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Hawkes process is a class of simple point processes that is self-exciting and has clustering effect.
The intensity of this point process depends on its entire past history. It has wide applications in
finance, insurance, neuroscience, social networks, criminology, seismology, and many other fields.
In this paper, we study linear Hawkes process with an exponential kernel in the asymptotic
regime where the initial intensity of the Hawkes process is large. We establish large deviations
for Hawkes processes in this regime as well as the regime when both the initial intensity and
the time are large. We illustrate the strength of our results by discussing the applications to
insurance and queueing systems.

1. Introduction

Let N be a simple point process on R and let F−∞t := σ(N(C), C ∈ B(R), C ⊂ (−∞, t])
be an increasing family of σ-algebras. Any nonnegative F−∞t -progressively measurable
process λt with

E
[
N(a, b]|F−∞a

]
= E

[∫ b

a

λsds
∣∣F−∞a

]
, almost surely,

for all intervals (a, b] is called an F−∞t -intensity of N . We use the notation Nt := N(0, t]
to denote the number of points in the interval (0, t].

A Hawkes process is a simple point process N admitting an F−∞t -intensity

λt := λ

(∫ t−

−∞
φ(t− s)dNs

)
, (1.1)

where λ(·) : R+ → R+ is locally integrable, left continuous, φ(·) : R+ → R+ and we

always assume that ‖φ‖L1 =
∫∞

0
φ(t)dt < ∞. In (1.1),

∫ t−
−∞ φ(t − s)dNs stands for∑

τ<t φ(t− τ), where τ are the occurrences of the points before time t. In the literature,
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2 Gao and Zhu

φ(·) and λ(·) are usually referred to as exciting function (or sometimes kernel function)
and rate function respectively. A Hawkes process is linear if λ(·) is linear and it is non-
linear otherwise.

The linear Hawkes process was first introduced by A.G. Hawkes in 1971 [17, 18]. It
naturally generalizes the Poisson process and it captures both the self–exciting1 property
and the clustering effect. In addition, Hawkes process is a very versatile model which is
amenable to statistical analysis. These explain why it has wide applications in insurance,
finance, social networks, neuroscience, criminology and many other fields. For a list of
references, we refer to [32].

Throughout this paper, we assume an exponential exciting function φ(t) := αe−βt

where α, β > 0, and a linear rate function λ(z) := µ+ z where the base intensity µ ≥ 0.
That is, we restrict ourselves to the linear Markovian Hawkes process. To see the Markov
property, we define

Zt :=

∫ t

−∞
αe−β(t−s)dNs = Z0 · e−βt +

∫ t

0

αe−β(t−s)dNs.

Then, the process Z is Markovian and satisfies the dynamics:

dZt = −βZtdt+ αdNt,

where N is a Hawkes process with intensity λt = µ+Zt− at time t. In addition, the pair
(Z,N) is also Markovian. For simplicity, we also assume Z0 = Z0−, i.e., there is no jump
at time zero.

In this paper we consider an asymptotic regime where Z0 = n, and n ∈ R+ is sent
to infinity. This implies the initial intensity λ0 = µ + Z0 is large for fixed µ. Our main
contribution is to provide the large deviations analysis of Markovian Hawkes processes in
this asymptotic regime as well as the regime when both Z0 and the time are large. The
rate functions are found explicitly. Our large deviations analysis here complement our
previous results in [14], where we establish functional law of large numbers and functional
central limit theorems for Markovian Hawkes processes in the same asymptotic regimes.

For simplicity, the discussions in our paper are restricted to the case when the exciting
function φ is exponential, that is the Markovian case. Indeed, all the results can be
extended to the case when the exciting function φ is a sum of exponential functions. And
for the non–Markovian case, we know that any continuous and integrable function φ
can be approximated by a sum of exponential functions, see e.g. [37]. In this respect, the
Markovian setting in this paper is not too restrictive. From the application point of view,
the exponential exciting function and thus the Markovian case, together with the linear
rate function, is the most widely used due to the tractability of the theoretical analysis as
well as the simulations and calibrations. See, e.g., [1, 2, 7, 17] and the references therein.

To illustrate the strength of our results, we apply them to two examples. In the first
example, we develop approximations for finite–horizon ruin probabilities in the insurance

1Self–exciting refers the phenomenon that the occurrence of one event increases the probability of
the occurrence of further events.
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setting where claim arrivals are modeled by Hawkes processes. Here, the initial arrival
rate of claims could be high, say, right after a catastrophe event. In the second example,
we rely on our large deviations results to approximate the loss probability in a multi–
server queueing system where the traffic input is given by a Hawkes process with a
large initial intensity. Such a queueing system could be relevant for modeling large scale
service systems (e.g., server farms with thousands of servers) with high–volume traffic
which exhibits clustering.

We now explain the difference between our work and the existing literature on limit
theorems of Hawkes processes, especially the large deviations. The large–time large de-
viations of Hawkes processes have been extensively studied in the literature, that is the
large deviation principle for P(Nt/t ∈ ·) as t→∞. Bordenave and Torrisi [6] derived the
large deviations when λ(·) is linear and obtained a closed-form formula for the rate func-
tion. When λ(·) is nonlinear, the lack of immigration-birth representation ([17]) makes
the study of large deviations much more challenging mathematically. In the case when
φ(·) is exponential, the large deviations were obtained in Zhu [37] by using the Markovian
property, and λ(·) is assumed to be sublinear so that a delicate application of minmax
theorem can match the lower and upper bounds. For the general non-Markovian case, i.e.,
general φ(·), the large deviations was obtained at the process-level in Zhu [38]. The large
deviations for extensions of Hawkes processes have also been studied in the literature,
see e.g. Karabash and Zhu [24] for the linear marked Hawkes process, and Zhu [35] for
the Cox–Ingersoll-Ross process with Hawkes jumps and also Zhang et al. [31] for affine
point processes. Other than the large deviations, the central limit theorems for linear,
nonlinear and extensions of Hawkes processes have been considered in, e.g., [4, 36, 35].
Recently, Torrisi [27, 28] studied the rate of convergence in the Gaussian and Poisson
approximations of the simple point processes with stochastic intensity, which includes as
a special case, the nonlinear Hawkes process. The moderate deviations for linear Hawkes
processes were obtained in Zhu [34], that fills in the gap between the central limit the-
orem and large deviations. Also, the large–time limit theorems for nearly unstable, or
nearly critical Hawkes processes have been considered in Jaisson and Rosenbaum [21, 22].
The large–time asymptotics for other regimes are referred to Zhu [32]. The limit theo-
rems considered in Bacry et al. [4] hold for the multidimensional Hawkes process. Indeed,
one can also consider the large dimensional asymptotics for the Hawkes process, that is,
mean-field limit, see e.g. Delattre et al. [9].

We organize our paper as follows. In Section 2, we will state the main theoretical
results in our paper, i.e., the large deviations for the linear Markovian Hawkes processes
with a large initial intensity. We will then discuss the applications of our results to two
examples in Section 3. We prove Theorems 1 and 2 in Section 4. Technical proofs for
additional results will be presented in the online appendix due to space considerations.

2. Main results

In this section we state our main results. First, let us introduce the notation that will be
used throughout the paper and introduce the definition and the contraction principle in
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the large deviations theory that will be used repeatedly in the paper.

2.1. Notation and background of large deviations theory

We define R+ = {x ∈ R : x > 0} and R≥0 = {x ∈ R : x ≥ 0}. We fix T > 0 throughout
this paper. Let us first define the following spaces:

• D[0, T ] is defined as the space of càdlàg functions from [0, T ] to R≥0.
• ACx[0, T ] is defined as the space of absolutely continuous functions from [0, T ] to

R≥0 that starts at x at time 0.
• AC+

x [0, T ] is defined as the space that consists of all the non-decreasing functions
f ∈ ACx[0, T ].

We also define Bε(x) as the Euclidean ball centered at x with radius ε > 0.
Before we proceed, let us give a formal definition of the large deviation principle and

state the contraction principle. We refer readers to Dembo and Zeitouni [10] or Varadhan
[29] for general background of large deviations and the applications.

A sequence (Pn)n∈N of probability measures on a topological space X satisfies the
large deviation principle with the speed an and the rate function I : X → [0,∞] if I
lower semicontinuous and for any measurable set A, we have

− inf
x∈Ao

I(x) ≤ lim inf
n→∞

1

an
logPn(A) ≤ lim sup

n→∞

1

an
logPn(A) ≤ − inf

x∈A
I(x).

Here, Ao is the interior of A and A is its closure. The rate function I is said to be good
if for any m, the level set {x : I(x) ≤ m} is compact.

The contraction principle concerns the behavior of large deviation principle under
continuous mapping from one space to another. It states that if (Pn)n∈N satisfies a large
deviation principle on X with a good rate function I(·), and F is a continuous mapping
from the Polish space X to another Polish space Y , then the family Qn = PnF

−1 satisfies
a large deviation principle on Y with a good rate function J(·) given by

J(y) = inf
x:F (x)=y

I(x).

2.2. Large deviation analysis for large initial intensity

In this section we state a set of results on large deviations behavior of Markovian Hawkes
processes when Z0 = n is sent to infinity. Note that processes Z and N both depend on
the initial condition Z0 = n and we use Zn, Nn to emphasize the dependence on Z0 = n.
We consider the process Zn first.

Theorem 1. P
({

1
nZ

n
t , 0 ≤ t ≤ T

}
∈ ·
)

satisfies a sample-path large deviation principle
on D[0, T ] equipped with uniform topology with the speed n and the good rate function

IZ(g) =

∫ T

0

βg(t) + g′(t)

α
log

(
βg(t) + g′(t)

αg(t)

)
−
(
βg(t) + g′(t)

α
− g(t)

)
dt, (2.1)
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if g ∈ AC1[0, T ] and g′ ≥ −βg, and IZ(g) =∞ otherwise. Moreover, P( 1
nZ

n
T ∈ ·) satisfies

a scalar large deviation principle on R+ with the good rate function

J(x;T ) = inf
g(T )=x

IZ(g) (2.2)

= sup
θ∈R
{θx−A(T ; θ)} . (2.3)

where A(t; θ) satisfies the ODE (Ordinary Differential Equation):

A′(t; θ) = −βA(t; θ) + eαA(t;θ) − 1, (2.4)

A(0; θ) = θ. (2.5)

Four remarks are in order.

(a) When g(t) = e(α−β)t for t ∈ [0, T ], one immediately verifies from (2.1) that IZ(g) =
0. This is consistent with the functional law of large numbers for

{
1
nZ

n
t , 0 ≤ t ≤ T

}
in [14].

(b) Note that g′(t) = −βg(t) for any 0 ≤ t ≤ T corresponds to Znt = Zn0 e
−βt = ne−βt

for any 0 ≤ t ≤ T , which is equivalent to Nn
T = 0. We can compute that P(Nn

T =

0|Zn0 = n) = e−
∫ T
0

(µ+ne−βt)dt, which gives − limn→∞
1
n logP(Znt = ne−βt, 0 ≤ t ≤

T ) =
∫ T

0
e−βtdt which is consistent with IZ(g) =

∫ T
0
e−βtdt for g′(t) = −βg(t) for

any 0 ≤ t ≤ T .
(c) We have used A(t; θ) instead of A(t) to emphasize that A takes value θ at time

zero, and the derivative in (2.4) is taken with respect to t.
(d) We have two equivalent expressions for the rate function J : the first expression

(2.2) is directly implied by the sample–path large deviation principle together with
the contraction principle, and the second expression (2.3) is obtained via Gärtner–
Ellis Theorem. See Section 4 for more details. In general, there are no analytical
formulas for A and the rate function J . But one can easily numerically solve the
ODE for A (e.g., Runge–Kutta methods) and then solve the optimization problem
in (2.3) to obtain the rate function J . An illustrative example is given in Figure 1.

Next we proceed to state a large deviation principle for P
({

1
nN

n
t , 0 ≤ t ≤ T

}
∈ ·
)
. To

gain some intuition about the result, we note that

dZt = −βZtdt+ αdNt,

which implies that

Nt =
Zt − Z0

α
+
β

α

∫ t

0

Zsds.

Given Z0 = n, equivalently we have

1

n
Nn
t =

1

α
·
(
Znt
n
− 1

)
+
β

α

∫ t

0

Zns
n
ds. (2.6)
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(a) J(x;T ) as a function of x. T = 5 is fixed.
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(b) J(x;T ) as a function of T . x = 3 is fixed.

Figure 1: This figure plots the rate function J(x;T ) in (2.3). The parameters are given
by: α = β = 1.

Now if we define for t ∈ [0, T ],

h(t) =
g(t)− 1

α
+
β

α

∫ t

0

g(s)ds,

then one readily verifies that the map g 7→ h is a continuous map from D[0, T ] to D[0, T ]
under the uniform topology. Therefore, by Theorem 1 and the contraction principle, we
can obtain the following result. The details of the proof is left to Section 4.

