set R1 and a set R2 of

random RR sets with equal size. It uses R1 to find the seed

set S∗k by invoking Algorithm 6 and derives the upper bound

I+
C
(Sok) (Algorithm 8 Lines 5-8), and uses the other set R2 to

derive the lower bound I−
C
(S∗k) (Algorithm 8 Line 9). When

the approximation ratio is satisfied, we return the seed set

S∗k (Algorithm 8 Line 10-11). Otherwise, we double the size

of R1 and R2 and repeat the above process.

The main difference is that, when generating R1 and R2,

we can apply Algorithm 5 to effectively reduce the size of

a random RR set. Besides, when we feed R1 to Algorithm 6

to greedily select the remaining k − b nodes, we remove the

RR sets that hit any node in S∗b since such RR sets will bring

zero marginal coverage to other nodes (Algorithm 8 Line 5).

Stopping condition. Here we provide another lemma to

bound the size of R1 in Algorithm 8.

Lemma 7. Let S∗b be the seed set returned by Algorithm 7.
Given ϵ ′ and δ ′, if the number of the set R1 satisfies

|R1 | ≥

2n ·

(√
ln

3

δ ′ +

√
(1 − 1/e)(ln

(n−b
k−b

)
+ ln 3

δ ′)

)
2

IC(S
o
k)ϵ
′2

,

then with at least 1 − δ ′ probability, the selected S∗k−b satisfies

IC(S
∗
b ∪ S

∗
k−b) ≥ (1 − 1/e − ϵ1 − ϵ

′)IC(S
o
k).

According to Lemma 7, we replace IC(S
o
k) with k , set δ ′ =

δ2/3, ϵ
′ = ϵ2, and define the maximum number of RR sets in

the IM-Sentinel phase as

θmax =

2n ·

(√
ln

9

δ2
+

√
(1 − 1/e)(ln

(n−b
k−b

)
+ ln 9

δ2
)

)
2

ϵ2
2
· k

. (4)

That is, if the size of R1 is θmax , the seed set S∗k−b obtained

in Algorithm 8 Line 6 guarantees IC(S
∗
b ∪ S

∗
k−b) ≥ (1 − 1/e −

ϵ1 − ϵ2)IC(S
o
k) with at least 1 − δ2/3 probability.

Algorithm 8: IM-Sentinel(G,k, ϵ, S∗b , ϵ2, δ2)

1 Set θ0 = 3 · ln (1/δ2) and θmax according to Eqn. 4;

2 Generate R1 and R2 with |R1 | = |R2 | = θ0 by

utilizing RR set-with-Sentinel;

3 imax ← ⌈log2
θmax
θ0
⌉;

4 for i = 1 to imax do
5 R

′

1
← {R : R ∈ R1,R ∩ S

∗
b = ∅};

6 Select a size-(k − b) seed set S∗k−b by invoking

Algorithm 6 on R
′

1
;

7 S∗k ← S∗b ∪ S
∗
k−b ;

8 Compute I+
C
(Sok) by Eqn. 2 with R1; set δu =

δ2
3imax

;

9 Compute I−
C
(S∗k) by Eqn. 1 with R2; set δl =

δ2
3imax

;

10 if I−
C
(S∗k)/I

+
C
(Sok) > (1 − 1/e − ϵ) then

11 return S∗k ;

12 double the size of R1 and R2 by utilizing RR

set-with-Sentinel;

13 return S∗k ;

Failure probability. Like the analysis of Algorithm 7, the

total failure probability of the first imax −1 iterations is 2δ2/3.
Taking the failure probability of δ2/3 in the last iteration into

consideration, the failure probability of Algorithm 8 is δ2.

5 THEORETICAL ANALYSIS
In this section, we provide the proofs of Lemma 6 and 7.

Proof of Lemma 6. We first give three lemmas that will be

used in the proof of Lemma 6.

Lemma 8. Let S∗b be the seed set selected by Algorithm 6. Let
x = (1 − 1/k), then ΛR(S

∗
b) ≥

(
1 − xb

)
ΛR(S

o
k).

