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Abstract
The smoothing issue in graph learning leads to indistinguishable

node representations, posing significant challenges for graph-related

tasks. However, our experiments reveal that this problem can un-

cover underlying properties of node anomaly detection (NAD) that

previous research has missed. We introduce Individual Smoothing

Patterns (ISP) and Neighborhood Smoothing Patterns (NSP), which

indicate that the representations of anomalous nodes are harder to

smooth than those of normal ones. In addition, we explore the the-

oretical implications of these patterns, demonstrating the potential

benefits of ISP and NSP for NAD tasks. Motivated by these findings,

we propose SmoothGNN, a novel unsupervised NAD framework.

First, we design a learning component to explicitly capture ISP

for detecting node anomalies. Second, we design a spectral graph

neural network to implicitly learn ISP to enhance detection. Third,

we design an effective coefficient based on our findings that NSP

can serve as coefficients for node representations, aiding in the

identification of anomalous nodes. Furthermore, we devise a novel

anomaly measure to calculate loss functions and anomalous scores

for nodes, reflecting the properties of NAD using ISP and NSP.

Extensive experiments on 9 real datasets show that SmoothGNN

outperforms the best rival by an average of 14.66% in AUC and

7.28% in Average Precision, with 75x running time speedup, vali-

dating the effectiveness and efficiency of our framework. Our code

is available at https://github.com/xydong127/SmoothGNN.
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1 Introduction
Node anomaly detection (NAD) aims to identify nodes in a graph

that exhibit anomalous patterns compared to the majority of nodes

[1, 24]. As the widespread prevalence of graph data driven by ad-

vances in modern technologies over the past three decades, NAD

has become a trending topic due to its crucial role in various

real-world applications, such as fraud detection in financial net-

works [16], malicious reviews detection in social networks [25],

and hotspot detection in chip manufacturing [32].

However, the complicated information and large scale of real-

world graphs present challenges in effectively and efficiently detect-

ing anomalous nodes, especially in unsupervised settings [9, 14, 23].

To address these challenges, various designs have been proposed

for the unsupervised NAD task, such as shallow models [21, 28],

reconstruction models [18, 31], self-supervised models [11–13, 27],

and special models [4, 15, 17, 29]. However, these methods usually

face effectiveness or efficiency issues in real-world deployment for

NAD tasks. To be specific, shallow models have limited expres-

siveness due to the hand-crafted rules, reconstruction models and

self-supervised models are unlikely to be used in real applications

due to high computational complexity, and special models face the

challenge of finding an effective identifier of NAD.

To address these limitations, we re-evaluate the propagation

procedure of NAD tasks and find that the smoothing issue can

provide potential advantages for detecting anomalies in graphs.

Specifically, we design two novel measures: Individual Smoothing
Patterns (ISP) and Neighborhood Smoothing Patterns (NSP), to ana-

lyze the smoothing issue from different perspectives. For ISP, we

calculate the average normalized distances between node represen-

tations at each propagation hop and the converged representations

obtained after an infinite number of hops for both anomalous and

normal nodes. For NSP, we calculate the average normalized simi-

larities within the neighborhoods of anomalous and normal nodes,

respectively. Notably, these two smoothing patterns exhibit distinct
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Figure 1: Smoothing Patterns of Amazon.
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Figure 2: Smoothing Patterns of T-Finance.

behaviors across different types of nodes in real-world datasets like

Amazon and T-Finance, as illustrated in Figures 1 and 2, respec-

tively. During propagation, the smoothing patterns of anomalous

nodes generally exceed those of normal nodes at most hops. This

observation provides a potential metric for assessing anomalous

scores of nodes: the higher the smoothing patterns, the more likely

a node is to be anomalous. Similar observations on other datasets

can be found in Appendix A.2.

To explore the rationale behind this phenomenon, we conduct

a theoretical analysis, revealing that the smoothing patterns are

closely related to anomalous properties of nodes, originating from

the structural and attribute information, as shown in Theorem 1.

Besides, further exploration in Theorem 2 highlights the strong

connection between the smoothing issue and the spectral space,

providing insights for designing a spectral Graph Neural Network
(GNN). Moreover, as illustrated in Theorem 3, our findings indicate

that NSP serves a role similar to spectral energy [8], which can

be utilized as coefficients for node representations. Furthermore,

we provide a theoretical guarantee in Theorem 4 to clarify the

boundaries of the benefits derived from the smoothing issue.

Motivated by both experimental and theoretical findings, we

introduce SmoothGNN, a novel graph learning framework for un-

supervised NAD tasks. It consists of four key components: the

Smoothing-aware Learning Component (SLC), the Smoothing-aware
Spectral GNN (SSGNN), the Smoothing-aware Coefficients (SC), and
the Smoothing-aware Measure (SMeasure). Specifically, SLC serves

as a feature encoding module, explicitly capturing the ISP of anoma-

lous and normal nodes, as supported by Theorem 1. Subsequently,

based on Theorem 2, SSGNN is designed to learn node representa-

tions from the spectral space of the graph while implicitly capturing

ISP to aid the learning process. Additionally, building upon Theorem

3, we design SC to extract both NSP and spectral energy informa-

tion, providing complementary properties from other perspectives.

Furthermore, through unifying the benefits of ISP and NSP proven

by the empirical and theoretical results, we introduce a novel SMea-

sure to effectively and efficiently calculate the loss function and

the anomalous scores. Ultimately, in contrast to previous studies

in the unsupervised NAD area, such as [15, 29], which primarily

focused on small or synthetic datasets, we conduct experiments

on large-scale real datasets commonly encountered in practical

applications, demonstrating the usefulness of SmoothGNN.

In summary, our work makes the following key contributions:

• To the best of our knowledge, we are the first to demonstrate the

benefit of the smoothing issue on NAD tasks from both experi-

mental and theoretical perspectives. Building upon this insight,

we introduce a novel SMeasure as an anomaly measurement for

unsupervised NAD tasks.

• We propose SmoothGNN, a novel framework that captures infor-

mation from the smoothing process and spectral space of graphs,

which can serve as a powerful backbone for NAD tasks.

• Our work stands out as the only one that conducts experiments

on large real-world datasets for unsupervised NAD. Extensive

experimental results showcase the effectiveness and efficiency of

our proposed framework. Compared to state-of-the-art alterna-

tives, SmoothGNN demonstrates superior performance in terms

of AUC and Average Precision, with a speed-up of at least one

order of magnitude.

2 Related Work
In recent years, unsupervised NAD has gained increasing interest

within the graph learning community. Researchers have proposed a

variety of models that can be broadly categorized into four groups:

shallowmodels, reconstruction models, self-supervised models, and

special models. Next, we briefly introduce several representative

frameworks from these categories.

Shallow Models. Prior to the emergence of deep learning models,

early works for the NAD tasks mainly focus on shallow models,

which utilize statistical information and mathematical formulas

to identify node anomalies. For instance, Radar [21] utilizes the

residuals of attribute information and their coherence with graph

information to identify anomalous nodes. ANOMALOUS [28] in-

troduces a joint framework for NAD based on residual analysis.

These models primarily adopt matrix decomposition and residual

analysis, which inherently have limited capabilities in capturing

the complex graph information, compared to deep learning models.

Reconstruction Models. Reconstruction models are prevalent

approaches for unsupervised NAD, as the reconstruction errors of

graph structures and node features inherently reflect the likelihood

of a node being anomalous. Motivated by this, a prior work CLAD

[18], proposes a label-aware reconstruction approach that utilizes

Jensen-Shannon Divergence and Euclidean Distance. Besides, graph
auto-encoders (GAEs) are widely adopted as reconstruction tech-

niques. For example, GADNR [31] incorporates GAEs to reconstruct

the neighborhood of nodes. Although previous studies have shown

the usefulness of graph reconstruction, it is worth noting that re-

constructing graph structures can be computationally expensive.

Moreover, experimental findings [17] indicate that node feature

reconstruction yields significant benefits for NAD. Therefore, a

preferable choice is to focus exclusively on feature reconstruction

to assist loss function, as introduced in the SmoothGNN framework.

Self-supervised Models. Aside from the reconstruction models,

self-supervised models, such as contrastive learning frameworks,
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employ auxiliary tasks to guide unsupervised NAD. For exam-

ple, NLGAD [13] constructs multi-scale contrastive learning net-

works to estimate the normality for nodes. Similarly, GRADATE

[11] presents a multi-scale contrastive learning framework with

subgraph-subgraph contrast to capture the local properties of nodes.