Theorem 2. P
({

1
nN

n
t , 0 ≤ t ≤ T

}
∈ ·
)

satisfies a sample-path large deviation principle
on D[0, T ] equipped with uniform topology with the speed n and the good rate function

IN (h) =

∫ T

0

h′(t) log

(
h′(t)

e−βt + e−βt
∫ t

0
αeβsh′(s)ds

)
(2.7)

−
(
h′(t)− e−βt − e−βt

∫ t

0

αeβsh′(s)ds

)
dt,

if h ∈ AC+
0 [0, T ], and IN (h) = ∞ otherwise. Moreover, P(Nn

T /n ∈ ·) satisfies a scalar
large deviation principle on R≥0 with the good rate function

H(x;T ) = inf
h:h(T )=x

IN (h) (2.8)

= sup
θ∈R

{
θx− C

(
T ;

θ

α

)
+
θ

α

}
, (2.9)
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where C(t; θα ) solves the ODE

C ′
(
t;
θ

α

)
= −βC

(
t;
θ

α

)
+ eα·C(t; θα ) − 1 +

βθ

α
, (2.10)

C

(
0;
θ

α

)
=

θ

α
. (2.11)

Four remarks are in order.

(a) Notice that IN (h) =
∫ T

0
R(h′(t), e−βt + e−βt

∫ t
0
αeβsh′(s)ds)dt, where R(x, y) :=

x log
(
x
y

)
− x + y, for any x, y > 0. It is easy to see that R(x, y) ≥ 0 and

R(x, y) = 0 if and only if x = y. Therefore IN (h) = 0 if and only if h′(t) =

e−βt + e−βt
∫ t

0
αeβsh′(s)ds for any 0 ≤ t ≤ T . Together with h′(0) = 1, we get

h′(t) = e(α−β)t. With the initial condition h(0) = 0, we get h(t) =
∫ t

0
e(α−β)sds = t

if α = β and e(α−β)t−1
α−β if α 6= β. This is consistent with the functional law of large

numbers for
{

1
nN

n
t , 0 ≤ t ≤ T

}
in [14].

(b) Note that h ≡ 0 corresponds toNn
T = 0. We can compute that P(Nn

T = 0|Zn0 = n) =

e−
∫ T
0

(µ+ne−βt)dt, which gives − limn→∞
1
n logP(Nn

T = 0|Zn0 = n) =
∫ T

0
e−βtdt,

which is consistent with IN (h) =
∫ T

0
e−βtdt for h ≡ 0.

(c) Similar as in Theorem 1, we use C(t; θα ) instead of C(t) to emphasize that C takes

value θ
α at time zero. The derivative in (2.10) is taken with respect to t.

(d) Similar as in Theorem 1, we have two equivalent expressions for the rate function
H. In general, there is no analytical formula for H. But one can easily numerically
solve the ODE for C (e.g., Runge–Kutta methods) and then solve the optimization
problem in (2.9) to obtain the rate function H. An illustrative example is given in
Figure 2.

2.2.1. Most likely paths

In this section, we compute the most likely paths to rare events for Hawkes processes
with large initial intensities. More precisely, we are interested to find the minimizer to
the variational problems in (2.2) and (2.8).

Fix x ∈ R+. Let θ∗ be the unique maximizer to the optimization problem (2.3).2

Proposition 3. The minimizer to the variational problem (2.2) is given by

g∗(t) = exp

(∫ t

0

αeαA(s;θ∗)ds− βt
)
, (2.12)

for 0 ≤ t ≤ T , where A(s; θ∗) solves the ODE (2.4) with an initial condition A(0; θ∗) = θ∗.

2It will be clear from the Proof of Theorem 1 that A(T ; θ) = limn→∞
1
n

logE[eθZT |Z0 = n] if the
limit exists. So one readily verifies that A(T ; θ) is convex in θ, and in fact strictly convex in θ from (2.4).
Hence, there is a unique optimal θ∗ for the optimization problem (2.3).
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(a) H(x;T ) as a function of x. T = 5 is fixed.
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(b) H(x;T ) as a function of T . x = 5 is fixed.

Figure 2: This figure plots the rate function H(x;T ) in (2.9). The parameters are given
by: α = β = 1.

Next we consider the variational problem (2.8). Let θ̂∗ be the unique maximizer to
the optimization problem (2.9).3

Proposition 4. The minimizer to the variational problem (2.8) is given by

h∗(t) =

∫ t

0

exp

(
α · C

(
T − s; θ̂∗

α

)
+ α

∫ s

0

eαC(T−u; θ̂∗α )du− βs

)
ds, (2.13)

for any 0 ≤ t ≤ T , where C(s; θ̂∗α ) solves the ODE (2.10) with the initial condition

C(0; θ̂∗α ) = θ̂∗
α .

The proofs of these two propositions are deferred to the online appendix.

2.3. Large deviation analysis for large initial intensity and large
time

This section is devoted to a set of results on large deviations behavior of Markovian
Hawkes processes in the asymptotic regime where both Z0 = n and the time go to
infinity. The proofs of these results are deferred to the online appendix due to space
considerations.

3It will be clear from the Proof of Theorem 2 that C(T ; θ
α

)− θ
α

= limn→∞
1
n

logE[eθNT |Z0 = n] is
always convex in θ if the limit exists. Indeed, from the ODE (2.10), the limit must be strictly convex.

Hence, there is a unique optimal θ̂∗ for the optimization problem (2.9).
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When the time is sent to infinity, Hawkes processes behave differently depending on
the value of ‖φ‖L1 (see, e.g., Zhu [32]). In our case, the exciting function is exponential:
φ(t) = αe−βt. So we have the following three different cases: (1) critical: α = β; (2)
super–critical: α > β; and (3) sub–critical: α < β. We study each case separately.

2.3.1. Critical case

We first consider the critical case, i.e., α = β > 0.

Theorem 5. Assume that α = β > 0. Let tn be a positive sequence that goes to infinity
as n→∞ and limn→∞

tn
n = 0.

(i) For any T > 0, P(
ZntnT
n ∈ ·) satisfies a large deviation principle on R with the speed

n
tn

and the rate function

ÎZ(x) =
2(
√
x− 1)2

α2T
, if x ≥ 0,

and +∞ otherwise.

(ii) For any T > 0, P(
NntnT
ntn

∈ ·) satisfies a large deviation principle on R with the
speed n

tn
and rate function

ÎN (x) = sup
θ∈R
{θx− Λ(θ)} ,

where

Λ(θ) =


√
−2θ
α tanh

(
−α√

2

√
−θT

)
if θ ≤ 0,

√
2θ
α tan

(
α√
2

√
θT
)

if θ > 0.

The proof of this result relies on Gärtner-Ellis theorem and Gronwall’s inequality for
nonlinear ODEs (see, e.g., [11, Theorem 42]) which arise from the characterization of the
moment generating functions of Zt and Nt.

2.3.2. Super–critical case

We next state the result for the super–critical case where α > β > 0. Below, we use the
convention that ∞ · 0 = 0.

Theorem 6. Assume that α > β > 0 and 0 < T < 1. Let tn = logn
α−β . Then,

(i) P(
ZntnT
n1+T ∈ ·) satisfies a large deviation principle on R+ with the speed nT and the

rate function ĨZ(x) = 0·1x=1 +∞ · 1x 6=1.

(ii) P(
NntnT
n1+T ∈ ·) satisfies a large deviation principle on R≥0 with the speed nT and the

rate function ĨN (x) = 0·1x= 1
α−β

+∞ · 1x 6= 1
α−β

.

We remark that the sequence {tn} in Theorem 6 can be taken to be more general. We
choose this particular {tn} for the simplicity of notation. Notice that when Z0 = n→∞,
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the initial intensity is µ+n which is of the same order as n, and assuming µ = 0, we can
easily compute that E[Znt ] = ne(α−β)t. Thus choosing tn = logn

α−β gives E[ZntnT ] = n1+T ,
which is notation-wise concise.

2.3.3. Sub–critical case

Finally, we state the large deviations results for the sub–critical case, i.e., β > α > 0.
Given Z0 = z where z is a fixed constant and under the assumption β > α > 0, it is well
known that as t→∞, Ntt →

µ
1−αβ

almost surely and P(Ntt ∈ ·) satisfies a large deviation

principle, see e.g. [6]. So for Z0 = n, it is natural to study the large deviations for
NnnT
n .

Theorem 7. Assume that β > α > 0. For any T > 0, P(
NnnT
n ∈ ·) satisfies a scalar

large deviation principle on R with the speed n and the rate function

I(x) = x log

(
βx

αx+ 1 + µβT

)
− x+

αx+ 1 + µβT

β
, (2.14)

for x ≥ 0 and I(x) = +∞ otherwise.

The proof of this result rely on Gärtner-Ellis theorem and asymptotic behavior of the
solutions of certain nonlinear ODEs which arise from the characterization of the moment
generating function of Nt.

Remark 8. We discuss the connections with existing results on large–time large de-
viations of Hawkes processes here. Since the dependence on the initial condition should
be self-evident here, we omit the superscript n for the processes Z and N . As we have

discussed in [14], when Z0 = n, we can decompose Nt = N
(0)
t + N

(1)
t , where N (0) is a

simple point process with intensity Z(0), where

dZ
(0)
t = −βZ(0)

t dt+ αdN
(0)
t ,

with Z
(0)
0 = n and N (1) is a simple point process with intensity

λ
(1)
t := µ+

∫ t

0

αe−β(t−s)dN (1)
s .

That is, we can decompose the Hawkes process N into the sum of N (0) and N (1), where
N (0) is a linear Markovian Hawkes process with zero base intensity and initial intensity

Z
(0)
0 = n and N (1) is a linear Markovian Hawkes process with nonzero base intensity

µ > 0 and empty history, i.e., N (1)(−∞, 0] = 0. This decomposition is valid due to the
immigration-birth representation of linear Hawkes processes [20]. One of the key results
from the immigration-birth representation is that the two processes N (0) and N (1) are
independent of each other.
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By letting µ = 0 in Theorem 7, P(
N

(0)
nT

n ∈ ·) satisfies a large deviation principle with
the rate function

I(0)(x) = x log

(
βx

αx+ 1

)
− x+

αx+ 1

β
.

On the other hand, from Bordenave and Torrisi [6], P(
N

(1)
nT

n ∈ ·) satisfies a large deviation
principle with the rate function

I(1)(x) = T

[
x

T
log

(
x
T

µ+ x
T
α
β

)
− x

T
+
x

T

α

β
+ µ

]
.

Since N (0) and N (1) are independent, we conclude that P(NnTn ∈ ·) satisfies a large
deviation principle with the rate function

I(x) = inf
y+z=x

{I(0)(y) + I(1)(z)}.

Notice that I(1)(x) = µTI(0)
(
x
µT

)
+ µT

(
1− 1

β

)
and I(0)(x) is convex in x. Hence, by

Jensen’s inequality, we conclude that

I(x) = inf
0≤y≤x

{
I(0)(x− y) + µTI(0)

(
y

µT

)}
+ µT

(
1− 1

β

)
= (1 + µT ) inf

0≤y≤x

{
1

1 + µT
I(0)(x− y) +

µT

1 + µT
I(0)

(
y

µT

)}
+ µT

(
1− 1

β

)
= (1 + µT )I(0)

(
1

1 + µT
(x− y) +

µT

1 + µT

y

µT

)
+ µT

(
1− 1

β

)
= (1 + µT )I(0)

(
x

1 + µT

)
+ µT

(
1− 1

β

)
,

which can be easily verified to be consistent with (2.14).

The next result is complementary to Theorem 7.

Theorem 9. Assume that β > α > 0 and µ > 0. Let tn be a positive sequence that goes
to infinity as n→∞.

(i) If limn→∞
tn
n = 0, then, for any T > 0, P(

NntnT
n ∈ ·) satisfies a large deviation

principle on R≥0 with the speed n and the rate function

I(0)(x) = x log

(
βx

αx+ 1

)
− x+

αx+ 1

β
.

(ii) If limn→∞
tn
n = ∞, then, for any T > 0, P(

NntnT
tn
∈ ·) satisfies a large deviation

principle on R≥0 with the speed tn and the rate function

I(1)(x) = T

[
x

T
log

(
x
T

µ+ x
T
α
β

)
− x

T
+
x

T

α

β
+ µ

]
.
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12 Gao and Zhu

Let us give some intuition behind the results of Theorem 9. Recall the decomposition

Nt = N
(0)
t + N

(1)
t from Remark 8. Notice that N

(1)
tnT

is of order tn and that is because
of the large–time law of large numbers of the linear Hawkes process with a fixed initial

intensity µ and empty history. Also notice that N
(0)
tnT

is of order n. Let us explain. Notice

that from Z
(0)
0 = n we obtain E[N

(0)
tnT

] =
∫ tnT

0
E[Z

(0)
s ]ds = n

∫ tnT
0

e(α−β)sds. As n→∞,

we have tnT → ∞. But
∫∞

0
e(α−β)sds = 1

β−α < ∞ for β > α. Thus, N
(0)
tnT

is of order

n. Hence, when limn→∞
tn
n = 0, N (0) ‘dominates’ and we have result (i), and when

limn→∞
tn
n =∞, N (1) ‘dominates’ and we obtain (ii).

So far we have discussed the large deviations for the process Nn in the sub-critical
case. We next consider the large deviations for the process Zn in the regime where Z0 = n
and the time are both sent to infinity. Below, we use the convention that 0 · ∞ = 0.

Theorem 10. Assume that β > α > 0, 0 < γ < 1, and tn := logn
β−α . For any 0 <

T < 1 − γ, P(
ZntnT
n1−T ∈ ·) satisfies a scalar large deviation principle on R+ with the speed

n1−γ−T and the rate function

ĪZ(x) = 0 · 1x=1 +∞ · 1x 6=1.