Proof. We denote S∗j (1 ≤ j ≤ b) as the set of nodes

selected in the first j iterations of the modified greedy algo-

rithm and let S∗
0
= ∅. Let ΛR(v |S) be the marginal coverage

of a node v in R with respect to a seed set S . Using the

submodularity of coverage function ΛR(·),

ΛR(S
o
k) ≤ ΛR(S

∗
j ∪ S

o
k) ≤ ΛR(S

∗
j) +

∑
v ∈Sok \S

∗
j

ΛR(v |S
∗
j)

≤ ΛR(S
∗
j) + k

(
ΛR(S

∗
j+1) − ΛR(S

∗
j)

)
.

Define γj = ΛR(S
o
k) − ΛR(S

∗
j). We have γj+1 ≤

(
1 − 1

k

)
γj

Recursively, we have that:

ΛR(S
o
k) − ΛR(S

∗
b) ≤ xb

(
ΛR(S

o
k) − ΛR(S

∗
0
)
)
= xbΛR(S

o
k).

It then can be rearranged as ΛR(S
∗
b) ≥ (1 − x

b)ΛR(S
o
k). �

Denote the size of R as θ . Since n
θ ΛR(S

o
k) is an unbiased

estimator of IC(S
o
k). If θ is large enough,

n
θ ΛR(S

o
k) should be

close to IC(S
o
k), as shown in the following lemma.

Lemma 9. Given δ ′
1
, ϵ ′

1
, and θ1 =

2n ·ln(1/δ ′
1
)

IC(Sok)·ϵ
′
1

2
, if θ ≥ θ1,

n
θ ΛR(S

o
k) ≥ (1 − ϵ

′
1
)IC(S

o
k) holds with 1 − δ ′

1
probability.

Refer to [6] for the proof of Lemma 9. If θ is large,
n
θ ΛR(S

∗
b)

is close to IC(S
∗
b). Based on Lemmas 8-9, we have:

n

θ
· ΛR(S

∗
b) ≥

(
1 − xb

)
(1 − ϵ ′

1
)IC(S

o
k). (5)

Hence, it is possible for us to build a connection between

IC(S
∗
b) and IC(S

o
k), which is the following lemma.

Lemma 10. Given δ ′
2
, ϵ ′

1
< ϵ ′, if Equation 5 holds and

θ > θ2 =
2(1 − xb) · n ·

(
ln

(n
b

)
+ ln 1

δ ′
2

)
IC(S

o
k) ·

(
ϵ ′ − (1 − xb) · ϵ ′

1

)
2
,

then with at least 1−δ ′
2
, we have IC(S∗b) ≥ (1−x

b −ϵ ′)IC(S
o
k).

Refer to [6] for the proof of Lemma 10.

Now we give the proof of Lemma 6. Based on Lemma 9

and Lemma 10 and by the union bound, if θ > max(θ1, θ2), it
holds that IC(S

∗
b) ≥ (1−x

b −ϵ ′)IC(S
o
k)with at least 1−δ

′
1
−δ ′

2

probability. Set δ ′
1
= δ ′

2
= δ ′/2 and θ1 = θ2, denoted as θ ′,

we have

θ ′ =

2n

(
(1 − xb)

√
ln

2

δ ′ +

√
(1 − xb)(ln

(n
b

)
+ ln 2

δ ′)

)
2

ϵ ′2 · IC(S
o
k)

.

Hence, if θ > θ ′, S∗b satisfies IC(S
∗
b) ≥ (1 − xb − ϵ ′)IC(S

o
k)

with at least 1 − δ ′ probability.

Proof of Lemma 7. We first give several lemmas that will

be used in the proof of Lemma 7.

Lemma 11. Let S∗b be the seed set returned by Algorithm 7.
Let S∗k−b be the seed set generated in Algorithm 8 Line 6 on
a set R of random RR sets. Then we have ΛR(S∗b ∪ S∗k−b) ≥

(1 − xk−b)ΛR(S
o
k) + x

k−bΛR(S
∗
b), where x = 1 − 1/k .

Proof. Let S∗j (1 ≤ j ≤ k − b) be the set of nodes selected

in the first j iterations of the generation of S∗k−b , andMj (1 ≤

j ≤ k − b) be a union of S∗b and S∗j , i.e.Mj = S∗b ∪ S
∗
j . By the

submodularity property of coverage function ΛR(·),

ΛR(S
o
k) ≤ ΛR(S

o
k ∪Mj) ≤ ΛR(Mj) +

∑
v ∈Sok \Mj

ΛR(v |Mj)

≤ ΛR(Mj) + k
(
ΛR(Mj+1) − ΛR(Mj)

)
.