Other examples include PREM [27] and ARISE [12], which employ

node-subgraph contrast and node-node contrast to learn node rep-

resentations, reflecting both local and global views of the graph. A

recent study, TAM [29], leverages data augmentation to generate

multi-view graphs, enabling the examination of the consistency

of the local information within node neighborhoods. Based on the

observation of local node affinity, TAM introduces a local affinity

score to measure the probability of a node being anomalous, high-

lighting the importance of designing newmeasures for NAD. In con-

trast, SmoothGNN introduces the SMeasure to calculate anomalous

scores, which utilizes a more flexible way to capture the anomalous

properties of the nodes and requires fewer computational resources,

enabling SmoothGNN to be applied to large-scale datasets.

Special Models. In addition to the above-mentioned models, there

are also special models that leverage novel measurements to de-

sign loss or reward functions for calculating anomalous scores. For

instance, RAND [4] is the first work that leverages reinforcement

learning in the unsupervised NAD task. It introduces an anomaly-

aware aggregator to amplify messages from reliable neighbors. On

the other hand, VGOD [17] presents a mixed-type framework that

combines a reconstruction model and a self-supervised model. It in-

corporates a variance-based module to sample positive and negative

pairs for contrastive learning, along with an attribute reconstruc-

tion module to reconstruct node features. Afterward, REC [15]

utilizes a score-based generative model to boost the performance in

this area. In contrast to these works, our SmoothGNN framework

adopts a different strategy with theoretical analyses by utilizing

feature reconstruction and the proposed SMeasure as the objective

function, which achieves superior performance while requiring

significantly less running time.

3 Preliminaries
Notation. Let 𝐺 = (𝑨,𝑿 ) denote a connected undirected graph

with 𝑛 nodes and𝑚 edges, where 𝑿 ∈ R𝑛×𝐹
represents node fea-

tures and 𝑨 ∈ R𝑛×𝑛
represents the adjacency matrix. Let 𝑨𝑖 𝑗 = 1

if there exists an edge between node 𝑖 and 𝑗 , otherwise 𝑨𝑖 𝑗 = 0.

𝑫 denotes the degree matrix. The adjacency matrix
˜𝑨 and degree

matrix �̃� of graph 𝐺 with self-loops can be defined as
˜𝑨 = 𝑨 + 𝑰𝒏

and �̃� = 𝑫+𝑰𝒏 , respectively, where 𝑰𝑛 ∈ R𝑛×𝑛
is an identity matrix.

The Laplacian matrix 𝑳 is then defined as 𝑳 = 𝑰𝒏 − �̃�
− 1

2 ˜𝑨�̃�
− 1

2
. It

can also be decomposed by 𝑳 = 𝑼𝚲𝑼𝑇
, where 𝑼 = (𝒖1, 𝒖2, ..., 𝒖𝑛)

represents orthonormal eigenvectors and the corresponding eigen-

values are sorted in ascending order, i.e. 𝜆1 ≤ ... ≤ 𝜆𝑛 . Let 𝒙 =

(𝑥1, 𝑥2, ..., 𝑥𝑛)𝑇 ∈ R𝑛
be a signal on graph𝐺 , the graph convolution

operation between a signal 𝒙 and a graph filter 𝑔𝜃 (·) is then defined

as 𝑔𝜃 (𝑳) ∗𝒙 = 𝑼𝑔𝜃 (𝚲)𝑼𝑇 𝒙 , where the parameter 𝜃 ∈ R𝑛
is spectral

filter coefficient vector.

Unsupervised Node Anomaly Detection. Let V = {𝑣1, ..., 𝑣𝑛}
denotes the node set of graph𝐺 , then unsupervised NAD tasks aim

to learn an anomaly scoring function 𝑓 : V→ R, such that 𝑓 (𝑣𝑛) <

𝑓 (𝑣𝑎), for ∀𝑣𝑛 ∈ V𝑛 and ∀𝑣𝑎 ∈ V𝑎 , where V𝑛 and V𝑎 represents the

normal and anomalous node set separately. In addition, due to the

nature of the anomalies, it is typically assumed that |V𝑛 | ≫ |V𝑎 |.
Moreover, since this work focuses on the unsupervised setting, the

class labels of the nodes during training are not accessible. Under

such circumstances, unsupervised NAD tasks require effective and

efficient techniques to help the learning of the framework.

Spectral GNN. Graph convolution operations [7, 19] can be ap-

proximated by the 𝑇 -th order polynomial of Laplacians:

𝑼𝑔𝜃 (Λ)𝑼𝑇 𝒙 ≈ 𝑼 (
𝑇∑︁
𝑡=0

𝜃𝑡𝚲
𝑡 )𝑼𝑇 𝒙 = (

𝑇∑︁
𝑡=0

𝜃𝑡𝑳
𝑡 )𝒙,

where 𝜃 ∈ R𝑇+1 corresponds to polynomial coefficients. In the

following Section 4.1, the prevalent graph convolution operation is

demonstrated to have a strong relation with graph smoothing pat-

terns. This key insight motivates the design of SmoothGNN, which

can capture information from graph spectral space and anomalous

properties behind smoothing patterns.

Individual Smoothing Patterns. As presented in a previous study
[36], the node representations finally converge to a stable state, mak-

ing it challenging to distinguish between different nodes. However,

as discussed in Section 1, the distances between node representa-

tions at each propagation hop and the converged representations

obtained after an infinite number of hops exhibit different patterns

for anomalous and normal nodes. Hence, ISP can be denoted as:

𝐼 (𝒙) =
(𝑷𝑡 − 𝑷∞)𝒙2

2
,

where 𝑷𝑡 is the propagation matrix after 𝑡 hops of propagation,

𝑃∞ is the converged state, and 𝒙 is the graph signal. ISP effectively

describes the smoothing patterns of each individual node during

propagation, as indicated by its definition. Subsequent analyses in

Section 4.1 illustrate the effectiveness of ISP in NAD tasks, which

can capture both spectral information and smoothing patterns.

Neighborhood Smoothing Patterns. To describe the smooth-

ing patterns from a different perspective, we adopt the concept of

Dirichlet Energy [39] to define NSP as follows:

𝑁 (𝒙𝑡 ) =
𝑛∑︁

𝑖, 𝑗=1

𝑎𝑖, 𝑗

 𝑥𝑡
𝑖√

𝑑𝑖 + 1
−

𝑥𝑡
𝑗√︁

𝑑 𝑗 + 1

2
2

,

where 𝑎𝑖, 𝑗 represents the (𝑖, 𝑗)-th entry of the adjacency matrix
˜𝑨,

𝑑𝑖 is the degree of node 𝑖 , and 𝒙𝑡 = 𝑷𝑡𝒙 . According to this defi-

nition, NSP measures the similarities between neighboring nodes,

indicating the smoothing patterns within neighborhoods during

propagation. To explore the benefits of NSP, we delve into it in

Section 4.1, revealing that NSP exhibits a strong correlation with

spectral space and can serve as coefficients for node representations.

A detailed theoretical analysis of ISP and NSP can be found in

Section 4.1, which supports the empirical results in Section 1 and

motivates our design of SmoothGNN.

4 Method: SmoothGNN
Our observation in Section 1 highlights the different smoothing pat-

terns exhibited by anomalous and normal nodes. In the following

sections, we present detailed theoretical analyses and the design of
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our SmoothGNN. Specifically, Section 4.1 provides a comprehen-

sive theoretical analysis of smoothing patterns, which serves as

the motivation behind the design of two key components: SLC and

SSGNN, to be elaborated in Sections 4.2 and 4.3, respectively. More-

over, our theoretical analysis in Section 4.1 reveals that the spectral

energy of the graph can be represented by NSP, which inspires us

to employ it as effective coefficients for node representations, to

be detailed in Section 4.4. Finally, Section 4.5 illustrates the overall

objective function, including a feature reconstruction loss and the

proposed SMeasure.

4.1 Theoretical Analysis of Smoothing Patterns
The smoothing issue has been extensively studied in graph learn-

ing. However, previous studies such as [36] primarily focus on its

negative aspects. This motivates us to explore the potential posi-

tive implications of the smoothing issue. To this end, we conduct

a detailed analysis to demonstrate how ISP and NSP can reveal

anomalous properties of nodes. All proofs of our theorems can be

found in Appendix A.1.

Based on previous research [14, 29], both local views, such as

neighboring nodes and their features, and global views, which

encompass statistical information of entire graphs, contribute to

the detection of node anomalies. The following Theorem 1 indicates

that ISP can be represented by an augmented propagation matrix

that incorporates both local and global information, suggesting that

ISP can be an effective identifier for NAD tasks.

