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Abstract

Intensity control is a type of continuous-time dynamic optimization problems with many
important applications in Operations Research including queueing and revenue management.
In this study, we adapt the reinforcement learning framework to intensity control using choice-
based network revenue management as a case study, which is a classical problem in revenue
management that features a large state space, a large action space and a continuous time hori-
zon. We show that by utilizing the inherent discretization of the sample paths created by the
jump points, a unique and defining feature of intensity control, one does not need to discretize
the time horizon in advance, which was believed to be necessary because most reinforcement
learning algorithms are designed for discrete-time problems. As a result, the computation can
be facilitated and the discretization error is significantly reduced. We lay the theoretical founda-
tion for the Monte Carlo and temporal difference learning algorithms for policy evaluation and
develop policy gradient based actor critic algorithms for intensity control. Via a comprehen-
sive numerical study, we demonstrate the benefit of our approach versus other state-of-the-art
benchmarks.

1 Introduction

Many dynamic optimization problems in Operations Research are intensity controls problems, which
is a class of problems with continuous time and a discrete state space. Two notable areas are con-
trol problems in queueing (Brémaud 1981, Chen and Yao 1990) and dynamic pricing/assortment
problems (Gallego and Van Ryzin 1997, Strauss et al. 2018, Gallego et al. 2019) in revenue man-
agement. Although both areas have been studied extensively in the literature, it is fair to say that
most problems are still challenging to solve in practice, due to a large number of states. In dynamic
pricing and assortment, for example, the possible combinations of the remaining inventory of the
products/resources make the state space impractically large and render the exact optimal solutions
extremely difficult.

Meanwhile, reinforcement learning (RL) provides a computational framework to solve general
dynamic optimization problems that can be formulated as Markov decision processes (MDPs). For
a comprehensive introduction to RL, see Sutton and Barto (2018). A prototypical problem that
can be solved by RL is tabular MDPs: There is a finite state space, a finite action space, and a
discrete time horizon.
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Faced with intensity control problems, one may be tempted to convert such problems to tabular
MDPs and then apply RL algorithms. One conspicuous discrepancy between intensity control
and tabular MDPs is whether the time horizon is continuous or discrete. In fact, the continuous
time horizon is the defining feature of intensity control problems. For the conversion, one may
approximate continuous-time stochastic processes with discrete-time ones. For example, arrivals of
customers following a Poisson process are widely used and driving the dynamics of the two areas
mentioned above. They can be approximated by a single arrival in a period having a Bernoulli
distribution when the time horizon is discretized with a sufficiently refined grid. This type of
discretization scheme is usually carried out before the RL algorithm is executed with a uniform
and pre-specified grid size.

As for the choice of the discretization grid size, one can clearly see the computational trade-
off. On one hand, an accurate approximation of continuous-time processes requires a fine grid.
This point can be perfectly illustrated by the approximation of Poisson processes: the grid size
∆t needs to be sufficiently small so that it is unlikely to have more than one arrival during a
period of ∆t. As such, the dynamics can be discretized and the probability of an arrival in a time
period has a Bernoulli distribution. On the other hand, if a time step in the discrete-time system
corresponds to a minuscule duration in the continuous-time system, then the computational cost
is high because of the inflated length of horizon and it may lead to numerical instabilities. To
make things worse, there is not guideline on how to choose a proper discretization scheme and the
trade-off cannot be evaluated beforehand. In practice, one may experiment RL algorithms on a set
of diminishing grid sizes and inspect if the obtained solutions have converged as the gird becomes
finer. The computational cost is prohibitively high because a sequence of increasingly challenging
problems have to be solved, not to mention that the convergence may not even be warranted at
the first place. Indeed, it is known in the RL community that the performance of RL algorithms
can be very sensitive with respect to the discreteization grid size; see, e.g., Tallec et al. (2019) in
which it is empirically shown that standard Q-learning methods are not robust to changes in time
discretization of continuous-time control problems.

In this study, via the classical application of choice-based network revenue management (see
Strauss et al. 2018 for a recent review), we provide a framework to implement RL algorithms for
intensity control problems, without the need to discretize the time horizon upfront. The key insight is
that for each sample path of the system generated under a given policy, it is inherently discretized by
the jump times associated with the sample path. For example, in the focused application, the state
(remaining inventory of the resources) changes and the reward is generated only when a customer
arrives. During the time horizon, such arrivals, although occurring at different time points across the
sample paths and thus cannot be pre-determined, are finite and typically substantially more coarse
(for a given sample path) than what would be required in the näıve discretization scheme mentioned
above. Moreover, if the basis functions are chosen properly for the value function and policy
function approximations, then the RL algorithm can be implemented without any approximation
errors associated with discretization. This offers a huge benefit compared to the näıve discretization:
even when the trade-off has been optimally balanced in the latter, the discretization errors cannot
be eliminated. We summarize the contribution of the study below.

• We adapt policy evaluation (including Monte Carlo and Temporal Difference methods) and
policy gradient in the standard RL framework to the continuous-time intensity control setting
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without upfront discretization of the time horizon. We then combine them and develop Actor-
Critic algorithms. Compared to the näıve procedure that first discretizes the time horizon and
then applies the standard RL algorithms for MDPs, our approach has two major strengths.
First, leveraging the inherent discretization of the jump points, we show that the adapted
RL algorithms can be implemented largely free of discretization errors. This avoids the
numerical instability and convergence checking of the näıve discretization. Second, it is more
computationally efficient, as the jump points of a sample path are typically more sparse than
a refined discretization scheme. In particular, we do not need to consider the union of the
jump points of all sample paths.

• We extend the martingale approach for policy evaluation, originally proposed in Jia and Zhou
(2022a,b) for entropy-regularized RL in controlled diffusion processes, to intensity control
problems with discrete states. In particular, we show that the value function along the state
process combined with the accumulated reward and the entropy bonus is a martingale (see
Theorem 2). This martingale property not only leads to a natural loss function for Monte
Carlo policy evaluation, but also martingale orthogonality conditions that form the basis
of continuous-time Temporal Difference methods for intensity control. For policy gradient,
we extend the results in Jia and Zhou (2022b) and show that computing the gradient of the
value function with respect to a given parameterized stochastic policy is equivalent to a policy
evaluation problem with an auxiliary reward function. This allows us to estimate the policy
gradient using observable samples and current estimates of value functions for the intensity
control problem.

• We conduct a comprehensive numerical experiment to compare the performance of the pro-
posed Actor-Critic algorithm and benchmarks as well as the state-of-the-art algorithms in the
literature, including the greedy policy, the CDLP policy (Liu and Van Ryzin 2008), the ADP
policy (Zhang and Adelman 2009), and the optimal dynamic programming policy with refined
time discretization. We have the following empirical findings: Overall, the performance of
the proposed RL algorithm adapted to intensity control is among the best, despite the fact
that it is the only policy that does not need to know the environment and has to learn it
through simulated samples. The ADP policy from Zhang and Adelman (2009), when the
time horizon is discretized properly, has a similar performance. But its performance may be
unstable and non-monotone with respect to the decreasing size of the grid. Moreover, the
computation time of the RL algorithm doesn’t scale rapidly with respect to the problem size.
The numerical experiments show encouraging signs of the proposed algorithm to be deployed
in practice.

Below we discuss the connection of this work to the literature.

1.1 Literature Review

The network revenue management problem (Gallego and Van Ryzin 1997) is one of the classical
problems in revenue management that has been studied by numerous papers. Its choice-based
variants have been proposed and studied by Gallego et al. (2004), Talluri and Van Ryzin (2004),
Zhang and Cooper (2005), Liu and Van Ryzin (2008), Zhang and Adelman (2009), Zhang (2011)
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and many subsequent papers. See Strauss et al. (2018) for a review. As a dynamic optimization
problem, the discrete-time version can be formulated as an MDP. However, to solve the optimal
policy, even numerically, is essentially infeasible due to the exponentially large state and action
spaces. The focus of the literature has been to provide efficient algorithms, usually with provable
performance guarantees, that solve the problem approximately. The objective of this study is to
use the choice-based network revenue management as a case study and show how to adapt the
RL framework to the continuous time, because RL algorithms have been shown to have impressive
empirical performance for a large class of practical problems. We note that in this literature, a
number of studies including Zhang and Adelman (2009), Ma et al. (2020) design algorithms based
approximate dynamic programming (ADP), which is an important concept and approach in RL.
However, they focus on the discrete-time formulation and value function approximation, while we
study the continuous-time formulation and general RL algorithms including exploration and the
policy gradient method. Moreover, our theoretical results are not focused on the performance
guarantee but the foundation and well-posedness of RL algorithms in the continuous time. In the
numerical experiments, we compare our algorithm to two important benchmarks in the literature
(Liu and Van Ryzin 2008, Zhang and Adelman 2009).

In terms of methodology, our paper builds on a series of recent studies (Wang et al. 2020, Jia and
Zhou 2022b,a) on continuous-time reinforcement learning with continuous state and action spaces.
In particular, the stochastic processes driving the system are controlled diffusion processes, and the
reward is continuously accrued over time in their models. By contrast, we consider continuous-time
reinforcement learning for intensity control of point processes with piecewise constant sample paths,
where both the state and action spaces are discrete, and the reward is collected only at jump times.
This leads to several subtle yet significant differences in our theoretical analysis and algorithm
design, which we elaborate below. Firstly, to facilitate a theoretical analysis of value functions
under stochastic policies, (Wang et al. 2020, Jia and Zhou 2022b) derived the so-called exploratory
state process by applying a law of large number argument to the drift and diffusion coefficients of
the controlled diffusion process. This approach does not apply to intensity control, so we instead
derive the exploratory dynamics based on analyzing the infinitesimal generator of the sample state
process. Second, given that instantaneous rewards in our setting may arise only at times when
customers arrive, we aim to generate actions only at these specific times, rather than continuously
throughout the time horizon as in Jia and Zhou (2022b). Third, while our general framework
extends the martingale approach proposed in Jia and Zhou (2022a,b) to intensity control, there are
also some important differences in the specific formulas and implementations for policy evaluation
(PE) and policy gradient (PG). A notable distinction arises from the treatment of integrals with
respect to dt for functions of time, state and randomized action. These functions have been refined
by taking the average over the actions, yielding integrands that depend solely on time and state.
This can help reduce the variance of the proposed RL algorithms and avoid generating actions at
each point along a pre-determined discretization grid of the horizon as in Jia and Zhou (2022b).
Moreover, because the paths of the sample state process in our problem are piecewise constant,
we propose an adaptive discretization approach that takes into account the jump times of each
sample trajectory to compute the aforementioned integrals. This is in sharp contrast to Jia and
Zhou (2022a,b) where integrals are computed by discretizing the horizon uniformly. Our strategy
is expected to significantly reduce the approximation errors that often arise with regular uniform
discretization scheme. We also mention a concurrent work (Gao et al. 2024) which study RL for
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general jump-diffusion processes. Their focus is to develop q-learning algorithms, the continuous-
time counterpart of Q-learning, for jump-diffusions, whereas our focus is to develop PE and PG
based actor critic methods tailored for intensity control. Note that a few recent RL studies have
been focusing on the discretization of the (continuous) state space (Sinclair et al. 2020, 2023),
whereas this study considers intensity control with a discrete space and the inherent discretization
of the (continuous) time horizon by jump points.

The intensity control problem that we study can be viewed as a special class of continuous-time
MDPs or the more general semi-Markov decision processes (SMDPs, Puterman (2014)) with dis-
crete state spaces. Several RL algorithms were developed for infinite-horizon continous-time MDPs
as well as for SMDPs very early on (Bradtke and Duff 1995, Das et al. 1999). In terms of theoreti-
cal results, Gao and Zhou (2022a) recently establish logarithmic regret bounds for learning tabular
continuous-time MDPs in the infinite-horizon average-reward setting. Gao and Zhou (2022b) es-
tablish regret bounds for continous-time MDPs in the finite-horizon episodic setting. By contrast,
we develop model-free RL algorithms for the finite-horizon network revenue management problem
without considering regret bounds. Besides RL for continuous-time MDPs with discrete spaces,
there is also a surge of interest in studying continuous-time RL for controlled diffusion processes and
its applications (mostly in finance), see, e.g., Wang and Zhou (2020), Guo et al. (2022), Wang et al.
(2023), Jia and Zhou (2023), Zhao et al. (2024), Wu and Li (2024), Dai et al. (2023). In contrast
to these studies, we study continuous-time RL for intensity control problems with discrete state
spaces and focus on developing RL algorithms for the choice-base network revenue management
problem.

Finally, we mention a growing body of literature on RL algorithms applied to Operations Man-
agement. Dai and Gluzman (2022) develop proximal policy optimization methods for queueing
network control problems with a long-run average cost objective. Gijsbrechts et al. (2022) demon-
strate that the RL algorithm can match the performance of the state-of-the-art policies in inventory
management, although tuning the hyperparameters for instances is needed. See Oroojlooyjadid
et al. (2022), Li et al. (2023), Azagirre et al. (2024) for other applications.

2 Problem Formulation

We consider the network revenue management problem with m resources and n products. The
consumption matrix is given by A := [aij ]m×n. The entry aij represents the amount of resource
i used by selling one unit of product j, making the jth column Aj of A the incidence vector for
product j. Let J = {1, . . . , n} be the set of products, with fixed prices denoted by p = (p1, . . . , pn)>.

We consider a continuous-time finite selling horizon [0, T ]. The initial inventory of the resources
is denoted by c = (c1, . . . , cm)>. Consumers arrive according to a Poisson process with rate λ.4

Upon arrival, based on the assortment offered by the firm S ⊆ J at the moment, the customer
makes a choice j ∈ S ∪ {0}. For convenience, We denote A as the collection of all subsets of J
and thus S ∈ A. We use 0 to represent the no-purchase option. The choice behavior is typically
captured by the choice probability Pj(S) ∈ [0, 1]. In other words, the customer purchases product j

4Our framework can be easily extended to nonstationary arrival rates. In the study, for simplicity, we focus on
stationary arrivals. The same stationary setup is adopted for the choice probabilities introduced below.
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with probability Pj(S) when the offered assortment is S. The choice probabilities are fixed over time
and satisfy the standard regularity conditions such as Pj(S) = 0 for j /∈ S and

∑
j∈S∪{0} Pj(S) = 1,

although they may be unknown for the RL algorithms. The firm’s decision problem is to find a
dynamic policy that offers assortment St at time t that maximizes the expected total revenue over
the selling horizon [0, T ].

