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ABSTRACT
Empirical entropy is a classic concept in data mining and the foun-

dation of many other important concepts like mutual information.

However, computing the exact empirical entropy/mutual informa-

tion on large datasets can be expensive. Some recent research work

explores sampling techniques on the empirical entropy/mutual in-

formation to speed up the top-k and filtering queries. However,

their solution still aims to return the exact answers to the queries,

resulting in high computational costs.

Motivated by this, in this work, we present approximate algo-

rithms for the top-k queries and filtering queries on empirical

entropy and empirical mutual information. The approximate al-

gorithm allows user-specified tunable parameters to control the

trade-off between the query efficiency and accuracy. We design

effective stopping rules to return the approximate answers with

improved query time. We further present theoretical analysis and

show that our proposed solutions achieve improved time com-

plexity over previous solutions. We experimentally evaluate our

proposed algorithms on real datasets with up to 31M records and

179 attributes. Our experimental results show that the proposed

algorithm consistently outperforms the state of the art in terms of

computational efficiency, by an order of magnitude in most cases,

while providing the same accurate result.
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1 INTRODUCTION
Given a discrete random variable X with a probability mass func-

tion P(X ), the entropy H (X ) of the random variable X is defined as

H (X ) = E[− log
2
P(X )]. In most real-life applications, the distribu-

tion of X is usually unknown, and only the empirical distribution

of X can be obtained according to some input data D. The entropy
derived according to the empirical distribution of X with input data

D is usually defined as the empirical entropy of X on D, referred
to as HD (X ). In data analysis tasks, the variable X is usually an

attribute of the input data, and the empirical distribution of X is

then the distribution of each possible attribute value that appears

in X . The empirical mutual information is a generalized concept to

define the empirical entropy when considering multiple attributes

of the input data. Both the empirical entropy and mutual infor-

mation are widely used in real applications. For example, the U.S.

Census Bureau provides a public dataset [32] that includes mil-

lions of households’ records. Each record includes more than 100

attributes like ancestry, education, work, transportation, internet

use, residency, and so on. The dataset can be used to build data

mining models for many real-life tasks, e.g., to build a classifier

to identify high-value insurance consumers. However, due to the

curse of dimensionality, the large number of attributes (high di-

mensionality) usually causes the high training complexity of the

prediction models. Feature selection, a core step in data mining, is

usually applied to select only the useful and task-relevant attributes

to build the models. In the literature, empirical entropy/mutual

information [2, 5, 12, 13, 19, 20, 24, 26, 31, 39] is widely used in

feature selection. Apart from feature selection, empirical entropy

and mutual information further find many applications in IPv6

address analysis [14], decision tree learning [3, 27, 33], graphical

model structure learning [10], and categorical clustering [4, 21].

In this paper, we focus on two types of queries: the top-k and

filtering queries on empirical entropy and mutual information. For

top-k queries, it aims to return the k attributes with the highest em-

pirical entropy/mutual information scores. For the filtering queries,

a threshold η is given, and the goal is to return the attributes with

empirical entropy/mutual information no smaller than η. A straight-

forward solution is to derive the exact score by scanning all the

records, which is too expensive on large datasets. Luckily, in most

real applications, error-bounded approximations of the empirical

entropy and mutual information are usually sufficient. For exam-

ple, in [2, 12, 26, 31] (resp. [19, 24, 39]), the authors show that an

approximate solution of the top-k query (resp. filtering query) will

be sufficient to do feature selection and provide the useful and task-

relevant attributes. With a more efficient approximate solution for

top-k and filtering queries, we can significantly reduce the com-

putational costs for the feature selection phase. Therefore, most
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existing work focuses on approximate solutions, e.g., [16, 30, 32], to

derive error-bounded estimations of the empirical entropy/mutual

information. The state-of-the-art solution for top-k and filtering

queries is proposed byWang et al. [32]. In particular, they adaptively

sample records, derive tight estimation upper and lower bounds

for each attribute, and prune the attributes by the upper and lower

bounds. However, they still aim to return attributes that are exactly

the top-k or exactly no smaller than the threshold η, making the

sampling cost still high and leaving much room for improvement.

Motivated by the deficiency of existing solutions, we propose

approximate algorithms for the top-k and filtering queries on em-

pirical entropy and mutual information. For top-k queries, the main

deficiency of the state-of-the-art solution in [32] is that they need

to sample a sufficiently large number of records to distinguish the

lower bound of the attribute with the k-th largest score and the

upper bound of the attribute with the (k + 1)-th largest score. If

the gap ∆ between the k-th largest score and the (k + 1)-th largest

score is very small, the sampling cost can be rather high. However,

in real-life applications, if the gap ∆ is very small, it means that

the two attributes with the k-th largest and the (k + 1)-th largest

score are similarly important, and returning either one should have

almost no impact to the downstream analytic tasks. Therefore, we

aim to return an approximate top-k answer, formally defined in Sec-

tion 2.1, such that the returned k attributes have estimated values

that are close to that of the k attributes with the real highest top-k
values. For filtering queries, the deficiency of the state-of-the-art

solution is that they will strictly return the attributes with scores

no smaller than the threshold η. However, in downstream tasks,

the attributes close to the threshold should have a negligible effect,

since otherwise a more appropriate threshold is expected. There-

fore, we aim to answer approximate filtering queries that return

attributes with scores larger enough than the threshold and relax

the conditions for the attributes with scores close to the threshold.

Since we relax the conditions for top-k and filtering queries,

the sampling cost can be significantly reduced as will be shown in

our experimental evaluation. The approximate algorithm allows

a user-specified error parameter to control the trade-off between

the accuracy and efficiency of the returned answer with a strong

theoretical guarantee. However, a big challenge is how to design

effective stopping conditions to provide query answers that satisfy

the approximation guarantee. We tackle this challenging issue for

both the top-k and filtering queries and prove that the algorithm

returns approximate query answers with high probability. We fur-

ther show that the time complexity of our proposed algorithms

improves over existing alternatives. Extensive experiments on large

real datasets show that our proposed algorithms improve over ex-

isting solutions by an order of magnitude in most cases without

sacrificing the query accuracy.

2 PRELIMINARIES
2.1 Problem Definition
Let D be a dataset consisting of N records and h attributes. Let

A = {α1,α2, · · · ,αh } be the set of attributes in D and D(α) be the
attribute values of all records with respect to attribute α . Given an

attribute α , the support size uα is the number of distinct attribute

values appeared in D(α). We further assume that the attribute

Table 1: Frequently used notations.
Notation Description
D an input dataset

S a randomly sampled subset of D

N the number of records in D

M the number of records in S

α , A attribute α from the set A of attributes in D

h the number of attributes

uα the number of distinct values for attribute α

pf the probability that the algorithm fails to return

an approximate query

H (α ) the empirical entropy of α on D

H (α ), H (α ) a lower and upper bound of HD (α )

I (α1, α2) the empirical mutual information between

α1, α2 on D

I (α1, α2), I (α1, α2) a lower and upper bound of ID (α1, α2)

η the threshold for the filtering query

ϵ the error parameter for approximate queries

values in D(α) fall into the range of [1,uα ]
1
, which can be easily

handled by a simple one-to-one match preprocessing. Define ni (α),
or simply ni if the context is clear, as the number of occurrence of

attribute value i ∈ [1,uα ] in D(α).

Definition 1 (Empirical entropy). Given the input dataset D
and an attribute α ∈ A with support size uα , the empirical entropy
HD (α) of attribute α with respect to dataset D is defined as:

HD (α) = −

uα∑
i=1

ni
N

log
2

ni
N
.