Theorem 1. Let 𝑷 =
𝑰𝒏+ ˜𝑨
2

denote the propagation matrix given
the adjacency matrix ˜𝑨. For an augmented propagation matrix 𝑩𝑡 =

(𝑷 − 𝑷∞)𝑡 , where 𝑷∞ represents the converged status of 𝑷 , we can
derive 𝑩𝑡 = 𝑷𝑡 − 𝑷∞ with (𝑖, 𝑗)-th entry

𝑩𝑖, 𝑗 =
(2𝑚 + 𝑛) (I[𝑖 = 𝑗]

√
𝑑𝑖 + 1 + 2𝑎𝑖 𝑗 ) − 2(𝑑𝑖 + 1)

√︁
𝑑 𝑗 + 1

2

√
𝑑𝑖 + 1(2𝑚 + 𝑛)

,

where I[·] is the indicator function, 𝑎𝑖, 𝑗 is the (𝑖, 𝑗)-th entry of the
adjacency matrix, 𝑑𝑖 is the degree of node 𝑖 , and𝑚, 𝑛 represent the
number of edges and nodes, respectively.

Theorem 1 shows that when the graph signal 𝒙 propagates on

the augmented propagation matrix 𝑩, the resulting node represen-

tation becomes aware of individual node features and local infor-

mation, such as edge connections and the degrees of neighbors.

Moreover, this matrix not only propagates graph signal through

edges but also assigns the signal a transformation of statistical infor-

mation of graph as coefficients, functioning similarly to an attention

mechanism. It highlights the disparities arising from global views.

Consequently, the augmented propagation matrix provides a more

precise indication of the underlying properties of both anomalous

and normal nodes compared to the original matrix. This observa-

tion is further supported by the empirical evidence of ISP shown in

Section 1. Specifically, the comprehensive information contained

in the augmented propagation matrix helps to elucidate the differ-

ent smoothing processes of anomalous and normal nodes, where

anomalous nodes are harder to converge than normal ones. There-

fore, we employ this matrix in the design of the Smoothing-aware

Learning Component (SLC) in Section 4.2.

In addition to the close relationship between the augmented

propagation matrix and graph anomalies established by Theorem

1, previous studies [8, 34] have also shown a strong connection be-

tween graph anomalies and the graph spectral space. This motivates

us to further investigate the relationships between the augmented

propagation matrix and the graph spectral space. The following the-

orem confirms that column vectors of the augmented propagation

matrix can be represented by a polynomial combination of graph

convolution operations, indicating a strong correlation between

the augmented propagation matrix and the graph spectral space.

Theorem 2. The augmented propagation matrix 𝑩 after 𝑡 hops
of propagation can be expressed by 𝒃𝑡 =

∑𝑡
𝑘=0

˜𝜽𝑘𝑳
𝑘𝒖𝒗, where 𝒃𝑡 is

a column vector of 𝑩𝑡 , ˜𝜽𝑘 ∈ R𝑛 is the spectral filter coefficients, and
𝒖, 𝒗 represent the linear combinations of the eigenvectors of ˜𝑨 and 𝑳,
respectively.

Theorem 2 illustrates the connection between the augmented

propagation matrix and the graph spectral space. This insight mo-

tivates us to design a Smoothing-aware Spectral Graph Neural

Network (SSGNN) that not only leverages spectral information

but also captures ISP, to be elaborated in Section 4.3. Besides, pre-

vious work [34] has shown spectral energy (refer to Definition

1) can serve as an effective identifier for NAD tasks. Given our

findings that reveal a strong connection between smoothing pat-

terns and spectral space, we further investigate the relationship

between smoothing patterns and spectral energy. First, we provide

the definition of spectral energy:

Definition 1 ([8, 34]). Given the graph Laplacian matrix 𝑳 =

𝑼𝚲𝑼𝑇 and a graph signal 𝒙 , the graph Fouier Transformation of 𝒙 is
defined as �̂� = {𝑥1, · · · , 𝑥𝑛} = 𝑼𝑇 𝒙 . The spectral energy of the graph

at 𝜆𝑘 can be expressed as
𝑥2

𝑘∑𝑛
𝑖=1 𝑥

2

𝑖

.

Based on Definition 1, we present the following theorem, which

shows that NSP can serve a similar role as spectral energy.

Theorem 3. Given a graph𝐺 with Laplacianmatrix 𝑳 and a graph

signal 𝒙 , NSP can be represented by𝑁 (𝒙) = 𝒙𝑇 𝑳𝒙
𝒙𝑇 𝒙

=

∑𝑛
𝑗=1 𝜆 𝑗𝑥

2

𝑗∑𝑛
𝑖=1 𝑥

2

𝑖

, where

the 𝜆 𝑗 is the 𝑗-th eigenvalue of 𝑳.

Theorem 3 shows that the NSP of nodes can be represented by

a polynomial combination of the spectral energy, indicating that

NSP can serve as an effective identifier for NAD tasks. Recap from

Section 3 that NSP characterizes the smoothing patterns within

neighborhoods of nodes, which is complementary to the previous

local view depicted by ISP. This motivates us to combine ISP and

NSP to derive final representations and establish a novel measure for

the anomaly scoring function. Specifically, we introduce Smoothing-

aware Coefficients (SC) as the coefficients of node representations to

facilitate the identification of different nodes, and Smoothing-aware

Measure (SMeasure) as the metric for calculating the anomalous

scores, which will be discussed in Sections 4.4 and 4.5, respectively.

So far, we have introduced the intuition behind four key com-

ponents of SmoothGNN from both empirical and theoretical per-

spectives. Beyond the design, we further analyze the maximum

propagation hops of SmoothGNN that do not provide additional

information for NAD tasks. To be specific, if the current node rep-

resentations have reached a converged state, additional layers of

SmoothGNN will not yield substantial benefits but will consume
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extra computational resources. Therefore, we determine the layers

of SmoothGNN based on Theorem 4. To achieve this, we provide

𝜖-smoothing [30] and illustrate the theorem of the converged hop.

Definition 2 ([30]). For any GNN, we call it suffers from 𝜖-
smoothing if and only if after 𝑇 hops of propagation, the resulting
feature matrix 𝑯 𝑡 at hop 𝑡 ≥ 𝑇 has a distance no larger than 𝜖

with respect to a subspace 𝑆 , namely, 𝑑𝑆 (𝑯 𝑡 ) ≤ 𝜖,∀𝑡 ≥ 𝑇 , where
𝑑𝑆 (𝑯 𝑡 ) :=𝑚𝑖𝑛𝑴∈𝑆 | |𝑯 𝑡 −𝑴 | |𝐹 represents the Frobenius norm from
𝑯 𝑡 to the subspace 𝑆 .

Theorem 4. Given the subspace 𝑆 with threshold 𝜖 , a GNN model
will suffer from 𝜖-smoothing issue when the propagation hop 𝑡 =⌈
log(𝜖/𝑑𝑆 (𝑿 ) )

log(𝜏𝜆)

⌉
, where 𝜏 is the largest singular value of the graph

filters over all layers, 𝜆 is the second largest eigenvalue of the propa-
gation matrix, and 𝑿 is the feature matrix of graph 𝐺 .

Theorem 4 provides a theoretical guarantee regarding the maxi-

mum propagation hops that can contribute to the learning process,

which provides guidance for choosing the appropriate number of

layers in our experiments, as shown in Section 5 and Appendix 5.4.

In the following Sections 4.2, 4.3, 4.4, and 4.5, we elaborate on our

SmoothGNN framework in detail.

4.2 Smoothing-aware Learning Component
Motivated by Theorem 1, we propose a simple yet powerful com-

ponent to explicitly capture the ISP of nodes. Specifically, we first

calculate the augmented propagation matrix 𝐵𝑡 = 𝑃𝑡 − 𝑃∞ for

𝑡 = 0, · · · ,𝑇 . Next, we employ a set of (𝑇 + 1) MLPs to obtain the

latent node representations propagated on each 𝐵𝑡 . Finally, an ad-

ditional MLP is adopted to fuse the node representations obtained

from (𝑇 + 1) propagation hops. Let �̃�𝑡 denote the node features 𝑿
after the 𝑡-th feature transformation, the representation of the 𝑖-th

node in SLC can be expressed as:

𝒉𝑆𝐿𝐶𝑖 = MLP(CONCAT((𝑩0�̃�0)𝑖 , · · · , (𝑩𝑇 �̃�𝑇 )𝑖 )) .

Despite the simplicity of the SLC module, it can capture the infor-

mation underlying the ISP of different nodes and thus can serve as

an effective component for unsupervised NAD tasks as shown in

the later experiments.

In addition to explicitly learning from ISP, capturing information

from the graph topology and node features can also be useful to

NAD. The combination of explicit and implicit learning enables the

collection of comprehensive information required for NAD tasks,

which is demonstrated in the ablation study in Section 5.3. The

details of implicit learning GNN are presented as follows.