We briefly discuss why we focus on the continuous-time setting of the problem at the first place,
because many other studies in revenue management (for example, Zhang and Adelman 2009) start
with the discrete-time setting in which at most one customer may arrive in a time period. (Note
that we are not referring to the näıve discretization of the continuous-time formulation, but the
discrete-time formulation of the problem itself.) We choose the continuous-time setting mainly to
illustrate the design and implementation of the RL algorithm. Moreover, although it is well expected
that the discrete-time formulation is a good approximation of the continuous-time formulation in
practice, to our knowledge, there are no theoretical results characterizing the gap between their
value functions and optimal policies. Therefore, we believe there are theoretical and practical values
in demonstrating how to adapt the RL algorithms to the continuous-time formulation.

2.1 Classical Formulation of Optimal Intensity Control

In this section, we formulate the problem in the language of optimal intensity control. A control
process can be represented as S = {St ∈ A : 0 ≤ t ≤ T}, where St specifies the firm’s offered
set at time t. Given a control process S, let NS

t = (NS
1,t, . . . , N

S
n,t)
> be a vector of controlled

Poisson processes with intensities (λP1(St), . . . , λPn(St)), defined on a filtered probability space

(Ω,F ,P; {FNλ

t }t≥0) along with a Poisson process with rate λ : Nλ = {Nλ
t : 0 ≤ t ≤ T}. One

can interpret Nλ = {Nλ
t : 0 ≤ t ≤ T} as the arrival process of all potential consumers with

rate λ and NS
t as the cumulative number of the n products sold by time t under the control

S. The remaining inventory of the resources at time t is represented by XS
t = c − ANS

t . Let
S = {0, . . . , c1} × · · · × {0, . . . , cm} be the state space of XS

t . Given a control process S generated
by a deterministic function z as St = z(t,XS

t−), the process XS
t ∈ S is a continuous-time Markov

chain. In particular, for (t, x, S) ∈ [0, T ]×S×A, the controlled transition rates of XS
t are given by

q(y | t, x, S) =
∑

{j∈J :Aj=x−y}

λPj(S), ∀ y 6= x; q(x | t, x, S) = −λ[1− P0(S)]. (1)

The state x can only transition to state y if a product j consumes an array of resources Aj = x−y.
Consider U to be the set of all non-anticipating control processes, which satisfies

∫ T
0 AdNS

t ≤ c,
P-a.s. Then, for a policy S ∈ U , the expected total revenue is given by

V (0, c;S) := EP

[∫
(0,T ]

p>dNS
t

]
= EP

[∫ T

0
r(St)dt

]
,

where r(S) := λ
∑n

j=1 pjPj(S) for all S ∈ A. The value function, denoted by V (t, x;S), calculates
the expected revenue during the time interval (t, T ] given that the vector of remaining inventory
at time t is x:

V (t, x;S) := EP

[∫
(t,T ]

p>dNS
s | XS

t = x

]
.
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The goal of this intensity control problem is to find a control S∗ ∈ U which achieves V ∗(t, x) =
supS∈U V (t, x;S) for all (t, x) ∈ [0, T ] × S. From the optimal control theory, the optimal value
function V ∗(t, x) satisfies the following HamiltonJacobiBellman (HJB) equation

∂V ∗

∂t
(t, x) + max

S∈A(x)
H(t, x, S, V ∗(·, ·)) = 0, (t, x) ∈ [0, T ]× S,

V ∗(T, x) = 0, x ∈ S,
(2)

where A(x) := {S ∈ A : x ≥ Aj for all j ∈ S} denotes the collection of all available assortments at
the state x, and the Hamiltonian H : [0, T ]× S ×A× C1,0([0, T ]× S) 7→ R is defined as:

H(t, x, S, v(·, ·)) = r(S) +
∑
y∈S

v(t, y)q(y | t, x, S). (3)

The space C1,0([0, T ] × S) consists of all real-valued functions defined on [0, T ] × S that are con-
tinuously differentiable in t over [0, T ] for all x ∈ S.

We note that optimal control problem (2) is challenging to solve, both analytically and com-
putationally. First, the continuous time horizon generally has to be discretized in order to obtain
a numerical solution. The discretization scheme needs to be carefully designed to avoid instability
and guarantee convergence. Unfortunately, there are no general guidelines and the practice is rather
ad hoc depending on the application. Second, the state and action spaces of the problem are of the
sizes O(‖c‖m1 ) and O(2n), respectively. It is virtually impossible to solve the problem exactly for
a medium m or n. Third, in practice, the choice probabilities Pj(S) that determine the transition
rates q(·) are typically unknown to the firm and has to be learned through the collected data. In
the next section, we restate the problem using the language of RL, which provides a computational
framework that mitigates the issues above in practice.

2.2 Formulation of Reinforcement Learning

In this study, we focus on policy-based reinforcement learning. To start, we consider the following
policy class, following Definition 2.1 in Chapter 2 of Guo et al. (2009).

Definition 1. A randomized Markov policy is a real-valued function π(S | t, x) that satisfies

(i) For all (x, S) ∈ S ×A, the mapping t 7→ π(S | t, x) is measurable on [0, T ].

(ii) For all (t, x) ∈ [0, T ]× S, π(· | t, x) is a probability distribution on the action space A.

Moreover, a randomized Markov policy π(· | ·, ·) is called admissible if it further satisfies

(iii) For all (t, x) ∈ [0, T ]× S, it holds that π(S | t, x) = 0 if S /∈ A(x);

(iv) For all (x, S) ∈ S ×A, the mapping t 7→ π(S | t, x) is continuous on [0, T ].

We denote by Π the set of admissible randomized Markov policies. When the context is clear,
we simply use π(S | t, x) to denote the probability of choosing S as the offered assortment in state
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(t, x). Note that the action randomization in the stochastic policy π(· | ·, ·) is independent of the
customer arrival process Nλ discussed in Section 2.1.

In the RL formulation, instead of solving (2) in the hope of obtaining the optimal (deterministic)
policy, we consider a class of randomized policies that may choose the offered assortment at t
according to some probability distribution over feasible assortments. Such randomized policies
encourage exploration of actions and states that are “suboptimal” in the current iteration, which
is a key principle of algorithmic design in reinforcement learning. The exploratory policies can
help collect data and gradually refine the approximation of the environment. In the meantime,
the policy can improve itself and converge to the optimal policy if the RL algorithm is properly
designed.

We will specify the choice of the parametric family of policies within the class of admissible
randomized Markov policies in Section 6. Generally, the choice needs to satisfy the following two
conditions. First, the family is flexible enough so that it should include the optimal policy as a
member or at least be able to approximate it. This condition allows the reinforcement learning to
converge to a near-optimal policy over time. The crafting of such policy family usually depends
on the problem context. Second, the randomness can be tuned by a parameter so that one can
control the degree of exploration, depending on the phase of the algorithm. For example, in the
end of reinforcement learning, the algorithm can easily turn off or reduce exploration to generate a
near-optimal policy from Π.

Given π ∈ Π, we consider the filtered probability space (Ω,F , P̄; {Ft}t≥0), where Ft = σ{(Nπ
s , S

π
s ) :

0 ≤ s ≤ t} and the probability measure P̄ is defined on FT . Let EP̄ be its corresponding expectation
operator. Note that because of the additional randomness introduced in the randomized policy, P̄
is different from P defined in Section 2.1 and P̄ can be viewed as an extension of P. The value
function of π is given by

V (t, x;π) = EP̄

[∫
(t,T ]

p>dNπ
s | Xπ

t = x

]
. (4)

To encourage exploration, we follow Jia and Zhou (2022b) and introduce the entropy to measure
the randomness of a stochastic policy π. For all π ∈ Π and (t, x) ∈ [0, T ]× S, denote the entropy
of π(· | t, x) by

H(π(· | t, x)) := −
∑
S∈A

π(S | t, x) logπ(S | t, x).

Then, we add the entropy as a bonus to the original value function (4), leading to

J(t, x;π) = EP̄

[∫
(t,T ]

p>dNπ
s + γ

∫ T

t
H(π(· | s,Xπ

s−))ds | Xπ
t = x

]

= EP̄
[∫ T

t
r(Sπs )ds+ γ

∫ T

t
H(π(· | s,Xπ

s−))ds | Xπ
t = x

]
, (5)

where γ ≥ 0 is referred to as the temperature parameter and controls the degree of exploration.
Such entropy regularization is a commonly used technique to improve exploration in RL, see also
Haarnoja et al. (2018).
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For the convenience of theoretical analysis, we introduce a Markov process {X̃π
t : 0 ≤ t ≤ T},

defined on the original probability space (Ω,F ,P; {FNλ

t }t≥0) that averages out the randomness in
the action/policy. The process {X̃π

t : 0 ≤ t ≤ T} will be referred to as the exploratory state process.
It is equivalent to the sample state process {Xπ

t : 0 ≤ t ≤ T} (defined on (Ω,F , P̄; {Ft}t≥0)) in the
sense that the distribution (law) of {X̃π

t : 0 ≤ t ≤ T} under P is the same as the distribution of
{Xπ

t : 0 ≤ t ≤ T} under P̄. This allows us to rewrite

J(t, x;π) = EP̄

[∫ T

t

{∑
S∈A

r(S)π(S | s,Xπ
s−) + γH(π(· | s,Xπ

s−))

}
ds | Xπ

t = x

]
(6)

= EP

[∫ T

t

{∑
S∈A

r(S)π(S | s, X̃π
s−) + γH(π(· | s, X̃π

s−))

}
ds | X̃π

t = x

]
. (7)

Note that by taking expectation with respect to the action randomization, the expectation in (5)
reduces to the expectation in (6). In (7), we use the original probability space P to express the value
function, which is easier to work with because the randomness in the policy introduces complexity
to the analysis of value functions. Interested readers may find details about the reformulation
in Appendix A. We also emphasize that unlike the sample state process {Xπ

t : 0 ≤ t ≤ T}, the
exploratory dynamics {X̃π

t : 0 ≤ t ≤ T} is not observable, and hence its trajectories will not be
used in our RL algorithm design.

For a given randomized Markov policy π, its value function J(t, x;π) can be characterized by
a differential equation. The proof of Lemma 1 is deferred to Appendix C.

Lemma 1. A function v ∈ C1,0([0, T ] × S) is the value function associated with the stochastic
policy π, i.e., v(t, x) = J(t, x;π) for all (t, x) ∈ [0, T ] × S, if and only if it satisfies the following
differential equation:

∂v

∂t
(t, x) +

∑
S∈A

H(t, x, S, v(·, ·))π(S | t, x) + γH(π(· | t, x)) = 0, (t, x) ∈ [0, T )× S, (8)

with the terminal condition v(T, x) = 0, x ∈ S.

The task of RL is to find a policy π∗ ∈ Π which attains J∗(t, x) = supπ∈Π J(t, x;π) for all
(t, x) ∈ [0, T ] × S. Compared with the original problem, the optimal policy π∗ of RL can be
characterized by a Boltzmann (or softmax) distribution:

π∗(S | t, x) =
exp{ 1

γH(t, x, S, J∗(·, ·))}∑
S̄∈A(x) exp{ 1

γH(t, x, S, J∗(·, ·))}
, (9)

where the Hamiltonian H(·) is introduced in (3). A detailed proof of this characterization is
provided in Appendix C. It is clear that even at optimality, the exploration parameter γ encourages
offering assortments randomly, although it is more likely to sample the assortments with a higher
Hamiltonian in the original problem.

We focus on two objectives of RL in this study. The first objective is policy evaluation (PE):
for a given policy π ∈ Π, PE aims at the employment of a (numerical) procedure to determine
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J(t, x;π) as a function of (t, x) without any knowledge of the customer arrival rate and choice
probabilities. This is presented in Section 3. The second objective is policy improvement, in
particular, the well-established policy gradient (PG) method: we attempt to estimate the policy
gradient ∇φJ(0, c;πφ) within a suitably chosen parametric family {πφ : φ ∈ Φ}. We also require
this method to operate solely on observable data, as well as the learned value function of πφ, in the
absence of the environmental parameters. This is presented in Section 4. Finally in Section 5, we
will combine PE and PG in an iterative manner, which leads to actor-critic algorithms and allows
us to leverage the power of RL for the choice-based network revenue management problem.

3 Policy Evaluation

Recall that the objective of PE is to estimate the value function J(t, x;π) of a given policy π using
samples, generally without the knowledge of the environment. The samples are the trajectories
of the form {(t,Nπ

t , X
π
t , S

π
t , r

π
t ) : 0 ≤ t ≤ T} generated under policy π, where rπt indicates

the instantaneous reward at time t, equal to pj upon the sale of product j and 0 otherwise. In
practice, the samples can be obtained from the observed sales data. We aim to evaluate J(t, x;π)
as a function of (t, x). It is often achieved through function approximation, where J(t, x;π) is
approximated by a parametric family of functions {Jθ(t, x) : θ ∈ Θ}. The particular form of
{Jθ(t, x) : θ ∈ Θ} for the network revenue management problem will be discussed later.

Before delving into the proposed PE method, we refresh the memory of readers by reflecting
on how PE is usually conducted in the standard discrete-time RL setting and then drawing the
connection by demonstrating how we can discretize the time horizon in our problem and convert
it to the discrete-time setting. Specifically, suppose we discretize the time horizon 0 = t0 < t1 <
· · · < tK = T with an equal length ∆t = T

K upfront and denote the corresponding discrete-time
model as M∆t. For small ∆t, it approximately holds that in each discrete period (tk, tk+1], there
is at most one customer arrival: one arrival occurs with probability λ∆t, and no arrivals occur
with probability 1 − λ∆t. In the PE step, the goal is to evaluate the approximate value function
J∆t(tk, x;π).

