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ABSTRACT
Node embedding learns low-dimensional vectors for nodes in the

graph. Recent state-of-the-art embedding approaches take Person-
alized PageRank (PPR) as the proximity measure and factorize the

PPR matrix or its adaptation to generate embeddings. However,

little previous work analyzes what information is encoded by these

approaches, and how the information correlates with their superb

performance in downstream tasks. In this work, we first show that

state-of-the-art embedding approaches that factorize a PPR-related

matrix can be unified into a closed-form framework. Then, we study

whether the embeddings generated by this strategy can be inverted

to better recover the graph topology information than random-walk

based embeddings. To achieve this, we propose two methods for

recovering graph topology via PPR-based embeddings, including

the analytical method and the optimization method. Extensive ex-

perimental results demonstrate that the embeddings generated by

factorizing a PPR-related matrix maintain more topological infor-

mation, such as common edges and community structures, than that

generated by random walks, paving a new way to systematically

comprehend why PPR-based node embedding approaches outper-

form random walk-based alternatives in various downstream tasks.

To the best of our knowledge, this is the first work that focuses on

the interpretability of PPR-based node embedding approaches.
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1 INTRODUCTION
Graph data is ubiquitous, ranging from social networks to molec-

ular structures. Given the topological information of the graph,

the goal of node embedding is to learn a low-dimensional vector

representation for each node. These embeddings play an impor-

tant role in numerous downstream graph mining tasks, such as

link prediction [35, 37, 52], node classification [11, 26, 31], graph

reconstruction [49, 50, 55], and recommendation [4, 10, 48, 51].

Node embedding has received significant attention in the last

few decades, as it provides valuable insight into effectively leverag-

ing the implicit structural information hidden in the graph. Earlier

attempts [1, 34] can be traced back to 20 years ago, which mainly

adopt dimension reduction techniques on graph Laplacian-related

matrix to generate node embeddings. These spectral approaches

primarily focus on calculating eigenvectors of the graph Laplacian

matrix and thus overlook multidimensional connections among

users in social networks. To address this limitation, several tech-

niques [32, 33] are proposed to extract latent social dimensions

(features) based on graph structures. Subsequently, inspired by the

well-known skip-gram model [21, 22], random walk-based embed-

ding approaches [11, 26, 27, 30, 31] demonstrate superior perfor-

mance in the node classification task. However, these approaches

require sampling a large number of multi-hop randomwalks, posing

limitations on their scalability.

Recently, studies on graph neural networks have showcased

the effectiveness of using personalized PageRank (PPR) to capture

crucial graph information [2, 7, 16, 36, 53]. Building upon this ob-

servation, several matrix factorization (MF)-based node embedding

approaches [8, 49, 50, 52] decompose PPR-related matrices, achiev-

ing state-of-the-art performances across various graphmining tasks.

For example, as shown in Figure 1, the node classification results of

the PPR-based embedding approach and one of the state-of-the-art

random walk-based embedding approaches, NetMF [27], on two

graphs reveal the superiority of the PPR-based node embedding ap-

proach. Similar results on other graphs can be found in [49, 50, 52].

Notably, the PPR-based embedding approach outperforms the ran-

domwalk-based approach by a significant margin. However, limited

research study has been conducted to investigate the encoded infor-

mation within these PPR-based node embeddings or explore how

this information facilitates downstream graph mining tasks.

To fill this research gap, in this paper, we aim to provide a com-

prehensive understanding of state-of-the-art PPR-based node em-

bedding approaches. Our focus lies in investigating the following

three fundamental questions, thereby illuminating the inherent

information captured by these embedding approaches:

• What specific topological information can be encoded within

node embeddings generated by PPR-based MF approaches?

https://doi.org/10.1145/3589334.3645663
https://doi.org/10.1145/3589334.3645663
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• What is the relationship between spectral approaches and state-

of-the-art PPR-based embedding approaches?

• Why do PPR-based embedding approaches consistently outper-

form random walk-based alternatives?

By addressing these central questions, we aim to provide a sig-

nificant step towards a deeper understanding of PPR-based MF

embedding approaches. A recent work, Deepwalking Backwards

[6], explores the information encoded in node embeddings by study-

ing their potential for reconstructing graph topologies. This study

focuses on a variant of the classic random walk-based node embed-

ding method, DeepWalk [26, 27], and demonstrates that the node

embeddings generated by DeepWalk can approximately recover

the community structures in the original graph.

Contribution. Inspired by this, in this work, we propose PPREI1,
which introduces an embedding inversion framework to recon-

struct the original graph using the node embeddings generated

by PPR-based MF approach. In particular, we address the afore-

mentioned questions by solving two fundamental problems: the

embedding inversion problem and the graph recovery problem. The

embedding inversion problem seeks to reconstruct a graph, denoted

as 𝐺 , from the embeddings of the original graph 𝐺 . The objective

is to minimize the disparity between them. On the other hand, the

graph recovery problem aims to minimize the dissimilarities in

topological structures between 𝐺 and 𝐺 , such as common edges,

path lengths, and community structures. The formal definitions are

in Section 2.1. In summary, our key findings are as follows.

• We theoretically prove that based on full-rank matrix decomposi-

tion, our proposed analytical method can accurately reconstruct

the original graph 𝐺 ;

• The topological information loss of the graph reconstructed from

PPR-based node embeddings is consistently smaller than that of

random walk-based node embeddings. Specifically, for PPREI,

the relative Frobenius norm error of the adjacency matrix, the

relative average path length error, and the relative conductance

error of the community in the reconstructed graph are much

smaller than Deepwalking Backwards.

To solve the proposed problems, we first show that several state-

of-the-art embedding approaches [46, 49, 50, 52] that generate node

embeddings by factorizing PPR-related matrices can be unified

into a closed-form framework. This framework summarizes the

commonalities among representative PPR-based MF embedding

approaches. In addition, it can be viewed as a variant of the spectral

node embedding approaches, which computes a low-dimensional

approximation of a PPR-related graph diffusion matrix.

Subsequently, we focus on this unified framework, which gener-

ates node embeddings by computing the low-rank approximation

of the PPR-related proximity matrix through singular value de-

composition. We introduce two embedding inversion methods: the

analytical method and the optimization method. In the analyti-

cal method, we establish a connection between spectral analysis

and our proposed framework by constructing a linear system. Fur-

thermore, we provide theoretical proof that with full-rank matrix

decomposition, we can accurately reconstruct the original graph

1
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Figure 1: Classification results.