4.3 Smoothing-aware Spectral GNN
As stated in Theorem 2, the column vector of augmented propa-

gation matrix after 𝑡 hops of propagation can be represented as

𝒃𝑡 =
∑𝑇
𝑡=0

˜𝜽 𝑡𝑳𝑡𝒖𝒗, demonstrating the capability of the graph spec-

tral space to reveal underlying node properties for NAD. This moti-

vates our design of a spectral GNN to learn node representations.

Based on the theoretical analysis, employing a polynomial combi-

nation of graph spectral filters as the graph convolution operation

can be a natural choice. To maintain the simplicity of our frame-

work, we leverage 𝑇 -th order polynomial of graph Laplacian as the

backbone filter. Specifically, let 𝑔(𝑿 )𝑇 be the graph convolution

operation, we have:

𝑔(𝑿 )𝑇 = (
𝑇∑︁
𝑡=0

𝜃𝑡𝑳
𝑡 )𝑿 .

Similar to SLC, we consider �̃�𝑡 as node features after 𝑡-th feature

transformation for each graph convolution operation. Subsequently,

we employ an MLP to fuse the spectral node representations ob-

tained from each propagation hop to generate final node represen-

tations. The representation of 𝑖-th node can be expressed as:

𝒉𝐺𝑁𝑁
𝑖 = MLP(CONCAT((𝑔(�̃�0)0)𝑖 , · · · , (𝑔(�̃�𝑇 )𝑇 )𝑖 )) .

Note that we utilize shared weights in SLC and SSGNN, so that the

learnable weights can be influenced by both components simulta-

neously, which makes the assistance of feature reconstruction for

SMeasure in Section 4.5 more effective. By incorporating these two

components, our framework can capture information from both

spectral space and smoothing patterns.

In addition, as discussed in Section 4.1, combining ISP and NSP

will enable the framework to effectively distinguish anomalous

nodes and normal nodes. Hence, we utilize NSP as the coefficients

for SLC and SSGNN components to achieve this goal. The details

of SC will be further introduced in Section 4.4.

4.4 Smoothing-aware Coefficients
Theorem 3 shows that NSP can be interpreted as a polynomial

combination of spectral energy, which is an effective identifier

of NAD tasks as shown in previous works [8, 34]. Motivated by

the results, we design SC as coefficients for node representations.

Specifically, we calculate the linear combination of (𝑇 + 1) hops of
NSP based on Theorem 3, which can be expressed as:

𝑆𝐶 (𝑿 ) = 𝑑𝑖𝑎𝑔

(
𝑿𝑇 𝑳𝑿

𝑿𝑇𝑿

)
,

𝜶 = 𝜎 (MLP(CONCAT(𝑆𝐶 (𝑷0�̃�0), · · · , 𝑆𝐶 (𝑷𝑇 �̃�𝑇 )))),
where 𝑑𝑖𝑎𝑔(·) denotes the diagonal entries of a square matrix, and

𝜎 (·) is the Sigmoid function. Then, we utilize element-wise multi-

plication ∗ to modify representations 𝒉𝑆𝐿𝐶𝑖 and 𝒉𝐺𝑁𝑁
𝑖 :

𝒉𝑆𝐶𝑆𝐿𝐶𝑖 = 𝒉𝑆𝐿𝐶𝑖 ∗ 𝜶 ,𝒉𝑆𝐶𝐺𝑁𝑁
𝑖 = 𝒉𝐺𝑁𝑁

𝑖 ∗ 𝜶 .

The final representations generated by SLC and SSGNN with the

assistance of SC are utilized to calculate the loss function and SMea-

sure, which will be illustrated in the following section.

4.5 Smoothing-aware Measure
According to previous work [17], feature reconstruction loss can

assist in learning effective measures for NAD. This inspires us to

design a loss function combined with two components: the feature

reconstruction loss and SMeasure. For the feature reconstruction

loss, we use 𝒉𝑆𝐶𝐺𝑁𝑁
𝑖 to reconstruct the original feature:

𝐿𝑐𝑜𝑛 =
1

𝑛

𝑛∑︁
𝑖=1

| |𝒉𝑆𝐶𝐺𝑁𝑁
𝑖 − 𝒙𝑖 | |2,

where 𝒙𝑖 is the 𝑖-th row of the original feature matrix 𝑿 . For SMea-

sure, we leverage the representations obtained from SLC as it natu-

rally captures the underlying properties in the smoothing patterns.
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To be specific, we define SMeasure as follows:

𝑓𝑠𝑚𝑜𝑜𝑡ℎ (𝒉𝑆𝐶𝑆𝐿𝐶𝑖 ) = 𝜎 (AVG(𝒉𝑆𝐶𝑆𝐿𝐶𝑖 )),
where 𝜎 (·) represents the Sigmoid function, and AVG(·) represents
the column-wise average function. Based on SMeasure, we further

define the smoothing-aware loss function:

𝐿𝑠𝑚𝑜𝑜𝑡ℎ =
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑠𝑚𝑜𝑜𝑡ℎ (𝒉𝑆𝐶𝑆𝐿𝐶𝑖 ) .

The final loss function is a combination of both 𝐿𝑐𝑜𝑛 and 𝐿𝑠𝑚𝑜𝑜𝑡ℎ :

𝐿 = 𝐿𝑐𝑜𝑛 + 𝐿𝑠𝑚𝑜𝑜𝑡ℎ .

The loss function is carefully designed to leverage the feature recon-

struction loss to facilitate the learning process of SMeasure. This

combination enables the loss function to capture valuable infor-

mation from the smoothing patterns and the reconstruction errors

across different nodes, which can be demonstrated in Section 5.3.

Minimizing this loss function empowers the model to effectively re-

duce the ratio of anomalous nodes in the predicted results, thereby

addressing the challenge of extremely unbalanced data in NAD.

With this comprehensive loss function, our SmoothGNN can opti-

mize the shared weights of two key components. Consequently, our

framework excels in learning more accurate node representations

for the task of detecting anomalous nodes.

5 Experiments
5.1 Experimental Setup
Datasets. We evaluate SmoothGNN on 9 real-world datasets, in-

cluding Reddit, Tolokers, Amazon, T-Finance, YelpChi, Questions,

Elliptic, DGraph-Fin, and T-Social. These datasets are obtained

from the benchmark paper [33], consisting of various types of net-

works and corresponding anomalous nodes. Based on their number

of nodes, we divide these datasets into three categories, Small,

Medium, and Large, as shown in Appendix A.4. Note that, unlike

previous works in the unsupervised NAD area, we only utilize real-

world datasets with a sufficient number of nodes. To the best of

our knowledge, SmoothGNN is the only model in this field that

conducts comprehensive experiments on large-scale datasets such

as T-Social to validate the efficiency and effectiveness of various

models.

Baselines. We compare SmoothGNN against 11 state-of-the-art

competitors, including shallow models, reconstruction models, self-

supervised models, and special models.

• Shallow models: RADAR [21], and ANOMALOUS [28].

• Reconstruction models: CLAD [18] and GADNR [31].

• Self-supervised models: NLGAD [13], GRADATE [11], PREM

[27], ARISE [12], and TAM [29].

• Special models: RAND [4], VGOD [17], and REC [15].

Experimental Settings. In line with the experimental settings of

prior studies, such as [17, 22, 29], we conduct transductive exper-

iments on these datasets. The parameters of SmoothGNN are set

according to the categories of the datasets. The specific parame-

ters for each category can be found in Appendix A.4. To ensure

a fair comparison, we obtain the source code of all competitors

from GitHub and execute these models using the default parameter

settings suggested by their authors.

Comparison Metrics. To provide fair comparison results, we fol-

low previous works in this area, utilizing AUC and Average Preci-

sion (AP) as the metrics for comparison. Specifically, AUC provides

an aggregate measure of performance across all possible classifi-

cation thresholds. One way of interpreting AUC is the probability

that the model ranks a random positive example more highly than

a random negative example. AP provides insights into the precision

of anomaly detection at all decision thresholds. It calculates the

area under the Precision-Recall curve, which balances the effects

of precision and recall. A higher AP indicates a lower false-positive

rate and false-negative rate. As a result, if a framework can achieve

higher AUC and AP than other frameworks, it is comprehensive

enough to show that such a framework is effective for unsuper-

vised NAD tasks. Moreover, we also report the running time cost

to demonstrate the efficiency of our framework.

5.2 Main Results
We evaluate the performance of SmoothGNN against different state-

of-the-art competitors in the field of unsupervised NAD. Table 1

reports the AUC and AP scores of each model across 9 datasets and

Table 2 reports their running times. The best result on each dataset

is highlighted in boldface. Our key observations are as follows.