For a continuous-time trajectory {(t,Nπ
t , X

π
t , S

π
t , r

π
t ) : 0 ≤ t ≤ T}, we naturally use Xπ

tk
and

Sπtk as the state and action for the discretized system. For the reward, we denote r(tk,tk+1] as the
realized reward between tk and tk+1 in the continuous system, which also represents the reward at
(tk, X

π
tk

) in the discrete system. It allows us to convert the trajectory to a sample path that can
be readily used in the discrete-time RL.

In discrete-time RL, Monte Carlo and Temporal Difference (TD) methods are two most common
techniques for PE. While the Monte Carlo methods are suited for offline learning, TD methods work
both online and offline. We first show the gradient Monte Carlo method (see Chapter 9 in (Sutton
and Barto 2018)), which updates θ using

θ ← θ + α
K−1∑
k=0

∇θJθ∆t(tk, Xπ
tk

)

(K−1∑
k′=k

(
r(tk′ ,tk′+1] + γH(π(· | tk′ , Xπ

tk′
))∆t

)
− Jθ∆t(tk, Xπ

tk
)

)
, (10)

where α is the learning rate and the term H(π(· | tk, Xπ
tk

)) represents the exploration/entropy
bonus. To interpret (10) at a high level, note that the underlying loss function that the gradient

10



Monte Carlo algorithm seeks to minimize can be formulated as

L∆t(θ) =
1

2
EP̄

[
K−1∑
k=0

(K−1∑
k′=k

(
r(tk′ ,tk′+1] + γH(π(· | tk′ , Xπ

tk′
))∆t

)
− Jθ∆t(tk, Xπ

tk
)

)2
]
, (11)

where the difference term captures the deviation of the estimated value function from the realized
reward (and the exploration bonus) aggregated for each time step along the sample path. In contrast
to the Monte Carlo methods, which uses the whole trajectory to update θ, the TD methods, when
used online, update the estimate of the value function at each discrete time point. For instance,
the online TD(0) algorithm (with function approximation) updates θ at every time step k using
the following formula:

θ ← θ + α∇θJθ∆t(tk, Xπ
tk

)
(
r(tk,tk+1] + γH(π(· | tk, Xπ

tk
))∆t+ Jθ∆t(tk+1, X

π
tk+1

)− Jθ∆t(tk, Xπ
tk

)
)
,

(12)

where the TD error characterizes the difference between the estimated value of the current state and
the estimated value of the subsequent state plus the realized reward associated with the transition
from Xπ

tk
to Xπ

tk+1
. For more details, we refer the readers to Chapter 9 in Sutton and Barto (2018).

It is mostly expected and intuitive that as ∆t → 0, the approximate value function J∆t con-
verges to J . While this is the reason why time discretization is so widely used in practice, to
our knowledge, there is no framework that universally guarantees the convergence and stability as
∆t→ 0. Moreover, the computation can become an issue when ∆t is small and there is no guide-
line on how to choose ∆t considering the trade-off of computational efficiency and convergence. To
overcome the challenges, we propose to evaluate J(t, x;π) for a given policy π directly without
upfront time discretization. In this study, we introduce two PE methods in the continuous-time
setting: one parallels the gradient Monte Carlo algorithm for offline use, and the other corresponds
to discrete-time TD algorithms to enable online learning.

3.1 Monte Carlo Methods

In this subsection, our goal is to formulate a valid loss function for the Monte Carlo method. In
particular, with the loss function, we can take derivative of Jθ(t, x) with respect to θ, so that
an updating rule similar to (10) can be derived in the continuous time. An ideal loss function is
the mean-squared error between the estimated value function Jθ(·, ·) and the true value function
J(·, ·;π), which we refer to as the mean-squared value error (MSVE):

MSVE(θ) :=
1

2
EP̄
[∫ T

0
|J(t,Xπ

t ;π)− Jθ(t,Xπ
t )|2dt

]
. (13)

However, since the true function J(·, ·;π) is not known, minimizing MSVE does not directly produce
a feasible algorithm .

Following the loss function (11) designed for discrete-time MDPs, which tracks the error between
the estimated value function and the realized reward along sample paths, we propose its continuous-
time counterpart L(θ):

L(θ) =
1

2
EP̄

[∫ T

0

(∫
(t,T ]

p>dNπ
s + γ

∫ T

t
H(π(· | s,Xπ

s−))ds− Jθ(t,Xπ
t )

)2

dt

]
. (14)

11



It is worthwhile to note that our proposed loss function L(θ) also emerges when replacing J(t,Xπ
t ;π)

in (13) – the expected value-to-go when starting at time t and state Xπ
t – with the reward along

the trajectory afterwards. Beyond this observation, we proceed to establish a certain equivalence
between L(θ) and MSVE(θ) from a theoretical standpoint.

The next theorem states that minimizing the loss function L(θ) is equivalent to minimizing
MSVE. Indeed, the difference between L(θ) and MSVE(θ) is merely a constant term that does not
vary with θ. This establishes the validity of our proposed loss function L(θ) in the continuous-time
setting.

Theorem 1. It holds that arg minθ L(θ) = arg minθ MSVE(θ).

The proof of Theorem 1 is somewhat delicate, necessitating the martingale property associated
with J(t, X̃π

t ;π), as introduced in (7). To this end, we define

M̃t := J(t, X̃π
t ;π) +

∫ t

0

{∑
S∈A

r(S)π(S | s, X̃π
s−) + γH(π(· | s, X̃π

s−))

}
ds, t ∈ [0, T ], (15)

where {X̃π
t : 0 ≤ t ≤ T} is the exploratory dynamics introduced earlier for the convenience of

theoretical analysis. The stochastic process M̃t can be interpreted as the accumulated reward and
entropy bonus up to time t and using the value function to take the expectation of the future reward
between t and T . The following result establishes the martingality of {M̃t : 0 ≤ t ≤ T}, which
is sufficient to prove Theorem 1. Furthermore, it provides a martingale characterization of the
value function J(·, ·;π), which will form the theoretical basis for the continuous-time TD methods
discussed in the next section. The proofs of Theorem 2 and Theorem 1 are deferred to Appendix
C.

Theorem 2. The process {M̃t : 0 ≤ t ≤ T} is an ({F X̃π

t }t≥0,P)-martingale. Conversely, if
there exists a function v ∈ C1,0([0, T ] × S), such that {M̃v

t : 0 ≤ t ≤ T} is a square-integrable

({F X̃π

t }t≥0,P)-martingale, where

M̃v
t := v(t, X̃π

t ) +

∫ t

0

{∑
S∈A

r(S)π(S | s, X̃π
s−) + γH(π(· | s, X̃π

s−))

}
ds,

and v(T, x) = 0 for all x ∈ S, then v(t, x) = J(t, x;π) for all (t, x) ∈ [0, T ]× S.

With the loss function L(θ) in (14), one can use the gradient to update θ:

θ ← θ + α

∫ T

0
∇Jθ(t,Xπ

t )

(∫
(t,T ]

p>dNπ
s + γ

∫ T

t
H(π(· | s,Xπ

s−))ds− Jθ(t,Xπ
t )

)
dt. (16)

Note that (16) is the continuous-time analogue of (10). When there is no additional structure on
Xπ
t , it is a common practice to approximate the integrals in (16) with numerical procedures such

as discretization. However, the piecewise constant nature of the state process Xπ
t enables us to

exploit the inherent discretization provided by the jump points, effectively eliminating the need of
discretization.

12



More precisely, note that the integrals in (16) either amount to a finite sum of values at the jump

points (such as
∫

(t,T ] p
>dNπ

s ) or share a common general form
∫ T

0 u(t,Xπ
t )dt. Let {xt : 0 ≤ t ≤ T}

be a specific realization of the stochastic process {Xπ
t : 0 ≤ t ≤ T}. Instead of approximating∫ T

0 u(t,Xπ
t )dt with

K−1∑
k=0

u(tk, xtk)(tk+1 − tk), (17)

where 0 = t0 < t1 < · · · < tK = T is a fixed grid on [0, T ], we propose an alternative approach.
Suppose there are L jumps in the trajectory denoted by 0 = τ0 < τ1 < · · · < τL+1 = T , we can

express
∫ T

0 u(t,Xπ
t )dt as

∫ T

0
u(t,Xπ

t )dt =

L∑
l=0

∫ τl+1

τl

u(t, xτl)dt. (18)

In contrast to (17), the expression in (18) essentially discretizes the time horizon for each trajectory
without any discretization error. Moreover, for each k, u(t, xtk) is a function of t with xtk held
constant. If u(t, xτl) takes a simple form in t, such as a polynomial, it allows for exact evaluation
of the integral

∫ τl+1

τl
u(t, xτl)dt. In this case, we can completely avoid the numerical procedure

associated with the scheme (17) and compute the value analytically. Even when u(t, xτl) is not
integrable analytically, we can employ advanced numerical integration algorithms to obtain a highly
accurate approximation of the one-dimensional integral

∫ τl+1

τl
u(t, xτl)dt.

Having discussed the general idea, we turn our attention to the network revenue management
problem, which exhibits unique characteristics. The practice of approximating the optimal value
function using a linear combination of basis functions is well-documented in the literature (see,
e.g., Zhang and Adelman 2009, Adelman 2007, Ma et al. 2020). Inspired by this, we propose to
take the parametric family {Jθ(·, ·) : θ ∈ Θ} as a linear functional space with W basis functions
ϕ1(·, ·), . . . , ϕW (·, ·), where Jθ(t, x) :=

∑W
j=1 θjϕj(t, x) for all (t, x) ∈ [0, T ] × S. As a result, the

optimization problem arg minθ L(θ) can be considerably simplified. In particular, we show next
that we do not have to resort to the gradient method (16) and can compute the optimal solution
θ∗ explicitly with Monte Carlo.

Let ϕ(t, x) := (ϕ1(t, x), . . . , ϕW (t, x))> and Nπ
(t,T ]

:= {Nπ
s : t < s ≤ T}. Define h(t,Nπ

(t,T ]) :=∫
(t,T ] p

>dNπ
s + γ

∫ T
t H(π(· | s,Xπ

s−))ds. By expanding (14), we obtain

L(θ) =
1

2
θ>EP̄

[∫ T

0
ϕ(t,Xπ

t )ϕ(t,Xπ
t )>dt

]
θ − θ>EP̄

[∫ T

0
ϕ(t,Xπ

t )h(t,Nπ
(t,T ])dt

]
+

1

2
EP̄
[∫ T

0
[h(t,Nπ

(t,T ])]
2dt

]
.

It is easy to see that the matrix EP̄
[∫ T

0 ϕ(t,Xπ
t )ϕ(t,Xπ

t )>dt
]

is positive semi-definite. Hence,

the optimization problem arg minθ L(θ) reduces to a simple unconstrained quadratic programming
problem. Applying the associated theory of unconstrained quadratic programming, we can assert
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the existence of a minimizer for L(θ), though it may not be unique. One such minimizer can be
computed as follows:

θ∗ =

(
EP̄
[∫ T

0
ϕ(t,Xπ

t )ϕ(t,Xπ
t )>dt

])(−1)

EP̄
[∫ T

0
ϕ(t,Xπ

t )h(t,Nπ
(t,T ])dt

]
, (19)

where D(−1) represents the MoorePenrose inverse of matrix D. In the implementation, the ex-
pectation can be estimated using Monte Carlo across multiple trajectories. Furthermore, building
on the earlier discussion in this section about integrals of the form

∫ T
0 u(t, xt)dt, the two inte-

grals in (19) can be computed as follows. We denote b(t1, t2, x) :=
∫ t2
t1
ϕ(s, x)ds, D(t1, t2, x) :=∫ t2

t1
ϕ(s, x)ϕ(s, x)>ds, and E(t1, t2, x, v(·);π) :=

∫ t2
t1
v(s)H(π(· | s, x))ds.

While the detail can be found in Section 6, it is clear that b and D have a closed form when
the basis functions ϕ(t, x) are polynomials in t. On the other hand, the function E, which depends
on the policy parametrization (see (39)), does not admit an analytical expression in general. As a
result, we are compelled to use numerical integration methods to approximate the function values
for each specific tuple (t1, t2, x). Despite this, note that we are only dealing with the numerical
integration of scalar functions here, for which we can apply well-developed existing algorithms that
are fast and accurate. As discussed earlier, our adaptive discretization method, when paired with
one-dimensional numerical integration, is expected to outperform the direct numerical procedure
described in (17).

Using the notations b, D and E introduced above, we reformulate the integrals involved in (19)
as follows: ∫ T

0
ϕ(t,Xπ

t )ϕ(t,Xπ
t )>dt =

L∑
l=0

D(τl, τl+1, xτl). (20)

In addition, for t ∈ [τl, τl+1), h(t,Nπ
(t,T ]) =

∑L
l′=l+1[p>∆Nπ

τl′
+γE(τl′ , τl′+1, xτl′ ,1;π)]+γE(t, τl+1, xτl ,1;π).

Then, we have∫ T

0
ϕ(t,Xπ

t )h(t,Nπ
(t,T ])dt =

L∑
l=0

{
b(τl, τl+1, xτl)

L∑
l′=l+1

[
p>∆Nπ

τl′
+ γE(τl′ , τl′+1, xτl′ ,1;π)

]
+ γE(τl, τl+1, xτl , b(τl, ·, xτl);π)

}
.

(21)

To conclude this subsection, we have introduced a continuous-time loss function for Monte Carlo
method and theoretically justified its validity. Furthermore, we have explored the special case of
linear function approximation, where the optimal parameter that minimizes our proposed loss func-
tion can be explicitly expressed in a closed form. Concentrating on the closed form that involves
integrals along sample trajectories, we have proposed an adaptive discretization procedure to com-
pute the integrals, significantly reducing or even completely avoiding discretization errors. With
all the techniques in place, the corresponding Monte Carlo algorithm for PE can be implemented
accordingly.
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3.2 TD Methods Based on Martingale Orthogonality Conditions

Given that the continuous-time Monte Carlo PE requires the entire sample trajectory over [0, T ],
this approach is inherently offline and presents challenges when adapting for online use. In this
section, we propose the continuous-time version of the TD methods which is suitable for use in
both online and offline learning settings. Moreover, we provide a theoretical explanation for the
continuous-time TD method from the martingale perspective.