Given two input attributes α1 and α2, let ni , j be the number of

records in D such that the record has a value of i ∈ [1,uα1
] on

attribute α1 and a value of j ∈ [1,uα2
] on attribute α2. Then, the

empirical joint entropy between α1 and α2 is defined as:

HD (α1,α2) = −

uα
1∑

i=1

uα
2∑

j=1

ni , j

N
log

2

ni , j

N
.

Definition 2 (Empirical mutual information). Given the
input dataset D and two attributes α1, α2, the empirical mutual
information ID (α1,α2) between α1 and α2 on D is defined as:

ID (α1,α2) = HD (α1) + HD (α2) − HD (α1,α2).

Definition 3 (Top-k qery). Given the input data D and a
positive integer k , the top-k query on empirical entropy (resp. em-
pirical mutual information) returns the k attributes with the highest
empirical entropy (resp. empirical mutual information) scores.

Definition 4 (Filtering qery). Given the input data D and a
threshold η, the filtering query on empirical entropy (resp. empirical
mutual information) returns all attributes whose empirical entropy
(resp. empirical mutual information) score is no smaller than η.

Note that the empirical mutual information takes two attributes as

the input. In real applications, e.g., [12, 26, 31], we are given one

1
We use [1, n] to indicate the set of integers {1, 2, · · · , n }.
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attribute αt and need to select from remaining ones for the top-k
or filtering queries. We denote attribute αt as the target attribute
and the set C of remaining attributes as the candidate set.

As we mentioned in Section 1, returning exact answers for top-k
or filtering queries still takes a lot of sampling costs. In the mean-

time, we can relax the conditions of the top-k and filtering query to

reduce the sampling costs. Following previous studies on approxi-

mate top-k queries [6, 29, 34, 36, 37], the approximate top-k query

on empirical entropy/mutual information is defined as follows.

Definition 5 (Approximate top-k qery). Given the input data
D, a positive integer k , an error parameter 0 < ϵ < 1, and a failure
probability pf , let s(α) be the exact score, either the empirical entropy
or mutual information, of attribute α and ŝ(α) be the estimated score
of s(α). Let α∗

1
,α∗

2
, · · · ,α∗k be the k attributes with the top-k scores

such that s(α∗
1
) ≥ s(α∗

2
) · · · ≥ s(α∗k ). The approximate top-k query

returns k attributes α ′
1
,α ′

2
, · · ·α ′k with the top-k highest estimation

scores in order such that the following holds:
• (i) ŝ(α ′i ) ≥ (1 − ϵ) · s(α

′
i ),

• (ii) s(α ′i ) ≥ (1 − ϵ) · s(α
∗
i ).

For condition (i), it requires that the estimated scores of the

returned k attributes are accurate enough. For condition (ii), it

requires that the returned i-th attribute has a score close to the

exact i-th largest score. Combining conditions (i) and (ii) assures

that the returned approximate top-k answers are close to the exact

top-k answers with theoretical guarantees.

For filtering queries, it shares a similar spirit as heavy hitter

queries [8, 9, 35] where both require reporting the elements with a

score above a threshold value. Following approximate heavy hitters

[8, 9], the approximate filtering query is defined as follows.

Definition 6 (Approximate filtering qery). Given the input
data D, a threshold η, an error parameter 0 < ϵ < 1, and a failure
probability pf , let s(α) be the exact score, either the empirical entropy
or mutual information, of attribute α . The approximate filtering query
returns a set X ⊆ A such that:

• if s(α) ≥ (1 + ϵ)η, α must belong to X ;
• else if (1 + ϵ)η > s(α) ≥ (1 − ϵ)η, α may or may not belong to X ;
• otherwise, α should not belong to X .

The above definitions allow users to control the quality of the top-k
and filtering query answer by the error parameter ϵ . When ϵ is

very small, then the returned attributes have similarly high quality

results as the real top-k or filtering answers. As we will see in

our theoretical analysis, when ϵ becomes smaller, it incurs higher

sampling costs. There is a trade-off between the query efficiency

and result accuracy. We will evaluate the impact of ϵ in Section 6.

Remark. Notice that in the following sections, we will omit the

subscriptD and simply useH (α) or I (α1,α2) to denote the empirical

entropy and empirical mutual information on the input dataset D

if the context is clear. Besides, we will only require our algorithm

to return an approximate query answer with a probability of 1−pf .
Table 1 lists the frequently used notations in the paper.

2.2 Existing Solutions
A straightforward solution is an exact method that scans all the

records column by column (assuming that the data is stored in

column style). With the exact scores, the top-k or filtering query

answer can be returned. However, such a method is expensive

when the datasets become huge and include many attributes. This

motivates the state-of-the-art sampling-based solution in [32].

EntropyRank and EntropyFilter. The main idea of EntropyRank

and EntropyFilter proposed byWang et al. [32] is to sample a subset

S of the records from the input dataset D and then derive an

estimation of the empirical entropy or mutual information. Given

an attribute α , a sampled subset S ⊆ D, let S(α) be the attribute
values of all sampled records in S with respect to attribute α . The
empirical entropy of S(α) on attribute α with respect to S can be

similarly defined. In particular, letM be the number of records in

the sampled subset S. Letmi (α), or simplymi if the context is clear,

be the number of occurrence of attribute value i ∈ [1,uα ] in S(α).
The empirical entropy HS(α) is defined as:

HS (α) = −

uα∑
i=1

mi
M

log
2

mi
M
. (1)

The empirical mutual information IS(α1,α2) can be similarly

defined. However, HS(α) (resp. IS(α1,α2)) is not an unbiased es-

timation of HD (α) (resp. ID (α1,α2)) and there exists some gap

between HD (α) (resp. ID (α1,α2)) and the expectation of HS(α)
(resp. IS(α1,α)) over a random choice of subset S of size M . As

proved in [32], such a gap can be bounded by the following lemma.

Lemma 1. Let S be a subset of sizeM randomly sampled from D.
Let uα be the support size of attribute α . The following holds:

0 ≤ HD (α) − E[HS (α)] ≤ log
2

(
1 +
(uα − 1)(N −M)

M(N − 1)

)
. (2)

Therefore, as long as the gap between HS(α) and E[HS(α)] can be

bounded, an error-bounded estimation of HD (α) can be derived.

Notice that the classic concentration bounds like Chernoff bound

[23] or McDiarmid’s inequality [22] cannot be applied to bound

the gap between the estimation and its expectation for HS(α). To
explain, the empirical entropy cannot be expressed as a mean of

samples therefore Chernoff bound cannot be applied. Furthermore,

the sample subset S is a sample without replacement fromD while

the McDiarmid’s inequality considers sampling with replacement

from a distribution. To tackle this issue, Wang et al. [32] explores

the concentration bounds for sampling without replacement. In

particular, the randomly sampled subsetS of sizeM can be regarded

as the first M records after a random shuffle to the input data D.

Let π (Z) , (Z1,Z2, · · · ,Zn ) be the permutation vector over the

input D after the random shuffle where Zi ∈ [1,N ] is the index of
the i-th element in the shuffled data. A function f : π (Z) → R, is
called (M,N )-symmetric with respect to the permutation π (Z) if f
does not change its value under the change of the order of the first

M elements or the last N −M elements.

Obviously, the empirical entropy and the empirical mutual infor-

mation over D is (M,N )-symmetric. Notice that, given a randomly

sampled subset S of sizeM corresponding the first M elements in

the permutation, HS(α) and IS(α1,α2) are also (M,N )-symmetric.