Firstly, most existing unsupervised NAD models struggle to

handle large datasets, with only VGOD, REC, and the proposed

SmoothGNN successfully running on the two largest datasets. This

highlights the need for the development of unsupervised models

capable of handling large-scale datasets.

Shallow models, Radar and ANOMALOUS, apply residual analy-

sis to solve NAD, which poses challenges in capturing the underly-

ing anomalous properties from a spectral perspective. In compari-

son, SmoothGNN takes the lead by 29.37% and 29.03% in terms of

AUC, and 11.52% and 11.63% in terms of AP on average across 6

datasets, respectively. Moreover, these shallow models are unable

to handle the 3 large datasets due to memory constraints. These

results demonstrate that shallow models are both time-consuming

and ineffective when applied to real-world NAD datasets.

Next, we examine reconstruction models, CLAD and GADNR,

which utilize reconstruction techniques to detect graph anomalies.

While these models leverage both structure and feature reconstruc-

tion to calculate the anomalous score for each node, they fail to

utilize a more effective identifier, such as smoothing patterns, lead-

ing to inferior performance. SmoothGNN outperforms these models

by 26.14% and 17.75% in terms of AUC, and 10.31% and 8.30% in

terms of AP on average across different datasets, respectively.

We then compare SmoothGNN with self-supervised models, NL-

GAD, GRADATE, PREM,ARISE, and TAM.Although self-supervised

models can boost the performance of unsupervised frameworks,

their high memory requirements and computational costs make

them prohibitive for large datasets. While NLGAD and PREM uti-

lize sparse techniques to address these issues, they still cannot run

on the two largest datasets. In comparison, SmoothGNN achieves

an improvement of 14.95% and 17.66% in terms of AUC, and 8.44%

and 8.63% in terms of AP on average across 7 datasets, respectively.

Besides, SmoothGNN also outperforms GRADATE and ARISE by

18.41% and 16.12% in terms of AUC, and 10.28% and 9.53% in terms

of AP on average across 7 datasets, respectively. In addition, TAM
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Table 1: AUC and Precision (%) on 9 datasets, where "-" represents failed experiments due to memory constraint. The best result
on each dataset is highlighted in boldface.

Shallow Reconstruction Self-supervised Special

Datasets Metrics RADAR ANOMALOUS CLAD GADNR NLGAD GRADATE PREM ARISE TAM RAND VGOD REC SmoothGNN

Reddit

AUC 0.4372 0.4481 0.5784 0.5532 0.5380 0.5261 0.5518 0.5273 0.5729 0.5417 0.4931 0.5510 0.5946
AP 0.0273 0.0309 0.0502 0.0373 0.0415 0.0393 0.0413 0.0402 0.0425 0.0356 0.0324 0.0421 0.0438

Tolokers

AUC 0.3625 0.3706 0.4061 0.5768 0.4825 0.5373 0.5654 0.5514 0.4699 0.4377 0.4988 0.4314 0.6870
AP 0.1713 0.1731 0.1921 0.2991 0.2025 0.2364 0.2590 0.2505 0.1963 0.1939 0.2212 0.1946 0.3517

Amazon

AUC 0.2318 0.2318 0.2026 0.2608 0.5425 0.4781 0.2782 0.4782 0.8028 0.3585 0.5182 0.5869 0.8408
AP 0.0439 0.0439 0.0401 0.0424 0.0991 0.0634 0.0744 0.0677 0.3322 0.0492 0.0779 0.1349 0.3953

T-Finance

AUC 0.2824 0.2824 0.1385 0.5798 0.5231 0.4063 0.4484 0.4667 0.6901 0.4380 0.4814 0.5239 0.7556
AP 0.0295 0.0295 0.0247 0.0542 0.0726 0.0376 0.0391 0.0393 0.1284 0.0403 0.0454 0.0454 0.1408

YelpChi

AUC 0.5261 0.5272 0.4755 0.4704 0.4981 0.4920 0.4900 0.4834 0.5487 0.5052 0.4878 0.5134 0.5758
AP 0.1822 0.1700 0.1284 0.1395 0.1469 0.1447 0.1378 0.1415 0.1733 0.1470 0.1345 0.1623 0.1823

Questions

AUC 0.4963 0.4965 0.6207 0.5875 0.5428 0.5539 0.6033 0.6241 0.5042 0.6164 0.5075 0.4988 0.6444
AP 0.0279 0.0279 0.0512 0.0577 0.0348 0.0350 0.0430 0.0619 0.0395 0.0442 0.0299 0.0279 0.0592

Elliptic

AUC - - 0.4192 0.4001 0.4977 - 0.4978 - - - 0.5723 0.5848 0.5729

AP - - 0.0807 0.0778 0.1009 - 0.0905 - - - 0.1256 0.1337 0.1161

DGraph-Fin

AUC - - - - - - - - - - 0.5456 0.4710 0.6499
AP - - - - - - - - - - 0.0148 0.0112 0.0199

T-Social

AUC - - - - - - - - - - 0.5999 0.0793 0.7034
AP - - - - - - - - - - 0.0351 0.0157 0.0631

Table 2: Running time (s) on 9 datasets, where "-" represents failed experiments due to memory constraint. The best result on
each dataset is highlighted in boldface.

Shallow Reconstruction Self-supervised Special

Datasets RADAR ANOMALOUS CLAD GADNR NLGAD GRADATE PREM ARISE TAM RAND VGOD REC SmoothGNN

Reddit 55.57 42.25 11.14 692.66 10886.19 7562.59 73.52 1261.99 5050.89 310.11 39.86 83.23 7.02
Tolokers 57.51 40.94 52.91 861.95 10504.91 7824.63 74.80 1281.71 5668.91 367.03 177.42 161.54 6.99
Amazon 42.79 38.07 431.20 2048.72 10649.83 7856.41 130.57 1267.38 1148.24 593.75 1517.70 2558.55 7.19
T-Finance 500.19 360.97 2161.16 14255.00 35648.72 30341.65 266.33 4223.50 81238.60 6746.10 5998.08 83339.64 16.69
YelpChi 730.81 513.83 418.95 5046.51 42435.07 35938.21 308.68 5042.99 102232.07 6588.60 1283.10 978.22 19.37
Questions 1205.05 1114.22 52.65 2795.99 51270.03 44235.87 409.45 6135.88 11603.81 7364.07 86.12 482.32 32.68
Elliptic - - 421.17 12568.50 193304.73 - 2149.77 - - - 231.63 566.79 205.10

DGraph-Fin - - - - - - - - - - 3420.84 6795.90 2924.99
T-Social - - - - - - - - - - 22984.10 80388.98 4877.05

is the best rival in terms of performance, but its high memory usage

and running time make it unable to run on large datasets. Across 6

datasets, SmoothGNN surpasses TAM by 8.49% in terms of AUC

and 4.35% in terms of AP on average. Finally, we examine the

results of special models, RAND, VGOD and REC. RAND repre-

sents a novel direction for unsupervised NAD tasks but fails to

leverage more advanced properties, such as smoothing patterns, to

guide the learning process. As a result, SmoothGNN outperforms

RAND by 20.01% in terms of AUC, and 11.05% in terms of AP on

average across 6 datasets. On the other hand, VGOD and REC are

the only two competitors capable of running on all the datasets,

demonstrating the benefits of designing efficient measures for un-

supervised NAD tasks. For instance, REC utilizes a dissimilarity

measure integrating Dirichlet Energy to calculate the anomalous

score for each node, enhancing REC’s ability to capture informa-

tion from smoothing patterns within the neighborhood. However,

SmoothGNN leverages a novel measure more efficiently and effec-

tively, surpassing VGOD and REC by 14.66% and 19.82% in terms

of AUC, and 7.28% and 6.72% in terms of AP on average across all

datasets, respectively. Moreover, with VGOD as the most efficient

and effective competitor, our SmoothGNN outperforms it in all

datasets with a 75x speed-up in running time, which demonstrates

the usefulness of our framework.

5.3 Ablation Study
The ablation study for SC is presented in Table 3. Notably, without

SC to rearrange the weights of different dimensions in the spectral

space, the performance drops significantly compared to the original

SmoothGNN, which demonstrates the utilization of SC can boost

the performances. It also underscores that capturing the smoothing

patterns from different views will help the learning of the node

representations for NAD tasks. Moreover, without the assistance

of feature reconstruction in the loss function, the performance of

SmoothGNN will also drop to some extent as shown in Table 3,

which proves the benefits of feature reconstruction as the assistance

for the learning process. This phenomenon matches the results in

previous works such as [17], highlighting the rationality of utilizing

feature reconstruction in our framework.
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Table 3: Ablation study.