Let γj = ΛR(S
o
k)−ΛR(Mj). Then we have: γj+1 ≤ (1−

1

k)γj =

xγj . Recursively, we have γk−b ≤ xk−bγ0. By the definition

of γj andMj , we derive that:

γ0 = ΛR(S
o
k) − ΛR(S

∗
b), γk−b = ΛR(S

o
k) − ΛR(S

∗
b ∪ S

∗
k−b).

⇒ ΛR(S
∗
b ∪ S

∗
k−b) ≥ (1 − x

k−b)ΛR(S
o
k) + x

k−bΛR(S
∗
b).

The lemma is proved. �

According to Lemma 9, given δ ′
1
, ϵ ′

1
, and θ1 =

2n ln
1

δ ′
1

IC(Sok)·ϵ
′
1

2
, if

the size of R, denoted as θ , is larger than θ1, it follows that
n
θ ΛR(S

o
k) ≥ (1 − ϵ ′

1
)IC(S

o
k) with at least 1 − δ ′

1
probability.

In fact, at this moment (θ > θ1),
n
θ ΛR(S

∗
b) is close to IC(S

∗
b).

That is the following lemma.

Lemma 12. Given ϵ ′
1
and δ ′

1
, if θ > θ1, it holds that

n
θ ΛR(S

∗
b) ≥ IC(S

∗
b) − ϵ

′
1
IC(S

o
k) with at least 1 − δ ′

1
probability.

Proof. Define a random variable xi for each Ri ∈ R, such
that xi = 1 if S∗b ∩ Ri , ∅, and xi = 0 if otherwise. Define

p = IC(S
∗
b)/n. Obviously, IC(S

o
k) > IC(S

∗
b) = np. We have

Pr

[n
θ
· ΛR(S

∗
b) − IC(S

∗
b) ≤ −ϵ

′
1
IC(S

o
k)

]
= Pr

[
θ∑
i=1

xi − θp ≤ −
ϵ ′
1
IC(S

o
k)

np
θp

]
≤ exp

(
−

(
ϵ ′
1
IC(S

o
k)

np

)2
pθ1
2

)
≤ exp

(
−

(
ϵ ′
1
IC(S

o
k)

np

)2
pθ1
2

)
≤ δ ′

1
.

The lemma follows. �

Combining Lemma 11 and 12, we have that:

Lemma 13. Given δ ′
1
, ϵ ′

1
, if θ > θ1 and IC(S∗b) ≥ (1 − x

b −

ϵ1)IC(S
o
k), then with at least 1 − 2δ ′

1
, we have

n

θ
· ΛR(S

∗
b ∪ S

∗
k−b) ≥ (1 − 1/e − ϵ1 − ϵ

′
1
)IC(S

o
k). (6)

Proof. Based on Lemma 11,

n

θ
· ΛR(S

∗
b ∪ S

∗
k−b) ≥ (1 − x

k−b)ΛR(S
o
k) + x

k−bΛR(S
∗
b)

≥ (1 − xk−b)(1 − ϵ ′
1
)IC(S

o
k)+

xk−b
(
(1 − xb − ϵ1)IC(S

o
k) − ϵ

′
1
IC(S

o
k)

)
= (1 − xk − ϵ ′

1
− xk−bϵ1)IC(S

o
k) ≥ (1 − x

k − ϵ1 − ϵ
′
1
)IC(S

o
k).

When θ > θ1, both
n
θ ΛR(S

o
k) ≥ (1−ϵ

′
1
)IC(S

o
k) and

n
θ ΛR(S

∗
b) ≥

IC(S
∗
b)−ϵ

′
1
IC(S

o
k) hold with at least 1−δ

′
1
probability. By union

bound, the failure probability is 2δ ′
1
. The lemma follows. �

Let ϵ ′ be the error threshold in the IM-sentinel phase.

Lemma 14. Given δ ′
2
, ϵ ′

1
< ϵ ′, and

θ2 =
2(1 − 1/e) · n

(
ln

(n−b
k−b

)
+ ln 1

δ ′
2

)
IC(S

o
k)(ϵ

′ − ϵ ′
1
)2

,

if Equation 6 holds and θ > θ2, then

IC(S
∗
b ∪ S

∗
k−b) ≥ (1 − 1/e − ϵ1 − ϵ

′)IC(S
o
k).