Recall the discrete-time online TD(0) method described in (12). We will first derive the online
TD algorithm for the continuous time problem heuristically before providing a theoretical founda-
tion. For realized jump points τ1 < · · · < τl = t so far, we consider updating the parameter only at
the jump points, by the following rule

θ ← θ + α∇θJθ(τl, Xπ
τl−)[p>∆Nπ

τl
+ Jθ(τl, X

π
τl

)− Jθ(τl, Xπ
τl−)]

+

∫ τl

τl−1

∇θJθ(t,Xπ
τl−)

[
∂Jθ

∂t
(t,Xπ

τl−) + γH(π(· | t,Xπ
τl−))

]
dt.

(22)

To connect to (12), note that between two jump points we have:

Jθ(τl, X
π
τl

)− Jθ(τl−1, X
π
τl−1

) = Jθ(τl, X
π
τl

)− Jθ(τl, Xπ
τl−

) +

∫ τl

τl−1

∂Jθ

∂t
(t,Xπ

τl−
)dt.

Moreover, r(τl−1,τl] = p>∆Nπ
τl

because the reward is only generated at the jump time. The term

p>∆Nπ
τl

+Jθ(τl, X
π
τl

)−Jθ(τl, Xπ
τl−) can be interpreted as the shadow price of the product sold at time

τl. It should be highlighted that, the argument regarding the advantage of exploiting the inherent
discretization provided by the jump points, as discussed in the previous section, holds equally
true here. Therefore, by directly implementing continuous-time TD method in (22) instead of the
discretized approach in (12), we have already reduced the errors associated with time discretization.

To understand the theoretical underpinning of the TD algorithm in the continuous-time setting,
we first look at the logic behind the discrete-time TD(0) algorithm. At its most fundamental level,
it is based on the Bellman equation: for k = 0, . . . ,K − 1,

J∆t(tk, X
π
tk

;π) = EP̄
[
r(tk,tk+1] + γH(π(· | tk, Xπ

tk
))∆t+ J∆t(tk+1, X

π
tk+1

;π) | Xπ
tk

]
.

A necessary and sufficient condition for the Bellman equation to hold is:

EP̄
[K−1∑
k=0

ηk

{
EP̄
[
r(tk,tk+1] + γH(π(· | tk, Xπ

tk
))∆t+ J∆t(tk+1, X

π
tk+1

;π) | Xπ
tk

]
−J∆t(tk, X

π
tk

;π)
}]

= 0,

(23)

for any test function η = (η0, . . . , ηK−1)> such that each ηk is FXπ

tk
-measurable and bounded. When

the approximate value function J∆t(tk, x;π) is replaced by Jθ∆t(tk, x), condition (23) dictates that
the Bellman error associated with Jθ∆t(tk, x) should be orthogonal to the space of test functions
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η. Moreover, it follows from the properties of conditional expectation that condition (23) is also
equivalent to

EP̄

[
K−1∑
k=0

ηk

{
r(tk,tk+1] + γH(π(· | tk, Xπ

tk
))∆t+ J∆t(tk+1, X

π
tk+1

;π)− J∆t(tk, X
π
tk

;π)
}]

= 0. (24)

Therefore, the previous orthogonality requirement for the Bellman error has been transformed into
one for the TD error. From the perspective of algorithm design, it is natural to select a tractable
subspace of test functions, within which the orthogonality condition (24) is required to hold. For
instance, if we consider value function approximation Jθ∆t ≈ J∆t and take ηk = ∇θJθ∆t(tk, Xπ

tk
), we

then aim to solve the following equation for θ :

EP̄

[
K−1∑
k=0

∇θJθ∆t(tk, Xπ
tk

)
{
r(tk,tk+1] + γH(π(· | tk, Xπ

tk
))∆t+ Jθ∆t(tk+1, X

π
tk+1

)− Jθ∆t(tk, Xπ
tk

)
}]

= 0.

Applying a stochastic approximation method (Robbins and Monro 1951) to solve this equation
essentially leads to the discrete-time TD(0) algorithm with function approximation. Similarly,
taking ηk =

∑k
k′=0 λ

tk−tk′∇θJθ∆t(tk′ , Xtk′ ) will lead to the TD(λ) algorithm. We next establish a
continuous-time analog of condition (24) to characterize the true value function J(·, ·;π).

Theorem 3. A function v ∈ C1,0([0, T ]×S) is the value function associated with the policy π, i.e.
v(t, x) = J(t, x;π) for all (t, x) ∈ [0, T ]×S, if and only if it satisfies v(T, x) = 0 for all x ∈ S, and
the following martingale orthogonality condition holds for any bounded process ξ with ξt ∈ FX

π

t− for
all t ∈ [0, T ]:

EP̄

[∫ T

0
ξt

{
dv(t,Xπ

t ) + p>dNπ
t + γH(π(· | t,Xπ

t−))dt

}]
= 0. (25)

The proof of Theorem 3 relies on the martingality of the process {M̃t : 0 ≤ t ≤ T} in (15) as
discussed in Theorem 2, and the fact that {Xπ

t : 0 ≤ t ≤ T} has the same distribution (under P̄)
as {X̃π

t : 0 ≤ t ≤ T} (under P). See Appendix C.

For the parametric family {Jθ(t, x) : θ ∈ Θ}, our objective is to find θ∗ ∈ Θ such that the
estimated value function Jθ

∗
satisfies the orthogonality condition (25). When we denote M θ

t :=
Jθ(t,Xπ

t ) +
∫

(0,t] p
>dNπ

s + γ
∫ t

0 H(π(· | s,Xπ
s−))ds and take ξt = ∇θJθ(t,Xπ

t−), the objective then

becomes to solve EP̄[
∫ T

0 ∇θJ
θ(t,Xπ

t−)dM θ
t ] = 0 for a solution θ∗ ∈ Θ. If it has a unique solution

θ∗ ∈ Θ, the stochastic approximation method can be applied to solve for the unique solution θ∗

iteratively. This method updates θ in an offline manner after each whole episode as follows:

θ ← θ + α

∫ T

0
∇θJθ(t,Xπ

t−)

{ n∑
j=1

[Jθ(t,Xπ
t− −Aj)− Jθ(t,Xπ

t−) + pj ]dN
π
j,t

+

[
∂Jθ

∂t
(t,Xπ

t−) + γH(π(· | t,Xπ
t−))

]
dt

}
,

where Itô’s formula has been applied to establish the equality dJθ(t,Xπ
t ) =

∑n
j=1[Jθ(t,Xπ

t−−Aj)−
Jθ(t,Xπ

t−)]dNπ
j,t + ∂Jθ

∂t (t,Xπ
t−)dt. Inspired by the above offline updating rule, we can also update
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the parameter θ online at each jump point τl (for l = 1, . . . , L). This online updating rule is exactly
consistent with our heuristically proposed continuous-time online TD(0) method in (22).

For policy evaluation in the network revenue management problems, we briefly discuss the
continuous-time TD(0) method with linear function approximation. We take Jθ(t, x) = θ>ϕ(t, x),
where ϕ(t, x) = (ϕ1(t, x), . . . , ϕW (t, x))> is the vector of basis functions, then there is an unique

solution to the system of equations EP̄[
∫ T

0 ∇θJ
θ(t,Xπ

t−)dM θ
t ] = 0 under mild conditions. Indeed,

the linear system can be solved explicitly as

θ∗ =

(
EP̄
[∫ T

0
ϕ(t,Xπ

t−)dϕ(t,Xπ
t )>

])−1

EP̄
[∫ T

0
ϕ(t,Xπ

t−)

{
p>dNπ

t + γH(π(· | t,Xπ
t−))dt

}]
,

(26)

assuming the existence of the inverse. Moreover, following the adaptive discretization procedure
discussed in the previous section, the integrals in (26) can also be computed with reduced errors.
Specifically, we have∫ T

0
ϕ(t,Xπ

t−)

{
p>dNπ

t +γH(π(· | t,Xπ
t−))dt

}
=

L∑
l=1

ϕ(τl, xτl−1
)rτl+γ

L∑
l=0

E(τl, τl+1, xτl , ϕ(·, xτl);π).

(27)
In addition, we denote F (t1, t2, x) :=

∫ t2
t1
ϕ(s, x)∂ϕ∂s (s, x)ds, where an explicit form of F can be

obtained under the selected basis function ϕ(t, x) in Section 6. It follows that∫ T

0
ϕ(t,Xπ

t−)dϕ(t,Xπ
t )> =

L∑
l=1

ϕ(τl, xτl−1
)[ϕ(τl, xτl)− ϕ(τl, xτl−1

)] +
L∑
l=0

F (τl, τl+1, xτl). (28)

On combining these components together, we can then easily obtain an estimate of θ∗ in (26) by
replacing the expectations with sample averages.

4 Policy Gradient

For a given admissible policy, based on the value function estimate derived from the PE step, we
next seek to improve the policy using the PG method. Specifically, consider a parametric family of
admissible policies {πφ(· | ·, ·) : φ ∈ Φ}, our objective is to determine arg maxφ∈Φ J(0, c;πφ), which

directs our attention to the calculation of the gradient ∇φJ(0, c;πφ).

For technical purposes, we impose some mild conditions on the parametric family {πφ(· | ·, ·) :
φ ∈ Φ}:

Assumption 1. For all (t, x, S) ∈ [0, T ] × S × A, the mapping φ 7→ πφ(S | t, x) is smooth on Φ.
Moreover, for all (x, S, φ) ∈ S ×A× Φ, the mapping t 7→ ∇φπφ(S | t, x) is continuous on [0, T ].

According to Lemma 1, the characterization of the value function J(·, ·;πφ) is as follows:
∂J

∂t
(t, x;πφ) +

∑
S∈A

H(t, x, S, J(·, ·;πφ))πφ(S | t, x) + γH(πφ(· | t, x)) = 0, (t, x) ∈ [0, T )× S,

J(T, x;πφ) = 0, x ∈ S.
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Taking derivative w.r.t. φ on both sides, we obtain a new system of equations satisfied by
g(t, x;φ) := ∇φJ(t, x;πφ):

∂g

∂t
(t, x;φ) +

∑
S∈A

H(t, x, S, J(·, ·;πφ))∇φπφ(S | t, x) + γ∇φH(πφ(· | t, x))

+
∑
S∈A

(∑
y∈S

g(t, y;φ)q(y | t, x, S)

)
πφ(S | t, x) = 0, (t, x) ∈ [0, T )× S,

g(T, x;φ) = 0, x ∈ S.

(29)

The following result is a generalization of Lemma 1, except that we allow R(t, x) to be an arbitrary
function. The proof is similar to the proof of Lemma 1, and hence omitted.

Lemma 2. Suppose R(t, x) is a real-valued function defined on [0, T ] × S that is continuous in
t ∈ [0, T ] for all x ∈ S. For any given policy π ∈ Π, there exist a unique ϕ ∈ C1,0([0, T ] × S)
satisfying the following equation:

∂ϕ

∂t
(t, x) +R(t, x) +

∑
S∈A

(∑
y∈S

ϕ(t, y)q(y | t, x, S)

)
π(S | t, x) = 0, (t, x) ∈ [0, T )× S,

ϕ(T, x) = 0, x ∈ S,

where q(y | t, x, S) is given in (1). Moreover, this unique solution ϕ has a stochastic representation:

ϕ(t, x) = EP̄
[∫ T

t
R(s,Xπ

s−)ds | Xπ
t = x

]
, (t, x) ∈ [0, T ]× S.

For our interest of computing the policy gradient, we denote a special reward function

R̄(t, x;φ) :=
∑
S∈A

H(t, x, S, J(·, ·;πφ))∇φπφ(S | t, x) + γ∇φH(πφ(· | t, x)).

Then, combining equation (29) and Lemma 2, we have

g(t, x;φ) = EP̄
[∫ T

t
R̄(s,Xπφ

s− ;φ)ds | Xπφ

t = x

]
. (30)

Therefore, the computation of PG can be viewed as solving a PE problem with a different reward
function. Unlike the earlier described PE task, which requires learning the entire function g(·, ·;φ),
the current task is more straightforward as it involves only computing the function value g(0, c;φ),
via (30) along multiple sample trajectories. However, it is important to note that the new reward
function, R̄, incorporates the Hamiltonian H, which can not be directly observed nor calculated
in the absence of knowledge about environmental parameters. The next theorem transforms the
representation in (30) into an alternative form which can be estimated based on observations of
samples and the learned value function, effectively overcoming the aforementioned challenge.
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Theorem 4. Given an admissible parameterized policy πφ satisfying Assumption 1, the policy
gradient ∇φJ(0, c;πφ) admits the following representation:

∇φJ(0, c;πφ) = EP̄

[
n∑
j=1

∫
(0,T ]
∇φ logπφ(Sπ

φ

t | t,Xπφ

t− )[J(t,Xπφ

t− −Aj ;πφ)− J(t,Xπφ

t− ;πφ) + pj ]dN
πφ

j,t

+ γ

∫ T

0
∇φH(πφ(· | t,Xπφ

t− ))dt

]
. (31)

For a given policy πφ, the PE step yields an optimal estimate Jθ
∗
(t, x) of the true value func-

tion J(t, x;πφ) when we consider linear function approximations in the context of network revenue
management. With J(t, x;πφ) approximated by Jθ

∗
(t, x), all the terms inside the expectation in

(31) become computable from observed trajectories under the current policy πφ, and the expec-
tation can be replaced by sample averages in estimating the policy gradient. When dealing with
the samples, the computation involves determining a finite sum of values at the jump points and
integrating the gradient of the entropy term over [0, T ]. For the former, we can simply plug in
the data (τl, Xτl−, Xτl , rτl) obtained at the jump time τl. The latter part – the integration – is ad-
dressed using the subsequent technique to reduce the approximation error, as previously discussed
in Section 3.1. Denote G(t1, t2, x;πφ) :=

∫ t2
t1
∇φH(πφ(· | s, x))ds. Then,∫ T

0
∇φH(πφ(· | t, xt))dt =

L∑
l=0

G(τl, τl+1, xτl ;π
φ). (32)

Under the parametrization of πφ to be specified in Section 6, an explicit expression for the scalar
integral G is unavailable; a numerical integration algorithm will be used instead for its computa-
tion.