We remark that similar as in Theorem 6, here the sequence {tn} in Theorem 10 can be
taken to be more general. We choose this particular {tn} for the simplicity of notation.

3. Examples and Applications

This section is devoted to two examples that apply the large deviations principle that
we have developed in the previous sections. The first example is on ruin probabilities
in the insurance setting, and the second example is on the finite–horizon maximum of
queue lengths in an infinite–server queue. We assume Markovian Hawkes processes can
adequately model the clustering behavior of events occurring in each application. While
this assumption may not be completely realistic, it enables us to illustrate the potential
strength of our large deviations analysis. Throughout this section, we write an = o(n) as
n→∞ if the sequence of numbers an satisfies limn→∞ an/n = 0.

3.1. Example 1: Ruin probability in insurance risk theory

In this example, we apply our large deviations results to approximate the finite horizon
ruin probability in a risk model in insurance mathematics.

Hawkes processes have been applied to insurance settings to accommodate the clus-
tering arrival of claims observed in practice, see, e.g. [8, 23, 26, 33]. When a natural
disaster such as an earthquake occurs, the claims typically will not be reported following
a constant intensity as in a homogeneous Poisson process. Instead, we expect clustering
effect in the claim arrivals after a catastrophe. In addition, the arrival rate of claims is
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typically high right after a catastrophe event. So one might use Hawkes processes with
large initial intensities to model such claim arrival processes, and it is of interest to study
the finite horizon ruin probability in a risk model where the claim arrivals are modeled
by such Hawkes processes.

To study the ruin probability, let us consider the surplus process of the insurance
company:

Xn
t = Xn

0 + ρt−
Nnt∑
i=1

Yi.

Here, Nn is the claim arrival process modeled as a Hawkes process with an initial intensity
µ + n, and an exciting function φ(t) = αe−βt; the constant ρ > 0 is the premium rate,
and we assume it is independent of n for simplicity; {Yi} are the non-negative claim sizes
which are independent and identically distributed, and {Yi} is independent of Nn and
n. Note that we use Nn to emphasize the dependence on Z0 = n.

We are interested in approximating the finite horizon ruin probability P(τn ≤ T ) for
fixed T > 0 and large n, where τn is the ruin time of an insurance company and it is
defined as follows:

τn := inf{t > 0 : Xn
t ≤ 0}.

We assume that the initial surplus at time 0 is given by Xn(0) = nx, which is large,
as n → ∞. In the usual setting of the finite horizon ruin probability problem for the
classical risk model, the ruin probability is exponentially small when the initial surplus
is large, see e.g. [3]. In our example, because Nn

t is of the order n, the ruin will occur at
a finite time with probability one.

Notice that Nn satisfies a functional law of large numbers, see [14],

sup
0≤t≤T

∣∣∣∣Nn
t

n
− ψ(t)

∣∣∣∣→ 0, almost surely as n→∞,

where ψ(t) := e(α−β)t−1
α−β for α 6= β, and ψ(t) := t for α = β. Therefore, as n→∞,

τn → τ∞ := inf{t > 0 : x− E[Y1]ψ(t) = 0}, almost surely.

It is easy to compute that (assuming that (α−β) x
E[Y1] + 1 > 0; otherwise τ∞ will be∞.)

τ∞ =


log
(

(α−β) x
E[Y1]

+1
)

α−β for α 6= β,
x

E[Y1] for α = β.

For any T > τ∞, P(τn ≤ T ) → 1 as n → ∞. For any T < τ∞, this probability will go
to zero exponentially fast as n → ∞, and falls into the large deviations regime. In the
following we develop approximations for this probability P(τn ≤ T ).

Let us assume that E[eθY1 ] < ∞ for any θ < θ+ and E[eθY1 ] = ∞ otherwise, where
θ+ > 0 and we allow it to be +∞. We define V++ as the subspace of D[0,∞), consisting of
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14 Gao and Zhu

unbounded nonnegative increasing functions starting at zero at time zero with finite vari-
ation over finite intervals equipped with the vague topology, see [25] . A Mogulskii-type

theorem says that, see e.g. Lemma 3.2. [25], P
({

1
n

∑bntc
i=1 Yi, 0 ≤ t <∞

}
∈ ·
)

satisfies a

large deviation principle on V++ with the good rate function∫ ∞
0

Λ(g′1(t))dt+ θ+g2(∞), if g = g1 + g2 ∈ V++, g1 ∈ AC0[0,∞),

where
Λ(x) := sup

θ∈R

{
θx− logE[eθY1 ]

}
, (3.1)

and g = g1 + g2 denotes the Lebesgue decomposition of g with respect to Lebesgue
measure, where g2 is the singular component and g2(∞) = limt→∞ g2(t). Note that if
θ+ =∞, then g2 ≡ 0. Since {Yi} and Nn are independent, then Theorem 2 implies that

P


 1

n
Nn
t ,

1

n

bnsc∑
i=1

Yi

 , 0 ≤ t ≤ T, 0 ≤ s <∞

 ∈ ·


satisfies a large deviation principle on D[0, T ]×V++4 with the good rate function IN (h)+∫∞
0

Λ(g′1(t))dt+θ+g2(∞), where the rate function IN (h) is given in Theorem 2. It is easy

to see that 1
n

∑Nnt
i=1 Yi = 1

n

∑bn· 1nNnt c
i=1 Yi. Hence, by the continuity of the first-passage-time

map, and the contraction principle, for any fixed 0 < T < τ∞, we have

P(τn ≤ T ) = e−n·infh,g:x−g(h(T ))≤0{IN (h)+
∫∞
0

Λ(g′1(t))dt+θ+g2(∞)}+o(n)

= e
−n·infh,g:x−g(h(T ))≤0

{
IN (h)+

∫ h(T )
0 Λ(g′1(t))dt+θ+g2(h(T ))

}
+o(n)

, (3.2)

as n → ∞. We can replace ∞ by h(T ) in (3.2) since Λ(x) ≥ 0 for any x ≥ 0 and it is
zero for x = E[Y1] and g2 is also non-decreasing so that g2(∞) ≥ g2(h(T )), and thus
the optimal g satisfies g′1(t) = E[Y1] for t > h(T ) so that Λ(g′1(t)) = 0 for t > h(T ) and
g2(∞) = g2(h(T )).

The expression (3.2) is not very informative, so we next simplify it to obtain a more
manageable expression which allows efficient numerical computations. We can first fix
g2(h(T )) and then optimize over g2(h(T )). By the convexity of Λ(·) and using Jensen’s
inequality, we obtain∫ h(T )

0

Λ(g′1(t))dt ≥ h(T )Λ

(
1

h(T )

∫ h(T )

0

g′1(t)dt

)
≥ h(T )Λ

(
x− g2(h(T ))

h(T )

)
,

where the second inequality is due to x − g1(h(T )) − g2(h(T )) ≤ 0 and Λ(x) is non-

decreasing in x for x > E[Y1]. On the other hand, by considering g∗1(t) = x−g2(h(T ))
h(T ) t, we

4Here D[0, T ] is equipped with Skorokhod topology. In Theorem 1 and Theorem 2 we proved first
the large deviation principles hold in the Skorokhod topology.
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have ∫ h(T )

0

Λ((g∗1)′(t))dt = h(T )Λ

(
x− g2(h(T ))

h(T )

)
.

This implies that (3.2) can be reduced to the following:

P(τn ≤ T ) = e−n·infh,z≤x{IN (h)+h(T )Λ( x−zh(T ) )+θ+z}+o(n),

as n→∞. Therefore, we have

P(τn ≤ T ) = e−n·infy>0,z≤x infh:h(T )=y{IN (h)+yΛ( x−zy )+θ+z}+o(n).

To further simplify the above expression, we note from Theorem 2 that P(Nn
T /n ∈ ·)

satisfies a large deviation principle with the rate function

H(x;T ) = inf
h:h(T )=x

IN (h) = sup
θ∈R

{
θx− C

(
T ;

θ

α

)
+
θ

α

}
,

where C solves the nonlinear ODE given in (2.10) and (2.11). Hence, we conclude that

P(τn ≤ T ) = exp(−n · Iτ (x;T ) + o(n)) as n→∞,

where

Iτ (x;T ) := inf
y>0,z≤x

{
H(y;T ) + yΛ

(
x− z
y

)
+ θ+z

}
.

We remark that the function H(y;T ) + yΛ
(
x−z
y

)
+ θ+z is convex in y. This is because

H(y;T ) is convex in y and one can also verify directly from the convexity of Λ that

yΛ
(
x
y

)
in convex in y. It is also clear that H(y;T ) + yΛ

(
x−z
y

)
+ θ+z is convex in z. So

we can numerically obtain Iτ (x;T ) efficiently.
We now present a numerical example when Yi has a Poisson distribution with rate 1.

Then it is easy to see from (3.1) that Λ̄(v) = v log v − v + 1 for v > 0 and Λ̄(v) = +∞
otherwise. Also in this case θ+ =∞. Hence, we obtain

Iτ (x;T ) = inf
y>0

{
H(y;T ) + y ·

(
x

y
− 1− log

(
x

y

))}
. (3.3)

See Figure 3 for a numerical illustration.

3.2. Example 2: Finite–horizon maximum of the queue length
process in an infinite–server queue

In this example, we use our large deviations results to study certain tail probabilities in
an infinite–server queue in heavy traffic where the job arrival process is modeled by a
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(a) Iτ (x;T ) as a function of T . x = 0.5 is fixed.
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(b) Iτ (x;T ) as a function of x. T = 0.2 is fixed.

Figure 3: This figure plots Iτ (x;T ) in (3.3). The parameters are given by: α = β = 1.

Hawkes process with a large initial intensity. Such a queueing system could be relevant
for analyzing the performance of large scale service systems with high–volume traffic
which exhibits clustering. For background on infinite–server queues, their engineering
applications and related large deviation analysis, see, e.g., [15, 30, 5].

Consider a sequence of queueing systems indexed by n with infinite number of servers.
Jobs arrive to the n-th system according to a Markovian Hawkes process Nn with an
initial intensity µ+ n, and an exciting function φ(t) = αe−βt. We use Nn to emphasize
the dependence on Z0 = n. For simplicity, we assume that (a) n is large so the offered
load in the system is high; (b) the system is initially empty; (c) the processing time of
each job is deterministic given by a constant c > 0.

We are interested in the finite–horizon maximum of queue length process in such
an infinite–serve queue, similarly as in [5]. Mathematically, we want to develop large
deviations approximations for the probability of the event

max
0≤s≤T

Qns ≥ nx (3.4)

for fixed T > 0 and sufficiently large x, as n → ∞. Here Qns is number of jobs (or busy
servers) in the n-th system at time s. For sufficiently large x, we note that (3.4) is a rare
event. This event corresponds precisely to the event of observing a loss in a queue with
nx servers, no waiting room, and starting empty.

It is well known that (see, e.g., [16]) for the n-th system with deterministic processing
time c, the queue length process Qn can be represented by

Qnt = Nn
t −Nn

t−c,

where Nn
t = 0 if t ≤ 0 by convention. It is easy to see that the function Φ mapping y to

ỹ where
ỹ(t) := max

s≤t
{y(s)− y(s− c)},
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is continuous under the uniform topology. Since Theorem 2 states that P( 1
nN

n ∈ ·)
satisfies a sample path large deviation principle with the good rate function IN , we can
apply the contraction principle and obtain:

lim
n→∞

1

n
logP

(
max

0≤s≤T
Qns ≥ nx

)
= lim
n→∞

1

n
logP

(
max

0≤s≤T

1

n
[Nn

s −Nn
s−c] ≥ x

)
= − inf

h

{
IN (h;T ) : max

s≤T
[h(s)− h(s− c)] ≥ x

}
, (3.5)

where we use the notation IN (h;T ) to emphasize the dependence of IN on T , as can be
clearly seen in (2.7).

Therefore, to develop large deviations approximations for P (max0≤s≤T Q
n(s) ≥ nx),

it remains to solve the optimization problem in (3.5). For T ≤ c, since h is a nondecreasing
function, then the infimum in (3.5) is simply

inf
h(T )≥x

IN (h;T ) = H(x;T ).

For T > c, the infimum in (3.5) is equivalent to:

min

{
inf

0≤s≤c
inf

h:h(s)≥x
IN (h; s), inf

c≤s≤T
inf

h:h(s)−h(s−c)≥x
IN (h; s)

}
.

Now, let us solve the optimization problem:

inf
h:h(t)−h(t−c)≥x

IN (h; t).

Since

lim
ε→0

lim
n→∞

1

n
logP(Nny

t /n ∈ Bε(x)|Z0 = ny) = −yH(x/y; t),

lim
ε→0

lim
n→∞

1

n
logP(Znt /n ∈ Bε(y)|Z0 = n) = −J(y; t),

and by the Markov property, we get

lim
ε→0

lim
n→∞

1

n
logP

(
[Nn

t −Nn
t−c]/n ∈ Bε(x), Znt−c/n ∈ Bε(y)|Z0 = n

)
(3.6)

= −yH(x/y; c)− J(y; t− c),

and finally for sufficiently large x, by (3.6) and the contraction principle, we obtain

inf
h:h(t)−h(t−c)≥x

IN (h; t) = − lim
ε→0

lim
n→∞

1

n
logP

(
[Nn

t −Nn
t−c]/n ∈ Bε(x)|Z0 = n

)
= inf
y>0
{yH(x/y; c) + J(y; t− c)} .
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Hence we conclude that the infimum in (3.5) is equivalent to the following expression:

G(x;T ) := min

{
inf

0≤s≤c
H(x; s), inf

c≤s≤T
inf
y>0
{yH(x/y; c) + J(y; s− c)}

}
, (3.7)

where H and J are given in Theorem 1 and 2, respectively. This implies the following
approximation for T > c and sufficiently large x:

P
(

max
0≤s≤T

Qns ≥ nx
)

= exp(−n ·G(x;T ) + o(n)), as n→∞.