Datasets Reddit Tolokers Amazon T-Finance YelpChi Questions Elliptic DGraph-Fin T-Social

Metrics AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

SmoothGNN 0.5946 0.0438 0.6870 0.3517 0.8408 0.3953 0.7556 0.1408 0.5758 0.1823 0.6444 0.0592 0.5729 0.1161 0.6499 0.0199 0.7034 0.0631

w/o SC 0.5437 0.0356 0.6115 0.2967 0.5131 0.0645 0.2869 0.0292 0.5715 0.1770 0.6260 0.0630 0.5596 0.1076 0.5868 0.0161 0.6639 0.0622

w/o 𝐿𝑐𝑜𝑛 0.5801 0.0494 0.6645 0.3168 0.8106 0.3031 0.7311 0.0858 0.5608 0.1719 0.6335 0.0506 0.5655 0.1145 0.6189 0.0181 0.6715 0.0514

Table 4: AUC and Precision (%) on 8 datasets of SmoothGNN and SmoothGNN-A. Due to the high computational cost of
SmoothGNN-A, we omit the results on the largest T-Social dataset.

Datasets Reddit Tolokers Amazon T-Finance YelpChi Questions Elliptic DGraph-Fin

Metrics AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

SmoothGNN 0.5946 0.0438 0.6870 0.3517 0.8408 0.3953 0.7556 0.1408 0.5758 0.1823 0.6444 0.0592 0.5729 0.1161 0.6499 0.0199

SmoothGNN-A 0.5919 0.0486 0.6731 0.3340 0.8008 0.2719 0.7408 0.1099 0.5697 0.1887 0.6388 0.0527 0.5695 0.1136 0.5893 0.0164
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Figure 3: Varying the standard deviation, learning rate, hop,
and hidden dimension.

5.4 Parameter Analysis
Next, we conduct experiments to analyze the effect of represen-

tative parameters: the standard deviation of weight initialization,

the learning rate, the number of propagation hops, and the hidden

dimension of SmoothGNN on T-Finance, YelpChi, and Questions

datasets. Figure 3 reports the AUC of SmoothGNN as we vary the

standard deviation from 9e-3 to 12e-3, the learning rate from 4e-4 to

7e-4, the hop from 4 to 7, and the hidden dimension from 32 to 256.

As we can observe, when we set the standard deviation to 10e-3,

SmoothGNN achieves relatively satisfactory performances across

these three datasets. In terms of learning rate, SmoothGNN exhibits

relatively stable performance, but we can identify an optimal one,

so we set the learning rate to 5e-5. Meanwhile, SmoothGNN shows

a relatively stable and high performance in terms of all three pre-

sented datasets when we set the hop to 5. As a result, the hop is set

to 5 in SmoothGNN. Besides, when setting the hidden dimension

to 64, our SmoothGNN achieves the best performance. Hence, the

hidden dimension in experiments are set to 64.

5.5 Alternative Smoothing Patterns
In addition to the smoothing patterns observed in vanilla GNN,

other graph learning models with different propagation methods,

such as [10, 35, 37, 38], can show similar properties. For instance,

APPNP [20] is one of the most common design within the area of

PPR-based Graph Neural Networks, which can also converge to a

steady state. The converged state of APPNP is expressed as:

𝒁∞ = 𝛼 (𝑰𝑛 − (1 − 𝛼)𝑨)−1𝑿 ,

where 𝛼 is the teleport probability. To investigate whether any

smoothing pattern can be utilized for detecting anomalous nodes,

we modify the graph convolution operation in SSGNN with APPNP

update rule 𝒁𝑡 = (1−𝛼)𝑨𝒁𝑡−1 +𝛼𝑿 , and replace 𝑩𝑡
with 𝒁𝑡 −𝒁∞.

The results of this modified model, denoted as SmoothGNN-A, are

shown in Table 4. Due to the high computational complexity of the

inversion of a matrix, we only report 8 datasets for SmoothGNN-

A. We observe that by employing alternative smoothing patterns,

the framework can still effectively detect anomalous nodes, thus

validating that smoothing patterns serve as accurate identifiers for

NAD. However, based on the comparison between SmoothGNN

and SmoothGNN-A in Table 4, we find SmoothGNN can achieve

relatively better performance in most datasets. These results demon-

strate information from spectral space is also important in NAD.

6 Conclusion
In this paper, we introduce the individual and neighborhood smooth-

ing patterns into the NAD task. We identify differences in the

smoothing patterns between anomalous and normal nodes and

further demonstrate the observation through comprehensive ex-

periments and theoretical analysis. The combination of four com-

ponents in SmoothGNN enables the model to capture information

from both the spectral space and smoothing patterns, providing

comprehensive perspectives for NAD tasks. Extensive experiments

demonstrate that SmoothGNN consistently outperforms state-of-

the-art competitors by a significant margin in terms of performance

and running time, thus highlighting the effectiveness and efficiency

of leveraging smoothing patterns in the NAD area.
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A Appendix
A.1 Proofs
Proof of Theorem 1. The following result is used for the proof.

Lemma 1 ([5]). Let 𝑷 =
𝑰𝑛
2
+ ˜𝑨

2
denote the propagation matrix

given the adjacency matrix ˜𝑨, we have:

𝑷∞𝑖, 𝑗 =

√
𝑑𝑖 + 1

√︁
𝑑 𝑗 + 1

2𝑚 + 𝑛 .

First, we derive 𝑷𝑡 − 𝑷∞ = (𝑷 − 𝑷∞)𝑡 . For 𝑡 ≥ 1, we have:

(𝑷 − 𝑷∞)𝑡 =
𝑡∑︁

𝑘=0

(
𝑡

𝑘

)
(−1)𝑘𝑷𝑡−𝑘𝑷∞ = 𝑷𝑡 +

𝑡∑︁
𝑘=1

(
𝑡

𝑘

)
(−1)𝑘𝑷∞

= 𝑷𝑡 + 𝑷∞ ((1 − 1)𝑛 − 1) = 𝑷𝑡 − 𝑷∞ .
Then, we can derive that

𝑩𝑖, 𝑗 = 𝑷𝑖, 𝑗 − 𝑷∞𝑖, 𝑗

=
(2𝑚 + 𝑛) (I[𝑖 = 𝑗]

√
𝑑𝑖 + 1 + 2𝑎𝑖 𝑗 ) − 2(𝑑𝑖 + 1)

√︁
𝑑 𝑗 + 1

2

√
𝑑𝑖 + 1(2𝑚 + 𝑛)

.

Then Theorem 1 can be proved. □
Proof of Theorem 2. With proofs in Sec. "The stable distribution"

in [6], for column vector 𝒃𝑡 in augmented matrix 𝑩𝑡
, we have:

𝒃𝑡 = 𝑫
1

2

𝑛∑︁
𝑖=2

𝜔𝑡
𝑖 𝑐𝑖𝝍𝑖 ,

where 𝑫 is the degree matrix of graph 𝐺 , 𝜔𝑖 is the 𝑖-th eigenvalue

of 𝑷 , 𝝍𝑖 is the 𝑖-th eigenvector of
˜𝑨, and 𝑐𝑖 is the coefficient related

to 𝝍𝑖 . Then, let 𝜆
𝐿
𝑖
be the 𝑖-th eigenvalue of 𝑳 and 𝜆𝐴

𝑖
be the 𝑖-th

eigenvalue of
˜𝑨, we have:

𝜆𝐿𝑖 = 1 − 𝜆𝐴𝑖 = 1 − (2𝜔𝑖 − 1) = 2 − 2𝜔𝑖 .
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Then we replace 𝜔𝑖 in 𝑫
1

2

∑𝑛
𝑖=2 𝜔

𝑡
𝑖
𝑐𝑖𝝍𝑖 with 𝜆𝐿

𝑖
, we further have

𝑫
1

2

∑𝑛
𝑖=2 (

𝜆𝐿
𝑖

2
− 1)𝑡𝑐𝑖𝝍𝑖 . Applying Tayler’s expansion to it, we have:

𝑛∑︁
𝑖=2

(
𝜆𝐿
𝑖

2

− 1)𝑡 =
𝑛∑︁
𝑖=2

𝑡∑︁
𝑘=0

𝑡 !

(𝑘 − 1)!(𝑡 − (𝑘 − 1))! (
𝜆𝐿
𝑖

2

)𝑘−1 (−1)𝑡−(𝑘−1)

=

𝑡∑︁
𝑘=0

𝑛∑︁
𝑖=2

𝑡 !