Theorem 4 extends the policy gradient formula for controlled diffusion processes in Jia and
Zhou (2022b) to the intensity control problem with discrete states. In Jia and Zhou (2022b), the
policy gradient formula (with discount factor β = 0 in their paper) is presented as follows:

∇φJ(0, x;φ) = EP̄
[ ∫ T

0
∇φ logπφ(aπ

φ

s | t,Xπφ

t )[dJ(t,Xπφ

t ;πφ) + r(t,Xπφ

t , aπ
φ

t )dt]

− γ
∫ T

0
∇φ logπφ(aπ

φ

t | t,Xπφ

t )[logπφ(aπ
φ

t | t,Xπφ

t ) + 1]dt | Xπφ

0 = x

]
,

(33)

where (aπ
φ

s ) is the action process under policy πφ, and r(·, ·, ·) denotes the continuously accrued
running reward in their model. There are some major differences between (31) and (33), which
result in crucial modifications to design of the RL algorithms as we elaborate below.

Firstly, the term dJ(t,Xπφ
t ;πφ) in (33) is replaced with

n∑
j=1

[J(t,Xπφ

t− −Aj ;πφ)− J(t,Xπφ

t− ;πφ)]dNπφ

j,t . (34)

In Jia and Zhou (2022b), where {Xπφ
t : 0 ≤ t ≤ T} is a diffusion process, the term dJ(t,Xπφ

t ;πφ)

has to be approximated by the finite difference Jθ(t + ∆t,Xπφ

t+∆t) − Jθ(t,Xπφ
t ) on a discretized

19



time grid, when implementing the algorithm. As a result, actions must be generated at each
time point on the grid to evaluate ∇φ logπφ(aπ

φ

t | t,Xπφ
t ). However, in our context, we benefit

from the inherent characteristics of the jump process (Xπφ
t ). While Itô’s formula establishes the

equivalence between dJ(t,Xπφ
t ) and ∂J

∂t (t,Xπφ
t− )dt+

∑n
j=1[J(t,Xπφ

t− −Aj ;πφ)−J(t,Xπφ
t− ;πφ)]dNπφ

j,t ,

the term ∇φ logπφ(Sπ
φ

t | t,Xπφ
t− )∂J∂t (t,Xπφ

t− ) vanishes after averaging out the randomness from

action randomization. Specifically, it follows from Sπ
φ

t ∼ πφ(· | t,Xπφ
t− ) that

EP̄
[
∇φ logπφ(Sπ

φ

t | t,Xπφ

t− )
∂J

∂t
(t,Xπφ

t− )

]
=EP̄

[
∂J

∂t
(t,Xπφ

t− )
∑
S∈A

[∇φ logπφ(S | t,Xπφ

t− )]πφ(S | t,Xπφ

t− )

]

=EP̄

[
∂J

∂t
(t,Xπφ

t− )∇φ
(∑
S∈A

πφ(S | t,Xπφ

t− )

)]
= 0.

The refined expression (34) makes it possible to avoid artificially discretizing time in the algorithmic
implementation, and instead to solely utilize the information at the jump points in each trajectory
of (Xπφ

t ). Therefore, action randomization is only required at the times when customers arrive.

Secondly, in line with the aim of avoiding successive action randomization at all mesh grid points,
we also average out the randomness from the action randomization in the term −∇φ logπφ(Sπ

φ

t |
t,Xπφ

t− )[logπφ(Sπ
φ

t | t,Xπφ
t− )+1] in (33). Consequently, we arrive at the term ∇φH(πφ(· | t,Xπφ

t )),
as presented in our theorem. Both of the aforementioned modifications contribute to reducing the
variance of the policy gradient method and avoiding unnecessary action randomization.

5 Actor-Critic Algorithms

Combining the PE and PG modules in Sections 3 and 4, we next present two model-free actor-
critic algorithms for the network revenue management problem introduced in Section 2. Algorithm
1, which utilizes the Monte Carlo method for PE (Section 3.1), is detailed in the main text.
Algorithm 2, adhering to a similar framework but employing the TD(0) method for PE (Section
3.2), is presented in Appendix B.

In both algorithms, we assume a linear parametrization for {Jθ(t, x) : θ ∈ Θ}, that is, Jθ(t, x) =∑W
j=1 θjϕj(t, x), where ϕ1, . . . , ϕW are the basis functions. We also consider a parameterized family

of stochastic policies {πφ(S | t, x) : φ ∈ Φ}. Our aim is to determine the optimal values for (θ, φ)
jointly, by alternately updating each parameter. Note that both algorithms are designed for offline
learning, where full trajectories are sampled and observed repeatedly during different episodes and
(θ, φ) are updated after every M episodes, with M defined as the batch size. We tune a function of
the iteration number, γ(·), to gradually decrease the temperature (exploration level) to zero across
the iterations in the algorithm implementation, which is slightly different from our theoretical
analysis where γ is held as a constant.

In addition, we employ an environment simulator to generate trajectories under given policies.
The environment simulator, denoted as (t′, x′, S′, r′) = Environment(t, x,πφ(· | ·, ·)), operates by
first taking current time-state pair (t, x) and the policy πφ(· | ·, ·) as inputs. It then samples a
time interval s from an exponential distribution with rate λ, indicating the duration until the next
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customer arrival. Using the updated time t′ = t + s and the current state x, an offer set S′ is
sampled from the policy πφ(· | t′, x). The state transitions to x − Aj with probability Pj(S

′) and
remains at x with probability P0(S′). Based on this distribution, the state at t′ is sampled, and the
corresponding reward r′ is returned. If x′ 6= x, the simulation outputs the transition time t′, new
state x′, action S′ and reward r′. If x′ = x, with the current time-state pair (t′, x′), the process
repeats: a new time interval s is drawn from the same exponential distribution, and the above steps
are executed until a transition to a different state occurs, at which point it outputs the transition
time, along with the corresponding new state, action, and reward at that time.

6 Experimental Setup and Numerical Performance

In this section, we specialize the algorithms to the choice-based network revenue management. We
first seek a suitable family of functions {Jθ(t, x) : θ ∈ Θ} that can approximate the value function
associated with any particular policy within our selected parametric policy family {πφ : φ ∈ Φ}.
We draw inspiration from the form of the approximated optimal value function within a discrete
time framework, as suggested by Zhang and Adelman (2009):

Ṽ∆t(tk, x) = θk +

m∑
i=1

Vk,ixi, (35)

where Vk,i estimates the marginal value of a unit resource i in period (tk, tk+1], and θk is a constant
offset. For terminal condition, it is assumed that θK = 0 and VK,i = 0 for all i = 1, . . . ,m. We pro-
pose to use the following continuous time counterpart for the family {Jθ(t, x) : θ ∈ R(m+1)×(d+1)}:

Jθ(t, x) :=

d∑
l=0

θ(0,l)(T − t)l +

m∑
i=1

( d∑
l=0

θ(i,l)(T − t)l
)
xi. (36)

Here, we replace θk and Vk,i in the discrete-time approximation (35), which would be infinite-
dimensional in the continuous time, with a dth-order polynomial of (T − t). The family {Jθ(t, x) :
θ ∈ R(m+1)×(d+1)} constitutes a linear space, with the basis functions

ϕ(t, x) = (1, T − t, (T − t)2, · · · , (T − t)d;x1, (T − t)x1, (T − t)2x1, · · · , (T − t)dx1;

· · · ;xm, (T − t)xm, (T − t)2xm, · · · , (T − t)dxm)>.
(37)

We now explore the selection of the parametric family of policies {πφ : φ ∈ Φ}, guided by the
family of value functions above. Given an approximation Jθ as defined in (36) for the optimal value
function J∗, applying the Hamiltonian H to Jθ yields the following expression:

H(t, x, S, Jθ(·, ·)) =
n∑
j=1

[Jθ(t, x−Aj)− Jθ(t, x) + pj ]λPj(S)

= −
d∑
l=0

m∑
i=1

n∑
j=1

Aijθ(i,l)λPj(S)(T − t)l + r(S),
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Algorithm 1 Actor-Critic Algorithm (PE via Monte Carlo method)

1: Inputs: initial state c, time horizon T , number of iterations N , batch size M ; functional forms of basis
functions ϕ1, . . . , ϕW , functional form of the policy πφ(· | ·, ·) and an initial value φ0; a temperature
schedule function γ(·); initial learning rates αφ and a learning rate schedule function w(·)

2: Required program: an environment simulator (t′, x′, S′, r′) = Environment(t, x,πφ(· | ·, ·))
3: Initialize φ = φ0
4: for n = 1 to N do
5: for i = 1 to M do . Generate M full trajectories under policy πφ

6: Store (τ
(i)
0 , x

(i)
0 )← (0, c)

7: Initialize l = 0, (t, x) = (0, c) . Initialize l to count state transitions in each trajectory, and (t, x)
to record the time and state right after a transition

8: while True do
9: Apply (t, x) to the environment simulator to get (t′, x′, S′, r′) = Environment(t, x,πφ(· | ·, ·))

10: if t′ ≥ T then
11: break
12: end if
13: Update l← l + 1

14: Store current transition: (τ
(i)
l , x

(i)
l , S

(i)
l , r

(i)
l )← (t′, x′, S′, r′)

15: Update (t, x)← (t′, x′)
16: end while
17: Store L(i) ← l, τ

(i)

L(i)+1
← T

18: end for
19: Evaluate policy πφ: [using formula (19), incorporating techniques (20) and (21)]

θ∗ =

(
1

M

M∑
i=1

L(i)∑
l=0

D(τ
(i)
l , τ

(i)
l+1, x

(i)
l )

)(−1)

×

(
1

M

M∑
i=1

L(i)∑
l=0

{
b(τ

(i)
l , τ

(i)
l+1, x

(i)
l )

L(i)∑
l′=l+1

[
r
(i)
l′ + γ(n)E(τ

(i)
l′ , τ

(i)
l′+1, x

(i)
l′ ,1;πφ)

]
+ γ(n)E(τ

(i)
l , τ

(i)
l+1, x

(i)
l , b(τ

(i)
l , ·, x(i)l );πφ)

})

20: Compute policy gradient at φ: [using formula (31), incorporating technique (32)]

∆φ =
1

M

M∑
i=1

(
L(i)∑
l=1

∇φ logπφ(S
(i)
l | τ

(i)
l , x

(i)
l−1)[Jθ

∗
(τ

(i)
l , x

(i)
l )− Jθ

∗
(τ

(i)
l , x

(i)
l−1) + r

(i)
l ]

+ γ(n)

L(i)∑
l=0

G(τ
(i)
l , τ

(i)
l+1, x

(i)
l ;πφ)

)

21: Update φ by

φ← φ+ αφw(n)∆φ

22: end for
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which is also a dth-order polynomial in (T − t). The above discussion, together with (9), motivates
us to consider the following parametric family of policies {πφ : φ ∈ R2n×(d+1)}:

πφ(S | t, x) :=
exp{ 1

γhS(t;φ)}∑
S̄∈A(x) exp{ 1

γhS̄(t;φ)}
, for (t, x) ∈ [0, T ]× S, S ∈ A(x), (38)

where hS(t;φ) :=
∑d

l=0 φ(S,l)(T − t)l. It should be noted that the stochastic policy in (38) involves
2n × (d + 1) parameters {φ(S,l) : S ∈ A, l = 0, . . . , d}, which grows exponentially with n and
becomes intractable for even moderate-sized n. To address this challenge, we limit the number of
parameters by only capturing the interaction between a pair of products. Specifically, we introduce
a set of parameters {φ(j,j′,l) : j = 1, . . . , n; j′ = 1, . . . , n; l = 0, . . . , d}, yielding a parameter space

of Rn×n×(d+1). For all S ∈ A and l = 0, . . . , d, we let φ(S,l) be

φ(S,l) =
∑

1≤j, j′≤n
φ(j,j′,l)S

jSj
′
,

where the offer set S ∈ A is characterized by an n-dimensional binary valued vector (S1, . . . , Sn),
with Sj := 1{j ∈ S} for j = 1, . . . , n. Intuitively, φ(j,j′,l) captures the interaction between product
j and j′. This strategy effectively reduce the number of parameters from O(2n) to O(n2). Then,
we employ the reduced parametric family {πφ : φ ∈ Rn×n×(d+1)}, where πφ is specified as follows:
for (t, x) ∈ [0, T ]× S, S ∈ A(x),

πφ(S | t, x) =
exp

{
1
γ

∑d
l=0

(∑
1≤j, j′≤n φ(j,j′,l)S

jSj
′)

(T − t)l
}∑

S̄∈A(x) exp
{

1
γ

∑d
l=0

(∑
1≤j, j′≤n φ(j,j′,l)S̄jS̄j

′)(T − t)l} . (39)

Having specified Jθ(t, x) and πφ(S | t, x) in (36) and (39), we revisit the algorithms to discuss
the approximation errors. Firstly, due to the form of the basis functions, as described in (37),
the functions b(·, ·), D(·, ·) and F (·, ·) can be evaluated exactly without any approximation errors.
However, the softmax form of πφ, defined in (39), complicates the derivation of antiderivatives
of functions associated with the entropy H(πφ(· | t, x)), making it difficult to obtain explicit
expressions for E(t1, t2, x, v(·);πφ) and G(t1, t2, x;πφ). Instead, the corresponding one-dimensional
integrals with respect to time t are addressed using advanced numerical integration techniques with
small errors. Therefore, in Algorithm 1 and 2, the errors in calculating θ∗ and ∆φ arise solely from
the replacement of exact expectations with sample averages and the computations involved in the
functions E and G, while the latter is minimal.