Refer to [6] for the proof of Lemma 14.

Now we prove Lemma 7. Lemmas 13 and 14 hold with

1 − 2δ ′
1
and 1 − δ ′

2
probability, respectively. By union bound,

if θ > max(θ1, θ2), with 1− 2δ ′
1
−δ ′

2
probability, we have that:

IC(S
∗
b ∪ S

∗
k−b) ≥ (1 − 1/e − ϵ1 − ϵ

′)IC(S
o
k).

By setting δ ′
1
= δ ′

2
= δ ′/3, θ1 = θ2, denoted as θ ′, we have:

θ ′ =

2n ·

(√
ln

3

δ ′ +

√
(1 − 1/e)(ln

(n−b
k−b

)
+ ln 3

δ ′)

)
2

IC(S
o
k)ϵ
′2

.

The lemma follows.

6 ADDITIONAL RELATEDWORK
There has been a large body of research on IM, e.g., [11–15,

17, 20–22, 25, 26, 28, 29, 31, 35, 42], in the literature. Kempe

et al. [26] present the first seminal work on IM, and show

that finding k users that maximize the influence is NP-hard.

They provide a greedy algorithm that provides (1 − 1/e − ϵ)-
approximate solution, which requires Ω(k ·m · n · poly(1/ϵ))
running time, and is too expensive on large social networks.

A plethora of researchworks, e.g., [7, 12–14, 17, 21, 22, 25, 35],

study how to improve the efficiency of the IM problem. Most

algorithms are heuristic and fail to provide approximation

guarantee. The states of the art are the RR set based solutions

[8, 34, 37–39], as discussed in Section 2.2, which provide

superb efficiency and a strong theoretical guarantee.

Besides, a plethora of research work focuses on more prac-

tical scenarios rather than the classic IM. For instance, topic-

aware IM, by taking consideration of the topic propagated, is

studied by [29, 32]. Time-aware IM, which considers a time

constraint during the diffusion process, is studied in [18, 30].

Competitive IM [10, 31] considers the scenarios where sev-

eral competitors spread their influences in the same social

networks simultaneously and their diffusion interferes with

each other. There also exist studies on IM under budget

constraints [32], constraint to user groups [40], and under

adaptive settings [23, 36]. These are orthogonal to our study.

7 EXPERIMENTS
This section evaluates our solutions against alternatives. All

experiments are conducted on a Linux machine with an Intel

Xeon CPU clocked at 2.70GHz and 200 GB memory.

Algorithms. We compare our solutions against the three

state-of-the-art solutions, IMM, SSA and OPIM-C, which all

adopt the vanilla RR set generation algorithm (Algorithm 2).

The C++ implementations of these solutions are available

at [3], [5] and [4], respectively. For our solution, we first

implement based on the existing state-of-the-art OPIM-C and

integrate our SUBSIM framework for RR set generation. We

further implement two versions of HIST, one with vanilla RR

Table 2: Summary of datasets (M = 106,B = 109)
Dataset Type n m
Pokec directed 1.6M 30.6M

Orkut undirected 3.1M 117.2M

Twitter directed 41.7M 1.5B

Friendster undirected 65.6M 1.8B

set generation algorithm and one with SUBSIM framework

for RR set generation. We implement all of our algorithms

in C++ and compile all algorithms with full optimization.

We repeat each algorithm five times and report the average

running time as the query performance. We omit the result

if the algorithm consumes more than 200GB memory.

Datasets.We evaluate our experiments on four benchmark

datasets that are publicly available at [1, 2]. The summary of

these four datasets is shown in Table 2.

Parameter Settings. Recap that all the algorithms include

an error parameter ϵ and a failure probability parameter δ .
Following previous work [37], we set ϵ = 0.1 and δ = 1/n for

all solutions in the experiments. To examine the effectiveness

of our SUBSIM, we compare our SUBSIM against the vanilla

RR set generation algorithm under IC model with different

distribution settings. We first test on WC model, where the

weight of an edge (w,u) is set as 1/din(u). Then we test the

case when the weight of edges follows skewed distributions,

in particular, exponential distribution and Weibull distribu-

tion. For exponential distribution, the probability density
function (PDF) is f (x) = λe−λx . We set λ = 1 and sample the

weight of each edge with this setting. For each node v , we
scale the sum of the weights of its incoming edges to 1. For

Weibull distribution, the PDF is f (x) = a
b ·

(x
b

)a−1
· e−(x/b)

a
.