Since one can solve H and J numerically, we can then also obtain G by solving the
optimization problem in (3.7) numerically. We present an example in Figure 4.
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(a) G(x;T ) as a function of x. T = 5 is fixed.
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(b) G(x;T ) as a function of T . x = 5 is fixed.

Figure 4: This figure plots G(x;T ) in (3.7). We use parameters α = β = 1, c = 1.

4. Proofs of Theorems 1 and 2

This section collects the proofs of Theorems 1 and 2.

4.1. Moment generating functions of Zt and Nt

In this section we discuss the moment generating functions of Zt and Nt for fixed t,
conditioned on knowing the value of Z0. These functions play a critical role in proving
our large deviation results.

First, recall from [14, Section 3.2.1] the moment generating function of Zt:

u(t, z) := E[eθZt |Z0 = z] = eA(t;θ)z+B(t;θ), (4.1)

imsart-bj ver. 2014/10/16 file: Bernoulli_LDP_Gao_Zhu_accept.tex date: April 12, 2017



Gao and Zhu 19

where A(t; θ), B(t; θ) satisfy the ODEs:

A′(t; θ) = −βA(t; θ) + eαA(t;θ) − 1, (4.2)

B′(t; θ) = µ
(
eαA(t;θ) − 1

)
, (4.3)

with initial conditions A(0; θ) = θ and B(0; θ) = 0. As remarked earlier, we have used
A(t; θ) instead of A(t) to emphasize that A takes value θ at time zero, and the derivative
in (4.2) is taken with respect to t. We also write B(t; θ) instead of B(t) to stress that B
depends on the initial condition of A.

Next, we compute the moment generating function of Nt. Recall that Nt = Zt−Z0

α +
β
α

∫ t
0
Zsds. Thus, E[eθNt |Z0 = z] = e−

θ
α zv(t, z), where

v(t, z) := E[e
θ
αZt+

θβ
α

∫ t
0
Zsds|Z0 = z].

Recall that Z is a Markov process with the infinitesimal generator

Af(z) = −βz ∂f
∂z

+ (z + µ)[f(z + α)− f(z)].

By Feynman-Kac formula, v satisfies the equation:

∂v

∂t
= −βz ∂v

∂z
+ (µ+ z)[v(t, z + α)− v(t, z)] +

θβ

α
zv(t, z),

with an initial condition v(0, z) = e
θ
α z. Therefore, by the affine structure, see e.g. [12],

one deduces that v(t, z) = eC(t; θα )z+D(t; θα ), where C(t; θα ), D(t; θα ) satisfy the ODEs:

C ′
(
t;
θ

α

)
= −βC

(
t;
θ

α

)
+ eαC(t; θα ) − 1 + β · C

(
0;
θ

α

)
, (4.4)

D′
(
t;
θ

α

)
= µ

(
eαC(t; θα ) − 1

)
, (4.5)

with initial conditions C(0; θα ) = θ
α and D

(
0; θα

)
= 0. Thus we have

E[eθNt |Z0 = z] = exp

{(
C

(
t;
θ

α

)
− C

(
0;
θ

α

))
· z +D

(
t;
θ

α

)}
. (4.6)

Finally, we remark that there exists some Θ > 0 such that the moment generating
functions in (4.1) and (4.6) are both finite for all θ ≤ Θ. See [36].

4.2. Proofs of Theorems 1 and 2

We prove Theorems 1 and 2 in this section. For notational convenience, unless specified
explicitly, we use Z and N for Zn and Nn when Z0 = n. We also use E[·] to denote the
conditional expectation E[·|Z0 = n], and P(·) for the conditional probability P(·|Z0 = n).

imsart-bj ver. 2014/10/16 file: Bernoulli_LDP_Gao_Zhu_accept.tex date: April 12, 2017



20 Gao and Zhu

Proof of Theorem 1. The proof is long, so we split it into four steps.
Step 1. We first establish a scalar large deviation principle for P

(
1
nZT ∈ ·

)
, using

Gärtner-Ellis theorem.
From (4.1) we have

u(t, z) := E[eθZt |Z0 = z] = eA(t;θ)z+B(t;θ).

It is easy to see that since Zt process is positive, u(t, z) is monotonically increasing in θ.
Let us recall from Section 4.1 that A(t; θ), B(t; θ) satisfy the ODEs:

A′(t; θ) = −βA(t; θ) + eαA(t;θ) − 1,

B′(t; θ) = µ
(
eαA(t;θ) − 1

)
,

with initial conditions A(0; θ) = θ and B(0; θ) = 0.
Let us first consider the critical and super-critical case, that is, α ≥ β. When we have

α ≥ β, for any A > 0, −βA + eαA − 1 > 0 and thus A(t; θ) is increasing in t. It is
clear that for any θ > 0,

∫∞
θ

dA
−βA+eαA−1

<∞. On the other hand, it is easy to see that∫∞
0

dA
−βA+eαA−1

=∞. Therefore, for any fixed T > 0, there exists a unique positive value

θc(T ) such that ∫ ∞
θc(T )

dA

−βA+ eαA − 1
= T. (4.7)

Hence, we conclude that for any fixed T > 0, for any 0 < θ < θc(T ), A(T ; θ) is the unique
positive value greater than θ, that satisfies the equation:∫ A(T ;θ)

θ

dA

−βA+ eαA − 1
= T. (4.8)

Now let us consider the case θ ≤ 0 . When α > β, −βA + eαA − 1 = 0 when A = 0 or
when A = Ac, for some unique negative value Ac. For θ = 0 or θ = Ac, A(t; θ) = 0 for
any t. For Ac < θ < 0, A(t; θ) is decreasing in t and A(T ; θ) satisfies the equation (4.8).
For θ < Ac, A(t; θ) is increasing in t and A(T ; θ) < 0 and satisfies the equation (4.8).
When α = β, −βA+ eαA − 1 > 0 when A 6= 0. Thus, for any θ < 0, A(t; θ) is increasing
in t and A(T ; θ) < 0 and satisfies the equation (4.8) and also A(t; 0) ≡ 0. Also, it is easy
to see that for θ < θc(T ), A(t; θ) is continuous and finite in t, and

B(T ; θ) = µ

∫ T

0

(eαA(t;θ) − 1)dt

is finite. Therefore, for θ < θc(T )

lim
n→∞

1

n
logE[eθZT ] = A(T ; θ).

When θ ≥ θc(T ), this limit is ∞. By differentiating the equation (4.8) with respect to θ,
we get

− 1

−βθ + eαθ − 1
+

1

−βA(T ; θ) + eαA(T ;θ) − 1

d

dθ
A(T ; θ) = 0. (4.9)
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It is clear from the equation (4.7) and (4.8) that as θ → θc(T ), we have A(T ; θ) → ∞.
Therefore, from (4.9), we get

∂

∂θ
A(T ; θ) =

−βA(T ; θ) + eαA(T ;θ) − 1

−βθ + eαθ − 1
→∞, as θ → θc(T ).

Hence, we verified the essential smoothness condition. By Gärtner-Ellis theorem, P
(

1
nZT ∈ ·

)
satisfies a large deviation principle on R+ with the rate function

J(x;T ) = sup
θ∈R
{θx−A(T ; θ)} . (4.10)

Next, let us consider the sub-critical case, that is, α < β. In this case,−βA+eαA−1 = 0
if and only if A = 0 or A = Ac, where Ac is a positive constant and it is unique. For θ = 0
or Ac, A(t; θ) = 0 for any t. For θ < 0, A(t; θ) is increasing in t, and A(T, θ) < 0 satisfies
the equation (4.8). For 0 < θ < Ac, A(t, θ) is decreasing in t and satisfies the equation
(4.8). For θ > Ac, A(t, θ) is increasing in t. For any fixed T > 0, there exists a unique
θc(T ) > Ac satisfying the equation (4.7) so that for any Ac < θ < θc(T ), A(T, θ) is the
unique positive value greater than θ that satisfies the equation (4.8) and for θ ≥ θc(T ),
A(T, θ) =∞. We can proceed similarly as before and prove that, P

(
1
nZT ∈ ·

)
satisfies a

large deviation principle on R+ with the rate function given in (4.10).
Step 2. Next, we need to prove the exponential tightness before we proceed to establish

the sample path large deviation principle. To be more precise, we will show that

lim sup
K→∞

lim sup
n→∞

1

n
logP

(
sup

0≤t≤T
Zt ≥ nK

)
= −∞, (4.11)

and for any δ > 0,

lim sup
ε→0

lim sup
n→∞

1

n
logP

(
sup

|t−s|≤ε,0≤t,s≤T
|Zt − Zs| ≥ δn

)
= −∞. (4.12)

We will also show that for any η > 0,

lim sup
n→∞

1

n
logP

(
sup

0<t≤T
|Zt − Zt−| ≥ ηn

)
= −∞. (4.13)

The superexponential estimates (4.11) and (4.12) will guarantee the exponential tight-
ness on D[0, T ] equipped with the Skorokhod topology, see e.g. Theorem 4.1. in Feng
and Kurtz [13]. Together with Step 3, it will prove the large deviation principle for
P
({

1
nZt, 0 ≤ t ≤ T

}
∈ ·
)

on D[0, T ] equipped with Skorokhod topology. Next, the equa-
tion (4.13), i.e. the so-called C-exponentially tightness, see e.g. Definition 4.12. in [13]
strengthens the large deviation principle for P

({
1
nZt, 0 ≤ t ≤ T

}
∈ ·
)

so that it holds on
D[0, T ] equipped with uniform topology, see e.g. Theorem 4.14. in [13].
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Let us first prove (4.11). Notice first that Zt − Z0 ≤ αNt and Z0 = n. Therefore, for
K > 1,

P
(

sup
0≤t≤T

Zt ≥ nK
)

= P
(

sup
0≤t≤T

(Zt − Z0) ≥ n(K − 1)

)
≤ P

(
sup

0≤t≤T
Nt ≥ n

K − 1

α

)
= P (αNT ≥ n(K − 1))

≤ E[eθNT ]e−θ(K−1)n/α,

where the last inequality follows from Chebychev’s inequality. In conjunction with the
moment generating function of NT in (4.6), we hence obtain

lim sup
n→∞

1

n
logP

(
sup

0≤t≤T
Zt ≥ nK

)
≤ C

(
T ;

θ

α

)
− θ

α
− θ(K − 1)

α
,

which goes to −∞ as K →∞. Hence, we proved (4.11).

Next, let us prove (4.12). Note that for s < t, αN(s, t] = Zt − Zs + β
∫ t
s
Zudu. Thus,

for s < t, we have
|Zt − Zs| ≤ αN(s, t] + β(t− s) sup

s≤u≤t
Zu.

Therefore,

P

(
sup

|t−s|≤ε,0≤t,s≤T
|Zt − Zs| ≥ δn

)

≤ P

(
sup

|t−s|≤ε,0≤s≤t≤T

(
αN(s, t] + β(t− s) sup

s≤u≤t
Zu

)
≥ δn

)

≤ P

(
sup

|t−s|≤ε,0≤s≤t≤T
αN(s, t] ≥ δ

2
n

)
+ P

(
sup

|t−s|≤ε,0≤s≤t≤T
β(t− s) sup

s≤u≤t
Zu ≥

δ

2
n

)
.

Note that

P

(
sup

|t−s|≤ε,0≤s≤t≤T
β(t− s) sup

s≤u≤t
Zu ≥

δ

2
n

)
≤ P

(
βε sup

0≤u≤T
Zu ≥

δ

2
n

)
.

By (4.11), we have

lim sup
ε→0

lim sup
n→∞

1

n
logP

(
βε sup

0≤u≤T
Zu ≥

δ

2
n

)
= −∞.
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Next, notice that without loss of generality we can assume that 1
ε ∈ N and

P

(
sup

|t−s|≤ε,0≤s≤t≤T
αN(s, t] ≥ δ

2
n

)
≤ P

(
∃1 ≤ j ≤ T/ε : αN(tj−1, tj ] ≥

δ

4
n

)

≤
T/ε∑
j=1

P
(
αN(tj−1, tj ] ≥

δ

4
n

)
, (4.14)

where 0 = t0 < t1 < · · · < tT/ε = T , where tj − tj−1 = ε for any j. In addition, note that
for θ > 0,

E
[
eθαN(tj−1,tj ]

]
= E

[
E
[
eθαN(tj−1,tj ]|Ztj−1

]]
(4.15)

= E
[
e−θZtj−1 eC(tj−tj−1;θ)Ztj−1

+D(tj−tj−1;θ)
]

= exp
(
D(ε; θ) +A(tj−1;C(ε; θ)− θ)n+B(tj−1;C(ε; θ)− θ)

)
,

where we have used the moment generating functions of Zt and Nt in Section 4.1. Hence,
using Chebychev’s inequality and combining (4.14) and (4.15), we find for fixed ε > 0,

lim sup
n→∞

1

n
logP

(
sup

|t−s|≤ε,0≤s≤t≤T
αN(s, t] ≥ δ

2
n

)

≤ sup
1≤j≤T/ε

{
A(tj−1;C(ε; θ)− θ)− θ δ

4

}
≤ sup

0≤t≤T
{A(t;C(ε; θ)− θ)} − θ δ

4
.