6.1 Benchmarks

In this section, we introduce the benchmarks that have been studied in the literature to evaluate
the performance of our proposed algorithm in experiments.

6.1.1 Optimal Policy from Discretized Dynamic Programming

Given the challenges in solving the HJB equation (2) within a continuous-time framework, one
can consider using finite difference approximation to replace derivative, thus deriving the following
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dynamic programming (DP) problem
V ∗∆t(tk, x) = max

S∈A(x)

{∑
j∈S

λ∆tPj(S)[pj + V ∗∆t(tk+1, x−Aj)− V ∗∆t(tk+1, x)]

}
+ V ∗∆t(tk+1, x),

∀ k = 0, . . . ,K − 1; x ∈ S.
V ∗∆t(tK , x) = 0, ∀x ∈ S.

(40)

It is worth noting that the DP problem (40) corresponds exactly to the underlying dynamic program
of the discrete-time model M∆t described in Section 3. Therefore, when ∆t is sufficiently small,
V ∗∆t(0, c) can serve as an reliable approximation to the true optimal expected revenue V ∗(0, c). This
makes it a suitable benchmark for evaluating the performance of our proposed policy. When the
size of the state space S is relatively small, we can solve the DP problem (40) recursively to obtain
V ∗∆t(0, c). However, when the size of S is large, this approach becomes challenging.

6.1.2 Other Policies

In addition, we consider the following policies as benchmarks.

• Uniform Random Policy. Denoted by πUniform-Random, this is a stationary policy that se-
lects among all available offer sets at each given state with equal probability. That is,
πUniform-Random(S | x) = 1

|A(x)| for all x ∈ S and S ∈ A(x).

• Greedy Policy. The greedy policy is a deterministic and stationary policy that always selects
the offer set with the highest expected revenue from all available offer sets at each state, that
is, arg maxS∈A(x)

∑
j∈S pjPj(S).

• CDLP Policy. This policy is first introduced in Liu and Van Ryzin (2008) based on the
following choice-based deterministic linear programming (CDLP) model

zCDLP = max
h

∑
S∈A

λR(S)h(S)

s.t.
∑
S∈A

λQi(S)h(S) ≤ ci, ∀ i = 1, . . . ,m.∑
S∈A

h(S) ≤ T,

h(S) ≥ 0, ∀S ∈ A,

where h(S) denotes the total duration that the subset S is offered, R(S) =
∑

j∈S pjPj(S) de-
notes the expected revenue from offering S to an arriving customer, andQi(S) =

∑n
j=1AijPj(S)

denotes the rate of using a unit of capacity on resource i when S is offered. The CDLP policy
executes by sequentially offering each set S for the duration specified by the optimal solution
to the CDLP, following the lexicographic order of the variable indices.

In addition, it has been demonstrated in Liu and Van Ryzin (2008) that the optimal objective
function value of the CDLP provides an upper bound on the optimal expected revenue V ∗(0, c)
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in the stochastic problem. It is worth mentioning that although the discussions in Liu and
Van Ryzin (2008) are based on a discrete-time model, the conclusion regarding the upper
bound property can be readily extended to our continuous-time framework.

• ADP Policy. This policy is derived from the approximate dynamic programming (ADP)
approach detailed in Zhang and Adelman (2009). Since the ADP approach operates in a
discrete-time setting, we apply it to the discrete-time model M∆t described in Section 3.
That is, to consider an affine functional approximation Ṽ∆t(tk, x) = θk +

∑m
i=1 Vk,ixi to the

optimal value function V ∗∆t(tk, x) and then formulates the dynamic program (40) as a linear
program:

min
θ, V

θ0 +
∑
i

V0,ici

s.t. θk − θk+1 +
∑
i

(Vk,i − Vk+1,i)xi ≥ λ∆t
∑
j∈S

Pj(S)[pj −
m∑
i=1

Vk+1,iAij ],

∀ k = 0, . . . ,K − 1; x ∈ S; S ∈ A(x),

θK = 0, VK,i = 0.

With the optimal solution (θ∗, V ∗) for the above linear program, the ADP policy is constructed
by offering arg maxS∈A(x)

∑
j∈S Pj(S)[pj −

∑m
i=1 V

∗
k+1,iAij ] in time period (tk, tk+1] and state

x. Given that the ADP policy varies with different degrees of time discretization, we will
refer to the ADP policy under the discrete-time model M∆t as ADP-∆t.

Note that all the benchmarks mentioned above, except for the uniform random policy, require
the knowledge of environment, specifically the customer arrival rate λ and the choice probabilities
Pj(S). Thus we provide the exact values of the parameters to these policies. Therefore, their
performance is slightly inflated compared to our RL algorithm which does not require knowing the
values of such parameters.

6.2 Experiment One: A Small Network

We consider a simple example featuring 2 resources and 3 products. The consumption is captured

by matrix A =

[
1 0 1
0 1 1

]
. The initial stocks for the 2 resources are set to c = (5, 5)> and the price

for the 3 products are fixed at p = (1, 1, 1.5). We set the booking horizon to T = 15, during which
customer arrivals are modeled by a Poisson process with a rate of λ = 0.9. The choice probabilities
are determined by the weights vector v = (v0, v1, v2, v3) = (27.8, 42, 42, 55) through the multinomial
logit (MNL) choice model, specified as

Pj(S) :=
vj

v0 +
∑

j∈S vj
, for S ⊆ J , j ∈ S.

For this example, we present the results of Algorithm 1, which utilizes Monte Carlo method
for the PE step. The performance of Algorithm 2, although not presented in the paper, is similar
to Algorithm 1. The inputs are configured as follows: we set c = (5, 5)>, T = 15, N = 12, 000
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and M = 100. Moreover, the functional forms of basis functions ϕ(t, x) and policy πφ are defined
in (37) and (39), respectively, both with d = 2. The initial values for all φ(j, j′, l) are set to
0, corresponding to the uniform random policy. The temperature schedule function is defined as
γ(n) = 0.1 × 0.5b

n
1000
c. Learning rate for φ is initialized as αφ = 1 × 10−7 and decays according

to w(n) = 0.5b
n

1000
c. Every 100 iterations, we conduct a performance evaluation of the policy πφ

obtained at the end of such interval. This evaluation involves simulating a Poisson arrival stream of
customers to generate revenues and estimating the expected revenue using 10,000 samples. Figure 1
illustrates the variation in the expected revenue of the Algorithm 1 as the iterations progress. Upon
completing the final iteration, iteration 12,000, the simulated average revenue of the resulting policy,
denoted as πRL-Random, achieves a value of 8.841.
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Figure 1: Average revenue of Algorithm 1 as the iterations progress for the example in Section 6.2

Next, we solve the DP problem (40) for this example. By setting ∆t = 0.001, we obtain a
highly reliable approximation of the optimal expected revenue, V ∗0.001(0, c) = 8.934. Moreover,
we implement the benchmarks outlined in Section 6.1, including the Uniform-Random, Greedy,
CDLP, and ADP policies. In line with the performance evaluations conducted in the RL algorithm,
each benchmark policy here is simulated 10,000 times under the same Poisson arrival stream of
customers. Table 1 reports the simulated average revenue for our RL policy and the benchmarks,
with the 99%-confidence intervals listed in the adjacent column. To make it easy to compare the
performance, we also provide the ratio of each simulated average revenue to the optimal value
function from dynamic programming, V ∗0.001(0, c) = 8.934.

The numerical results indicate that, our algorithm achieves 98.96% of the optimal performance,
outperforming all other benchmarks other than dynamic programming. Moreover, in the considered
small network, ADP policies maintains relatively stable performance across different degrees of time
discretization and consistently outperform other benchmarks. Despite this, our RL-random policy
still exhibits a slight advantage over the best-performing ADP-0.1 policy.
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Table 1: Simulation Results for Selected Policies

Policy Average Revenue 99%-CI Ratio(%)

RL-Random 8.841 ±0.033 98.96
Uniform-Random 7.599 ±0.037 85.06

Greedy 8.473 ±0.024 94.84
CDLP 8.577 ±0.045 96.00
ADP-1 8.752 ±0.041 97.96

ADP-0.5 8.735 ±0.042 97.77
ADP-0.2 8.732 ±0.042 97.73
ADP-0.1 8.757 ±0.042 98.02
ADP-0.05 8.753 ±0.042 97.97

6.3 Experiment Two: A Medium-Sized Airline Network

Figure 2: Airline Network

This example considers a medium-sized airline network consisting of 6 flight legs with a total
of 9 products (including local and connecting itineraries). The booking horizon is set to T = 200
time units. Figure 2 presents the airline network, with each leg labeled, for example, “Leg 1 (12;
morning)” represents a morning flight with an initial capacity of 12 seats, and so forth for the
remaining legs. Table 2 describes the products. The product set is segmented into 3 disjoint
consideration sets, corresponding to 3 customer segments. Segments are defined in terms of their
origin-destination market. Table 3 describes precisely the characteristics of each segments. For
segments l = 1, 2, 3, the second column gives the arrival rates for customers from segment l,
denoted by λl, so λ =

∑3
l=1 λl = 0.8 is the total arrival rate; the third column outlines the

consideration set for each segment, represented by Jl; the fourth column details the preference
weights for each product within a segment, expressed as (vlj)j∈Jl ; the last column presents the no-
purchase preference weight for segment l, indicated by vl0. The choice probabilities are determined
by employing the mixed multinomial logit choice model as follows: for j ∈ Jl for some l = 1, 2, 3,
S ⊆ J , we have

Pj(S) :=

{
λl
λ ·

vlj∑
j∈S∩Jl

vlj+vl0
, j ∈ S,

0, j /∈ S.

Table 2: Product Descriptions and Prices

Product 1 2 3 4 5 6 7 8 9

Legs 1 2 3 4 5 6 {1, 4} {2, 5} {3, 6}
Price 8 10 6 8 10 6 9 12 7
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Table 3: Segments and Their Characteristics

Segment Arrival rate Description Consideration set Preference weights No-purchase weight
l λl Jl (vlj)j∈Jl vl0
1 0.2 A → H {1, 2, 3} (5, 10, 1) 1
2 0.2 H → B {4, 5, 6} (5, 10, 1) 1
3 0.4 A → H → B {7, 8, 9} (5, 1, 10) 5

For this example, we implement Algorithm 1 once again. However, this time we utilize the
Adam algorithm for optimization, which is introduced by Kingma and Ba (2014) as an improve-
ment upon the standard SGD algorithm. The inputs are configured as follows: We set c =
(12, 20, 16, 20, 12, 16)>, T = 200, N = 15, 000 and M = 10. Moreover, the functional forms of
basis functions ϕ(t, x) and policy πφ are defined in (37) and (39), respectively, both with d = 3.
The initial values for all φ(j, j′, l) are set to 0, corresponding to the uniform random policy. The
temperature schedule function is defined as γ(n) = 0.1 × 0.1b

n
2000
c. Learning rate for φ is initial-

ized as αφ = 1 × 10−9 and decays according w(n) = 0.5b
n

2000
c. Every 100 iterations, we conduct a

performance evaluation of the policy πφ obtained at the end of such interval. Given the higher sim-
ulation cost per sample trajectory in this example, we adjust the number of samples for estimating
expected revenue from 10,000 to 1,000. Figure 3 illustrates the variation in the expected revenue
of the updated policies as the iterations progress. Upon completing the final iteration, iteration
15,000, the simulated average revenue of the resulting policy, denoted as πRL-Random, achieves a
value of 677.251. We also observe that there is a significant jump in the average revenue around
2,000 iterations. This is because the temperature parameter γ(n) changes from 0.1 to 0.01 at
n = 2, 000.
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Figure 3: Average revenue of Algorithm 1 as the iterations progress for the example in Section 6.3

Due to the problem’s state space being excessively large, approximately 106, dynamic program-
ming approaches become infeasible. We therefore implement other benchmarks outlined in Section
6.1 for this example. Each benchmark policy is also simulated 1,000 times under the same Pois-
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son arrival stream of customers. Table 1 reports the simulated average revenue for our RL policy
and the benchmarks, with the 99%-confidence intervals listed in the adjacent column. In addi-
tion, we also present the relative performance difference between the RL-random policy and each
benchmark. The table indicates that our algorithm outperforms simple heuristics such as Uniform-

Table 4: Simulation Results for Selected Policies

Policy Average Revenue 99%-CI RL-Random
* − 1 (%)

RL-Random 677.251 ±1.822 0
Uniform-Random 595.628 ±2.686 13.704

Greedy 605.563 ±1.216 11.838
CDLP 654.762 ±3.667 3.435
ADP-1 676.337 ±2.017 0.135

ADP-0.5 560.520 ±4.749 20.825
ADP-0.2 666.219 ±3.040 1.656
ADP-0.1 659.389 ±3.385 2.709
ADP-0.05 668.200 ±3.044 1.355

Random and Greedy by more than 10%, and also shows a 3.435% competitive edge against the
more advanced CDLP algorithm. Although the performance of ADP-1 is comparable to that of
our algorithm, we observe that for this medium-sized network, the performance of ADP policies is
highly sensitive to the level of time discretization. When using a suboptimal discretization level,
such as ∆t = 0.5, our algorithm can outperform ADP-0.5 by a margin of up to 20%. This further
demonstrates the advantage of our algorithm, as it operates within a continuous-time framework
and avoids issues with unfront time discretization to some extent. Moreover, despite the absence of
approximated optimal expected revenue values calculated via DP for reference, the CDLP method
still offers a theoretical upper bound on the optimal expected revenue, as mentioned in Section 6.1.
In this example, the upper bound is 708. Therefore, it can be inferred that the performance of our
RL-random policy is within a 5% gap from the performance of the optimal policy.