Following previous studies [38], we sample a and b from

[0, 10] uniformly at random for each edge e . For each node

v , we scale the sum of the weight of its incoming edges to 1.

We then examine the effectiveness of HIST in high influ-

ence networks, where the average size of random RR sets

tends to be quite large.We design our experiments by varying

the average size of random RR sets under two settings. The

first setting, dubbed asWC variant, is similar toWCmodel ex-

cept that we introduce a constant θ ≥ 1 such that the weight

of an edge (w,u) is set asmin{1, θ/din(u)}. By changingθ , we
are able to vary the average size of random RR sets. We then

vary θ on each dataset such that the average size of random

RR sets is approximately {50, 400, 1000, 4000, 8000, 32000}.
We denote the setting as θ50, θ400, θ1K , θ4K , θ8K , θ32K , respec-
tively. The second setting is the Uniform IC setting where

all edges have the same weight p. We vary the weight p on

each dataset such that the average size of random RR sets is

approximately {50, 400, 1000, 4000, 8000, 32000}. We denote

the setting as p50,p400,p1K ,p4K ,p8K ,p32K , respectively.

SSA SUBSIMOPIM-CIMM

10
-1

10
0

10
1

10
2

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

10
0

10
1

10
2

10
3

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

10
-1

10
0

10
1

10
2

10
3

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

10
2

10
3

10
4

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

(a) Pokec (b) Orkut (c) Twitter (d) Friendster

Figure 1: Varying k: Running time of IM algorithms under WC model.

VanillaSUBSIM

10
0

10
1

10
2

10
3

Pokec Orkut Twitter Friendster

Running time (s)

10
0

10
1

10
2

10
3

10
4

10
5

Pokec Orkut Twitter Friendster

Running time (s)

(a) Exponential distribution (b) Weibull distribution

Figure 2: Skewed distribution: RR set generation cost.

7.1 Effectiveness of SUBSIM
In the first set of experiments, we examine the effectiveness

of SUBSIM against IMM, SSA, and OPIM-C under WC set-

ting. Figure 1 reports the average running time on the four

datasets. The first observation is that SUBSIM consistently

outperforms alternatives on all the tested datasets. Com-

pared to OPIM-C, even though we only modify the RR set

generation algorithm, SUBSIM is still up to 15x faster than

OPIM-C on Twitter. SUBSIM further outperforms SSA (resp.

IMM) by up to an order (resp. three orders) of magnitude.

In the second set of experiments, we consider the skewed

distribution settings, i.e., when the edges follow the expo-

nential or Weibull distribution. We omit the results for IM

algorithms since the experimental result follows a similar

trend. Instead, we focus on comparing the cost of the vanilla

RR set generation algorithm, denoted as vanilla, with that of

our SUBSIM for RR set generation. We generate 2
10 × 1000

random RR sets on each dataset using the vanilla algorithm

and our SUBSIM, and report their running time. As shown in

Figure 2, SUBSIM consistently keeps its advantage on all four

tested datasets and achieves up to 38x (resp. 25x) speedup

over vanilla under exponential (resp. Weibull) distribution.

7.2 Effectiveness of HIST
Our first set of experiments examines the performance of

our HIST when k varies under WC variant setting. We

fix θ and set it to θ4K for each dataset, and vary k with

{1, 10, 50, 100, 200, 500, 1000, 1500, 2000}. Figure 4 shows the
average running time of HIST (with vanilla RR set generation

algorithm), HIST+SUBSIM (with SUBSIM for RR set genera-

tion), and OPIM-C. We observe that with the increase of size

OPIM-CHIST

10
1

10
2

10
3

10
4

10
5

10
6

Pokec Orkut Twitter Friendster

Number of RR sets

10
0

10
1

10
2

10
3

10
4

Pokec Orkut Twitter Friendster

Average Size of RR sets

(a) Number of RR sets (b) Average size of RR sets

Figure 3: Statistics of RR sets.

k , the benefit of applying our HIST algorithm becomes more

significant, and HIST is at least an order of magnitude faster

than OPIM-C. HIST+SUBSIM further achieves up to an order

of magnitude speedup over HIST since HIST+SUBSIM adopts

SUBSIM for RR set generation. Figure 5 shows the expected

influence when we increase k from 1 to 2000 with θ4k setting.