So in order to prove (4.12), what remains is to choose θ that depends on ε so that (i)
θ →∞ as ε→ 0; (ii) A(t;C(ε; θ)− θ) is uniformly bounded for t ∈ [0, T ] and ε→ 0. To
this end, let us define y(t) := C(t; θ)− C(0; θ) = C(t; θ)− θ. Then y satisfies the ODE:

y′(t) = −βy(t) + eαθeαy(t) − 1,

y(0) = 0.

For θ > 0, we have y′(0) = eαθ − 1 > 0, which implies y is increasing on [0, γ] for some
γ > 0. This suggests that

0 < y′(t) ≤ eαθeαy(t), for t ∈ [0, γ].

By Gronwall’s inequality for nonlinear ODEs, we obtain

0 ≤ y(t) ≤ − 1

α
· log(1− αeαθt), for t ∈ [0, γ]. (4.16)
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Let us set αeαθ = 1√
ε
. Then it is clear that θ →∞ as ε→ 0. In addition, we deduce from

(4.16) that for ε < γ,

0 ≤ C(ε; θ)− θ = y(ε) ≤ − 1

α
· log(1−

√
ε). (4.17)

Next we show {A(t;C(ε; θ)− θ)} is uniformly bounded for t ∈ [0, T ] and ε → 0.
When α < β, it is clear that zero is a stable solution for the ODE of A in (4.2). Since
A(0;C(ε; θ) − θ)) = y(ε) → 0 as ε → 0, so the stability of zero solution implies that
when ε → 0, {A(t;C(ε; θ)− θ)} is uniformly small and thus uniformly bounded for all
t ≥ 0. When α ≥ β, since A(0;C(ε; θ) − θ)) = y(ε) ≥ 0, one readily checks that A is
non–decreasing with respect to time t. Hence we obtain

sup
0≤t≤T

{A(t;C(ε; θ)− θ)} = A(T ; y(ε)).

We have shown in Step 1 that A(T ; θ̄) is finite when θ̄ < θc(T ), and A(T ; θ̄) is continuous
as a function of θ̄. Therefore we deduce from (4.17) that A(T ; y(ε)) is uniformly bounded
for ε→ 0. Thus, we have proved (4.12).

Finally, the claim in (4.13) trivially holds since for any 0 < t ≤ T , |Zt− − Zt| = 0 or
α with probability 1.

Step 3. Next, we establish the sample path large deviation principle.
For any ε > 0, let Bε(x) denote the open ball centered at x with radius ε. For any

0 =: t0 < t1 < t2 < · · · < tk−1 < tk := T and x1, . . . , xk ∈ R+, by the Markov property
of the process Z, we have

P
(

1

n
Zt1 ∈ Bε(x1),

1

n
Zt2 ∈ Bε(x2), . . . ,

1

n
Ztk ∈ Bε(xk)

)
= P

(
1

n
Zt1 ∈ Bε(x1)

)
P
(

1

n
Zt2 ∈ Bε(x2)

∣∣∣∣ 1nZt1 ∈ Bε(x1)

)
· · ·P

(
1

n
Ztk ∈ Bε(xk)

∣∣∣∣ 1nZtk−1
∈ Bε(xk−1)

)
.

Hence, we have

lim
ε→0

lim
n→∞

1

n
logP

(
1

n
Zt1 ∈ Bε(x1),

1

n
Zt2 ∈ Bε(x2), . . . ,

1

n
Ztk ∈ Bε(xk)

)
= −J(x1; t1)− x1J

(
x2

x1
; t2 − t1

)
− · · · − xk−1J

(
xk
xk−1

; tk − tk−1

)
,

where J is given in (4.10). Hence, for any g ∈ AC1[0, T ],

lim
ε→0

lim
n→∞

1

n
logP

(
1

n
Zt1 ∈ Bε(g(t1)),

1

n
Zt2 ∈ Bε(g(t2)), . . . ,

1

n
Ztk ∈ Bε(g(tk))

)
= −J(g(t1); t1)− g(t1)J

(
g(t2)

g(t1)
; t2 − t1

)
− · · · − g(tk−1)J

(
g(tk)

g(tk−1)
; tk − tk−1

)
.
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For any given positive g ∈ AC1[0, T ], we have

J

(
g(tj)

g(tj−1)
; tj − tj−1

)
= sup

θ∈R

{
θ
g(tj)

g(tj−1)
−A(tj − tj−1; θ)

}
= sup

θ∈R

{
θ

(
1 +

g′(t∗j−1)

g(tj−1)
(tj − tj−1)

)
− θ −

∫ tj−tj−1

0

(−βA(s; θ) + eαA(s;θ) − 1)ds

}
= (tj − tj−1) sup

θ∈R

{
θ
g′(t∗j−1)

g(tj−1)
−
(
−βA(t∗∗j−1; θ) + eαA(t∗∗j−1;θ) − 1

)}
,

where t∗j−1 ∈ [tj−1, tj ] is independent of θ and t∗∗j−1 ∈ [0, tj − tj−1] may depend on θ.

It is easy to see that for any given positive g ∈ AC1[0, T ],
g′(t∗j )

g(tj−1) , is uniformly bounded

in j. To see this, notice that g is positive and continuous so inf0≤t≤T g(t) > 0, and since
g is absolutely continuous, g′ exists almost surely and we can assume that g′ exist for
any t∗j . And we can also see that A(t∗∗j−1; θ) is uniformly bounded in j. Therefore, there
exists some constant K that may depend on the given g, such that, uniformly in j,

sup
θ∈R

{
θ
g′(t∗j−1)

g(tj−1)
−
(
−βA(t∗∗j−1; θ) + eαA(t∗∗j−1;θ) − 1

)}
= sup
|θ|≤K

{
θ
g′(t∗j−1)

g(tj−1)
−
(
−βA(t∗∗j−1; θ) + eαA(t∗∗j−1;θ) − 1

)}
.

Therefore,∣∣∣∣ sup
θ∈R

{
θ
g′(t∗j−1)

g(tj−1)
−
(
−βA(t∗∗j−1; θ) + eαA(t∗∗j−1;θ) − 1

)}
− sup
θ∈R

{
θ
g′(t∗j−1)

g(tj−1)
−
(
−βθ + eαθ − 1

)} ∣∣∣∣
≤ sup
|θ|≤K

sup
0≤t≤tj−tj−1

∣∣∣(−βA(t; θ) + eαA(t;θ) − 1
)
−
(
−βθ + eαθ − 1

)∣∣∣→ 0,

as tj − tj−1 → 0. Hence, we conclude that

lim
ε→0

lim
n→∞

1

n
logP

(
1

n
Zt ∈ Bε(g), 0 ≤ t ≤ T

)
= −

∫ T

0

g(t) sup
θ∈R

{
θ
g′(t)

g(t)
− (−βθ + eαθ − 1)

}
dt

= − sup
θ(t):0≤t≤T

∫ T

0

{
θ(t)g′(t)− (−βθ(t) + eαθ(t) − 1)g(t)

}
dt.
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Together with the superexponential estimates (4.11) and (4.12), we have proved that,
P
({

1
nZt, 0 ≤ t ≤ T

}
∈ ·
)

satisfies a large deviation principle with the rate function

IZ(g) = sup
θ(t):0≤t≤T

∫ T

0

{
θ(t)g′(t)− (−βθ(t) + eαθ(t) − 1)g(t)

}
dt,

if g ∈ AC1[0, T ]. Note that the maximization problem

sup
x
{xg′ − (−βx+ eαx − 1)g}

has its maximum achieved at x = 1
α log

(
β+ g′

g

α

)
, provided that g′ ≥ −βg. Otherwise,

the maximum is +∞. Therefore, we conclude that

IZ(g) =

∫ T

0

βg(t) + g′(t)

α
log

(
βg(t) + g′(t)

αg(t)

)
−
(
βg(t) + g′(t)

α
− g(t)

)
dt,

for any g ∈ AC1[0, T ] and g′ ≥ −βg and IZ(g) = +∞ otherwise.
Step 4. Finally let us show that the rate function IZ(g) is good. That is, we need to

show that for any fixed m > 0, the level set

Km := {g ∈ AC1[0, T ] : IZ(g) ≤ m} (4.18)

is compact.
Since Zt ≥ Z0e

−βt, we have g(t) ≥ g(0)e−βt = e−βt for any t. Therefore, for any
g ∈ Km,

e−βT
∫ T

0

Λ∗
(
βg(t) + g′(t)

αg(t)

)
dt ≤ m, (4.19)

where Λ∗(x) := x log x−x+1 is strictly convex and non-negative. Thus, for any g ∈ Km,∫ T

0

Λ∗
(
β

α
+

1

α

g′(t)

g(t)

)
dt ≤ meβT . (4.20)

Let us define f(t) = β
α t + 1

α log g(t). Then f(0) = 0 and f ′(t) = β
α + 1

α
g′(t)
g(t) . From the

proof that the rate function for Mogulskii’s theorem is good, see e.g. Page 183 in Dembo
and Zeitouni [10], it follows that the set{

f ∈ AC0[0, T ] :

∫ T

0

Λ∗ (f ′(t)) dt ≤ meαT
}

(4.21)

is a bounded set of equicontinuous functions. Since g(t) = eαf(t)−βt, it follows that the
set Km is a bounded set of equicontinuous functions. By Arzelà-Ascoli theorem, the set
Km is compact. Hence, IZ(g) is a good rate function. The proof is complete.
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Proof of Theorem 2. We apply Theorem 1 and the contraction principle. One then
readily obtains from (2.6) that P

({
1
nNt, 0 ≤ t ≤ T

}
∈ ·
)

satisfies a large deviation prin-
ciple with the good rate function

IN (h) = inf
h(t)=

g(t)−1
α + β

α

∫ t
0
g(s)ds,0≤t≤T

IZ(g). (4.22)

Observe that differentiating the integral equation h(t) = g(t)−1
α + β

α

∫ t
0
g(s)ds, we get

h′(t) =
1

α
g′(t) +

β

α
g(t),

which is a first-order linear ODE for g(t) with initial condition g(0) = 1. Thus, we can
solve this ODE and get

g(t) = e−βt + e−βt
∫ t

0

αeβsh′(s)ds.

Hence, we infer from (4.22) and the expression of IZ(g) in (2.1) that

IN (h) =

∫ T

0

h′(t) log
h′(t)

g(t)
− (h′(t)− g(t))dt

=

∫ T

0

h′(t) log

(
h′(t)

e−βt + e−βt
∫ t

0
αeβsh′(s)ds

)

−
(
h′(t)− e−βt − e−βt

∫ t

0

αeβsh′(s)ds

)
dt.

Using this sample path large deviations result and applying the contraction principle, we
can also obtain that, P(NT /n ∈ ·) satisfies a scalar large deviation principle on R+ with
the good rate function

H(x;T ) = inf
h:h(T )=x

IN (h). (4.23)

Next, we prove that the rate function H in (4.23) can be equivalently given by (2.9).
Recall the moment generating function of Nt in (4.6),

E[eθNt |Z0 = n] = exp

{(
C

(
t;
θ

α

)
− θ

α

)
n+D

(
t;
θ

α

)}
,

where

C ′
(
t;
θ

α

)
= −βC

(
t;
θ

α

)
+ eαC(t; θα ) − 1 +

βθ

α
, C

(
0;
θ

α

)
=
θ

α
.

Let us first consider the critical and super-critical case, that is, α ≥ β. When we have
α ≥ β, for any C > 0 and θ > 0, −βC + eαC − 1 + βθ

α > 0 and thus C(t; θα ) is increasing
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in t. It is clear that for any θ > 0,
∫∞
θ
α

dC
−βC+eαC−1+ βθ

α

<∞. On the other hand, it is easy

to see that
∫∞

0
dC

−βC+eαC−1
= ∞. Therefore, for any fixed T > 0, there exists a unique

positive value θd(T ) such that∫ ∞
θd(T )

α

dC

−βC + eαC − 1 + βθd(T )
α

= T. (4.24)

Hence, we conclude that for any fixed T > 0, for any 0 < θ < θd(T ), C(T ; θα ) is the

unique positive value greater than θ
α , that satisfies the equation:∫ C(T ; θα )

θ
α

dC

−βC + eαC − 1 + βθ
α

= T. (4.25)

The case for θ ≤ 0 is similar. Also, it is easy to see that for θ < θd(T ), C(t; θα ) is
continuous and finite in t, and

D

(
T ;

θ

α

)
= µ

∫ T

0

(eαC(t; θα ) − 1)dt

is finite. Therefore, for θ < θd(T ),

lim
n→∞

1

n
logE[eθNT ] = C

(
T ;

θ

α

)
− θ

α
.