𝐺 using the proposed analytical method, which solves the embed-

ding inversion problem. Our second proposed method is based on

directly optimizing an objective function that minimizes the recon-

struction error between the proximity matrix �̂� calculated on the

reconstructed graph 𝐺 and the proximity matrix 𝑴 calculated on

the original graph 𝐺 .

In our experiments, we compare PPREI with DeepWalking Back-

wards on the graph recovery task. We evaluate the graph topologi-

cal properties on 6 real-world graphs, including social networks,

flight networks, protein-protein interaction network, and document

connection network. Extensive experiments consistently demon-

strate that our PPREI outperforms DeepWalking Backwards on all

datasets in terms of all evaluation metrics. Our contributions can

be summarized as follows.

• We present a closed-form framework that unifies several state-

of-the-art PPR-based MF node embedding approaches;

• Wepresent PPREI, a framework that encompasses two PPR-based

embedding inversion methods for the graph recovery task;

• Extensive experiments
2
on 6 real-world graphs demonstrate

that PPREI consistently outperforms DeepWalking Backwards in

all evaluation metrics, paving a new topological perspective to

explain why PPR-based node embedding approaches outperform

random walk-based alternatives.

2 PRELIMINARIES
2.1 Background
Personalized PageRank. Let 𝐺 = (𝑉 , 𝐸) denote an undirected

graphwith𝑛 = |𝑉 | nodes and𝑚 = |𝐸 | edges,𝑨 denote the adjacency

matrix,𝑫 denote the diagonal degree matrix, and 𝑷 = 𝑫−1𝑨 denote

the transition matrix. Given a source node 𝑠 , Page et al. [24] first

introduce the definition of PPR as follows:

𝝅𝑠 = (1 − 𝛼)𝝅𝑠 · 𝑷 + 𝛼𝒆𝑠 , (1)

where 𝝅𝑠 is the PPR vector with respect to source 𝑠3, 𝛼 is the

teleport probability and 𝒆𝑠 is a one-hot vector with only 𝒆𝑠 (𝑠) = 1.

The PPR vector 𝝅 (𝑠) can be obtained with the Power-Iteration

method as shown in [24] by recursively applying Equation 1 until

convergence. We can also rewrite Equation 1 into the following

matrix form to calculate the PPR matrix 𝚷:

𝚷 =

∞∑︁
𝑖=0

𝛼 ((1 − 𝛼)𝑷 )𝑖 .

Although there exist algorithms [13, 14, 18, 20, 38–45] that effi-

ciently calculate the approximate PPR values, in this paper, we

2
Our code is available at https://github.com/YukinoAsuna/PPREI/tree/master.

3
An entry 𝝅𝑠 (𝑣) in PPR vector 𝝅𝑠 indicates the PPR score of 𝑣 with respect to 𝑠 .
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focus on this matrix form to calculate the proximity matrix due to

its mathematically clean definition for analysis. Frequently used

notations can be found in Appendix A.

Problem formulation. Following previous work [6], in this paper,

we consider two problems, i.e., embedding inversion and graph

recovery. Given an embedding algorithm E, the goal of embedding

inversion is to generate a graph𝐺 such that the difference between

E(𝐺) and E(𝐺) is negligible.

Problem 1 (embedding inversion). Let 𝐺 = (𝑉 , 𝐸) ∈ G be an
undirected graph. Given an embedding algorithm E : G → R𝑛×𝑑
and embeddings E(𝐺), the goal of the embedding inversion task is to
generate a graph𝐺 ∈ G, such that E(𝐺) = E(𝐺) or ∥E(𝐺) − E(𝐺)∥
is minimized and is negligible for some norm ∥ · ∥.

Solving Problem 1 will generate a graph 𝐺 , which can be re-

garded as an approximation of the original graph𝐺 . Then, a natural

question is, to what extent do these two graphs resemble each other

in terms of their topological characteristics? Formally, the graph

recovery task is defined as follows.

Problem 2 (graph recovery). Given an embedding algorithm
E : G → R𝑛×𝑑 , let 𝐺,𝐺 ∈ G be two undirected graphs such that
E(𝐺) = E(𝐺) or ∥E(𝐺) −E(𝐺)∥ is negligible for some norm ∥ · ∥, the
goal of the graph recovery task is to minimize the dissimilarities in
topological characteristics between 𝐺 and 𝐺 , such as common edges,
path lengths, and community structures.

Remark. The above two problems focus on analyzing the struc-

tural information extracted in node embeddings. Therefore, the

solution to these problems will provide a deeper understanding of

node embedding approaches. In this paper, we focus on evaluating

classic random walk methods [26, 27] and state-of-the-art PPR-

based approaches [46, 49, 50, 52] from a topological perspective. In

particular, we investigate the topological evidence that elucidates

why PPR-based embedding approaches outperform random walk em-
bedding approaches by solving the above-mentioned problems.

2.2 Related Work
Even though embedding approaches that factorize a PPR related

matrix have achieved state-of-the-art-performance, to the best of

our knowledge, no previous work investigates the reason why such

a strategy outperforms random walk embedding approaches. In

this section, we first introduce three PPR-based matrix factorization

embedding approaches, and then briefly review existing approaches

on graph recovery tasks.

STRAP [50]. Following the basic idea of generating node embed-

dings from pair-wise PPR, it factorizes an approximation of the PPR

matrix calculated on both original graph𝐺 and the transpose graph

𝐺𝑇 . The embedding matrices 𝑿 and 𝒀 are generated as follows:

𝑿𝑇 𝒀 = RandomizedSVD

(
log

(
𝑴

𝜖

)
, 𝑑

)
, (2)

where 𝑴 is the proximity matrix and 𝑑 is the dimension of embed-

ding matrices. Specifically,𝑴 is the summation of two approximate

PPR matrices, which can be calculated by invoking backward-push

[19] algorithm on the original graph𝐺 and the transpose graph𝐺𝑇

with threshold 𝜖 efficiently.