The expected influence gains a significant increase when we

increase k from 1 to 2000 on all four datasets.

In our second set of experiments, we vary the average

size of random RR sets under WC variant setting. We fix

k = 200 and vary θ with θ50, θ400, θ1K , θ4K , θ8K , θ32K on each

dataset. Figure 6 shows the running time of our solutions

against OPIM-C. We can observe that even when the average

size of random RR sets is around 50, our HIST is already as

competitive as OPIM-C. When the size of random RR sets

further increases, HIST shows a more significant advantage

and is up to two orders of magnitude faster than OPIM-C

when θ = θ32K . Besides, SUBSIM+HIST is always two orders

of magnitude faster than OPIM-C when θ = θ32K .
In our third set of experiments, we vary the average size

of random RR sets under Uniform IC setting. We fix k =
200 and vary p with {p50,p400,p1K ,p4K ,p8K ,p32K }. Figure 7
shows the running time of all three algorithms. We can see

that even when the average size of RR sets is around 50,

HIST is already several times faster than OPIM-C. When

p is set to p32K , HIST (resp. HIST+SUBSIM) is at least an

order (resp. two orders) of magnitude faster than OPIM-C.

We also examine the effectiveness of our solutions when k
varies under Uniform IC setting. The result is similar to our

findings under WC variant setting and is omitted.

In the last set of experiments, we report some statistics

of RR sets with our HIST under WC variant setting with

10
0

10
1

10
2

10
3

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

10
0

10
1

10
2

10
3

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

10
0

10
1

10
2

10
3

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

10
1

10
2

10
3

10
4

10
5

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

(a) Pokec (b) Orkut (c) Twitter (d) Friendster

Figure 4: Varying k: Running time under WC variant setting.

10
5

10
6

1 10 50 100 200 500 1000 1500 2000

Expected Influence

k

10
5

10
6

1 10 50 100 200 500 1000 1500 2000

Expected Influence

k

10
6

10
7

1 10 50 100 200 500 1000 1500 2000

Expected Influence

k

10
5

10
6

10
7

1 10 50 100 200 500 1000 1500 2000

Expected Influence

k

(a) Pokec (b) Orkut (c) Twitter (d) Friendster

Figure 5: Varying k: Expected influence under WC variant setting.

10
0

10
1

10
2

10
3

θ
50

θ
400

θ
1K

θ
4K

θ
8K

θ
32K

Running time (s)

θ

10
0

10
1

10
2

10
3

10
4

θ
50

θ
400

θ
1K

θ
4K

θ
8K

θ
32K

Running time (s)

θ

10
0

10
1

10
2

10
3

10
4

θ
50

θ
400

θ
1K

θ
4K

θ
8K

θ
32K

Running time (s)

θ

10
2

10
3

10
4

θ
50

θ
400

θ
1K

θ
4K

θ
8K

θ
32K

Running time (s)

θ

(a) Pokec (b) Orkut (c) Twitter (d) Friendster

Figure 6: Varying θ : Running time under WC variant setting.

10
0

10
1

10
2

10
3

p50 p400 p1K p4K p8K p32K

Running time (s)

p

10
0

10
1

10
2

10
3

10
4

p50 p400 p1K p4K p8K p32K

Running time (s)

p

10
0

10
1

10
2

10
3

10
4

10
5

p50 p400 p1K p4K p8K p32K

Running time (s)

p

10
1

10
2

10
3

10
4

10
5

p50 p400 p1K p4K p8K p32K

Running time (s)

p

(a) Pokec (b) Orkut (c) Twitter (d) Friendster

Figure 7: Varying p: Running time under Uniform IC setting.

k = 2000 and θ = θ4k . Figure 3(a) reports the number of RR

sets generated in the sentinel set selection phase of HIST. We

compare with the number of RR sets generated by OPIM-C

and we observe that the number of random RR sets required

by our HIST is two orders of magnitude smaller than that

required by OPIM-C in most datasets. Figure 3(b) reports

the average size of random RR sets generated by our HIST

against OPIM-C. Observe that the average size of random RR

sets with HIST is reduced by up to 700x. To explain, when a

node in the sentinel set is met, the RR set generation with

HIST can immediately stop, reducing the size of RR sets.