Given a (M,N )-symmetric function f , we have the following
concentration bound for f (Z) and its expectation E[f (Z)]. Let Zi , j

be a perturbed permutation vector obtained by exchanging only

Research Data Management Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

276



Zi and Z j in Z. The following (rephrased) concentration bound is

proposed by El-Yaniv and Pechyony [11].

Lemma 2 ([11]). Let Z be a random permutation over inputD and
f (Z) be a (M,N )-symmetric function with | f (Z) − f (Zi , j )| < β for
all i ∈ [1,M] and j ∈ [M + 1,N ]. Then, for any λ > 0, we have that:

Pr [f (Z) − E[f (Z)] ≥ λ]

≤ exp

(
−

2λ2

Mβ2

(
N − 1/2

N −M

) (
1 −

1

2max (M,N −M)

))
. (3)

According to [32], | f (Z) − f (Zi , j )| < 2 log
2
M/M . Let f (Z) be

HS(α) in Equation 1 where the empirical entropy only considers

the first M records and discards records from M + 1 to N . Given

Equations 2-3, one can derive an upper bound of HD (α). To derive

a lower bound, we can set f (Z) = −HS(α) and then combine

Equations 2-3. Notice that with an increased size M of the sampled

subset S, the tighter lower and upper bounds we have for HD (α).
WhenM = N , then we derive the exact value of HD (α).

To answer the top-k query, EntropyRank runs in batches. In

the i-th iteration, it samples without replacement a batch of size b
subset fromD and combines with the previously sampled (i − 1) ·b
records. Then, with the i · b records, it derives the lower and upper

bound for each attribute α and examines if the k-th largest lower

bound is no smaller than the (k + 1)-th largest upper bound. If the

answer is yes, it returns the k nodes with the largest k lower bound.

Otherwise, it turns to another iteration to derive tighter upper and

lower bounds for each attribute. Similarly, for the filtering queries,

it runs in batches until we can identify if the upper bound ofHD (α)
is smaller than η or the lower bound of HD (α) is larger than η.

As we mentioned, the main deficiency of EntropyRank and En-

tropyFilter is that they always return the exact answers for the top-k
queries and the exact filtering queries. In reality, an approximate

answer is sufficient, which motivates us to design the algorithms

for approximate top-k and filtering queries.

3 PROPOSED SOLUTION
In the literature, there exists a plethora of research work focusing

on the approximate top-k query processing, e.g., [6, 29, 36], or

heavy hitter queries, e.g., [8, 9], that share similar spirits as the

filtering queries by reporting the elements above a certain threshold.

However, to the best of our knowledge, all these studies consider

only the sum or average of random variables. While in our problem

setting, the empirical entropy cannot be expressed as either the sum

or the average of random variables, making it more challenging than

existing problems. Motivated by this, we propose our framework

SWOPE2 to answer the approximate queries efficiently. For the

ease of exposition, we focus on empirical entropy in this section.

We present our approximate top-k and filtering query algorithm

on empirical entropy in Section 3.1 and Section 3.2, respectively.

We will show how to extend the algorithms to empirical mutual

information in Section 4.

3.1 Approximate Top-k Query Processing
Recap that in the top-k query on the empirical entropy, we are

given an input datasetD, and the goal is to find k attributes fromA

2
Sampling Without Replacement for Empirical Entropy.

Algorithm 1: SWOPE-Top-k : Empirical Entropy

Input: Dataset D, k , pf , ϵ
Output: An approximate top-k query answer

1 C ← A,M ← M0, R ← ∅, imax ← ⌈log2
N
M0

⌉ + 1,

p′f ←
pf

imax ·h
;

2 whileM ≤ N do
3 for α ∈ C do
4 Calculate H (α), H (α), b(α) and λ by Lemma 3 with

p ← p′f ;

5 R ← top-k attributes from C according to H (α);

6 H (α ′k ) ← the k-th largest H (α) for α ∈ C;

7 bmax ← the largest b(α) for α ∈ R;

8 if (H (α ′k ) − 2λ − bmax)/H (α
′
k ) ≥ 1 − ϵ then

9 return R;

10 else if M < N then
11 M ← min{N , 2M};

12 else
13 break;

14 H (α ′′k ) ← the k-th largest H (α) for α ∈ C;

15 for α ∈ C do
16 if H (α) < H (α ′′k ) then
17 C ← C \ {α };

18 return R;

that have the top-k empirical entropy. Our main idea is to increase

the sample size adaptively, thus deriving tighter and tighter bound,

and check if the conditions are met to return the approximate top-k
answer satisfying Definition 5. If the conditions are not met, the

size of the sampled subset is doubled and the algorithm terminates

until the top-k answer satisfies the approximation guarantee.

To examine the conditions, with a sampled subset S, for each

attribute α , we estimate H (α) by calculating the lower bound H (α)

and upper bound H (α) with the concentration bound in Lemma 2

so that H (α) ∈ [H (α),H (α)] with high probability. Notice that with

a larger size of the sampled subset S, the upper and lower bounds

become tighter, and the estimated result is more accurate. With the

estimated results, we devise stopping conditions to guarantee that

when the algorithm terminates, it returns an approximate top-k
answer satisfying conditions in Definition 5 with high probability.

One of the main challenges is that in approximate top-k an-

swers, the exact empirical entropy of the returned attribute α ′i with
the i-th largest estimation, i.e., H (α ′i ), should be no smaller than

(1 − ϵ) · H (α∗i ) where α
∗
i is the attribute with the exact i-th largest

score which is unknown in advance. Therefore, how to design an

effective stopping condition is very important. If it stops too early,

the approximation ratio may not be satisfied; if it stops too late, it

incurs additional running time, sacrificing the performance. An-

other challenge is how to bound the expected running time. In [32],

the expected running time of the proposed top-k algorithm is linear

to
1

∆2
where ∆ is the gap between the k-th and (k + 1)-th largest

empirical entropy. When ∆ is very small, the algorithm may incur
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a high sampling cost. Can we achieve a better expected running

time? Finally, there exist dependencies between the samples among

different iterations. Does the concentration bound still hold in such

cases? Next, we will elaborate on our solution and show how to

tackle such challenging issues.

Deriving lower and upper bounds. To provide bounds for the

empirical entropy H (α), i.e., [H (α),H (α)], we can derive a con-

nection between the upper (resp. lower) bound H (α) (resp. H (α))
and the size M of the sampled set S by exploring Lemma 2. Let

β = log
2

M
M−1 +

log
2
(M−1)
M . We have the following lemma for the

upper and lower bounds.

Lemma 3. Given attribute α with support sizeuα , a random subset
S of sizeM , and a failure probability p, we have that:

H (α) ≥ H (α) , HS (α) − β

√√√ M (N −M) ln (2/p)

2 (N − 1/2)
(
1 − 1

2max(M ,N−M )

)
(4)

H (α) ≤ H (α) ,HS (α) + β

√√√ M (N −M) ln (2/p)

2 (N − 1/2)
(
1 − 1

2max(M ,N−M )

)
+ log

2

(
1 +
(uα − 1)(N −M)

M(N − 1)

)
. (5)

both hold with probability at least 1 − p.

We further define λ and b as follows:

λ = β

√√√ M(N −M) ln (2/p)

2 (N − 1/2)
(
1 − 1

2max(M ,N−M )

) , (6)

b(α) = log
2

(
1 +
(uα − 1) (N −M)

M (N − 1)

)
, (7)

which will be frequently used later. With the upper and lower

bounds of H (α), we are ready to introduce our algorithm for ap-

proximate entropy top-k query.