(𝑘 − 1)!(𝑡 − (𝑘 − 1))! (
𝜆𝐿
𝑖

2

)𝑘−1 (−1)𝑡−(𝑘−1)

=

𝑡∑︁
𝑘=0

( 1
2
)𝑘−1 (−1)𝑡−(𝑘−1)𝑡 !
(𝑘 − 1)!(𝑡 − (𝑘 − 1))!

𝑛∑︁
𝑖=2

(𝜆𝐿𝑖 )
𝑘−1

=

𝑡∑︁
𝑘=0

𝜽𝑘𝚲
𝑘1 =

𝑡∑︁
𝑘=0

𝜽𝑘𝑼
𝑇 𝑼𝚲𝑘𝑼𝑇 𝑼1 =

𝑡∑︁
𝑘=0

˜𝜽𝑘𝑳
𝑘𝒖 .

Finally, we can get

𝒃𝑡 = 𝑫
1

2

𝑛∑︁
𝑖=2

(
𝜆𝐿
𝑖

2

− 1)𝑡𝑐𝑖𝝍𝑖 =
𝑡∑︁

𝑘=0

˜𝜽𝑘𝑳
𝑘𝒖𝒗 .

This finishes the proof of Theorem 2. □
Proof of Theorem 3. For simplicity, let 𝒙 denote a normalized

graph signal in the graph, we have:

𝑁 (𝒙) =
𝑛∑︁

𝑖, 𝑗=1

𝑎𝑖, 𝑗 ∥
𝑥𝑖√
𝑑𝑖 + 1

−
𝑥 𝑗√︁
𝑑 𝑗 + 1

∥2
2
= 𝒙𝑳𝒙 .

Following the theorem in previous work [8], we have:

𝑛∑︁
𝑗=1

𝜆 𝑗𝑥
2

𝑗 = 𝒙𝑇 𝑳𝒙 .

Then Theorem 3 can be proved. □

Proof of Theorem 4. We use the result below for the proof.

Corollary 1 ([26]). Let 𝜆1 ≤ · · · ≤ 𝜆𝑛 be the eigenvalues of
𝑷 . Suppose the multiplicity of the largest eigenvalue 𝜆𝑛 is𝑚(≤ 𝑛),
i.e.,𝜆𝑛−𝑚 < 𝜆𝑛−𝑚+1 = · · · = 𝜆𝑛 . The second largest eigenvalue can
be defined as

𝜆 :=𝑚𝑎𝑥𝑛−𝑚𝑠=1 |𝜆𝑠 | < |𝜆𝑛 |.
Let𝑈 be the eigenspace associated with 𝜆𝑛 , where𝑈 has an orthonor-
mal basis that consists of non-negative vectors, and then we have:

𝑑𝑆 (𝑯 𝑡 ) ≤ 𝜏𝑡𝜆𝑑𝑆 (𝑯 𝑡−1),
where 𝜏𝑡𝜆 < 1 implies the output of the 𝑡-th layer of GNN on 𝐺

exponentially approaches 𝑆 .

Based on the above corollary, we have:

𝑑𝑆 (𝑯 𝑡 ) ≤ 𝜏𝑡𝜆𝑑𝑆 (𝑯 𝑡−1) ≤ (
𝑡∏
𝑖=1

𝜏𝑖 )𝜆𝑡𝑑𝑆 (𝑿 ) ≤ 𝜏𝑡𝜆𝑡𝑑𝑆 (𝑿 ).

When the GNN reaches 𝜖-smoothing, we have:

𝑑𝑆 (𝑯 𝑡 ) ≤ 𝜏𝑡𝜆𝑡𝑑𝑆 (𝑿 ) ≤ 𝜖 → 𝑡 log𝜏𝜆 < log (𝜖/𝑑𝑆 (𝑿 )) .
Since 0 ≤ 𝑠𝜆 < 1, then we have log 𝑠𝜆 < 0, we have:

𝑡 >
log (𝜖/𝑑𝑆 (𝑿 ))

log𝜏𝜆
.

This finishes the proof of Theorem 4. □

A.2 Observations
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Figure 4: Smoothing Patterns of Reddit.
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Figure 5: Smoothing Patterns of Tolokers.
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Figure 6: Smoothing Patterns of YelpChi.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6

Normalized ISP

Hop

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6

Normalized NSP

Hop

(a) Individual Smoothing Patterns (b) Neighborhood Smoothing Patterns

Figure 7: Smoothing Patterns of Questions.
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Figure 8: Smoothing Patterns of Elliptic.

Observations from additional datasets in Figures 4-10 further re-

inforce our findings. It clearly shows that the smoothing patterns

of anomalous and normal nodes exhibit distinct trends and scales,

where the ISP and NSP of anomalous nodes surpass those of normal

nodes in most cases. Our theoretical analysis and experimental re-

sults indicate that SmoothGNN is capable of detecting even subtle

differences in these smoothing patterns. This sensitivity to nuanced

smoothness characteristics is the key strength of SmoothGNN.
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Figure 9: Smoothing Patterns of DGraph-Fin.
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Figure 10: Smoothing Patterns of T-Social.

A.3 Algorithm
The detailed preprocess procedure is shown in Algorithm 1. Specifi-

cally, to facilitate the preprocess of large-scale graphs, we first apply

an approximation technique to calculate the converged status of

the propagation matrix, where 𝛿 represents the threshold as shown

in Lines 1-6. Then, in Lines 7-10, we calculate the first (𝑇 + 1) hops
of the augmented propagation matrix to further reduce the running

time cost during the training process.

Besides, the detailed training process is shown in Algorithm 2.

We use the trained model of the final epoch to conduct inference.

The loss function is calculated using 𝑯𝑆𝐶𝑆𝐿𝐶
and 𝑯𝑆𝐶𝐺𝑁𝑁

, and

the anomaly score is calculated for each node using 𝑓𝑠𝑚𝑜𝑜𝑡ℎ (·)
as shown in Section 4.5. To be specific, in Lines 1-2, we calculate

(𝑇 +1) transformations of node representations using a set of (𝑇 +1)
MLPs. In Line 3, the SC is encoded into 𝜶 as shown in Section 4.4.

After that, in Lines 4-10, we use the SLC and SSGNN components

to calculate 𝒉𝑆𝐿𝐶𝑖 and 𝒉𝐺𝑁𝑁
𝑖 for each node 𝑖 and apply the 𝜶 to

serve as attention coefficients to rescale the learned representations.

Notice that, to gain a superior reduction in terms of running time

during the training process, we utilize the most simple architecture

as the backbone. However, as shown in Section 4.1, we invent

the framework from a distinct perspective, the smoothing pattern

view, from all the previous works, which demonstrates the obvious

differences between our work and previous ones. In Section 5, we

conduct comprehensive experiments to prove the effectiveness and

efficiency of our SmoothGNN.

A.4 Experimental Settings
The parameters in Table 6 are set based on the number of nodes in

different graphs in Table 5. As we can see, the hidden dimensions

remain stable for all three categories. However, the learning rate

and number of propagation hops increase as the number of nodes

grows. Besides, we employ approximation techniques to calculate

the converged status of propagation, i.e., we only retain the val-

ues larger than the square of delta in the final matrix. For small

graphs, we do not require approximation whereas for medium and

large graphs, we set the delta to 4e-3. Furthermore, the weight

initialization strategy varies across graph categories because the

optimal starting point in the optimization process tends to differ

depending on the graph characteristics. As for the experimental

environment, we conduct all the experiments on CPUs to provide

enough memory for previous works.

Algorithm 1: Preprocess

Input: ˜𝑨,𝑇 ,𝑚, 𝑛, 𝛿

Output: [𝑷0, · · · , 𝑷𝑇 ], [𝑩0, · · · ,𝑩𝑇 ]
1 𝒅𝒆𝒈 ← Degree( ˜𝑨);
2 𝒅𝒆𝒈 ← 𝒅𝒆𝒈√

2𝑚+𝑛
;

3 for 𝑖 = 1 to 𝑛 do
4 if 𝒅𝒆𝒈𝑖 ≤ 𝛿 then
5 𝒅𝒆𝒈𝑖 ← 0;

6 𝑷∞ ← 𝒅𝒆𝒈 · 𝒅𝒆𝒈𝑇 ;
7 𝑷 ← 𝑰𝑛

2
+ ˜𝑨

2
;

8 𝑳 ← 𝑰𝒏 − �̃�
− 1

2 ˜𝑨�̃�
− 1

2
;

9 for 𝑡 = 0 to 𝑇 do
10 𝑩𝑡 ← 𝑷𝑡 − 𝑷∞;
11 Return [𝑷0, · · · , 𝑷𝑇 ], [𝑩0, · · · ,𝑩𝑇 ];