NRP [49]. The authors notice that node embeddings derived di-

rectly from PPR are sub-optimal. To tackle this issue, they propose

a node reweighting algorithm which considers additional node de-

gree information. Specifically, NRP first factorizes a PPR matrix to

generate the initial embedding matrices 𝑿 and 𝒀 , such that for a

pair of nodes (𝑢, 𝑣),𝑿𝑇𝑢 𝒀 𝑣 ∼ 𝜋 (𝑢, 𝑣), where 𝜋 (𝑢, 𝑣) is the PPR value

of 𝑣 with respect to 𝑢. Then, the node re-weighting algorithm is

invoked to preserve a scaled version of 𝜋 (𝑢, 𝑣), i.e.:

𝑿𝑇𝑢 𝒀 𝑣 ≈ −→𝑤𝑢 · 𝜋 (𝑢, 𝑣) · ←−𝑤 𝑣 . (3)

Lemane [52]. PreviousMF approachesmainly adopt the same prox-

imity for different tasks, while it is observed that different tasks

and datasets may require different proximity. To address this chal-

lenge, the authors propose a framework with trainable proximity

measures to best suit the datasets and tasks automatically. Instead

of factorizing a PPR matrix with fixed 𝛼 , the stopping probability

𝛼𝑙 of the random walk at the 𝑙-th hop is trainable, i.e.:

𝑴 = 𝛼0𝑰𝑛 +
∞∑︁
𝑙=1

𝛼𝑙 ·
𝑙−1∏
𝑘=0

(1 − 𝛼𝑘 ) · 𝑷𝑙 . (4)

SENSEI [46]. Numerous sampling-based embedding algorithms

have been proposed, while no previous work reveals the underly-

ing relationships between these competing sampling strategies. To

tackle this issue, the authors propose SENSEI to identify two desir-

able properties, including the discrimination and the monotonicity

property. Given a central node 𝑣 with node proximity distribution

𝑝 , it samples node 𝑢 with intermediate 𝑝 (𝑢 |𝑣).
Graph reconstruction.Graph reconstruction is the task to recover
the graph structures based on embedding vectors. It is treated as

a downstream task rather than the optimization objective in most

of previous embedding approaches [49, 50, 55]. Another closely

related task, graph inversion attack, aims to recover the topological

properties of nodes from the perspective of graph privacy. Earlier

attempts [6, 9] reconstruct the graph from node embeddings that

are generated by DeepWalk or GNN decoder. Link stealing attack

[12] proposes to steal links with access to target GNNs, which in-

fers the edges between nodes in the training graph. Another work,

GraphMI [56], also aims to recover the links of the original graph

by maximizing the classification accuracy of the known node labels.

In addition to edge information, Zhang et al. [54] systematically

investigates the information leakage of node representations by

reconstructing a graph with similar topological properties to the

original graph. MNEMON [29] analyzes the implicit graph struc-

tural information preserved in node embeddings by model-agnostic

attack. A recent study, MCGRA [58], shows that to recover better in

attack task, it is essential to extract more multi-aspect information

from trained GNN models. Most of above-mentioned attack models

are based on GNNs and thus are orthogonal to our work.

3 A UNIFIED PPR-BASED EMBEDDING
FRAMEWORK

In this section, we first introduce a unified framework for PPR-based

MF embedding approaches in Section 3.1. Subsequently, we show

that several representative state-of-the-art PPR-based embedding

approaches are actually special cases derived from the proposed
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unified framework. Further details on these specific cases will be

provided in Section 3.2.

3.1 The Unified Embedding Framework
Graph topology plays an essential role in learning node representa-

tions. Recent research studies [23, 49, 52, 57] have demonstrated the

effectiveness of PPR values in capturing crucial graph topological

information for generating informative node embeddings. Differ-

ent PPR-based embedding approaches that employ well-designed

proximity matrices basically follow similar computation process.

This involves factorizing an approximation or adaptation of a PPR-

related matrix that preserves weighted similarities between each

pair of nodes. Here, we summarize the 𝐾-hops proximity matrix

for these node embedding approaches in the following form:

𝑴𝐾 = max

{
0, 𝑓

(
𝑏

𝜖𝐾
· 𝑫𝛽

𝐾∑︁
𝑖=𝑘

𝛼 (1 − 𝛼)𝑖𝑷𝑖𝑫𝛾
)}

. (5)

For simplicity, we assume a constant stopping probability 𝛼 for

each step. Notice that our framework can be easily generalized to

calculate the proximity matrix with varying stopping probabilities,

as we will show in Section 3.2. The hyper-parameter 𝑏 indicates

the bidirectional calculation or helps to alleviate the impact of

the threshold 𝜖 . 𝑓 (·) represents a non-linear activation function

or an identity mapping. Then, we can generate the embedding

matrices using singular value decomposition. The (𝑢, 𝑣)-th entry

of the proximity matrix 𝑴𝐾 preserves the weighted PPR values of

node 𝑣 with respect to node 𝑢, which can be expressed as:

𝑿𝑇𝑢 𝒀 𝑣 = RandomizedSVD(𝑴𝐾 ) (𝑢, 𝑣)

∼ 𝑔(𝑑𝛽𝑢 ) · 𝜋 (𝑢, 𝑣) · 𝑔(𝑑
𝛾
𝑣 ),

where 𝑔(·) denotes a transformation function. Besides, notice that

Equation 5 can be rewritten as follows:

𝑴𝐾 = max

{
0, 𝑓

(
𝑏

𝜖𝐾
· 𝑫𝛽𝑺𝑫𝛾

)}
,

where 𝑺 is the graph diffusion matrix with PPR coefficients defined

in GDC [17]. Therefore, our proposed unified framework can be

viewed as a spectral node embedding approach.

In the subsequent section, we show that the proximitymatrices of

several representative PPR-based node embedding approaches are,

in fact, special cases derived from our proposed unified framework

in Equation 5. Consequently, this unified framework establishes

the connections among different PPR-based node embedding ap-

proaches, enabling us to interpret these embedding approaches

from a spectral perspective.

3.2 Special Cases
Interpreting STRAP. If we set 𝑏 = 2𝐾 , 𝛽 = 0, 𝛾 = 0, 𝑘 = 0,

and 𝑓 (𝑥) = log(𝑥), then Equation 5 can be transformed into the

following form:

𝑴𝐾 = max

{
0, log

(
2

𝜖
·
𝐾∑︁
𝑖=0

𝛼 (1 − 𝛼)𝑖𝑷𝑖
)}
,

which corresponds to the proximity matrix used in STRAP [50]. We

summarize this result in the following proposition.

Proposition 1. Setting 𝑏 = 2𝐾 , 𝛽 = 0, 𝛾 = 0, 𝑘 = 0, and 𝑓 (𝑥) =
log(𝑥) in Equation 5 leads to the proximity matrix of STRAP.

This formulation calculates the PPR values on both the origi-

nal graph 𝐺 and the transpose graph 𝐺𝑇 , such that it preserves

both the indegree and outdegree distributions of the given graph.