Main algorithm. Algorithm 1 shows the pseudo-code of our ap-

proximate top-k algorithm for empirical entropy. At the beginning,

we initialize a candidate set C to include all the attributes in A.
Then, the algorithm runs in iterations. In the first iteration, it sam-

ples M0 records. The setting of M0 will be discussed later. Then,

in each iteration, it calculates the lower bound H (α), upper bound

H (α), λ, and b(α) for each attribute in C (Algorithm 1 Lines 3-4).

Next, it retrieves a set R of the k attributes with the top-k largest

upper bounds H (α) among all α ∈ C (Algorithm 1 Line 6). De-

note α ′k as the attribute with the k-th largest upper bound and

bmax = maxα ∈R b(α) (Algorithm 1 Lines 6-7). Then, the algorithm

checks if R is an approximate top-k answer or not. The stopping

condition is quite simple: ifH (α ′k )−2λ−bmax)/H (α
′
k ) ≥ 1−ϵ , then

the algorithm finishes and returns R (Algorithm 1 Lines 8-9). The

correctness of this termination condition will be proved shortly. If

the stopping condition is not met and the sample sizeM is smaller

than N , thenM is doubled for the next iteration (Algorithm 1 Lines

10-11). Otherwise, if M = N , we have already derived the exact

answers of the empirical entropy for all attributes in C . It then
simply return the k attributes with the highest estimation scores

(Algorithm 1 Line 18). We further prune the attributes in C whose

upper bound H (α) is smaller than H (α ′′k ) (Algorithm 1 Lines 15-17),

which cannot be the top-k answers.

Theoretical analysis. It remains to clarify whether Algorithm 1

returns the answer satisfying the definition of the approximate top-

k query. The following lemma shows that our algorithm returns an

approximate top-k answer with high probability.

Theorem 1. Let R = {α ′
1
,α ′

2
, · · · ,α ′k } be k attributes returned by

Algorithm 1 sorted in descending order of their upper bounds. Then R
is an approximate top-k answer satisfying Definition 5 with at least
1 − pf probability.

Proof. Let α∗i be the attribute with the exact i-th largest em-

pirical entropy. In each iteration, since the sample sizeM is fixed,

all α ∈ C use the same λ according to the definition in Equation 6.

Equations 4-5 show that for the candidate attribute α , we have

H (α) = H (α) − 2λ − b (α) .

The algorithm terminates when (H (α ′k )−2λ−bmax)/H (α
′
k ) ≥ 1−ϵ .

Note that (H (α ′i ) − 2λ − bmax)/H (α
′
i ) is monotonic increasing with

H (α ′i ) and therefore (H (α
′
i )−2λ−bmax)/H (α

′
i ) ≥ 1−ϵ for all α ′i ∈ R.

Define the estimation of H (α ′i ) as Ĥ (α
′
i ) = (H (α

′
i ) + H (α ′i ))/2 ≥

H (α ′i ). Since Ĥ (α
′
i ) ≥ H (α ′i ), we have that:

Ĥ
(
α ′i
)
≥ H

(
α ′i
)
= H

(
α ′i
)
− 2λ − b

(
α ′i
)

≥ H
(
α ′i
)
− 2λ − bmax ≥ (1 − ϵ)H

(
α ′i
)
≥ (1 − ϵ)H

(
α ′i
)
,

where H (α ′i ) is the exact empirical entropy score of attribute α ′i .
Therefore, the returned k attributes satisfy the first condition of

approximate top-k query in Definition 5.

We then show that the returned attributes will satisfy the second

condition in Definition 5. From the above analysis, we have that:

H
(
α ′i
)
≥ (1 − ϵ)H

(
α ′i
)
for i = 1, 2, · · · ,k .

It is clear that H (α ′i ) ≤ H (α ′i ) ≤ H (α ′i ) and H (α∗i ) ≤ H (α ′i ) since

H (α ′i ) is the i-th largest upper bound. Then we have that:

H
(
α ′i
)
≥ H

(
α ′i
)
≥ (1 − ϵ)H

(
α ′i
)
≥ (1 − ϵ)H

(
α∗i

)
satisfying the second requirement of Definition 5.

The above analysis assumes that the derived upper and lower

bounds hold for each attribute in each iteration. Notice that the prob-

ability of H (αt ,α) < [H (αt ,α),H (αt ,α)] is at most p′f according to

Algorithm 1 Line 4. Since there are at most imax = ⌈log(N /M0)⌉ + 1

iterations and there are at most h candidate attributes in total, the

total fail probability is at most imax ·h ·p
′
f = pf by union bound. We

conclude that Algorithm 1 returns an answer satisfying Definition

5 with at least 1 − pf probability. �

Another advantage of our proposed algorithm is that the ex-

pected running time adaptively depends on the k-th largest empir-

ical entropy score (even though it is unknown). In particular, we

have the following theorem on the time complexity of Algorithm 1.

Theorem 2. The expected running time of Algorithm 1 is:

O
©«min

hN ,
h log

(
h logN /pf

)
log

2 N

ϵ2H2

(
α∗k

) 
ª®®¬ .
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The proof of Theorem 2 is deferred to Section 5. The above

theorem essentially states that the larger the k-th largest empirical

entropy it is, the more efficient our top-k algorithm is. If the k-th
largest score is a constant, then our time complexity only depends

on O

(
h log(h logN /pf ) log

2 N /ϵ2
)
, which significantly improves

over the exact solution O(h · N ). Compared to EntropyRank [32],

our solution linearly depends on
1

H 2(α ∗k )
while EntropyRank has a

time complexity of O

(
h log (h ·N ) log2 N

∆2

)
, where ∆ is the difference

between the k-th largest and the (k+1)-th largest empirical entropy,

and is strictly smaller than H (α∗k ). Therefore, our time complexity

is asymptotically better that of EntropyRank.

Theorem 2 further provides a lower bound on the sample size

required, that helps us determine the initial sample size M0. Let

umax be the maximum support size among all attributes in A. Then,
the k-th largest empirical entropy can be bounded by log

2
umax for

any choice of k . Therefore, we setM0 as:

M0 =
log

(
h logN /pf

)
log

2 N(
log

2
umax

)
2

,

which is the minimum number of samples required when the k-th
largest empirical entropy is the largest possible value log

2
umax and

ϵ is the largest value 1.

Dependencies among different iterations. Another issue that
is easy to be neglected is the dependency among different samples.

According to our algorithm, we will make use of the firstM0 · 2
i−1

records in the i-th iteration. However, the concentration bound

in Lemma 2 requires that the subset S is randomly sampled from

D while the records sampled in the i-th iteration depend on the

records sampled in the first (i − 1) iterations.
We note that Lemma 2 actually requires a more relaxed condi-

tion than randomly sampling a subset from D and allows more

dependencies. In particular, given a sequence of sampled records

without replacement Z = (X1,X2,X3, · · · ,XN ), it suffices ifW0 =

E[f (Z )],W1 = E[f (Z )|X1], · · · ,Wi = E[f (Z )|X1,X2, · · · ,Xi ], · · ·
Wn = E[f (Z )|X1,X2, · · · ,Xn ] forms a martingale process, i.e.,

E[Wi+1 |X1,X2, · · · ,Xi ] =Wi .