In summary, the result indicates that the larger the average

size of random RR sets are, the more effective our HIST and

HIST+SUBSIM are. In high influence networks, the average

size of random RR sets tends to be large and our proposed

solutions are preferred choices.

8 CONCLUSION
This paper presents SUBSIM, an efficient framework for RR

set generation. We further present HIST to further tackle the

challenging scalability issues in high influence networks.

9 ACKNOWLEDGMENTS
Sibo Wang is supported by Hong Kong RGC ECS Grant No.

24203419, CUHK Direct Grant No. 4055114, and a CUHK

University Startup Grant. Zhewei Wei is supported by NSFC

Grant No. 61832017, No. 61972401 and No. 61932001.

REFERENCES
[1] 2013. KONECT Datasets. http://konect.uni-koblenz.de/.

[2] 2014. SNAP Datasets. http://snap.stanford.edu/data.

[3] 2015. IMM code. https://sourceforge.net/projects/im-imm/.

[4] 2017. OPIM-C code. https://github.com/tangj90/OPIM.

[5] 2017. SSA code. https://github.com/hungnt55/Stop-and-Stare.

[6] 2020. SUMSIM technical report. https://sites.google.com/site/

sigmod2020subsimtr/.

[7] Akhil Arora, Sainyam Galhotra, and Sayan Ranu. 2017. Debunking the

Myths of Influence Maximization: An In-Depth Benchmarking Study.

In SIGMOD. 651–666.
[8] Christian Borgs, Michael Brautbar, Jennifer T. Chayes, and Brendan

Lucier. 2014. Maximizing Social Influence in Nearly Optimal Time. In

SODA. 946–957.
[9] Karl Bringmann and Konstantinos Panagiotou. 2017. Efficient Sam-

pling Methods for Discrete Distributions. Algorithmica 79, 2 (2017),

484–508.

[10] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. 2011. Limiting

the spread of misinformation in social networks. In WWW. 665–674.

[11] Shuo Chen, Ju Fan, Guoliang Li, Jianhua Feng, Kian-Lee Tan, and Jinhui

Tang. 2015. Online Topic-Aware Influence Maximization. PVLDB 8, 6

(2015), 666–677.

[12] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable influence maxi-

mization for prevalent viral marketing in large-scale social networks.

In SIGKDD. 1029–1038.
[13] Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient influence maxi-

mization in social networks. In SIGKDD. 199–208.
[14] Suqi Cheng, Huawei Shen, Junming Huang, Wei Chen, and Xueqi

Cheng. 2014. IMRank: influence maximization via finding self-

consistent ranking. In SIGIR. 475–484.
[15] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck.

2014. Sketch-based Influence Maximization and Computation: Scaling

up with Guarantees. In CIKM. 629–638.

[16] Paul Dagum, Richard M. Karp, Michael Luby, and Sheldon M. Ross.

1995. An Optimal Algorithm for Monte Carlo Estimation (Extended

Abstract). In FOCS. 142–149.
[17] Sainyam Galhotra, Akhil Arora, and Shourya Roy. 2016. Holistic

Influence Maximization: Combining Scalability and Efficiency with

Opinion-Aware Models. In SIGMOD. 743–758.
[18] Manuel Gomez-Rodriguez, David Balduzzi, and Bernhard Schölkopf.

2011. Uncovering the Temporal Dynamics of Diffusion Networks. In

ICML. 561–568.
[19] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. 2010. Learn-

ing influence probabilities in social networks. In WSDM. 241–250.

[20] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. 2011. A

Data-Based Approach to Social Influence Maximization. PVLDB 5, 1

(2011), 73–84.

[21] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. 2011. CELF++:

optimizing the greedy algorithm for influence maximization in social

networks. InWWW. 47–48.

[22] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. 2011. SIMPATH:

An Efficient Algorithm for Influence Maximization under the Linear

Threshold Model. In ICDM. 211–220.

[23] Kai Han, Keke Huang, Xiaokui Xiao, Jing Tang, Aixin Sun, and Xueyan

Tang. 2018. Efficient Algorithms for Adaptive Influence Maximization.

PVLDB 11, 9 (2018), 1029–1040.

[24] Keke Huang, Sibo Wang, Glenn S. Bevilacqua, Xiaokui Xiao, and Laks

V. S. Lakshmanan. 2017. Revisiting the Stop-and-Stare Algorithms for

Influence Maximization. PVLDB 10, 9 (2017), 913–924.