When θ ≥ θd(T ), this limit is ∞. By differentiating the equation (4.25) with respect to
θ, we get

− 1

eθ − 1
− β

α

∫ C(T ; θα )

θ
α

dC

(−βC + eαC − 1 + βθ
α )2

(4.26)

+
1

−βC(T ; θα ) + eαC(T ; θα ) − 1 + βθ
α

d

dθ
C

(
T ;

θ

α

)
= 0.

It is clear from the equation (4.24) and (4.25) that as θ → θd(T ), we have C(T ; θα )→∞.
Therefore, from (4.26), we get

∂

∂θ
C

(
T ;

θ

α

)
=

(
−βC

(
T ;

θ

α

)
+ eαC(T ; θα ) − 1 +

βθ

α

)
·

(
1

eθ − 1
+
β

α

∫ C(T ; θα )

θ
α

dC

(−βC + eαC − 1 + βθ
α )2

)
→∞,

as θ → θd(T ). Hence, we verified the essential smoothness condition. By Gärtner-Ellis
theorem, we get the desired result. The proof for the sub–critical case is similar and is
omitted here.
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Appendix A: Additional proofs

We prove results in Sections 2.2.1 and 2.3 in this appendix. For notational convenience,
unless specified explicitly, we use Z and N for Zn and Nn when Z0 = n. We also use E[·]
to denote the conditional expectation E[·|Z0 = n], and P(·) for the conditional probability
P(·|Z0 = n).

A.1. Proofs of Propositions 3 and 4

Proof of Proposition 3. Let

L(g, g′) :=
βg + g′

α
log

(
βg + g′

αg

)
−
(
βg + g′

α
− g
)
.

Then the variational problem (2.2) becomes

inf
g(0)=1,g(T )=x

∫ T

0

L(g(t), g′(t))dt.

Applying the Euler-Lagrange equation ∂L
∂g −

d
dt
∂L
∂g′ = 0, we deduce that the optimal

sample path g∗ satisfies the following equation:

β

α
log

(
βg + g′

αg

)
− βg + g′

αg
+ 1− d

dt

[
1

α
log

(
βg + g′

αg

)]
= 0. (A.1)

Define

q(t) =
1

α
log

(
βg∗(t) + g′∗(t)

αg∗(t)

)
. (A.2)

Then the Equation (A.1) reduces to

d

dt
q(t) = βq(t)− (eαq(t) − 1). (A.3)

Set q(T ) = θ, then we obtain from (A.3), (2.4) and the uniqueness of ODE solutions that

q(t) = A(T − t; θ), for t ∈ [0, T ].

Note from (A.2) and g∗(0) = 1, we have

g∗(t) = exp

(∫ t

0

αeαq(s)ds− βt
)
.

So what is remaining is to find the parameter θ such that g∗(T ) = x. We claim that the
correct parameter θ is simply θ∗, the maximizer to the optimization problem (2.3). To
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see this, we define γ(t) := ∂
∂θA(t; θ). That is, γ is the derivative of A with respect to the

initial condition. Then it follows from (2.4) and [19, Chapter V] that

d

dt
γ(t) = (−β + αeαA(t;θ)) · γ(t),

γ(0) = 1,

which immediately yields

γ(T ) = exp

(∫ T

0

(−β + αeαA(t;θ))dt

)
= g∗(T ) = x.

Now from (2.3), it is clear that the optimal θ∗ satisfies

x =
∂

∂θ
A(T ; θ)|θ=θ∗ .

Therefore, when θ = θ∗, we have g∗(T ) = x, and the path g∗ solves the Euler-Lagrange
equation (A.1), which is a necessary condition for optimality.

It remains to check g∗ given by (2.12) is indeed the optimal sample path for the
variational problem (2.2). It suffices to note that

IZ(g∗) =

∫ T

0

L(g∗(t), g
′
∗(t))dt

=

∫ T

0

{
q(t)g′∗(t)− (−βq(t) + eαq(t) − 1)g∗(t)

}
dt

=

∫ T

0

{q(t)g′∗(t) + q′(t)g∗(t)} dt

= q(T )x− q(0)

= θ∗ · x−A(T ; θ∗).

= sup
θ∈R
{θx−A(T ; θ)} ,

where we have used the fact that q(t) = A(T −t; θ∗), for t ∈ [0, T ]. Therefore, g∗ is indeed
the optimal sample path. The proof is complete.

Proof of Proposition 4. Let us recall that

H(x;T ) = inf
h(0)=0,h(T )=x

IN (h),

where IN is given in (2.7). By considering f(t) =
∫ t

0
αeβsh′(s)ds, we get

H(x;T )

= inf
f(0)=0,

∫ T
0

f′(t)
αeβt

dt=x

∫ T
0

1
αe
−βt

[
f ′(t) log

(
f ′(t)

α+αf(t)

)
− f ′(t) + α+ αf(t)

]
dt.
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This is a constrained optimization problem, so we introduce the Lagrange multiplier λ
and define

L(t, f, f ′) =
1

α
e−βt

[
f ′(t) log

(
f ′(t)

α+ αf(t)

)
− f ′(t) + α+ αf(t)

]
− λf

′(t)

αeβt
.

We consider the modified problem

inf
f(0)=0,

∫ T
0

f′(t)
αeβt

dt=x

∫ T

0

L(t, f(t), f ′(t))dt. (A.4)

The Euler-Lagrange equation ∂L
∂f −

d
dt
∂L
∂f ′ = 0 yields that the optimal f∗ for (A.4) satisfies

1

α
e−βt

[
−f ′∗(t)

1 + f∗(t)
+ α

]
− d

dt

1

α
e−βt

[
log

(
f ′∗(t)

α+ αf∗(t)

)
− λ
]

= 0. (A.5)

In addition, f∗ satisfies the following transversality condition:

0 =
∂L

∂f ′

∣∣∣∣
t=T

=
1

α
e−βT

[
log

(
f ′∗(T )

α+ αf∗(T )

)
− λ
]
. (A.6)

Let us define

p(t) =
1

α
log

(
f ′∗(t)

α+ αf∗(t)

)
. (A.7)

Then, the Equations (A.5) and (A.6) become

dp(t)

dt
= βp(t)− eαp(t) + 1− βλ

α
,

p(T ) =
λ

α
.

Hence, p solves a first order ODE with terminal constraint. Comparing with (2.10) and
(2.11), we infer from the uniqueness of solutions of such ODEs that

p(t) = C

(
T − t; λ

α

)
.

Note that we can deduce from (A.7) that

f∗(t) = eα
∫ t
0
eαp(s)ds − 1.

Recall that f ′∗(t) = αeβth′∗(t) and h∗(0) = 0. Thus, we get

h∗(t) =

∫ t

0

f ′∗(s)

αeβs
ds =

∫ t

0

eαp(s) · eα
∫ s
0
eαp(u)du−βsds, (A.8)

which depends on λ.
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Next, we claim that, to satisfy the constraint h∗(T ) = x, the correct Lagrange mul-

tiplier λ is simply θ̂∗, the maximizer to the optimization problem (2.9). To see this, we
set

wθ(t) = C

(
t;
θ

α

)
− θ

α
, and r(t) =

∂

∂θ
wθ(t).

One readily checks from (2.10) and (2.11) that r solves the ODE

d

dt
r(t) =

(
−β + α · eαC(t; θα )

)
r(t) + exp

(
αC

(
t;
θ

α

))
,

r(0) = 0,

which implies

r(T ) =

∫ T

0

eαC(t; θα ) · exp

(∫ T

t

(
αeαC(s; θα ) − β

)
ds

)
dt.

Since θ̂∗ is the maximizer to the optimization problem (2.9), we deduce that

x = r(T )|θ=θ̂∗ =

∫ T

0

eαC(T−u; θ̂∗α ) · exp

(∫ u

0

(
αeαC(T−v; θ̂∗α ) − β

)
dv

)
du, (A.9)

where we have applied the change of variable formula. Then it is clear from (A.8) and

(A.9) that when p(t) = C(T − t; θ̂∗α ), we have h∗(T ) = x.
Finally, we verify that h∗ given by (2.13) is indeed optimal for the variational problem

(2.8). It suffices to note that

IN (h∗) = θ̂∗ · x+

∫ T

0

e−βt

α

[
f ′∗(t) log

(
f ′∗(t)

α+ αf∗(t)

)
− f ′∗(t) + α+ αf∗(t)− θ̂∗f ′∗(t)

]
dt

= θ̂∗ · x+

∫ T

0

e−βt

α
f ′∗(t)

[
log

(
f ′∗(t)

α+ αf∗(t)

)
− θ̂∗

]
dt

+

∫ T

0

e−βt

α

[
−f ′∗(t)

1 + f∗(t)
+ α

]
(1 + f∗(t))dt

= θ̂∗ · x+

∫ T

0

d

dt
(1 + f∗(t))

e−βt

α

[
log

(
f ′∗(t)

α+ αf∗(t)

)
− θ̂∗

]
dt

+

∫ T

0

d

dt

(
e−βt

α

[
log

(
f ′∗(t)

α+ αf∗(t)

)
− θ̂∗

])
(1 + f∗(t))dt

= θ̂∗ · x+ (1 + f∗(T ))
e−βT

α

[
log

(
f ′∗(T )

α+ αf∗(T )

)
− θ̂∗

]
− (1 + f∗(0))

1

α

[
log

(
f ′∗(0)

α+ αf∗(0)

)
− θ̂∗

]
,
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where the first equality is due to f ′∗(t) = αeβth′∗(t), h∗(0) = 0 and h∗(T ) = x, the third
equality is due to (A.5), and other equalities follow from direct computation. Now by

(A.6), (A.7) and f∗(0) = 0, and the fact that p(t) = C(T − t; θ̂∗α ) for any 0 ≤ t ≤ T , we
obtain

IN (h∗) = θ̂∗ · x− p(0) +
θ̂∗
α

= θ̂∗ · x− C

(
T ;
θ̂∗
α

)
+
θ̂∗
α

= sup
θ∈R

{
θx− C

(
T ;

θ

α

)
+
θ

α

}
,

Therefore, h∗ is indeed the optimal sample path. The proof is complete.

A.2. Proofs of results in Section 2.3.1

Proof of Theorem 5. We want to apply Gärtner-Ellis theorem to obtain the large de-
viations principle. Since the moment generating functions of Zt and Nt involves nonlinear
ODEs, the key idea in the proof is to use Gronwall’s inequality for nonlinear ODEs to
obtain estimates for the ODE solutions. Below we prove part (i) and (ii) separately.

(i) We first prove part (i). Suppose that we can show

lim
n→∞

tn
n

logE
[
e
θ
tn
ZtnT

]
=

{
θ

1− 1
2α

2θT
for any θ < 2

α2T ,

∞ otherwise.
(A.10)

It is easy to check that θ
1− 1

2α
2θT

is differentiable in θ for any θ < 2
α2T , and ∂

∂θ

[
θ

1− 1
2α

2θT

]
=

1
(1− 1

2α
2θT )2

→ ∞ as θ → 2
α2T . Thus, we verified the essential smoothness condition. By

Gärtner-Ellis Theorem, P(
ZtnT
n ∈ ·) satisfies a large deviation principle with the speed

n
tn

and the good rate function

ÎZ(x) = sup
θ< 2

α2T

{
θx− θ

1− 1
2α

2θT

}
=

2(
√
x− 1)2

α2T
,

if x ≥ 0 and +∞ otherwise.
Therefore, it suffices to prove (A.10). We focus on the case θ 6= 0 since the proof is

trivial for the case θ = 0.
From the moment generating function of Zt in (4.1), one readily obtains

tn
n

logE
[
e
θ
tn
ZtnT

]
= tn ·A

(
tnT ;

θ

tn

)
+
tn
n
·B
(
tnT ;

θ

tn

)
,
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where A are B are solutions to the ODEs in (4.2) and (4.3). Here the initial conditions

are given by A
(

0; θ
tn

)
= θ

tn
and B

(
0; θ

tn

)
= 0. So in order to show (A.10), it suffices to

show

lim
n→∞

tn ·A
(
tnT ;

θ

tn

)
=

{
θ

1− 1
2α

2θT
, for θ < 2

α2T ,

+∞, for θ ≥ 2
α2T ,

(A.11)

and limn→∞
tn
n ·B

(
tnT ; θ

tn

)
= 0, for θ < 2

α2T ,

lim infn→∞
tn
n ·B

(
tnT ; θ

tn

)
≥ 0, for θ ≥ 2

α2T .
(A.12)

We first prove (A.11). The idea is to use Gronwall’s inequality for nonlinear ODEs
to obtain estimates for A. Write g(x) = eαx − αx − 1. Then the ODE in (4.2) becomes
A′(t) = g(A(t)) in the critical case α = β. Given small ε, η > 0, there exists some δ > 0

such that (α
2

2 − ε)x
2 ≤ g(x) ≤ (α

2

2 + ε)x2 and |g(x)| ≤ η|x| when |x| ≤ δ. If we write

cn = sup

{
t ≥ 0 :

∣∣∣∣A(s; θtn
)∣∣∣∣ ≤ δ, for all s ≤ t

}
,

then we obtain for n large,(
α2

2
− ε
)
A2

(
t;
θ

tn

)
≤ A′

(
t;
θ

tn

)
≤
(
α2

2
+ ε

)
A2

(
t;
θ

tn

)
, for all t ∈ [0, cn].(A.13)

Note that the solution to the ODE

y′(t) =

(
α2

2
+ ε

)
y2(t),

y(0) = y0,

is given by

y(t) =

(
1

y0
−
(
α2

2
+ ε

)
t

)−1

, (A.14)

which is clearly an non-decreasing function when y is properly defined. We next discuss
three cases to prove (A.11).