To prove E[Wi+1 |X1,X2, · · · ,Xi ] =Wi , we use the law of total

expectation, i.e., E[V |Y ] = E[E[V |U ,Y ]|Y ]. In particular, we have:

E[Wi+1 |X1,X2, · · · ,Xi ] =

E[E[f (Z )|X1,X2, · · · ,Xi+1]|X1,X2, · · · ,Xi ] (Definition ofWi+1)

= E[f (Z )|X1,X2, · · · ,Xi ] (V = f (Z ),Y = X1,X2, · · · ,Xi ,U = Xi+1)

=Wi (Definition ofWi )

Therefore,W0,W1, · · · ,WN forms a martingale process, and the

concentration bound in Lemma 2 can still be applied even though

there exist dependencies among the samples in different iterations.

3.2 Approximate Filtering Query Processing
Recap that in the filtering query, we are given a datasetD, a thresh-

old η, and the goal is to find attributes inAwhose empirical entropy

are no less thanη. Similar to our top-k processing, we still adaptively
increase the sample size step by step until the stopping condition

is satisfied. The main challenge is still how to design effective stop-

ping conditions. If we include an attribute α as one of the results

Algorithm 2: SWOPE-Filtering: Empirical Entropy

Input: Dataset D, η, pf , ϵ
Output: An approximate filtering query answer

1 C ← A,M ← M0, R ← ∅, imax ← ⌈log2
N
M0

⌉ + 1,

p′f ←
pf

imaxh
;

2 while C , ∅ andM ≤ N do
3 for α ∈ C do
4 Calculate H (α),H (α) by Lemma 3 with p ← p′f ;

5 Ĥ (α) ← (H (α) + H (α))/2;

6 if H (α) − H (α) < 2ϵη then
7 if Ĥ (α) ≥ η then
8 R ← R ∪ {α };

9 C ← C \ {α };

10 else if H (α) ≥ (1 − ϵ)η then
11 R ← R ∪ {α };

12 C ← C \ {α };

13 else if H (α) < (1 + ϵ)η then
14 C ← C \ {α };

15 M ← min{N , 2M};

16 return R;

only when H (α) > η or discard it only when H (α) < η, then the

algorithm will return the exact answer. This is how the stopping

condition is designed in EntropyFilter [32]. The expected running

time of EntropyFilter is linear to
1

δ 2
, where δ is the gap between

the score and the threshold η. Intuitively, the smaller η is, the more

difficult it is to distinguish the values of η andH (α), which will lead

to higher sampling cost. Next, we will introduce our solution, which

relaxes the conditions for the attributes close to the threshold, thus

significantly increasing the query performance.

Main algorithm. Algorithm 2 shows the pseudo-code of our ap-

proximate filtering algorithm on empirical entropy. We first initial-

ize a candidate setC to include all attributes inA and set the sample

size M = M0 (Algorithm 2 Line 1). Next, the algorithm runs in

iterations and in each iteration, it goes through the attribute values

for each α ∈ C one by one. For each attribute α , the lower bound

H (α) and upper bound H (α) are calculated based on theM samples

(Algorithm 2 Line 4). The average of H (α) and H (α) is defined as

Ĥ (α), which is the estimation of H (α).
Next, the algorithm determines if the attribute α belongs to the

answer set or not (Algorithm 2 Lines 6-14). Firstly, it checks if the

difference between H (α) and H (α) is strictly smaller than 2ϵη, in
which case the bound is tight enough, and we will prune it from C ;
we add α to the result set R only if Ĥ (α) is larger than the threshold

η. Next, it checks if H (α), the lower bound of H (α) is larger than
(1 − ϵ)η. If so, we add it to the result set R and prune it from C .

Furthermore, if H (α) is strictly smaller than (1 + ϵ)η, it is pruned
from C since it is too small. If the candidate set is still not empty,

the sample size is doubled for the next iteration (Algorithm 2 Line

15). The iterations repeat until C becomes empty or N records
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have been sampled. Finally, we return the set R of attributes as the

approximate filtering query answer.

Theoretical analysis. Next, we show that Algorithm 2 returns an

approximate filtering query answer by the following theorem.

Theorem 3. Let R be the set of attributes returned by Algorithm
2. Then R is an approximate filtering answer satisfying Definition 6
with at least 1 − pf probability.

Proof. Let α be an arbitrary attribute in C . Without loss of

generality, we omit the analysis when (1 − ϵ)η ≤ H (α) < (1 + ϵ)η,
since whether we return it or not the result will meet the conditions

in Definition 6.We discuss three possible cases that α will be pruned

from the candidate set C .

• Case 1: H(α ) −H(α ) < 2ϵη. If H (α) ≥ (1 + ϵ)η, then H (α) ≥

(1 + ϵ)η. The estimation Ĥ (α) satisfies that:

Ĥ (α) = H (α) −
1

2

(
H (α) − H (α)

)
≥ (1 + ϵ)η − ϵη = η.

So α will be included in R, satisfying conditions in Definition 6.

If H (α) < (1 − ϵ)η, then H (α) < (1 − ϵ)η. It holds that:

Ĥ (α) = H (α) +
1

2

(
H (α) − H (α)

)
< (1 − ϵ)η + ϵη = η.

So α will not be returned by Algorithm 2, satisfying Definition 6.

• Case 2: H(α ) ≥ (1 − ϵ)η. In this case, it will be included in R
since H (α) ≥ (1 − ϵ)η, and including α to R will not violate the

requirement in Definition 6.

• Case 3: H(α ) < (1 + ϵ)η. In this case, it will not be included

in R since H (α) < (1 + ϵ)η, and ignoring α will not violate the

requirement in Definition 6.

Hence, the removal of α from candidate set C under any of the

three conditions will not violate Definition 6.

The above analysis assumes that all upper and lower bounds

of H (α) for α ∈ C are correct. Similar to the analysis of our top-k
algorithm, there are total imax = ⌈log(N /M0)⌉ + 1 iterations, and

we apply the bounds for at most h attributes in each iteration. For

each attribute, the bounds fail with at most p′f probability based on

the setting of p in Algorithm 2 Line 4. The total failure probability is

at most imaxh ·p
′
f = pf by union bound. This finishes the proof. �

We have the following theorem to bound the expected running

time of our approximate filtering query on empirical entropy.

Theorem 4. The expected running time of Algorithm 2 is

O
©«min

hN ,
h log

(
h logN /pf

)
log

2 N

ϵ2η2


ª®®¬ .

The proof of Theorem 4 is deferred to Section 5. The time complexity

of EntropyFilter [32] isO

(
h log (h ·N ) log2 N

δ 2

)
, where δ is the smallest

gap between the empirical score and η. Then, obviously, δ is strictly

smaller than that of η. Hence our algorithm achieves an asymptotic

better time complexity than EntropyFilter. Our choice of M0 is the

same as that of top-k by setting η = log
2
umax and ϵ = 1, where

umax is the maximum support size among all attributes.

4 EXTENSION TO EMPIRICAL MUTUAL INFO.
4.1 Approximate Top-k Query Processing
In the top-k query on empirical mutual information, we have addi-

tional input, the target attribute αt , compared to that on empirical

entropy. Recap that the empirical mutual information I (αt ,α) is:

I (αt ,α) = H (αt ) + H (α) − H (αt ,α) .