In terms of the computational cost, the total running times for Experiment 1 and Experiment 2
are 69,103 seconds and 95,818 seconds, respectively. Both experiments were conducted primarily on
a NVIDIA Tesla V100-SXM2-16GB GPU, supported by an Intel Xeon Gold 6148 Skylake CPU @
2.4 GHz. Surprisingly, the most significant computational bottleneck for the proposed algorithm in
large-scale problems (hundreds of resources and products) is not the size of the state space, because
we have approximated it with basis functions, but the RAM requirement due to the size of the action
space. Recall that the firm may offer any one of the 2n assortments upon the arrival of a customer.
Because the RL policy is exploratory and will randomly choose one of the assortments, we use a
vector to store the 2n probabilities. For problems with a limited set of potential assortments, our
algorithm can be executed more efficiently. Alternatively, one may truncate the set of assortments
to explore or use Markov chain Monte Carlo procedures.
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7 Conclusion

In this study, we provide a framework to adapt standard RL algorithms to continuous-time inten-
sity control. Although we have laid the theoretical foundation and the algorithms have been shown
to perform well numerically, the study also opens a number of important future directions. First,
we have shown that by choosing a proper value function approximation, the discretization error
associated with integrating the basis functions over time can be eliminated. It remains unknown
what class of policy and function approximation can have the same property. Second, the conver-
gence of the RL algorithms developed in this paper for continuous-time intensity control has yet
to be established. Third, many new algorithms have been developed in the RL community (such
as proximal policy optimization) and implemented in practice with success, most of which target
discrete-time systems. It remains an open question to systematically convert these algorithms to
the continuous-time control problems with possibly discrete state spaces (see e.g. Zhao et al. (2024)
for a recent study on policy optimization for controlled diffusions).
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A The Reformulation of (7) in Section 2.2

For theoretical analysis, we introduce the exploratory dynamics of {Xπ
t : 0 ≤ t ≤ T}, which can

be interpreted as the average of trajectories of the sample state process {Xπ
t : 0 ≤ t ≤ T} over

infinitely many randomized actions. In the case of controlled diffusions, Wang et al. (2020) derived
the exploratory state process by applying a law of large number argument to the drift and diffusion
coefficients of the controlled diffusion process. However, the sample state process {Xπ

t : 0 ≤ t ≤ T}
in our setting is a pure jump process, so their approach does not apply. Instead, we derive the
infinitesimal generator of the sample state process {Xπ

t : 0 ≤ t ≤ T}, from which we will identify
the dynamics of the exploratory state process.

Given a randomized Markov policy π, we now derive the generator of the Markov process
{Xπ

t : 0 ≤ t ≤ T}, which is defined on the (enlarged) probability space (Ω,F , P̄; {Ft}t≥0). Given
the time-state pair (t, x), consider M independent copies S(1), . . . , S(M) of S ∼ π(· | t, x) and
assume the control sampled at t is fixed from t to t+ s. For all bounded and measurable function
f : S → R, we have

lim
s→0

EP̄[f(Xπ
t+s) | Xπ

t = x]− f(x)

s

= lim
s→0

limM→∞
1
M

∑M
i=1 EP[f(XS(i)

t+s ) | XS(i)

t = x]− f(x)

s

= lim
M→∞

1

M

M∑
i=1

lim
s→0

EP[f(XS(i)

t+s ) | XS(i)

t = x]− f(x)

s

= lim
M→∞

1

M

M∑
i=1

λ

n∑
j=1

Pj(S
(i)) · [f(x−Aj)− f(x)]. (41)

Using the strong law of large numbers, we obtain

(41) = λ

n∑
j=1

∑
S∈A

Pj(S)π(S | t, x) · [f(x−Aj)− f(x)]. (42)

One can observe from (42) that the effect of individually sampled actions has been averaged out.
We can construct an (“averaged”) exploratory process {X̃π

t : 0 ≤ t ≤ T}, defined on the original

probability space (Ω,F ,P; {FNλ

t }t≥0), as a continuous-time Markov chain with the generator given
by (42) and X̃π

0 = c. Because the generator and the initial state of {Xπ
t : 0 ≤ t ≤ T} and

{X̃π
t : 0 ≤ t ≤ T} are identical, we infer that the sample state process {Xπ

t : 0 ≤ t ≤ T} under
P̄ has the same distribution as the distribution of the exploratory state process {X̃π

t : 0 ≤ t ≤ T}
under P. It follows that the value function (6) is identical to (7).
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B Actor-Critic Algorithm with TD(0) for PE

Algorithm 2 Actor-Critic Algorithm (PE via TD(0) method)

1: Inputs: initial state c, time horizon T , number of iterations N , batch size M ; functional forms of basis
functions ϕ1, . . . , ϕW , functional form of the policy πφ(· | ·, ·) and an initial value φ0; a temperature
schedule function γ(·); initial learning rates αφ and a learning rate schedule function w(·)

2: Required program: an environment simulator (t′, x′, S′, r′) = Environment(t, x,πφ(· | ·, ·))
3: Initialize φ = φ0
4: for n = 1 to N do
5: for i = 1 to M do . Generate M full trajectories under policy πφ

6: Store (τ
(i)
0 , x

(i)
0 )← (0, c)

7: Initialize l = 0, (t, x) = (0, c) . Initialize l to count state transitions in each trajectory, and (t, x)
to record the time and state right after a transition

8: while True do
9: Apply (t, x) to the environment simulator to get (t′, x′, S′, r′) = Environment(t, x,πφ(· | ·, ·))

10: if t′ ≥ T then
11: break
12: end if
13: Update l← l + 1

14: Store current transition: (τ
(i)
l , x

(i)
l , S

(i)
l , r

(i)
l )← (t′, x′, S′, r′)

15: Update (t, x)← (t′, x′)
16: end while
17: Store L(i) ← l, τ

(i)

L(i)+1
← T

18: end for
19: Evaluate policy πφ: [using formula (26), incorporating techniques (27) and (28)]

θ∗ =

[
1

M

M∑
i=1

(
L(i)∑
l=0

F (τ
(i)
l , τ

(i)
l+1, x

(i)
l ) +

L(i)∑
l=1

ϕ(τ
(i)
l , x

(i)
l−1)[ϕ(τ

(i)
l , x

(i)
l )− ϕ(τ

(i)
l , x

(i)
l−1)]

)](−1)
×

[
1

M

M∑
i=1

(
L(i)∑
l=1

ϕ(τ
(i)
l , x

(i)
l−1)r(i)τl + γ(n)

L(i)∑
l=0

E(τ
(i)
l , τ

(i)
l+1, x

(i)
l , ϕ(·, x(i)l );π)

)]

20: Compute policy gradient at φ: [using formula (31), incorporating technique (32)]

∆φ =
1

M

M∑
i=1

(
L(i)∑
l=1

∇φ logπφ(S
(i)
l | τ

(i)
l , x

(i)
l−1)[Jθ

∗
(τ

(i)
l , x

(i)
l )− Jθ

∗
(τ

(i)
l , x

(i)
l−1) + r

(i)
l ]

+ γ(n)

L(i)∑
l=0

G(τ
(i)
l , τ

(i)
l+1, x

(i)
l ;πφ)

)

21: Update φ by

φ← φ+ w(n)αφ∆φ

22: end for
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C Proofs of Statements

Proof of Lemma 1. Let C0,0([0, T ] × S) be the space of all all real-valued functions defined on
[0, T ] × S that are continuous in t over [0, T ] for all x ∈ S. This space becomes a Banach space
when endowed with the norm ‖ψ‖ := sup(t,x)∈[0,T ]×S |ψ(t, x)|. We denote

R(t, x) =
∑
S∈A

r(S)π(S | t, x) + γH(π(· | t, x)),

and then define an operator L on C0,0([0, T ]× S) by

Lψ(t, x) := eβt
∫ T

t

{
R(s, x) +

∑
S∈A

(∑
y∈S

e−βsψ(s, y)q(y | s, x, S)

)
π(S | s, x)

}
ds, (43)

where β := 2λ + 1. Given that the integrand on the right-hand side of (43) is continuous with
respect to s, it follows that the operator L is well-defined. Then, for ψ1, ψ2 ∈ C0,0([0, T ]× S), we
obtain

|Lψ1(t, x)− Lψ2(t, x)| ≤ eβt
∫ T

t
e−βs

(∑
S∈A

∑
y∈S
|ψ1(s, y)− ψ2(s, y)| · |q(y | s, x, S)|π(S | s, x)

)
ds

≤ eβt
∫ T

t
e−βs

(
‖ψ1 − ψ2‖ ·

∑
S∈A

(∑
y∈S
|q(y | s, x, S)|

)
π(S | s, x)

)
ds

≤ 2λ ‖ψ1 − ψ2‖ eβt
∫ T

t
e−βsds

≤ 2λ

β
(1− e−β(T−t)) ‖ψ1 − ψ2‖

≤ 2λ

β
‖ψ1 − ψ2‖ .

Observing that 2λ
β = 2λ

2λ+1 < 1, we identify L as a contraction operator on the Banach space

C0,0([0, T ]× S). Let ψ∗ ∈ C0,0([0, T ]× S) be the fixed point of L, i.e.,

ψ∗(t, x) := eβt
∫ T

t

{
R(s, x) +

∑
S∈A

(∑
y∈S

e−βsψ∗(s, y)q(y | s, x, S)

)
π(S | s, x)

}
ds. (44)

Let v(t, x) = e−βtψ∗(t, x) for all (t, x) ∈ [0, T ] × S, then v is continuously differentiable in t, i.e.
v ∈ C1,0([0, T ]× S), and satisfies (8). Thus, we establish the existence of the solution to (8).

Suppose v∗ ∈ C1,0([0, T ]× S) is a solution to (8). One can readily see that the transition rates
of the Markov process X̃π, introduced in Appendix A, at time s is given by∑

S∈A
q(y | s, X̃π

s−, S)π(S | s, X̃π
s−), y 6= X̃π

s−.
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It follows from Theorem 3.1 in Guo et al. (2015) that we have the Dynkin’s formula:

EP
[
v∗(T, X̃π

T ) | X̃π
t = x

]
− v∗(t, x)

= EP

∫ T

t

(
∂v∗

∂s
(s, X̃π

s−) +
∑
y∈S

v∗(s, y)
[∑
S∈A

q(y | s, X̃π
s−, S)π(S | s, X̃π

s−)
])
ds | X̃π

t = x

 .
Since v∗ satisfies Equation (8) with v∗(T, x) = 0, we then infer that

v∗(t, x) = EP

[∫ T

t

{∑
S∈A

r(S)π(S | s, X̃π
s−) + γH(π(· | s, X̃π

s−))

}
ds | X̃π

t = x

]
= J(t, x;π), (t, x) ∈ [0, T ]× S.

The proof is therefore complete.

Proof of the optimal stochastic policy (9) in Section 2.2. Let the space C0,0([0, T ] × S), the en-
dowed norm ‖ · ‖, and R(t, x) be as specified in the proof of Lemma 1. We then define an operator
L̄ on C0,0([0, T ]× S) by

L̄ψ(t, x) := eβt
∫ T

t
sup
π∈Π

{
R(s, x) +

∑
S∈A

(∑
y∈S

e−βsψ(s, y)q(y | s, x, S)

)
π(S | s, x)

}
ds,

where β := 2λ + 1. Using a similar argument as in the proof of Lemma 1, we can identify L̄ as a
contraction operator on the Banach space C0,0([0, T ] × S) and then establish the existence of the
solution in the space C1,0([0, T ]× S) to the following exploratory HJB equation:

∂v

∂t
(t, x) + sup

π∈Π

{∑
S∈A

[H(t, x, S, v(·, ·))− γ logπ(S | t, x)]π(S | t, x)

}
= 0, (t, x) ∈ [0, T )× S,

v(T, x) = 0, x ∈ S.
(45)

Assume v∗ ∈ C1,0([0, T ] × S) is a solution to (45), then v∗(T, x) = 0 for all x ∈ S and the
following inequality holds for all π ∈ Π and (t, x) ∈ [0, T ]× S:

∂v∗

∂t
(t, x) +

∑
S∈A
{H(t, x, S, v∗(·, ·))− γ logπ(S | t, x)}π(S | t, x) ≤ 0. (46)

Then, it follows from Theorem 3.1 in Guo et al. (2015) that

v∗(t, x) = EP
[
v∗(T, X̃π

T ) | X̃π
t = x

]
− EP

∫ T

t

(
∂v∗

∂s
(s, X̃π

s−) +
∑
y∈S

v∗(s, y)
[∑
S∈A

q(y | s, X̃π
s−, S)π(S | s, X̃π

s−)
])
ds | X̃π

t = x


≥ EP

[∫ T

t

∑
S∈A
{r(S)− γ logπ(S | t, X̃π

s−)}π(S | s, X̃π
s−)ds | X̃π

t = x

]
= J(t, x;π), for all π ∈ Π, (t, x) ∈ [0, T ]× S.
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Moreover, the equality in (46) holds for policy π∗ defined as follows:

π∗(S | t, x) =
exp{ 1

γH(t, x, S, v∗(·, ·))}∑
S∈A(x) exp{ 1

γH(t, x, S, v∗(·, ·))}
, for (t, x) ∈ [0, T ]× S, S ∈ A(x).

Thus, we conclude that v∗(t, x) = J(t, x;π∗) = J∗(t, x) for all (t, x) ∈ [0, T ] × S. This establishes
the characterization of the optimal policy in (9).

Proof of Theorem 2. To show that {M̃t : 0 ≤ t ≤ T} is an ({F X̃π

t }t≥0,P)-martingale, we first
integrate the expression for J(t, x;π) in (7), yielding

M̃t = EP

[∫ T

t

{∑
S∈A

r(S)π(S | s, X̃π
s−) + γH(π(· | s, X̃π

s−))

}
ds | X̃π

t

]

+

[∫ t

0

{∑
S∈A

r(S)π(S | s, X̃π
s−) + γH(π(· | s, X̃π

s−))

}
ds

]
.

(47)

Due to the Markov property of {X̃π
t : 0 ≤ t ≤ T}, and also note that the second term on the right

side of equation (47) is F X̃π

t -measurable, we obtain

M̃t = EP

[∫ T

0

{∑
S∈A

r(S)π(S | s, X̃π
s−) + γH(π(· | s, X̃π

s−))

}
ds | F X̃π

t

]
.