Notice that in the case of undirected graphs, the transpose graph

𝐺𝑇 is identical to the original graph 𝐺 , making these two matrices

the same. Therefore, we set 𝑏 = 2 to capture such information in

the proximity matrix. To incorporate non-linear transformation

operations into the node representations, it adopts log function to

get the re-scaling values in 𝑀𝐾 before the matrix decomposition

operation. The final embedding matrices 𝑿 and 𝒀 can be obtained

by decomposing the proximity matrix 𝑴𝐾 as follows:

𝑼𝚺𝑽𝑇 = RandomizedSVD(𝑴𝑲 , 𝑑),

𝑿 ← 𝑼
√
𝚺, 𝒀 ← 𝑽

√
𝚺.

(6)

Interpreting NRP. By setting 𝑏 = 𝜖𝐾 , 𝛽 = 0, 𝛾 = 0, 𝑘 = 1, and

𝑓 (𝑥) = 𝑥 in Equation 5, we obtain the following expression:

𝑴𝐾 =

𝐾∑︁
𝑖=1

𝛼 (1 − 𝛼)𝑖𝑷𝑖 ,

which corresponds to ApproxPPR, a truncated version of the PPR

matrix used in NRP [49].

Since PPR values for different source nodes are essentially incom-

parable, the authors further propose a node reweighting technique

to mitigate this problem. This technique involves assigning addi-

tional weights,
−→𝑤𝑢 and

←−𝑤 𝑣 , to node 𝑢 and 𝑣 , respectively. These

weights ensure that the (𝑢, 𝑣)-th entry of the proximity matrix 𝑴𝐾

preserves a scaled version of the PPR value 𝜋 (𝑢, 𝑣) using approxi-
mate node weights:

𝑴𝐾 =𝑾1

𝐾∑︁
𝑖=1

𝛼 (1 − 𝛼)𝑖𝑷𝑖𝑾2 .

where𝑾1 and𝑾2 are trainable diagonal matrices initialized with

the degree matrix 𝑫 . The final embedding matrices 𝑿 and 𝒀 are

defined as follows:

𝑿𝑢𝒀
𝑇
𝑣 ≈𝑾1 (𝑢,𝑢) · 𝜋 (𝑢, 𝑣) ·𝑾2 (𝑣, 𝑣) .

We summarize these findings in the following proposition.

Proposition 2. By setting 𝑏 = 𝜖𝐾 , 𝛽 = 0, 𝛾 = 0, 𝑘 = 1, and
𝑓 (𝑥) = 𝑥 in Equation 5, the resulting proximity matrix corresponds
to ApproxPPR. Moreover, by setting 𝑏 = 𝜖𝐾 , 𝛽 = 1, 𝛾 = 1, 𝑘 = 1, and
𝑓 (𝑥) = 𝑥 in Equation 5, the resulting proximity matrix corresponds
to the initial proximity matrix in NRP.

Interpreting Lemane. The authors observe that different tasks
and datasets may require different proximity measures. To achieve

this, trainable stopping probabilities of random walks are intro-

duced to generate the proximity matrix. By considering trainable

parameters {𝛼0, 𝛼1, · · · , 𝛼𝐾 } instead of constant values, our pro-

posed framework can be generalized to compute any truncated

proximity matrix. If we set 𝑏 = 2𝐾 , 𝛽 = 0, 𝛾 = 0, 𝑘 = 0, and

𝑓 (𝑥) = log(𝑥), Equation 5 can be rewritten as follows:

𝑴𝐾 = max

{
0, log

(
2

𝜖
·
(
𝛼0𝑰𝑛 +

𝐾∑︁
𝑙=1

𝛼𝑙 ·
𝑙−1∏
𝑘=0

(1 − 𝛼𝑘 ) · 𝑷𝑙
))}

,
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which exactly corresponds to the proximity matrix in Lemane [52].

The following proposition summarizes this result.

Proposition 3. Setting 𝑏 = 2𝐾 , 𝛽 = 0, 𝛾 = 0, 𝑘 = 0, and 𝑓 (𝑥) =
log(𝑥) in Equation 5 leads to the proximity matrix of Lemane.

Similar to STRAP [50], Lemane computes the supervised PPR

values on both the original graph 𝐺 and the transpose graph 𝐺𝑇 .

Therefore, we set 𝑏 = 2 to capture the bidirectional information on

undirected graphs. The final embedding matrices 𝑿 and 𝒀 can be

generated using the same procedure shown in Equation 6.

Interpreting SENSEI. By setting 𝑏 = 𝜖𝐾 , 𝛽 = 0, 𝛾 = 0, 𝑘 = 0, and

𝑓 (𝑥) = 𝐿2𝑁𝑜𝑟𝑚(𝑥) in Equation 5, we get the following expression:

𝑴𝐾 = 𝐿2𝑁𝑜𝑟𝑚

(
𝐾∑︁
𝑖=0

𝛼 (1 − 𝛼)𝑖𝑷𝑖
)
,

which corresponds to the proximity matrix used in SENSEI [46].

We summarize this result in the following proposition.

Proposition 4. Setting 𝑏 = 𝜖𝐾 , 𝛽 = 0, 𝛾 = 0, 𝑘 = 0, and 𝑓 (𝑥) =
𝐿2𝑁𝑜𝑟𝑚(𝑥) in Equation 5 leads to the proximity matrix of SENSEI.

The final embedding matrix 𝑭𝑇𝑢 𝑭 𝑣 ∼ 𝑴 (𝑢, 𝑣) can be obtained by

optimize the objective function that fulfills both the discrimination

and the partial monotonicity properties.

Remark. The proposed unified framework captures the common

characteristics of various representative PPR-based embedding ap-

proaches, providing a global perspective to interpret these embed-

ding approaches. By employing this framework, the development of

novel embedding approaches becomes more straightforward, as it

only requires specifying values for the variables in this framework,

such as the transformation function 𝑓 (·), parameters 𝜖 , 𝛽 , 𝛾 , and

𝑘 . In summary, this unified framework simplifies the process of

designing interpretable node embedding approaches.

4 PPREI
In this section, we present two PPR-based embedding inversion

methods: the analytical method and the optimization method. Sec-

tion 4.1 elaborates on the analytical method, which involves solving

a linear system defined within the unified PPR-based embedding

framework. Section 4.2 introduces the optimization method, which

directly solves an objective function aiming to minimize the differ-

ences between the original proximity matrix and the approximate

proximity matrix.