Therefore, to derive the upper and lower bound of I (αt ,α), we
need to derive the upper and lower bounds for H (αt ), H (α), and
H (αt ,α). It is not difficult to apply Lemma 3 to derive the upper

and lower bounds for H (αt ) and H (α).
For the joint empirical entropy H (αt ,α), to derive lower and

upper bounds of H (αt ,α), we bound the gap between H (αt ,α) and
its expectation E[HS(αt ,α)]. According to Lemma 1, we have that:

0 ≤ HD (αt ,α)−E[HS (αt ,α)] ≤ log
2

(
1 +
(uαt ,α − 1) · (N −M)

M · (N − 1)

)
,

where uαt ,α is the number of distinct pairs between αt and α in

D. Since it is impractical to record the exact value of uαt ,α for all

possible combinations of different pairs of attributes in advance,

we use an upper bound uαt ,α of uαt ,α where

uαt ,α = uαt · uα ,

by considering the worst case that all combinations between αt
and α appear in D. So we have that:

0 ≤ H (αt ,α) − E[HS (αt ,α)] ≤ log
2

(
1 +
(uαt ,α − 1)(N −M)

M(N − 1)

)
.

Similar to the definition of b(α), we define b(αt ,α) as:

b(αt ,α) = log
2

(
1 +
(uαt ,α − 1)(N −M)

M(N − 1)

)
Then, we have that:

H (αt ,α) ≥ H (αt ,α) , HS(αt ,α) − λ

H (αt ,α) ≤ H (αt ,α) , HS(αt ,α) + λ + b(αt ,α)

With the lower and upper bounds of H (αt ), H (α) and H (αt ,α),
we can define the lower and upper bounds of I (αt ,α) as:

I (αt ,α) = H (αt ) + H (α) − H (αt ,α),

I (αt ,α) = H (αt ) + H (α) − H (αt ,α).

If the bounds for H (αt ), H (α) and H (αt ,α) each hold with 1 − p

probability, then we have that I (αt ,α) ∈ [I (αt ,α), I (αt ,α)] holds

with 1 − 3 · p probability by union bound. We also define Î (αt ,α) =

(I (αt ,α) + I (αt ,α))/2 as the estimated value of I (αt ,α).

Main algorithm. The pseudo-code of the top-k algorithm is shown

in Algorithm 3. It shares a similar spirit as the top-k algorithm

for empirical entropy. Initially, the candidate set C includes all

attributes except the target attribute αt and samples M0 records.

The setting of M0 is the same as that Algorithm 1. Then, in each

iteration, it derives upper and lower bounds of I (αt ,α) for each
attribute in C (Algorithm 3 Lines 3-6) and obtains the k attributes

with the highest upper bounds inC and set it to R. Next, it examines

if the stopping condition is satisfied. In particular, it checks if

(I (αt ,α
′
k ) − 6λ − b

′
max
)/I (αt ,α

′
k ) ≥ 1 − ϵ,
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Algorithm 3: SWOPE-Top-k : Empirical Mutual Info.

Input: Dataset D, target attribute αt , k , pf , ϵ
Output: An approximate top-k query answer

1 C ← A \ {αt },M ← M0, imax ← ⌈log2
N
M0

⌉ + 1,

p′f ←
pf

3imax ·(h−1)
;

2 whileM ≤ N do
3 Calculate H (αt ), H (αt ), b(αt ) and λ by Lemma 3 with

p ← p′f ;

4 for α ∈ C do
5 Calculate I (αt ,α), I (αt ,α), b(α) and b(αt ,α);

6 b ′(α) ← b(αt ) + b(α) + b(αt ,α);

7 R ← top-k attributes from C according to I (αt ,α);

8 I (αt ,α
′
k ) ← the k-th largest I (αt ,α) for α ∈ C;

9 b ′
max
← the largest b ′(α) for α ∈ R;

10 if (I (αt ,α ′k ) − 6λ − b
′
max
)/I (αt ,α

′
k ) ≥ 1 − ϵ then

11 return R;

12 else if M < N then
13 M ← min{N , 2M};

14 else
15 break;

16 I (αt ,α
′′
k ) ← the k-th largest I (αt ,α) for α ∈ C;

17 for α ∈ C do
18 if I (αt ,α) < I (αt ,α

′′
k ) then

19 C ← C \ {α };

20 return R;

where α ′k is the attribute with the k-th largest upper bound. If

the stopping condition is met, then the algorithm terminates and

returns an approximate answer. Otherwise, it doubles the sample

size until all N records are sampled. It further prunes the attributes

whose upper bound is smaller than the k-th largest lower bound

(Algorithm 3 Lines 17-19).

We have the following theorem to state the correctness and time

complexity of our top-k algorithm on empirical mutual information.

Theorem 5. Algorithm 3 returns an approximate top-k answer
satisfying Definition 5 with at least 1 − pf probability. The expected
running time can be bounded by:

O
©«min

hN ,
h log

(
h logN /pf

)
log

2 N

ϵ2I2
(
αt ,α

∗
k

) 
ª®®¬ .

The proof of Theorem 5 is omitted since it can follow similar

steps as the proof of Theorems 1-2.

4.2 Approximate Filtering Query Processing
The filtering query algorithm on empirical mutual information is

similar to that on empirical entropy. It samplesM0 in the beginning

and adaptively doubles the sample size in each iteration until the

stopping condition is met. The main difference is that p′f is set to

pf
3imax ·(h−1)

since we only have h − 1 possible attributes, and we

Algorithm 4: SWOPE-Filtering: Empirical Mutual Info.

Input: Dataset D, target attribute αt , pf , ϵ , η
Output: An approximate filtering query answer

1 The steps are the same as Algorithm 2 except by changing

C = A \ {αt }, p
′
f ←

pf
3imax ·(h−1)

, H to I , H to I , and Ĥ to Î ;

derive the upper and lower bounds for H (αt ), H (α), H (αt ,α) at
most imax times. The upper bounds, lower bounds, and estimated

values for empirical entropy are changed to the upper bounds,

lower bounds, and the estimated values for the empirical mutual

information, respectively. The three cases in Algorithm 4 are then:

(i) I (αt ,α)−I (αt ,α) < 2ϵη, (ii) I (αt ,α) ≥ (1−ϵ)η, and (iii) I (αt ,α) <
(1 + ϵ)η. We have the following theorem for the correctness of

Algorithm 4 and its time complexity.

Theorem 6. Algorithm 4 returns an approximate filtering answer
satisfying Definition 6 with at least 1 − pf probability. The expected
running time can be bounded by:

O
©«min

hN ,
h log

(
h logN /pf

)
log

2 N

ϵ2η2


ª®®¬ .

The proof of Theorem 6 is also omitted since it can follow the

similar steps as the proofs in Theorems 3-4.

5 THEORETICAL ANALYSIS
In this section, we present the detailed proofs of Theorem 2 and

Theorem 4 and omit the proof of Lemma 3. The proof of Lemma 3

can be found in our technical report [1]. To prove Theorem 2 and 4,

we introduce the following lemma.

Lemma 4. When the sample sizeM is at least

N

(
2 log

2
N
√

2 ln(2/p)N
N−1/2 + uα

)
2

(N − 1)κ2
,

2λ + b(α) ≤ κ holds with at least 1 − p/2 probability, where λ (resp.
b) is defined as Equation 6 (resp. 7) and κ is a positive real value.