Case 1: θ < 0.
When α = β, it is clear from (4.2) that A is non-decreasing in t. So for n large such

that 0 > A
(

0; θ
tn

)
= θ

tn
> −δ, one readily checks that 0 > A(t; θ

tn
) > −δ for all t ≥ 0.

That is, cn = +∞. Hence, we deduce from (A.13)–(A.14) and Gronwall’s inequality for
nonlinear ODEs that(

tn
θ
−
(
α2

2
− ε
)
t

)−1

≤ A
(
t;
θ

tn

)
≤
(
tn
θ
−
(
α2

2
+ ε

)
t

)−1

, for all t ≥ 0.
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This implies(
1

θ
−
(
α2

2
− ε
)
T

)−1

≤ lim inf
n→∞

tn ·A
(
tnT ;

θ

tn

)
≤ lim sup

n→∞
tn ·A

(
tnT ;

θ

tn

)
≤
(

1

θ
−
(
α2

2
+ ε

)
T

)−1

. (A.15)

Letting ε→ 0, we obtain that for any θ < 0,

lim
n→∞

tnA

(
tnT ;

θ

tn

)
=

(
1

θ
− α2

2
T

)−1

=
θ

1− 1
2α

2θT
. (A.16)

Case 2: 0 < θ < 2
α2T .

In this case, we have θT (α
2

2 + ε) < 1 for ε small enough. This implies that given

y(0) = A(0; θ
tn

) = θ
tn

, the ODE solution y in (A.14) is properly defined for t = tnT , and
its value is given by

y(tnT ) =

(
tn
θ
−
(
α2

2
+ ε

)
tnT

)−1

=
1

tn
· θ

1− θT (α
2

2 + ε)
.

Hence from the non-decreasing property of y, we have 0 < y(t) < δ for all t ∈ [0, tnT ]
when tn is large. This implies tnT ≤ cn. Following the proof of Case 1, we can deduce
from (A.13)–(A.14) and Gronwall’s inequality for nonlinear ODEs that (A.16) holds for
0 < θ < 2

α2T as well.
Case 3: θ ≥ 2

α2T .
When θ ≥ 2

α2T , we prove (A.11) by contradiction. Suppose

lim inf
n→∞

tn ·A
(
tnT ;

θ

tn

)
= M < +∞.

Then there is a subsequence {nk} such that

tnk ·A
(
tnkT ;

θ

tnk

)
≤ 2M, for nk large. (A.17)

This implies when nk is large, we have 0 < A
(
tnkT ; θ

tnk

)
≤ δ, which further implies

cnk ≥ tnkT. Similar as before, we can use (A.13) and apply Gronwall’s inequality for
nonlinear ODEs and obtain that

A

(
tnkT ;

θ

tnk

)
≥ 1

tnk
· θ

1− θT (α
2

2 − ε)
≥ 1

tnk
· 1

εT
,

where the last inequality is due to the fact that θ ≥ 2
α2T . However, this is a contradiction

with (A.17) since we can choose ε arbitrarily small. Hence, for θ ≥ 2
α2T , we have

lim
n→∞

tnA

(
tnT ;

θ

tn

)
= +∞.
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Therefore, we have proved (A.11).
We next prove (A.12). When θ < 2

α2T , we have shown that tnT ≤ cn for n large and

thus |A(t; θ
tn

)| ≤ δ for all t ∈ [0, tnT ]. together with the fact that |eαx − 1 − αx| ≤ η|x|
when |x| ≤ δ, we deduce from (4.3) that for θ < 2

α2T ,∣∣∣∣B(tnT ;
θ

tn

)∣∣∣∣ = µ

∣∣∣∣∣
∫ tnT

0

(
eαA(s; θtn ) − 1

)
ds

∣∣∣∣∣
≤ µ(α+ η)

∫ tnT

0

∣∣∣∣A(s; θtn
)∣∣∣∣ ds.

In conjunction with the inequality (A.15), it is readily verified that for θ < 2
α2T ,

lim
n→∞

(tn/n) ·B
(
tnT ;

θ

tn

)
= 0.

For θ ≥ 2
α2T , it is clear that A is always positive for all t. Thus we infer from (4.3) that

B is nonnegative and

lim inf
n→∞

(tn/n) ·B
(
tnT ;

θ

tn

)
≥ 0.

Therefore, we have proved (A.12) and thus (A.10) holds. The proof of part (i) is complete.
(ii) We next prove part (ii). Recall the moment generating function of Nt in (4.6).

Since Z0 = n, we infer that

tn
n

logE
[
e
θ
t2n
NtnT

]
=
tn
n

(
− θ

αt2n
n+ C

(
tnT ;

θ

αt2n

)
n+D

(
tnT ;

θ

αt2n

))
, (A.18)

where C,D solve the ODEs in (4.4) and (4.5) with initial condition C(0; θ
αt2n

) = θ
αt2n

and

D(0; θ
αt2n

) = 0.

To study its limiting behavior as n→∞, we first prove

lim
n→∞

tn · C
(
tnT ;

θ

αt2n

)
=


√
−θ
α√
2

tanh
(
−α√

2

√
−θT

)
if θ ≤ 0

√
θ
α√
2

tan
(
α√
2

√
θT
)

if θ > 0
. (A.19)

We focus on θ 6= 0 since the case θ = 0 is trivial to prove. Similar as in the proof of part
(i), we obtain for n large, and for all t ∈ [0, dn](

α2

2
− ε
)
C2

(
t;

θ

αt2n

)
+ αC

(
0;

θ

αt2n

)
≤ C ′

(
t;

θ

αt2n

)
(A.20)

≤
(
α2

2
+ ε

)
C2

(
t;

θ

αt2n

)
+ αC

(
0;

θ

αt2n

)
,
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where

dn = sup

{
t ≥ 0 :

∣∣∣∣C (s; θ

αt2n

)∣∣∣∣ ≤ δ, for all s ≤ t
}
.

We again want to use Gronwall’s inequality for nonlinear ODEs to obtain estimates for
C. To this end, we first study the solution zk to the Riccati equation

z′(t) = kz2(t) + αz0, (A.21)

z(0) = z0 =
θ

αt2n
, (A.22)

where we are interested in k = α2

2 + ε and k = α2

2 − ε. We discuss the cases θ > 0 and
θ < 0 separately.

When θ > 0, the solution to the Riccati equation (A.21) and (A.22) is given by

zk(t) =
1

k
·

√
kθ
tn

sin
(√

kθ
tn
t
)

+ kθ
αt2n

cos
(√

kθ
tn
t
)

cos
(√

kθ
tn
t
)
−
√
kθ
tn

sin
(√

kθ
tn
t
) .

It follows from (A.20) and Gronwall’s inequality for nonlinear ODEs that

zα2

2 −ε
(t) ≤ C

(
t;

θ

αt2n

)
≤ zα2

2 +ε
(t), for t ∈ [0, dn]. (A.23)

For k = α2

2 + ε or k = α2

2 − ε, it is clear that |zk(tnT )| = O(t−1
n ) as tn →∞, from which

one can verify that tnT ≤ dn. Together with (A.23), we obtain

lim sup
n→∞

tn · C
(
tnT ;

θ

αt2n

)
≤ lim
n→∞

tn · zα2

2 +ε
(tnT ) =

√
θ√

α2

2 + ε
tan

(√(
α2

2
+ ε

)
θT

)
.

Setting ε→ 0, we find

lim sup
n→∞

tn · C
(
tnT ;

θ

αt2n

)
≤
√
θ
α√
2

tan

(
α√
2

√
θT

)
.

A similar argument leads to

lim inf
n→∞

tn · C
(
tnT ;

θ

αt2n

)
≥
√
θ
α√
2

tan

(
α√
2

√
θT

)
.

So we have proved (A.19) when θ > 0.
When θ < 0, we can similarly solve the Riccati equation (A.21) and (A.22) and obtain

zk(t) = −1

k
·
√
k|θ|
tn

·
exp

(√
k|θ|
tn

)
− r · exp

(
−
√
k|θ|
tn

)
exp

(√
k|θ|
tn

)
+ r · exp

(
−
√
k|θ|
tn

) ,
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where r :=
1−
√
k|θ|
αtn

1+
√
k|θ|
αtn

. Thus we infer from (A.23) that for k = α2

2 + ε,

lim sup
n→∞

tn · C
(
tnT ;

θ

αt2n

)
≤ lim
n→∞

tn · zk(tnT ) = −
√
|θ|√
k

tanh
(√

k|θ|T
)
.

Setting ε→ 0, we find for θ < 0,

lim sup
n→∞

tn · C
(
tnT ;

θ

αt2n

)
≤ −

√
|θ|
α√
2

tanh

(
α√
2

√
|θ|T

)
.

A similar argument leads to

lim inf
n→∞

tn · C
(
tnT ;

θ

αt2n

)
≥ −

√
|θ|
α√
2

tanh

(
α√
2

√
|θ|T

)
.

So we have proved (A.19) when θ < 0.
We next show

lim
n→∞

(tn/n) ·D
(
tnT ;

θ

αt2n

)
= 0.

Since we have shown |C(t; θ
αt2n

)| ≤ δ for all t ∈ [0, tnT ], together with the fact that

|eαx − 1− αx| ≤ η|x| when |x| ≤ δ, we deduce that∣∣∣∣D(tnT ;
θ

αt2n

)∣∣∣∣ = µ

∣∣∣∣∣
∫ tnT

0

(
e
αC

(
s; θ
αt2n

)
− 1

)
ds

∣∣∣∣∣
≤ µ(α+ η)

∫ tnT

0

∣∣∣∣C (s; θ

αt2n

)∣∣∣∣ ds
= µ(α+ η)

∫ T

0

∣∣∣∣tn · C (stn;
θ

αt2n

)∣∣∣∣ ds.
Given (A.19) and (A.24), we obtain

lim sup
n→∞

∣∣∣∣D(tnT ;
θ

αt2n

)∣∣∣∣ ≤ K, for some constant K <∞.

Since tn/n→ 0, we then deduce that

lim
n→∞

(tn/n) ·D
(
tnT ;

θ

αt2n

)
= 0.

Hence, we infer from (A.18) that

Λ(θ) := lim
n→∞

tn
n

logE
[
e
θ
t2n
NtnT

]
=


√
−θ
α√
2

tanh
(
−α√

2

√
−θT

)
if θ ≤ 0

√
θ
α√
2

tan
(
α√
2

√
θT
)

if θ > 0
.
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It is easy to verify that Λ(θ) is differentiable in θ < 0 and

d

dθ
Λ(θ) =

1

2
√
θ

1
α√
2

tan

(
α√
2

√
θT

)
+
T

2
sec2

(
α√
2

√
θT

)
for θ < 0,

and Λ(θ) is differentiable in θ > 0 and

d

dθ
Λ(θ) =

−1

2
√
−θ

1
α√
2

tanh

(
−α√

2

√
−θT

)
+
T

2
sech2

(
−α√

2

√
−θT

)
for θ > 0.

Thus, it is easy to see that
Λ′(0+) = Λ′(0−) = T,

which implies that Λ(θ) is also differentiable at θ = 0. An application of Gärtner-Ellis
Theorem yields the result.

A.3. Proofs of results in Section 2.3.2

Proof of Theorem 6. The approach is similar as in the proof of Theorem 5: use Gron-
wall’s inequality for nonlinear ODEs to obtain estimates, and then apply Gärtner-Ellis
theorem to obtain the large deviations principle.

(i) We first prove part (i). We claim that for Z0 = n and any θ ∈ R,

lim
n→∞

1

nT
logE

[
e
θ
nZtnT

]
= lim
n→∞

1

nT
·
(
nA

(
tnT ;

θ

n

)
+B

(
tnT ;

θ

n

))
= θ.

When θ = 0, the above holds trivially. So in the following we focus on θ 6= 0.
We first show that

lim
n→∞

n1−T ·A
(
tnT ;

θ

n

)
= θ.

Write g(x) = eαx − αx − 1. Then given any small η > 0, there exists some δ > 0 and
K > 0 such that |g(x)| ≤ min{η|x|,Kx2} when |x| < δ. Recall from (4.2) that A solves
the ODE:

A′
(
t;
θ

n

)
= (α− β)A

(
t;
θ

n

)
+ g

(
A

(
t;
θ

n

))
, (A.24)

A

(
0;
θ

n

)
=
θ

n
.

Suppose that for n large, we have
∣∣A (t; θn)∣∣ ≤ δ for all t ∈ [0, tnT ]. Then we obtain

(α− β)A

(
t;
θ

n

)
−KA2

(
t;
θ

n

)
≤ A′

(
t;
θ

n

)
≤ (α− β)A

(
t;
θ

n

)
+KA2

(
t;
θ

n

)
.
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The solution to the Bernoulli equation

y′(t) = (α− β)y(t) +Ky2(t),

y(0) = A(0) =
θ

n
,

is given by

y(t) =

((
1

y(0)
+

K

α− β

)
· e(β−α)t − K

α− β

)−1

.

Hence we have

y(tnT ) =

(
n1−T

θ
+

K

α− β
· n−T − K

α− β

)−1

.