4.1 Analytical Method
Recap from Section 3.1 that our unified PPR-based node embedding

framework is defined as follows:

𝑴𝐾 = max

{
0, 𝑓

(
𝑏

𝜖𝐾
· 𝑫𝛽

𝐾∑︁
𝑖=𝑘

𝛼 (1 − 𝛼)𝑖𝑷𝑖𝑫𝛾
)}

.

To simplify the subsequent analysis that establishes a connection

between the adjacency matrix and the proximity matrix𝑴𝐾 , we set

𝑏 = 1, 𝜖 = (1 − 𝛼)/𝑣𝑜𝑙 (𝐺), 𝛽 = 0, 𝛾 = −1, 𝑘 = 1, and 𝑓 (𝑥) = log(𝑥)
in our framework, where 𝑣𝑜𝑙 (𝐺) = ∑𝑛

𝑖=1

∑𝑛
𝑗=1

𝑨(𝑖, 𝑗) is the graph

volume. Consequently, we can derive the following expression:

𝑴𝐾 = log

(
𝑣𝑜𝑙 (𝐺)
𝐾

·
(
𝐾∑︁
𝑖=1

𝛼 (1 − 𝛼)𝑖𝑷𝑖
)
𝑫−1

)
− log(1 − 𝛼), (7)

which is consistent with the closed-form expression for the implicit

proximity matrix of DeepWalk [27]. Furthermore, Equation 7 can

be interpreted as renormalizing the proximity matrix of ApproxPPR

in NRP [49] based on the degree distribution 𝑫−1
.

Remark. In addition to NRP [49], similar analysis can also be

conducted using STRAP [50] and Lemane [52].

Let _𝑖 and 𝒗𝑖 denote the 𝑖-th eigenvalue and eigenvector of the

symmetric transition matrix
˜𝑷 = 𝑫−1/2𝑨𝑫−1/2

. When 𝑖 = 1, we

have _1 = 1 and 𝒗1 = �̃�
1/2

𝒆, where �̃� represents the diagonal

matrix with entries �̃�𝑖,𝑖 = 𝑑𝑖/𝑣𝑜𝑙 (𝐺). We can rewrite the expression

of 𝑷𝑖 as follows:

𝑷𝑖 = 𝑫−1/2 (
𝑛∑︁
𝑗=1

_𝑖𝑗𝒗 𝑗𝒗
𝑇
𝑗 )𝑫

1/2 .

Therefore, for the proximity matrix 𝑴𝐾 in Equation 7, we have:

𝑴𝐾 = log
©« 𝑣𝑜𝑙 (𝐺)
(1 − 𝛼)𝐾 ·

𝐾∑︁
𝑖=1

𝛼 (1 − 𝛼)𝑖𝑫−1/2 (
𝑛∑︁
𝑗=1

_𝑖𝑗𝒗 𝑗𝒗
𝑇
𝑗 )𝑫

−1/2ª®¬
= log

©«𝛼 · 𝑣𝑜𝑙 (𝐺)𝑫
−1/2

(1 − 𝛼)𝐾
©«
𝑛∑︁
𝑗=1

𝐾∑︁
𝑖=1

(
(1 − 𝛼)_ 𝑗

)𝑖 𝒗 𝑗𝒗𝑇𝑗 ª®¬𝑫−1/2ª®¬ .
As

��(1 − 𝛼)_ 𝑗 �� < 1, when 𝐾 →∞, we have (1− 𝛼)_𝐾+1 → 0. Thus,∑𝐾
𝑖=1

(
(1 − 𝛼)_ 𝑗

)𝑖 → (1−𝛼 )_ 𝑗
1−(1−𝛼 )_ 𝑗 . Then, inspired by InfiniteWalk

[5], we can derive:

𝑴𝐾 = log
©«𝛼 · 𝑣𝑜𝑙 (𝐺)𝑫

−1/2

(1 − 𝛼)𝐾
©«
𝑛∑︁
𝑗=1

(1 − 𝛼)_ 𝑗
1 − (1 − 𝛼)_ 𝑗

𝒗 𝑗𝒗
𝑇
𝑗
ª®¬𝑫−1/2ª®¬

= log
©«𝑱 + 𝛼 · 𝑣𝑜𝑙 (𝐺)𝑫

−1/2

(1 − 𝛼)𝐾
©«©«

𝑛∑︁
𝑗=2

(1 − 𝛼)_ 𝑗
1 − (1 − 𝛼)_ 𝑗

𝒗 𝑗𝒗
𝑇
𝑗
ª®¬𝑫−1/2ª®¬ª®¬ ,

where 𝑱 is thematrixwith all entries equal to 1. Since lim𝑥→0 log(1+
𝑥) → 𝑥 , we have:

lim

𝐾→∞
𝑴𝐾 =

𝛼 · 𝑣𝑜𝑙 (𝐺)𝑫−1/2

(1 − 𝛼)𝐾
©«
𝑛∑︁
𝑗=2

(1 − 𝛼)_ 𝑗
1 − (1 − 𝛼)_ 𝑗

𝒗 𝑗𝒗
𝑇
𝑗
ª®¬𝑫−1/2

=
𝛼 · 𝑣𝑜𝑙 (𝐺)𝑫−1/2

(1 − 𝛼)𝐾
©«
𝑛∑︁
𝑗=2

1

1 − (1 − 𝛼)_ 𝑗
𝒗 𝑗𝒗

𝑇
𝑗 −

𝑛∑︁
𝑗=2

𝒗 𝑗𝒗
𝑇
𝑗
ª®¬𝑫−1/2 .

Define 𝑴∞ = lim𝐾→∞ 𝐾 ·𝑴𝐾 . Then we can derive:

𝑴∞ =
𝛼 · 𝑣𝑜𝑙 (𝐺)𝑫−1/2

(1 − 𝛼)
©«
𝑛∑︁
𝑗=1

1

1 − (1 − 𝛼)_ 𝑗
𝒗 𝑗𝒗

𝑇
𝑗
ª®¬𝑫−1/2

− 𝛼 · 𝑣𝑜𝑙 (𝐺)𝑫
−1/2

(1 − 𝛼)
©«1 − 𝛼

𝛼
𝒗1𝒗

𝑇
1
+

𝑛∑︁
𝑗=1

𝒗 𝑗𝒗
𝑇
𝑗
ª®¬𝑫−1/2

=
𝛼 · 𝑣𝑜𝑙 (𝐺)
(1 − 𝛼) 𝑫−1/2 (𝒁 − 𝑰 ) 𝑫−1/2 − 𝑱 ,
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Algorithm 1: Analytical Method

Input: Graph 𝐺 , graph volume 𝑣𝑜𝑙 (𝐺), proximity matrix

𝑴𝐾 , stopping probability 𝛼 , threshold 𝜖 ,

propagation step 𝐾

Output: Recovered adjacency matrix
˜𝑨

1 Calculate 𝑴∞ via Equation 10

2 Calculate �̃� via Equation 8

3 Calculate
ˆ𝑨 via Equation 9

4 ˜𝑨← Binarize( ˆ𝑨)
5 return ˜𝑨

where 𝒁 =

(
(1 − 𝛼)�̃� + 𝛼 𝑰

)+
is a pseudoinverse matrix and �̃� =

𝑰 − �̃� is the normalized Laplacian matrix.