Proof. According to the definition of λ in Equation 6,

λ =

(
log

2

M

M − 1
+
log

2
(M − 1)

M

) √√√ M(N −M) ln (2/p)

2 (N − 1/2)
(
1 − 1

2max(M ,N−M )

) .
Since log

2

M
M−1 +

log
2
(M−1)
M <

2 log
2
M

M in [32] and max(M,N −

M) ≥ N
2
, we have λ ≤ log

2
M
√

2 ln(2/p)N (N−M )
M (N−1/2)(N−1) . Recall from Equa-

tion 7 that b(α) = log
2

(
1 +

(uα−1)(N−M )
M (N−1)

)
. Define Z ∈ [0, 1] as

(N −M) /M/(N − 1) and the range of Z comes from the fact that

1 ≤ M ≤ N . To guarantee that 2λ + b(α) ≤ κ, we ensure:

2 log
2
M

√
2 ln (2/p)N

N − 1/2

√
Z + log

2
(1 + (uα − 1)Z ) ≤ κ .

log
2
M has an upper bound log

2
N and log

2
(1 + (uα − 1)Z ) ≤

(uα − 1)Z ≤ uαZ ≤ uα
√
Z , where the last inequality comes from
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the fact that Z ≤
√
Z for Z ∈ [0, 1]. Then if we have that

©«2 log2 N
√

2 ln (2/p)N

N − 1/2
+ uα

ª®¬
√
Z ≤ κ,

2λ + b(α) ≤ κ will hold. After the transformation, we have that:

N −M

M
≤ (N − 1)κ2/(2 log

2
N

√
2 ln (2/p)N

N − 1/2
+ uα )

2

⇔ M ≥
N

(N−1)κ2(
2 log

2
N
√

2 ln(2/p)N
N−1/2 +uα

)
2
+ 1
.

Since we are deriving a lower bound forM , we can further discard

the constant 1 in the denominator. We then require that

M ≥

N

(
2 log

2
N
√

2 ln(2/p)N
N−1/2 + uα

)
2

(N − 1)κ2
,

which finishes the proof of the lemma. �

Proof of Theorem 2. The time complexity of estimating the lower

and upper bound of H (α) with M samples is O(M). Let c0 be the
constant factor of the time complexity of the estimation. LetM∗ be
the value of sample sizeM when Algorithm 1 terminates. There are

h attributes in total. Then the expected running time of Algorithm

1 can be bounded by c0 (h − 1)M
∗
.

Recall that the termination condition of Algorithm 1 is (H (α ′k ) −

2λ − bmax)/H (α
′
k ) ≥ 1 − ϵ . The left side of it is

(H (α ′k ) − 2λ − bmax)/H (α
′
k ) = 1 − (2λ + bmax)/H (α

′
k ).

If 1 − (2λ + bmax)/H (α
′
k ) ≥ 1 − ϵ, we have that:

(H (α ′k ) − 2λ − bmax)/H (α
′
k ) ≥ 1 − ϵ, (8)

and Algorithm 1 will terminate. Equation 8 is equivalent to

2λ + bmax ≤ ϵH
(
α ′k

)
.

Recall thatH (α ′k ) ≥ H (α∗k ), whereH (α
∗
k ) is the exact k-th largest

H (α) for α ∈ C . Besides, bmax is the largest b(α) for α ∈ R. If we can
make sure that 2λ + b(α) ≤ ϵH (α∗k ), where α is the corresponding

attribute with respect to bmax, we have 2λ + bmax ≤ ϵH (α ′k ).

Replace κ with ϵH (α∗k ) and set p as p′f in Lemma 4. When

M ≥

N
©«2 log2 N

√
2 ln

(
2/p′f

)
N

N−1/2 + uα
ª®®¬
2

(N − 1) ϵ2H2

(
α∗k

) , M∗,

then 2λ + b(α) ≤ ϵH (α∗k ) can be satisfied.

In Algorithm 1, the sample size M will double in each iteration

and check whether M is large enough to satisfy the termination

condition. So Algorithm 1 terminates withM ≤ 2M∗ with at least

1 − pf probability. Consider that the support size uα is a constant

Table 2: Summary of datasets
Dataset Rows Columns

cdc-behavioral-risk 3753802 100

census-american-housing 14768919 107

census-american-population 31290943 179

enem 33714152 117

in practice. Since imax = ⌈log2(N /M0)⌉ + 1 and p
′
f = pf /imax/h as

we set in Algorithm 1, then we have that

M∗ = O
©«
log

(
h logN /pf

)
log

2 N

ϵ2H2

(
α∗k

) ª®®¬ .
The sample sizeM∗ cannot exceed the number N and there are h
candidate attributes in total. The expected running time of Algo-

rithm 1 can be bounded by:

O
©«min

hN ,
h log

(
h logN /pf

)
log

2 N

ϵ2H2

(
α∗k

) 
ª®®¬ ,

which finishes the proof.

Proof of Theorem 4. In the approximate filtering query for em-

pirical entropy, the most difficult case is when the estimated value

of a empirical entropy is close to the preset threshold η. In this

way, we do not prune this attribute until the difference between

the upper and lower bound, i.e., H (α) − H (α) is smaller than 2ϵη.

When H (α) − H (α) < 2ϵη, we are safe to return an approximate

answer satisfying Definition 6.

For an attribute α which is not pruned until H (α) −H (α) < 2ϵη,
we need to have 2λ + b(α) < 2ϵη according to Lemma 3. We use

2ϵη to replace κ in Lemma 4 and p is set as p′f . Then when

M ≥

N
©«2 log2 N

√
2 ln

(
2/p′f

)
N

N−1/2 + uα
ª®®¬
2

4 (N − 1) ϵ2η2
, M∗,

we have 2λ + b(α) < 2ϵη.
In our Algorithm 2, the sample sizeM will double in each iter-

ation, and hence the sample size can be bounded by 2M∗ with at

least 1 − pf probability. The support size uα can be regarded as a

constant. Since imax = ⌈log2(N /M0)⌉ + 1 and p
′
f = pf /imax/h as

we set in Algorithm 2, the above inequality is equal to

M∗ = O
©«
log

(
h logN /pf

)
log

2 N

ϵ2η2

ª®®¬
M cannot exceed the number of records N . Besides, there are h
attributes. Then the expected running time of Algorithm 2 is:

O
©«min

hN ,
h log

(
h logN /pf

)
log

2 N

ϵ2η2


ª®®¬ .
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Figure 1: Varying k: Running time of empirical entropy top-k algorithms.
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Figure 2: Varying k: Query precision of empirical entropy top-k algorithms.
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Figure 3: Varying η: Running time of empirical entropy filtering algorithms.
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Figure 4: Varying η: Query accuracy of empirical entropy filtering algorithms.

6 EXPERIMENTS
6.1 Experimental Settings
Datasets.We use four large real datasets: cdc-behavioral-risk (cdc),

census-american-housing (hus), census-american-population (pus)

and enem, that are publicly available and tested in [32]. The sum-

mary of these four datasets is shown in Table 2. Following [32], we

remove columns with a too large support size, since they are usually

not the preferred attributes for downstream data mining tasks. In

our experiment, we eliminate columns with a support size larger

than 1000. To create a test case for empirical mutual information,

we choose one column as the target attribute and repeat the process

for 20 times in each dataset. Each metric is averaged over 20 cases.

Algorithms. For empirical entropy queries, we compare our SWOPE

top-k algorithm (resp. filtering algorithm) against the state-of-the-

art top-k query algorithm (resp. filtering query algorithm) in [32],

dubbed as EntropyRank (resp. EntropyFilter). We further include the

exact solution, dubbed as Exact, as a baseline. For the empirical mu-

tual information, we also include EntropyRank and EntropyFilter

in [32] and the exact solution as our competitors. All algorithms

are implemented with C++ and compiled with full optimization. All

experiments are conducted on a Linux machine with an Intel Xeon

2.7GHz CPU and 200GB memory. Following [32], SWOPE stores

data by columnar layout and do sequential sampling. To explain,

random sampling on columnar layout may have a bad cache per-

formance since it may randomly access different pages. This issue

can be alleviated by sampling by the granularity of page sizes.