[25] Kyomin Jung, Wooram Heo, and Wei Chen. 2012. IRIE: Scalable and

Robust Influence Maximization in Social Networks. In ICDM. 918–923.

[26] David Kempe, Jon M. Kleinberg, and Éva Tardos. 2003. Maximizing the

spread of influence through a social network. In SIGKDD. 137–146.
[27] Donald Ervin Knuth. 1997. The art of computer programming. Vol. 3.
[28] Siyu Lei, Silviu Maniu, Luyi Mo, Reynold Cheng, and Pierre Senellart.

2015. Online Influence Maximization. In SIGKDD. 645–654.
[29] Yuchen Li, Dongxiang Zhang, and Kian-Lee Tan. 2015. Real-time

Targeted Influence Maximization for Online Advertisements. PVLDB
8, 10 (2015), 1070–1081.

[30] Bo Liu, Gao Cong, Dong Xu, and Yifeng Zeng. 2012. Time constrained

influence maximization in social networks. In ICDM. 439–448.

[31] Wei Lu, Wei Chen, and Laks V. S. Lakshmanan. 2015. From Com-

petition to Complementarity: Comparative Influence Diffusion and

Maximization. PVLDB 9, 2 (2015), 60–71.

[32] Hung T. Nguyen, Thang N. Dinh, and My T. Thai. 2016. Cost-aware

Targeted Viral Marketing in billion-scale networks. In INFOCOM. 1–9.

[33] Hung T. Nguyen, Thang N. Dinh, and My T. Thai. 2018. Revisiting of

’Revisiting the Stop-and-Stare Algorithms for Influence Maximization’.

In CSoNet. 273–285.
[34] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. 2016. Stop-and-Stare:

Optimal Sampling Algorithms for Viral Marketing in Billion-scale

Networks. In SIGMOD. 695–710.
[35] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-ichi

Kawarabayashi. 2014. Fast and Accurate Influence Maximization on

Large Networks with Pruned Monte-Carlo Simulations. In AAAI. 138–
144.

[36] Jing Tang, Keke Huang, Xiaokui Xiao, Laks V. S. Lakshmanan, Xueyan

Tang, Aixin Sun, and Andrew Lim. 2019. Efficient Approximation

Algorithms for Adaptive Seed Minimization. In SIGMOD. 1096–1113.
[37] Jing Tang, Xueyan Tang, Xiaokui Xiao, and Junsong Yuan. 2018. Online

Processing Algorithms for Influence Maximization. In SIGMOD. 991–
1005.

[38] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. Influence Maxi-

mization in Near-Linear Time: A Martingale Approach. In SIGMOD.
1539–1554.

[39] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maxi-

mization: near-optimal time complexity meets practical efficiency. In

SIGMOD. 75–86.
[40] Rajan Udwani. 2018. Multi-objective Maximization of Monotone Sub-

modular Functions with Cardinality Constraint. In NeurIPS. 9513–
9524.

[41] Alastair J. Walker. 1977. An Efficient Method for Generating Discrete

Random Variables with General Distributions. ACM Trans. Math. Softw.
3, 3 (1977), 253–256.

[42] Yanhao Wang, Qi Fan, Yuchen Li, and Kian-Lee Tan. 2017. Real-Time

Influence Maximization on Dynamic Social Streams. PVLDB 10, 7

(2017), 805–816.

http://konect.uni-koblenz.de/
http://snap.stanford.edu/data
https://sourceforge.net/projects/im-imm/
https://github.com/tangj90/OPIM
https://github.com/hungnt55/Stop-and-Stare
https://sites.google.com/site/sigmod2020subsimtr/
https://sites.google.com/site/sigmod2020subsimtr/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Existing Solutions
	2.3 RR Set Generation

	3 SUBSIM
	3.1 A New RR set Generation Scheme
	3.2 Influence Maximization: A New Bound
	3.3 Extension to General IC Model

	4 Highly Influential Scenarios
	4.1 Sentinel Set Selection Phase
	4.2 IM-Sentinel Phase

	5 Theoretical Analysis
	6 Additional Related Work
	7 Experiments
	7.1 Effectiveness of SUBSIM
	7.2 Effectiveness of HIST

	8 Conclusion
	9 ACKNOWLEDGMENTS
	References