Consequently, given the proximity matrix 𝑴𝐾 when 𝐾 → ∞,
we can derive the expression of the normalized Laplacian matrix

and thus the adjacency matrix:

�̃� =

(
𝑫1/2 (𝑴∞ + 𝑱 )𝑫1/2

𝛼 · 𝑣𝑜𝑙 (𝐺) + 𝑰
)+
− 𝛼

1 − 𝛼 𝑰 . (8)

𝑨 = 𝑫1/2 (𝑰 − �̃�)𝑫1/2 . (9)

By calculating Equations 8 and 9, we can exactly recover the

original adjacency matrix by solving the above linear system. We

summarize the results in the following theorem:

Theorem 5. Given an undirected graph 𝐺 with the full-rank ad-
jacency matrix 𝑨, the volume of the graph 𝑣𝑜𝑙 (𝐺), and the proximity
matrix 𝑴𝐾→∞ with the stopping probability 𝛼 , there exists a linear
system such that we can accurately recover the adjacency matrix 𝑨.

Approximation. In fact, Theorem 5 establishes the connection

between the proximity matrix 𝑴∞ and the adjacency matrix 𝑨.
Nevertheless, in real applications, the calculation of the proximity

matrix 𝑴𝐾 is often infeasible, and thus necessitating an approx-

imation solution. Following a similar analysis of 𝑴∞, when 𝐾 is

sufficiently large, the term

𝑛∑︁
𝑗=1

(
(1 − 𝛼)_ 𝑗

)𝐾 𝒗 𝑗𝒗
𝑇
𝑗 =

(
(1 − 𝛼)�̃�

)𝐾
becomes negligible and therefore can be omitted. Based on this

analysis, we can derive an approximate expression for 𝑴𝐾 with

finite 𝐾 as follows:

𝑴𝐾 ≈ log

(
𝑱 + 𝑴∞

𝐾

)
Therefore, given the 𝐾-hop proximity matrix 𝑴𝐾 , we can estimate

the matrix 𝑴∞ using the following equation:

𝑴∞ ≈ 𝐾 · (exp(𝑴𝐾 ) − 𝑱 ) . (10)

Consequently, we can recover the adjacency matrix according to

Theorem 5. The analytical method is outlined in Algorithm 1. In

particular, to generate a binary adjacency matrix 𝑨 ∈ {0, 1}𝑛×𝑛 ,
following the binarization approach introduced in [6], we set the

top-𝑚 largest values above the diagonal, as well as their corre-

sponding entries below the diagonal, to 1. This binarization process

Algorithm 2: Optimization Method

Input: Proximity matrix 𝑴𝐾 , graph volume 𝑣𝑜𝑙 (𝐺),
number of training epoch 𝑝 , iteration number 𝑞

Output: Recovered adjacency matrix
˜𝑨

1 Initialize
ˆ𝑨← 0

2 for 𝑡 ∈ {1, · · · , 𝑝} do
3 Initialize 𝑠 ← 0

4 for 𝑟 ∈ {1, · · · , 𝑞} do
5 𝑩 ← 𝜎 ( ˆ𝑨 + 𝑠)
6 𝑠 ← 𝑠 + 𝑣𝑜𝑙 (𝐺 )−∑𝑖,𝑗 𝑩∑

𝑖,𝑗 (𝑩⊗(𝑰−𝑩) )

7 ˆ𝑨← 𝜎 ( ˆ𝑨 + 𝑠)
8 Calculate �̂�𝐾 via Equation 11

9 Calculate L via Equation 12

10 Update
ˆ𝑨 to minimize L using

𝜕L
𝜕 ˆ𝑨

11 ˆ𝑨← Binarize( ˆ𝑨)
12 return ˆ𝑨

ensures that the number of edges in the reconstructed graph will

be the same as that of the original graph.

4.2 Optimization Method
In addition to the analytical method, which returns an approxima-

tion of the adjacency matrix based on the given proximity matrix

𝑴𝐾 , we also propose an optimization method that directly mini-

mizes the gap between the proximity matrices 𝑴𝐾 calculated on

the original graph 𝐺 and �̂�𝐾 calculated on the recovered graph 𝐺 .

Using the embedding matrices 𝑿 and 𝒀 , we construct the trun-
cated proximity matrix 𝑴𝐾 = 𝑿𝑇 𝒀 . By treating the entries of

the recovered adjacency matrix
ˆ𝑨 as trainable parameters, we can

optimize these variables using the gradient decent algorithm. We

calculate the approximate matrix �̂�𝐾 using matrix
ˆ𝑨. Specifically,

we set 𝑏 = 𝐾 , 𝛽 = 0, 𝛾 = 0, 𝑘 = 0, and 𝑓 (𝑥) = log(𝑥) of the proposed
unified framework in Equation 5, which is equivalent to calculating

the proximity matrix of STRAP on the original graph 𝐺 :

�̂�𝐾 = max

{
0, log

(
1

𝜖
·
𝐾∑︁
𝑖=0

𝛼 (1 − 𝛼)𝑖
(
𝑫−1 ˆ𝑨

)𝑖 )}
. (11)

The objective function L in our optimization method is defined as:

L = ∥�̂�𝐾 −𝑴𝐾 ∥2𝐹 . (12)

where ∥ · ∥𝐹 denotes the Frobenius norm. The goal of Equation

12 is to minimize the reconstruction error between the original

proximity matrix 𝑴𝐾 and the approximate proximity matrix �̂�𝐾

calculated using the recovered adjacency matrix
ˆ𝑨.

Algorithm 2 shows the pseudo-code for the optimization method.