It is clear that y is a monotone function, and we thus deduce that |y(t)| ≤ δ for all
t ∈ [0, tnT ] when n is large. Note that L(y) := (α − β)y + Ky2 is Lipshitz continuous
when |y| ≤ δ. Then by Gronwall’s inequality for nonlinear ODEs, we obtain

A(t) ≤ y(t), for t ∈ [0, tnT ],

which further implies that

A(tnT ) ≤ y(tnT ) =

(
n1−T

θ
+

K

α− β
· n−T − K

α− β

)−1

.

Similarly, we can find

A(tnT ) ≥
(
n1−T

θ
+
−K
α− β

· n−T − −K
α− β

)−1

.

Thus we get

lim
n→∞

n1−T ·A
(
tnT ;

θ

n

)
= θ.

So the only remaining step is to show for n large, we have |A(t; θn )| ≤ δ for all t ∈
[0, tnT ]. To this end, we first define, with a slight abuse of notation (see also Section A.2)

cn = sup

{
t ≥ 0 :

∣∣∣∣A(s; θn
)∣∣∣∣ ≤ δ, for all s ≤ t

}
,

and note that
∣∣A (0; θn

)∣∣ =
∣∣ θ
n

∣∣ < δ for all large n. So it suffices to show tnT ≤ cn. We
note from the ODE in (A.24) that

A

(
t;
θ

n

)
= A

(
0;
θ

n

)
· e(α−β)t +

∫ t

0

e(α−β)(t−s)g

(
A

(
s;
θ

n

))
ds.
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Note that
∣∣A (t; θn)∣∣ < δ for all t ∈ [0, cn]. Then we have g

(
A
(
t; θn
))
≤ η

∣∣A(t; θn )
∣∣ for all

t ∈ [0, cn]. Hence we obtain for t ∈ [0, cn]

e−(α−β)t

∣∣∣∣A(t; θn
)∣∣∣∣ ≤ ∣∣∣∣A(0;

θ

n

)∣∣∣∣+ η

∫ t

0

e−(α−β)s

∣∣∣∣A(s; θn
)∣∣∣∣ ds.

Gronwall’s inequality then implies∣∣∣∣A(t; θn
)∣∣∣∣ ≤ ∣∣∣∣A(0;

θ

n

)∣∣∣∣ · e(α−β)t · eηt, for t ∈ [0, cn]. (A.25)

Now notice that for A
(
0; θn

)
= θ/n and t = tnT where T < 1, the right–hand–side of the

above inequality becomes
|θ| · nT (1+ η

α−β )−1

which is smaller than δ when n is large and η is set sufficiently small. Hence when n is
large, we have tnT ≤ cn and thus

∣∣A (t; θn)∣∣ ≤ δ for all t ∈ [0, tnT ].
Next we prove

lim
n→∞

1

nT
·B
(
tnT ;

θ

n

)
= 0. (A.26)

Recall from the ODE for B that

B

(
tnT ;

θ

n

)
= µ

∫ tnT

0

(
eαA(s; θn ) − 1

)
ds.

Note that for n large, we have |A(t; θn )| ≤ δ for all t ∈ [0, tnT ]. Together with the fact
that |eαx − 1− αx| ≤ η|x| when |x| ≤ δ, we deduce that∣∣∣∣B(tnT ;

θ

n

)∣∣∣∣ ≤ µ(α+ η)

∫ tnT

0

∣∣∣∣A(s; θn
)∣∣∣∣ ds

≤ µ(α+ η) · |θ|
n
·
∫ tnT

0

e(α−β+η)tdt

= µ(α+ η) · |θ|
n
·
(
nT (1+ η

α−β ) − 1
)
.

where in the second inequality we have used (A.25) and A(0; θn ) = θ
n . Thus (A.26) readily

follows. So the proof of part (i) is complete after applying the Gärtner-Ellis Theorem.
(ii) We next prove part (ii). The proof is similar to that of part (i), so we only outline

the key steps. Recall that

E
[
e
θ
nNtnT

]
= e−

θ
αnneC(tnT ; θαn )n+D(tnT ; θαn ),

where C,D solve the ODEs in (4.4) and (4.5) with initial condition C(0; θ
αn ) = θ

αn and

D(0; θ
αn ) = 0.
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It suffices to show

lim
n→∞

n1−TC

(
tnT ;

θ

αn

)
=

1

α− β
θ, (A.27)

lim
n→∞

n−TD

(
tnT ;

θ

αn

)
= 0, (A.28)

When C(0; θ
nα ) = θ

nα , we look at the Riccati equation below to obtain estimates for C:

z′(t) = (α− β)z(t) +Kz2(t) +
βθ

nα
, (A.29)

z(0) =
θ

nα
.

When n is large, we have (α− β)2 > 4K · βθnα . This implies the constant function

z̄ :=
1

2K

(√
(α− β)2 − 4K · βθ

nα
− (α− β)

)

is a particular solution to the Riccati equation (A.29). In addition, an application of
Taylor expansion yields

z̄ =
−β
α− β

· θ
nα

+O(n−2), as n→∞.

Write v(t) = z(t)− z̄. Then it is clear that

v(0) = z(0)− z̄ =
1

α− β
· θ
n

+O(n−2). (A.30)

Moreover, one readily verifies that v satisfies the Bernoulli equation

v′(t) = (α− β + 2Kz̄)v(t) +Kv2(t),

which implies that

v(t) =

((
1

v(0)
+

K

α− β + 2Kz̄

)
· e(β−α−2Kz̄)t − K

α− β + 2Kz̄

)−1

. (A.31)

Suppose that for n large, we have |C(t; θ
αn )| ≤ δ for all t ∈ [0, tnT ]. Then we obtain from

Gronwall’s inequality for nonlinear ODEs that

C(tnT ) ≤ z(tnT ) = v(tnT ) + z̄.

Together with (A.30) and (A.31), we deduce that

lim sup
n→∞

n1−TC

(
tnT ;

θ

αn

)
≤ lim sup

n→∞
n1−T (v(tnT ) + z̄) =

1

α− β
θ.
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A similar argument leads to

lim inf
n→∞

n1−TC

(
tnT ;

θ

αn

)
≥ 1

α− β
θ.

Hence the proof of (A.27) is complete if we can verify that |C(t; θ
αn )| ≤ δ for all t ∈

[0, tnT ]. Similarly as before, this can be done using the facts that |g(x)| ≤ ηx for x small
and applying Gronwall’s inequality to obtain the following bound on the function C:∣∣∣∣C (t; θ

nα

)∣∣∣∣ ≤ ∣∣∣∣C (0;
θ

nα

)∣∣∣∣ · (1 + β

∫ t

0

e(β−α)sds

)
· e(α−β)t · eηt, for t ∈ [0, dn].

where dn = sup{t ≥ 0 : |C(t; θ
αn )| ≤ δ, for all s ≤ t}. In addition, the proof of (A.28)

follows similarly as for the proof of (A.26). The proof is complete after applying the
Gärtner-Ellis Theorem.

A.4. Proofs of results in Section 2.3.3

Proof of Theorem 7. We apply Gärtner-Ellis theorem. The key idea is to study asymp-
totic behavior of the solutions of the ODEs (4.4) and (4.5) that characterize the moment
generating function of Nt.

Recall from (4.6) that for Z0 = n, we have

1

n
logE[eθNnT ] = C

(
nT ;

θ

α

)
− θ

α
+

1

n
D

(
nT ;

θ

α

)
, (A.32)

with initial condition C(0; θα ) = θ
α and D(0; θα ) = 0. Hence to study the limit of (A.32)

as n → ∞ and then apply Gärtner-Ellis theorem, we need to look at the asymptotic
behavior of the ODE solutions C and D as t→∞.

To this end, let

F (x) := −βx+ eαx − 1 +
θβ

α
.

Then Equation (4.4) becomes C ′(t; θα ) = F (C(t; θα )). It is clear that F is a convex

function and F (±∞) = ∞. In addition, F (x) achieves its minimum at x = 1
α log β

α at
which F ′(x) = 0 and

F

(
1

α
log

β

α

)
= −β

α
log

β

α
+
β

α
− 1 +

θβ

α
.

Thus, minx F (x) ≤ 0 if and only if θ ≤ θc := α
β − log α

β − 1. When θ ≤ θc, since α < β,

one readily verifies that F ′(C(0; θα )) < 0. Hence the ODE solution C(t; θα ) converges to
the smaller solution x∗(θ) of the equation

F (x) = −βx+ eαx − 1 +
θβ

α
= 0,
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as t→∞. Note from (4.4) and (4.5) we have

D

(
t;
θ

α

)
= µ ·

(
C

(
t;
θ

α

)
− C

(
0;
θ

α

))
+ µβ

∫ t

0

C

(
s;
θ

α

)
ds− µθβ

α
t. (A.33)

Therefore,
D(t; θα )

t → µβx∗(θ)− µθβ
α as t→∞ and for any θ ≤ θc,

lim
n→∞

1

n
logE[eθNnT ] = lim

n→∞

[
C

(
nT ;

θ

α

)
− θ

α
+

1

n
D

(
nT ;

θ

α

)]
= − θ

α
+ x∗(θ) +

(
µβx∗(θ)− µθβ

α

)
T,

and limn→∞
1
n logE[eθNnT ] = +∞ otherwise. For θ = θc, we get −βx∗(θc) + eαx

∗(θc) −
β
α log α

β −
β
α = 0, which implies that x∗(θc) = log(β/α)

α . By differentiating the equation

−βx∗(θ) + eαx
∗(θ) − 1 + θβ

α = 0 with respect to θ, we get

d

dθ
x∗(θ) =

(β/α)

β − αeαx∗(θ)
→∞, as θ → θc.

Thus, we verified the essential smoothness condition. By Gärtner-Ellis theorem, P(NnTn ∈
·) satisfies a large deviation principle with the rate function

I(x) = sup
θ∈R

{
θx+

θ

α
− x∗(θ)−

(
µβx∗(θ)− µθβ

α

)
T

}
. (A.34)

We next solve the optimization problem in (A.34) and simplify the rate function above.
At the optimal θ in (A.34), we have

x+
1

α
− d

dθ
x∗(θ)− µβ d

dθ
x∗(θ)T +

µβ

α
T = 0,

which implies that

d

dθ
x∗(θ) =

x+ 1
α + µβ

α T

1 + µβT
. (A.35)

Recall that x∗(θ) satisfies

−βx∗(θ) + eα·x
∗(θ) − 1 +

θβ

α
= 0. (A.36)

Differentiating with respect to θ, we get

−β d

dθ
x∗(θ) + α

d

dθ
x∗(θ)eαx

∗
+
β

α
= 0. (A.37)

Plugging (A.35) into (A.37), we get

x∗(θ) =
1

α
log

(
βx

αx+ 1 + µβT

)
. (A.38)
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Plugging this into (A.36), we get the optimal θ in (A.34) is given by

θ = log

(
βx

αx+ 1 + µβT

)
− αx

αx+ 1 + µβT
+
α

β
. (A.39)

Finally, substituting (A.38) and (A.39) into (A.34), we get

I(x) = x log

(
βx

αx+ 1 + µβT

)
− x+

αx+ 1 + µβT

β
.

The proof is therefore complete.

Proof of Theorem 9. The proof is similar to that of Theorem 7, so we only provide a
sketch. From the proof of Theorem 7, we have

E
[
eθNtnT

]
= e−

θ
αneC(tnT ; θα )n+D(tnT ; θα ),

where for θ ≤ θc := α
β − log α

β − 1, limn→∞ C(tnT ; θα ) = x∗(θ), the smaller solution to

the equation −βx+ eαx − 1 + θβ
α = 0. In addition, we infer from (A.33) that

D

(
tnT ;

θ

α

)
= µ

(
C

(
tnT ;

θ

α

)
− θ

α

)
+ µβ

∫ tnT

0

C

(
s;
θ

α

)
ds− µθβ

α
tnT.

Therefore, if limn→∞
tn
n = 0, we have for θ ≤ θc,

lim
n→∞

1

n
logE

[
eθNtnT

]
= lim

n→∞

[
C

(
tnT ;

θ

α

)
− θ

α
+

1

n
D

(
tnT ;

θ

α

)]
= − θ

α
+ x∗(θ),

and limn→∞
1
n logE

[
eθNtnT

]
= ∞ otherwise. Similarly, if limn→∞

tn
n = ∞, we have for

θ ≤ θc,

lim
n→∞

1

tn
logE

[
eθNtnT

]
= lim

n→∞

[
n

tn
·
(
C

(
tnT ;

θ

α

)
− θ

α

)
+

1

tn
D

(
tnT ;

θ

α

)]
= µβx∗(θ)T − µθβ

α
T,

and limn→∞
1
tn

logE
[
eθNtnT

]
= ∞ otherwise. We can also check that d

dθx
∗(θ) → ∞ as

θ → θc. Therefore, by Gärtner-Ellis theorem and following the proof of Theorem 7, we
have proved the desired results.

Proof of Theorem 10. The proof is similar as the proof of Theorem 6, so we only
provide a sketch. From (4.1) we have

E
[
e
θ
nγ ZtnT |Z0 = n

]
= eA(tnT ; θnγ )n+B(tnT ; θnγ ).
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Similar as in the proof of Theorem 6, we can show that

lim
n→∞

1

n1−γ−T logE[e
θ
nγ ZtnT |Z0 = n] = θ.

The result then follows from Gärtner-Ellis theorem.
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