Parameter Settings. Recap that all our algorithms include a fail-

ure probability parameter pf . We set pf = 1/N for our SWOPE,

EntropyRank, and EntropyFilter. For top-k queries, we vary k in

[1, 10] following [32]. We show the results for k equal to 1, 2, 4, 8, 10.

For the filtering queries, we still follow the setting in [32]. We vary

η with {0.5, 1, 1.5, 2, 2.5, 3} in empirical entropy filtering queries

and vary η with {0.1, 0.2, 0.3, 0.4, 0.5} in empirical mutual informa-

tion filtering queries. We note that the settings of η are different

since the empirical mutual information scores are typically smaller

than the empirical entropy scores. Finally, SWOPE includes an error

parameter ϵ to control the trade-off between the query accuracy

and query efficiency. We tune the impact of ϵ in Section 6.4. The

experiments show that when ϵ = 0.1 (resp. ϵ = 0.05), it achieves
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Figure 5: Varying k: Running time of empirical mutual information top-k algorithms.
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Figure 6: Varying k: Query accuracy of empirical mutual information top-k algorithms.
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Figure 7: Varying η: Running time of empirical mutual information filtering algorithms.
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Figure 8: Varying η: Query accuracy of empirical mutual information filtering algorithms.

the best trade-off between the query efficiency and accuracy on em-

pirical entropy top-k queries (resp. filtering queries); when ϵ = 0.5,

it achieves the best trade-off between the query efficiency and accu-

racy on both the empirical mutual information top-k and filtering

queries. In the rest of the experiments, we set these values of ϵ as

default values in their corresponding top-k and filtering queries.

6.2 Evaluation on Empirical Entropy
Top-k queries. In the first set of experiments, we evaluate the

query performance and accuracy of the empirical entropy top-k
queries on all four datasets by varying k from 1 to 10. Figure 1

shows the running time of our SWOPE against the competitors. As

we can observe, our SWOPE consistently outperforms EntropyRank

and is an order of magnitude faster than EntropyRank in most cases.

Remarkably, our SWOPE is up to 117× faster than EntropyRank

when k = 4 on the enem dataset. Compared with Exact, our solution

further achieves up to three orders of magnitude improvement.

In terms of accuracy, all three solutions provide the exact top-k
answers achieving 100% accuracy in all cases.

Filtering queries. In the second set of experiments, we evaluate

the query performance and accuracy of the filtering queries on all

datasets by varying η from 0.5 to 3.0. Figure 3 reports the running

time of all solutions. Again, our SWOPE is up to an order (resp.

three orders) of magnitude faster than EntropyFilter (resp. Exact)

in most cases. In particular, when η = 3, our SWOPE is 77× faster

than EntropyFilter on enem dataset. In the meantime, our algorithm

correctly reports all the attributes with empirical entropy no smaller

than the threshold η in all cases as shown in Figure 4.

6.3 Evaluation on Empirical Mutual Info
Top-k queries. Figure 5 reports the query time of all methods

when we change k from 1 to 10. As we can observe, SWOPE is still

the most efficient algorithm among all methods: SWOPE is up to

an order (resp. two orders) of magnitude faster than EntropyRank

(resp. Exact). In terms of accuracy, all the methods still provide

identically highly accurate results as shown in Figure 6.

Filtering queries. Figure 7 reports the query time of all methods

when we change η from 0.1 to 0.5. SWOPE is up to 54× faster

than EntropyFilter and two orders of magnitude faster than Exact.

In the meantime, SWOPE reports identically accurate results as

EntropyFilter and Exact.
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Figure 10: Tuning ϵ : filtering on empirical entropy.

6.4 Tuning ϵ
Finally, we examine the trade-off between the query efficiency

and accuracy of our approximate algorithms by varying ϵ with

{0.01, 0.025, 0.05, 0.1, 0.25, 0.5} for the above four queries on all

datasets. We fix k = 4 for both empirical entropy and mutual in-

formation top-k queries. We fix η = 2 (resp. η = 0.3) for empirical

entropy (resp. mutual information) filtering query. As shown in

Figures 9-12, when we increase ϵ , the running time of all algo-

rithms decreases. However, on different queries, ϵ further impacts

the accuracy. As shown in Figure 9(b), on the empirical entropy

top-k queries, when ϵ increases from 0.1 to 0.25, the accuracy de-

creases from 100% to around 75%. Therefore, we choose ϵ = 0.1 as

the default value for the empirical entropy top-k queries. Accord-

ing to Figure 10(b), on empirical entropy filtering queries, when

ϵ increases from 0.05 to 0.1, the accuracy changes from 1 to 0.99.

Therefore, we choose ϵ = 0.05 as the default value for empirical en-

tropy filtering queries. Finally, as shown in Figures 11(b) and 12(b),

in all settings of ϵ , both the empirical mutual information top-k and

filtering queries achieve 100% accuracy. Therefore, we set ϵ = 0.5 as

the default value for both the empirical mutual information top-k
and filtering queries.

7 RELATEDWORK
Entropy stands as a fundamental concept in data mining and in-

formation theory [28]. A plethora of research work has focused on

developing efficient algorithms to estimate the information entropy,

e.g., [17, 18, 25, 30, 38]. Paninski [25] finds the connection between

the bias of entropy estimators and a certain polynomial approx-

imation problem. He then develops an estimator equipped with

rigorous bounds on the maximum error over all possible underlying

probability distributions. This also bounds the difference between

empirical entropy and information entropy. Valiant et al. [30] derive

that given a sample of independent draws from any distribution

over at mostu distinct elements, the entropy can be estimated using

O(u/logu) samples. Jiao et al. [17] and Wu et al. [38] design algo-

rithms to estimate the entropy with minimax squared error rate

c2/(M lnM)2 + ln2 u/M using the polynomial approximation based

onM samples whereM ≫ u/lnu. Besides, Jiao et al. [18] shows an
estimation of the entropy with u2/M2 + ln2 u/M worst case square
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error rates of MLE usingM ≫ u samples. There also exist studies

on entropy monitoring under streaming or distributed settings, e.g.,

[7, 15]. However, none of these research works consider the top-k
or filtering queries under empirical entropy or mutual informa-

tion. Most recently, Wang et al. [32] adopts the sampling without

replacement techniques to answer the top-k and filtering queries

as we discuss in Section 2. However, their solution still targets to

return the exact answer and leaves much room for improvement.

Besides, a plethora work focuses on approximate top-k queries,

e.g., [6, 29, 36]. Sheng et al. [29] propose an ϵ-approximate algorithm

to find k vertices with the largest degrees on a hidden bipartite

graph. Cao et al. [6] discuss how to choose k distributions with

the largest means efficiently tolerating a small relative error. Wang

et al. [36] consider the approximate top-k personalized PageRank

queries. There also exists a line of researchwork, e.g., [8, 9], focusing

on heavy hitter queries that share a similar spirit as our filtering

queries. In heavy hitter queries, we are given a stream of length

N , and it asks for the elements with a frequency that is larger

than τ · N , where τ is a threshold. All of these queries can be

regarded as the sum or average of a random variable, and therefore

classic concentration bound can be applied. However, estimating

empirical entropy is more challenging, and this motivates us to

design more efficient and effective approximate top-k and filtering

query algorithms.

8 CONCLUSION
In this paper, we present an efficient framework SWOPE to handle

the top-k and filtering queries on empirical entropy and mutual

information. Theoretical analysis shows that our proposed solution

achieves improved time complexity than existing alternatives. Ex-

periments show that our solution is up to two orders of magnitude

faster than alternatives without sacrificing the query accuracy.
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