It recovers the adjacency matrix by minimizing the objective func-

tion introduced in Equation 12. Initially, all entries of
ˆ𝑨 are set

to zero (Line 1). Then, a shifted logistic function [6] is applied to

construct the approximate adjacency matrix using the given graph

volume 𝑣𝑜𝑙 (𝐺) (Lines 3-7). Here, 𝜎 (·) represents the logistic func-
tion,

∑
𝑖, 𝑗 calculates the sum of all entries in the matrix, and ⊗

denotes the element-wise matrix multiplication. Subsequently, we
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Figure 2: Relative Frobenius error of the adjacency matrix.

calculate the approximate matrix �̂� via Equation 11, and obtain the

objective value of L through Equation 12. In each epoch, we update

ˆ𝑨 by
𝜕L
𝜕 ˆ𝑨

to minimize the objective function. Finally, the binarized

approximate adjacency matrix
˜𝑨 is returned as the recovered result.

Remark. Notice that Algorithm 2 omits the singular value decom-

position process due to its instability during the training process

and significant computational cost. Instead, we directly construct

the truncated proximity matrix 𝑴𝐾 from the embedding matrices

𝑿 , 𝒀 , and take 𝑴𝐾 as input in our optimization method.

5 EXPERIMENT
In this section, we first compare two methods of our PPREI on the

embedding inversion task. Subsequently, we compare PPREI with

DeepWalking Backwards [6], abbreviated as DW-Backwards, on
both the embedding inversion task and the graph recovery task.

The implementation of all methods is based on PyTorch [25].

5.1 Experimental Settings
Datasets. We use 6 real-world datasets that are widely used in

recent node embedding studies [26, 28, 35, 47, 49, 52] to evaluate

the performance of PPREI and DW-Backwards. Detailed description

of each dataset can be found in Appendix C.

Parameter settings. For the PPI, BlogCatalog, and Flickr datasets,

we set the teleport probability 𝛼 = 0.1, while for the Euro, Brazil,

and Wiki datasets, we set 𝛼 = 0.7. In the analytical method, we

set the threshold 𝜖 = 10
−5
, and in the optimization method, we set

𝜖 = 10
−7
. The PPR computation in 𝑴𝐾 is conducted with 𝐾 = 10.

In the optimization method, the number of training epochs is set

to 𝑝 = 40, and the number of iterations for the shifted logistic

function is 𝑞 = 10. The dimension of the embedding matrices for

each method varies from 16 to 256.
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Figure 3: Relative Frobenius error of the adjacency matrix.

5.2 Node Embedding Inversion
In this series of experiments, we evaluate the performance of the

proposed analytical method and the optimization method on the

node embedding inversion task (defined in Problem 1). Specifically,

we evaluate these two methods using the relative Frobenius error,

that is, the relative Frobenius norm error between the reconstructed

adjacency matrix
ˆ𝑨 and the original adjacency matrix 𝑨. The rela-

tive Frobenius error is computed as 𝑒𝑟𝑟 (𝑨) = ∥𝑨− ˆ𝑨∥𝐹
∥𝑨∥𝐹 .

Figure 2 reports the relative Frobenius error of both the analyti-

cal method and the optimization method on 6 datasets with varying

embedding dimensions 𝑑 . As we can observe, the optimization

method consistently outperforms the analytical method by a signif-

icant margin. Even though the analytical method can theoretically

recover the structure of the graph precisely according to Theorem

5, meeting the conditions stated in the theorem is challenging in

practical scenarios. Firstly, the proximity matrix 𝑴𝐾 is a truncated

approximation of the exact proximity matrix as 𝐾 is not an infinite

number. Secondly, the embedding dimension 𝑑 ≪ 𝑛, which intro-

duces additional approximation errors to the proximity matrix 𝑴𝐾

with a factor of (1 + \ ). On the contrary, the optimization method

does not impose constraints on the embedding dimension 𝑑 or the

propagation step 𝐾 . Based on these observations, we select the

optimization method of PPREI for further experimental evaluation.

5.3 Graph Recovery
In this set of experiments, we conduct a comprehensive analysis

comparing our PPREI with DW-Backwards, aiming to investigate

the topological information encoded within PPR-based node em-

beddings and random walk-based node embeddings. Notice that

in addition to the Relative Frobenius norm error 𝑒𝑟𝑟 (𝑨) discussed
in Section 5.2, we also focus on evaluating the performance on the
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Figure 4: Relative average path length error.

graph recovery task (defined in Problem 2) by considering two key

topological characteristics:

• Relative average path length error 𝑒𝑟𝑟 (𝑙): it measures the differ-

ence in the average path length between the reconstructed graph

𝐺 and the original graph 𝐺 . The average path length represents

the average distance between all node pairs.

• Average conductance error of the community 𝑒𝑟𝑟 (𝜙): it measures

the difference of the conductance between the reconstructed

community and the original community. Given a community 𝑆 ,

the conductance is defined as 𝜙 (𝑆) =
∑

𝑖∈𝑆,𝑗 ∈𝑆 𝑨(𝑖, 𝑗 )
min{𝑣𝑜𝑙 (𝑆 ),𝑣𝑜𝑙 (𝑆 ) } , where

𝑆 = 𝑉 \𝑆 denotes the complement of community 𝑆 and 𝑣𝑜𝑙 (𝑆) is
sum of the degrees of all nodes in 𝑆 .

Figures 3 to 5 illustrate the relative errors 𝑒𝑟𝑟 (𝑨), 𝑒𝑟𝑟 (𝑙), and
𝑒𝑟𝑟 (𝜙) of PPREI and DW-Backwards with varying node embedding

dimensions on 6 datasets. Additional experiments analyzing the

impact of parameters 𝛼 and 𝜖 can be found in the appendix. Notice

that the Euro and Brazil datasets consist of only 4 communities,

and therefore, we report the average relative conductance error

across the top-4 largest communities on all datasets. The specific

relative conductance errors for each community on six datasets are

provided in the appendix.

Our observations can be summarized as follows. Firstly, both

PPREI and DW-Backwards exhibits a decreasing trend in the rela-

tive Frobenius error of the reconstructed adjacency matrix as the

embedding dimension increases, as shown in Figure 3. Moreover,

PPREI consistently outperformsDW-Backwards on all datasets with

different node embedding dimensions. This indicates that PPREI

achieves superior performance in preserving the graph topological

information. Secondly, the relative path length errors of the graph

recovered by PPREI are consistently smaller than those of the graph

recovered by DW-Backwards, as shown in Figure 4. This implies
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Figure 5: Average relative conductance error.

that PPR-based node embeddings better preserve the long-range

information inherent in the graph. Thirdly, PPREI demonstrates

lower average relative conductance errors for the top-4 largest com-

munities compared to DW-Backwards, as shown in Figure 5. This

suggests that PPR-based node embeddings better preserve local

community information within the graph. Notably, we can observe

that when the node embedding dimension 𝑑 ≥ 128, PPREI effec-

tively preserves both the average path length and the conductance

of communities in the reconstructed graph 𝐺 . In summary, these

findings demonstrate that PPR-based node embeddings result in

significantly less topological information loss compared to random

walk-based alternatives. This provides an explanation for the supe-

rior performance of PPR-based embedding approaches over random

walk-based alternatives from a topological perspective.