Algorithm 2: SmoothGNN

Input: 𝑿 ,𝑇 , 𝑛, [𝑷0, · · · , 𝑷𝑇 ], [𝑩0, · · · ,𝑩𝑇 ]
Output: 𝑯𝑆𝐶𝑆𝐿𝐶 ,𝑯𝑆𝐶𝐺𝑁𝑁

1 for 𝑡 = 0 to 𝑇 do
2 �̃�𝑡 ← 𝜎 (MLP(𝑿 ));
3 𝜶 ← 𝜎 (MLP(CAT(𝑆𝐶 (𝑷0�̃�0), · · · , 𝑆𝐶 (𝑷𝑇 �̃�𝑇 ))));
4 for 𝑖 = 0 to 𝑛 do
5 𝒉𝑆𝐿𝐶𝑖 ← MLP(CAT((𝑩0�̃�0)𝑖 , · · · , (𝑩𝑇 �̃�𝑇 ))𝑖 );
6 𝒉𝐺𝑁𝑁

𝑖 ← MLP(CAT((𝑔(�̃�0)0)𝑖 , · · · , (𝑔(�̃�𝑇 )𝑇 )𝑖 );
7 𝒉𝑆𝐶𝑆𝐿𝐶𝑖 ← 𝒉𝑆𝐿𝐶𝑖 ∗ 𝜶 ;

8 𝒉𝑆𝐶𝐺𝑁𝑁
𝑖 ← 𝒉𝐺𝑁𝑁

𝑖 ∗ 𝜶 ;

9 𝑯𝑆𝐶𝑆𝐿𝐶 ← [𝒉𝑆𝐶𝑆𝐿𝐶
1

, · · · ,𝒉𝑆𝐶𝑆𝐿𝐶𝑛 ];
10 𝑯𝑆𝐶𝐺𝑁𝑁 ← [𝒉𝑆𝐶𝐺𝑁𝑁

1
, · · · ,𝒉𝑆𝐶𝐺𝑁𝑁

𝑛 ];
11 Return 𝑯𝑆𝐶𝑆𝐿𝐶 ,𝑯𝑆𝐶𝐺𝑁𝑁

;

A.5 SMeasure during training
To explicitly show why SMeasure can be used for unsupervised

NAD tasks, we report
𝑆𝑎−𝑆𝑛
𝑆𝑛

for each 10 epoch, where 𝑆𝑛 and 𝑆𝑎 are

SMeasures of normal and anomalous nodes separately. As observed

from Table 7,
𝑆𝑎−𝑆𝑛
𝑆𝑛

grows to a positive number, which means 𝑆𝑎

is larger and grows faster than 𝑆𝑛 as the training continues. These

results tell us our framework can effectively capture the ISP and

NSP through SMeasure and utilize the novel measure to effectively

detect anomalous nodes.
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Table 5: Statics of 9 real-world datasets.
Categories Datasets #Nodes #Edges #Feature per node Avg. Degree Ratio of anomalous labels

Small

Reddit 10,984 168,016 64 15.30 3.33%

Tolokers 11,758 519,000 10 44.14 21.82%

Amazon 11,944 4,398,392 25 368.25 6.87%

Medium

T-Finance 39,357 21,222,543 10 539.23 4.58%

YelpChi 45,954 3,846,979 32 83.71 14.53%

Questions 48,921 153,540 301 3.14 2.98%

Large

Elliptic 203,769 234,355 167 1.15 9.76%

DGraph-Fin 3,700,550 4,300,999 17 1.16 1.27%

T-Social 5,781,065 73,105,508 10 12.65 3.01%

Table 6: Parameters for SmoothGNN according to different categories.

Categories Learning Rate Hop Weight Initialization Delta Hidden Dimensions

Small 1e-4 4 0.05 0 64

Medium 5e-4 5 0.01 4e-3 64

Large 5e-4 6 0.05 4e-3 64

Table 7: 𝑆𝑎−𝑆𝑛
𝑆𝑛

for each 10 epoch, where 𝑆𝑛 and 𝑆𝑎 are the SMeasures of normal and anomalous nodes separately.

Datasets 0 10 20 30 40 50 60 70 80 90 100

Reddit 0.0029 0.0410 0.0835 0.1000 0.1059 0.1105 0.1154 0.1193 0.1220 0.1237 0.1242

Tolokers 0.0722 0.2290 0.2883 0.2728 0.2704 0.2708 0.2665 0.2628 0.2631 0.2666 0.2719

Amazon -0.0461 0.0516 0.0923 0.0892 0.1160 0.1251 0.1260 0.1288 0.1325 0.1383 0.1460

T-Finance -0.0496 0.0004 0.0419 0.0858 0.1130 0.1253 0.1260 0.1234 0.1252 0.1254 0.1238

YelpChi 0.0353 0.0952 0.1049 0.1124 0.1140 0.1142 0.1122 0.1117 0.1103 0.1088 0.1073

Questions 0.0267 0.1211 0.1683 0.1822 0.2096 0.2351 0.2511 0.2650 0.2776 0.2915 0.3012

Elliptic 0.0036 0.1675 0.2300 0.2657 0.2858 0.2972 0.3038 0.3072 0.3084 0.3079 0.3059

DGraph-Fin -0.0727 0.1516 0.1519 0.1518 0.1511 0.1506 0.1500 0.1496 0.1491 0.1485 0.1474

T-Social -0.0026 0.0812 0.4438 0.4993 0.5765 0.6491 0.6986 0.7134 0.6800 0.6131 0.5334

Table 8: Additional experiments. The best result on each dataset is highlighted in boldface.
Datasets Reddit Tolokers Amazon T-Finance YelpChi Questions Elliptic DGraph-Fin T-Social

Metrics AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

SmoothGNN 0.5946 0.0438 0.6870 0.3517 0.8408 0.3953 0.7556 0.1408 0.5758 0.1823 0.6444 0.0592 0.5729 0.1161 0.6499 0.0199 0.7034 0.0631

SmoothGNN-L 0.6034 0.0582 0.7016 0.3670 0.8420 0.4291 0.7786 0.1514 0.5911 0.1826 0.6467 0.0588 0.5670 0.1123 0.6126 0.0168 0.7109 0.0711
ONE 0.4878 0.0330 0.5041 0.2250 0.4247 0.0545 0.4311 0.0368 0.4985 0.1453 0.4995 0.0297 - - - - - -

AdONE 0.5007 0.0322 0.5162 0.2904 0.2910 0.0444 0.6346 0.0654 0.5029 0.1513 0.6293 0.0652 - - - - - -

DONE 0.5774 0.0411 0.5551 0.2877 0.3181 0.0463 0.6336 0.0647 0.5189 0.1529 0.6440 0.0646 - - - - - -

A.6 Time Complexity Analysis
As shown in Appendix A.3, we adopt the decoupling method to

precompute the propagation process, eliminating the need for calcu-

lating it at each epoch. This results in a time complexity of𝑂 (𝑛𝑑1𝑑2)
per layer for SmoothGNN, where 𝑛 is the number of nodes, and 𝑑1
and 𝑑2 are input and output dimensions of the MLP, respectively. In

contrast, models that require computing the propagation process

typically have a time complexity of 𝑂 (𝑛2𝑑3) or 𝑂 (𝑚𝑑3) per layer,
where𝑚 is the number of edges, and 𝑑3 is the embedding dimen-

sion. Notably, with 𝑑1, 𝑑2 ≪ 𝑛 and 𝑛 ≪ 𝑚, SmoothGNN is more

efficient in the training phase. Additionally, the time complexity

for calculating the loss function in SmoothGNN is 𝑂 (𝑛𝑑), where 𝑑
is the feature dimension, significantly more efficient compared to

prominent baselines such as TAM with a loss function complexity

of up to 𝑂 (𝑛2), given that 𝑑 ≪ 𝑛. In summary, both theoretically

and empirically, SmoothGNN stands out as a highly efficient model.

A.7 Additional Experiments
To further demonstrate the effectiveness of SmoothGNN, we con-

duct additional experiments. Specifically, we include 3 non-GNN-

based baselines, ONE [3], adONE [2], DONE [2], and a variant of

our SmoothGNN called SmoothGNN-L, which applies Smoothing-

aware Coefficients to all the layers of SmoothGNN. The results are

shown in Table 8. Note that "-" indicates that the method failed due

to memory constraints. As we can observe, our SmoothGNN can

still outperform three new non-GNN-based baselines by a large

margin on almost all the datasets. We can also observe that applying

NSP across all the layers can lead to performance improvement

on certain datasets, but not universally across all datasets. Such

results demonstrate the effectiveness of NSP, as applying it solely

to the final layer or throughout all layers notably outperforms base-

lines. Consequently, for the sake of maintaining the simplicity and

stability of our model, we only apply NSP to the final layer.
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