6 CONCLUSION
In this paper, we first introduce a unified PPR-based node em-

bedding framework, which can be considered as a spectral node

embedding approach. Subsequently, we show that several repre-

sentative state-of-the-art PPR-based node embedding approaches

can be interpreted as special cases of this framework. Based on

this framework, we propose two embedding inversion methods.

Extensive experimental results demonstrate that node embeddings

generated by PPR-based approaches preserve more accurate graph

topological information than that generated by random wark-based

approaches. This work enhances our understanding of existing PPR-

based node embedding approaches and contributes to advancing

the field of graph representation learning.
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Figure 6: Relative CEs of the largest community.

Table 1: Frequently used notations.
Notations Descriptions

𝐺 = (𝑉 , 𝐸) A graph with node set and edge set

𝑛,𝑚 The number of nodes and edges

𝑨,𝑫 Adjacent and degree matrix

𝑷 , �̃� Transition and normalized Laplacian matrix

𝜋 (𝑢, 𝑣) The PPR value of node 𝑣 with respect to node 𝑢

𝛼, 𝜖 Stopping probability and threshold of PPR

𝐾,𝑑 Walk length and embedding dimension

𝑴,𝑿 , 𝒀 Proximity matrix and two embedding matrices

_, 𝒗 Eigenvalue and eigenvector

A NOTATIONS
Table 1 lists the notations that are frequently used in this paper.

B ADDITIONAL EXPERIMENTAL RESULTS
B.1 Relative Conductance Error
Notice that the Euro and Brazil datasets consist of only 4 communi-

ties. Therefore, we report the relative conductance errors (CEs) for
the top-4 largest communities on 6 datasets in Figures 6 to 9. As

we can observe, compared to DW Backwards, PREI exhibits lower

relative CEs for the top-4 largest communities in most cases. These

results again demonstrate that PPR-based node embeddings better

preserve local community information within the graph.

B.2 Parameter Analysis
In this set of experiments, we investigate the impact of the teleport

probability 𝛼 and the threshold 𝜖 on the performance of PPREI by

measuring the relative Frobenius norm error 𝑒𝑟𝑟 (𝑨) (see Section
5.2). Figures 10 and 11 illustrate the changes in the relative Frobenius
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Figure 7: Relative CEs of the second largest community.

Table 2: Dataset statistics.

Name 𝑛 𝑚 ¯𝑑 labels

Euro 399 5,995 30.1 4

Brazil 131 1,038 15.8 4

Wiki 2405 17,981 15.0 17

PPI 3890 76,584 39.4 50

Flickr 7575 239,738 63.3 9

BlogCatalog 10312 339,983 65.9 39

norm error on 6 datasets as we vary 𝛼 from 0.1 to 0.9 and 𝜖 from

10
−8

to 10
−4
, respectively.

The teleport probability 𝛼 provides tradeoffs between local and

long-range information. As 𝛼 approaches 0.1, more long-range

information will be incorporated into the node embeddings. Con-

versely, as𝛼 approaches 0.9, it will focusmore on one-hop neighbors

within local communities. As we can observe in Figure 10, on the

Euro, Brazil, and Wiki datasets, PPREI achieves competitive results

when 𝛼 = 0.7 while on the PPI, Flickr, and BlogCatalog datasets,

PPREI exhibits relatively small information loss when 𝛼 = 0.1.

The threshold 𝜖 controls the scaling weights of the values in the

proximity matrix. Smaller values of 𝜖 lead to more discriminative

values in the proximity matrix. As we can observe in Figure 11,

when 𝜖 = 10
−7
, PPREI achieves competitive results and thus 𝜖 is

set to 10
−7

in our experiments.

C DATASET
We use 6 real-world datasets that are widely used in recent node

embedding studies [26, 28, 35, 47, 49, 52] to evaluate the perfor-

mance of PPREI and DW-Backwards. Euro and Brazil [28] datasets

consist of airport activity records collected from the Statistical of
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Figure 8: Relative CE of the third largest community.

PPREI DW-Backwards

0.05

0.10

0.15

0.20

0.25

16 32 64 128 256

Relative Frobenius Error

Embedding Dim

0.0

0.07

0.14

0.21

0.28

0.35

16 32 64 128 256

Relative Frobenius Error

Embedding Dim

(a) Euro (b) Brazil

0.0

0.05

0.10

0.15

0.20

16 32 64 128 256

Relative Frobenius Error

Embedding Dim

0.0

0.02

0.04

0.06

0.08

0.10

16 32 64 128 256

Relative Frobenius Error

Embedding Dim

(c) Wiki (d) PPI

0.0

0.02

0.04

0.06

0.08

16 32 64 128 256

Relative Frobenius Error

Embedding Dim

0.0

0.02

0.04

0.06

0.08

0.10

16 32 64 128 256

Relative Frobenius Error

Embedding Dim

(e) Flickr (f) BlogCatalog

Figure 9: Relative CE of the fourth largest community.

the European Union and the National Civil Aviation Agency, re-

spectively. Wiki [47] dataset is a graph comprising interconnected

documents from Wikipedia. PPI [3] dataset represents a subgraph

of the protein-protein interaction network for Homo Sapiens. Blog-

Catalog [32] and Flickr [15] datasets are two social networks where

edges indicate friendships/following relationships between users.

The statistics of the datasets are shown in Table 2.
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Figure 10: Relative Frobenius error (FE) of adjacency matrix
with varying 𝛼 .
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Figure 11: Relative FE of adjacency matrix with varying 𝜖.

The links to download the datasets are as follows:

• Euro and Brazil: https://github.com/leoribeiro/struc2vec/;

• Wiki: https://github.com/thunlp/TADW/tree/master/wiki;

• PPI: http://snap.stanford.edu/node2vec/;

• BlogCatalog: http://leitang.net/social_dimension.html;

• Flickr: https://github.com/mengzaiqiao/CAN/tree/master/data.
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