Since J(T, x;π) = 0 for all x ∈ S, we conclude that M̃t = EP[M̃T | F X̃
π

t ], which implies {M̃t : 0 ≤
t ≤ T} is an ({F X̃π

t }t≥0,P)-martingale. Moreover, since M̃t is bounded for any fixed time t ∈ [0, T ],
it follows that {M̃t : 0 ≤ t ≤ T} is square-integrable.

Conversely, assume that {M̃v
t : 0 ≤ t ≤ T} is an ({F X̃π

t }t≥0,P)-martingale and v(T, x) = 0

for all x ∈ S. From this, it follows directly that M̃v
t = EP[M̃v

T | F X̃
π

t ]for all t ∈ [0, T ], which is
equivalent to

v(t, X̃π
t ) = EP

[∫ T

0

{∑
S∈A

r(S)π(S | s, X̃π
s−) + γH(π(· | s, X̃π

s−))

}
ds | F X̃π

t

]

−

[∫ t

0

{∑
S∈A

r(S)π(S | s, X̃π
s−) + γH(π(· | s, X̃π

s−))

}
ds

]
, t ∈ [0, T ].

(48)

Since the second term on the right side of Equation (48) is F X̃π

t -measurable, then it follows from
the Markov property of {X̃π

t : 0 ≤ t ≤ T} that

v(t, X̃π
t ) = EP

[∫ T

t

{∑
S∈A

r(S)π(S | s, X̃π
s−) + γH(π(· | s, X̃π

s−))

}
ds | F X̃π

t

]

= EP

[∫ T

t

{∑
S∈A

r(S)π(S | s, X̃π
s−) + γH(π(· | s, X̃π

s−))

}
ds | X̃π

t

]
= J(t, X̃π

t ;π), t ∈ [0, T ].

Therefore, we conclude that v(t, x) = J(t, x;π) for all (t, x) ∈ [0, T ]× S.
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Proof of Theorem 1. Denote Ut :=
∫

(t,T ] p
>dNπ

s −
∫ T
t

∑
S∈A r(S)π(S | s,Xπ

s−)ds, then we have

EP̄ [Ut | Xπ
t ] = 0. (49)

We further denote Mt := J(t,Xπ
t ;π) +

∫ t
0{
∑

S∈A r(S)π(S | s,Xπ
s−) + γH(π(· | s,Xπ

s−))}ds and

M θ
t := Jθ(t,Xπ

t )+
∫ t

0{
∑

S∈A r(S)π(S | s,Xπ
s−)+γH(π(· | s,Xπ

s−))}ds. It follows from J(T, x;π) ≡
0 and (49) that

2L(θ) = EP̄
[∫ T

0
(Ut +MT −M θ

t )2dt

]
= EP̄

[∫ T

0
[U2
t + 2Ut(MT −M θ

t ) + (MT −M θ
t )2]dt

]
= EP̄

[∫ T

0

[
U2
t + 2Ut

(∫ T

t

{∑
S∈A

r(S)π(S | s,Xπ
s−) + γH(π(· | s,Xπ

s−))

}
ds

)]
dt

]

− EP̄
[∫ T

0
2Jθ(t,Xπ

t )EP̄[Ut | Xπ
t ]dt

]
+ EP̄

[∫ T

0
(MT −M θ

t )2dt

]
= EP̄

[∫ T

0

[
U2
t + 2Ut

(∫ T

t

{∑
S∈A

r(S)π(S | s,Xπ
s−) + γH(π(· | s,Xπ

s−))

}
ds

)]
dt

]

+ EP̄
[∫ T

0
(MT −M θ

t )2dt

]
.

Since the first term does not rely on θ, we have

arg min
θ

L(θ) = arg min
θ

EP̄
[∫ T

0
(MT −M θ

t )2dt

]
. (50)

Next, we denote M̃ θ
t := Jθ(t, X̃π

t )+
∫ t

0

{∑
S∈A r(S)π(S | s, X̃π

s−)+γH(π(· | s, X̃π
s−))

}
ds. From

Theorem 2 we know that {M̃t : 0 ≤ t ≤ T} in (15) is an ({F X̃π

t }t≥0,P)-martingale. Therefore,

EP
[∫ T

0
(M̃T − M̃ θ

t )2dt

]
= EP

[∫ T

0
(M̃T − M̃t + M̃t − M̃ θ

t )2dt

]
= EP

[∫ T

0
[(M̃T − M̃t)

2 + (M̃t − M̃ θ
t )2 + 2(M̃T − M̃t)(M̃t − M̃ θ

t )]dt

]
= EP

[∫ T

0
(M̃T − M̃t)

2dt

]
+ EP

[∫ T

0
(M̃t − M̃ θ

t )2dt

]
+ 2

∫ T

0
EP
[
(M̃t − M̃ θ

t ) · EP[M̃T − M̃t | F X̃
π

t

]]
dt

= EP
[∫ T

0
(M̃T − M̃t)

2dt

]
+ EP

[∫ T

0
|J(t, X̃π

t ;π)− Jθ(t, X̃π
t )|2dt

]
.

Noting that the first term does not rely on θ, we obtain

arg min
θ

EP
[∫ T

0
|M̃T − M̃ θ

t |2dt
]

= arg min
θ

EP
[∫ T

0
|J(t, X̃π

t ;π)− Jθ(t, X̃π
t )|2dt

]
.
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Since the distribution of {X̃π
t : 0 ≤ t ≤ T} under P is the same as the distribution of {Xπ

t : 0 ≤
t ≤ T} under P̄, together with (50), we conclude that arg minθ L(θ) = arg minθ MSVE(θ).

Proof of Theorem 3. Note that a bounded process ξ with ξt ∈ FX
π

t− is also predictable w.r.t Ft.
On the other hand, for each j = 1, · · · , n, the process {Nπ

j,t −
∫ t

0 λPj(S
π
s )ds : 0 ≤ t ≤ T} is a

square-integrable ({Ft}t≥0, P̄)-martingale. Thus we have

EP̄
[∫ T

0
ξt(p

>dNπ
t )

]
= EP̄

[∫ T

0
ξt · r(Sπt )dt

]
= EP̄

[∫ T

0
ξt

[∑
S∈A

r(S)π(S | t,Xπ
t−)
]
dt

]
.

It suffices to prove that v(t, x) = J(t, x;π) for all (t, x) ∈ [0, T ] × S, if and only if v satisfies
v(T, x) = 0 for all x ∈ S, and

EP̄

[∫ T

0
ξt

{
dv(t,Xπ

t ) +
[∑
S∈A

r(S)π(S | t,Xπ
t−) + γH(π(· | t,Xπ

t−))
]
dt

}]
(51)

for any bounded process ξ with ξt ∈ FX
π

t− .

We first establish that v(t, x) = J(t, x;π) for all (t, x) ∈ [0, T ] × S, if and only if v satisfies
v(T, x) = 0 for all x ∈ S, and

EP

[∫ T

0
ξ̃t

{
dv(t, X̃π

t ) +
[∑
S∈A

r(S)π(S | t, X̃π
t−) + γH(π(· | t, X̃π

t−))
]
dt

}]
= 0, (52)

for any bounded process ξ̃ with ξ̃t ∈ F X̃
π

t− . The “only if” part follows immediately from Theorem
2. To establish the “if” part, assume that v(T, x) = 0 for all x ∈ S, and (52) holds for any bounded

process ξ̃ with ξ̃t ∈ F X̃
π

t− . It follows from Theorem 3.1 of Guo et al. (2015) that the process

v(t, X̃π
t )−

∫ t

0

(
∂v

∂s
(s, X̃π

s−) +
∑
y∈S

v(s, y)
[∑
S∈A

q(y | s, X̃π
s−, S)π(S | s, X̃π

s−)
])
ds

defines an ({F X̃π

t }t≥0,P)-martingale, and its boundedness at any fixed time t ∈ [0, T ] ensures
square-integrability. Then, it follows that

EP
[ ∫ T

0
ξ̃t

{
dv(t, X̃π

t )−
(
∂v

∂t
(t, X̃π

t−) +
∑
y∈S

v(t, y)
[∑
S∈A

q(y | t, X̃π
t−, S)π(S | t, X̃π

t−)
])
dt

}]
= 0,

(53)

for any bounded process ξ̃ with ξ̃t ∈ F X̃
π

t− . By taking the difference between equations (52) and
(53), we obtain that

EP

[∫ T

0
ξ̃t

(
∂v

∂t
(t, X̃π

t−) +
∑
S∈A

H(t, X̃π
t−, S, v(·, ·))π(S | t, X̃π

t−) + γH(π(· | t, X̃π
t−))

)
dt

]
= 0 (54)

holds for any bounded process ξ̃ with ξ̃t ∈ F X̃
π

t− . Define the test function ξ̃t as follows:

ξ̃t = sgn

(
∂v

∂t
(t, X̃π

t−) +
∑
S∈A

H(t, X̃π
t−, S, v(·, ·))π(S | t, X̃π

t−) + γH(π(· | t, X̃π
t−))

)
,
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where sgn(·) is the sign function. Then, (54) implies that

∂v

∂t
(t, X̃π

t−) +
∑
S∈A

H(t, X̃π
t−, S, v(·, ·))π(S | t, X̃π

t−) + γH(π(· | t, X̃π
t−)) = 0, t ∈ [0, T ]. (55)

It follows from Lemma 1 that v(t, x) = J(t, x;π) for all (t, x) ∈ [0, T ]×S. Hence, we complete the
proof of the equivalent condition (52).

Let D[0, T ] denote the space of all mappings f : [0, T ] 7→ S. For any process Y ∈ D[0, T ] and
fixed t ∈ [0, T ], define the stopped process Y πt−∧· ∈ D[0, T ] such that Y πt−∧·(s) = Y πs for s ∈ [0, t),
and Y πt−∧·(s) = Y πt− for s ∈ [t, T ]. Note that any process ξ with ξt ∈ FX

π

t− corresponds to a

measurable function ξ : [0, T ] × D([0, T ]) 7→ R such that ξt = ξ(t,Xπ
t−∧·). Then, ξ(t, X̃π

t−∧·) is

F X̃π

t− -measurable for each t ∈ [0, T ]. Since the distribution of {Xπ
t : 0 ≤ t ≤ T} under P̄ is the

same as the distribution of {X̃π
t : 0 ≤ t ≤ T} under P, it follows that

EP̄

[∫ T

0
ξ(t,Xπ

t−∧·)

{
dv(t,Xπ

t ) +
[∑
S∈A

r(S)π(S | t,Xπ
t−) + γH(π(· | t,Xπ

t−))
]
dt

}]

= EP

[∫ T

0
ξ(t, X̃π

t−∧·)

{
dv(t, X̃π

t ) +
[∑
S∈A

r(S)π(S | t, X̃π
t−) + γH(π(· | t, X̃π

t−))
]
dt

}]
.

(56)

Conversely, any process ξ̃ with ξ̃t ∈ F X̃
π

t− corresponds to a measurable function ξ̃ : [0, T ] ×
D([0, T ]) 7→ R such that ξ̃t = ξ̃(t, X̃π

t−∧·). Then, ξ̃(t,Xπ
t−∧·) is FXπ

t -measurable for each t ∈ [0, T ],

and equation (56) holds for ξ̃(·, ·). This establishes the equivalence between condition (52) and
condition (51). The proof is therefore complete.

Proof of Theorem 4. By the representation (30) of g(t, x;φ) = ∇φJ(t, x;πφ), we have

∇φJ(0, c;πφ) = EP

[∫ T

0

(∑
S∈A
∇φ logπφ(S | t, X̃πφ

t− )H(t, X̃πφ

s− , S, J(·, ·;πφ))πφ(S | t, X̃πφ

s− )

)
dt

+ γ

∫ T

0
∇φH(πφ(· | t, X̃πφ

t− ))dt

]
.

(57)
Since the distribution of {X̃π

t : 0 ≤ t ≤ T} under P is the same as the distribution of {Xπ
t : 0 ≤

t ≤ T} under P̄, it follows that the second term of (57) equals to the second term of (31).

It remains to show the first term of (57) also equals to the first term of (31). Denote the
following expression as I(t, x, S):

I(t, x, S) := ∇φ logπφ(S | t, x)H(t, x, S, J(·, ·;πφ))

which is a real-valued function on S ×A for fixed t ∈ [0, T ]. Then we have

EP̄
[
I(t,Xπφ

t− , S
πφ

t )
]

= EP

[∑
S∈A

I(t, X̃πφ

t− , S)πφ(S | t, X̃πφ

t− )

]
. (58)
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By Assumption 1 and the fact that both the state space S and the action space A are finite, we
have sup(t,x,S)∈[0,T ]×S×A |I(t, x, S)| < ∞. Then, integrating (58) over [0, T ] with respect to t and
applying Fubini’s theorem gives:

EP̄
[∫ T

0
I(t,Xπφ

t− , S
πφ

t )dt

]
= EP

[∫ T

0

(∑
S∈A

I(t, X̃πφ

t− , S)πφ(S | t, X̃πφ

t− )

)
dt

]
. (59)

Given the definition of H in (3), we have

H(t, x, S, J(·, ·;πφ)) = λ

n∑
j=1

pjPj(S) +
∑
y 6=x

( ∑
{j∈J :Aj=x−y}

λPj(S)

)
J(t, y;πφ)− λ[1− P0(S)]J(t, x;πφ)

=

n∑
j=1

[J(t, x−Aj ;πφ)− J(t, x;πφ) + pj ]λPj(S).

For each j = 1, . . . , n, we denote Ij(t, x, S) := ∇φ logπφ(S | t, x)[J(t, x−Aj ;πφ)−J(t, x;πφ) + pj ].
This leads to I(t, x, S) =

∑n
j=1 Ij(t, x, S)λPj(S). Then, we claim that for any j = 1, . . . , n, the

following equality holds:

EP̄

[∫
(0,T ]

Ij(t,X
πφ

t− , S
πφ

t )dNπφ

j,t

]
= EP̄

[∫ T

0
Ij(t,X

πφ

t− , S
πφ

t )λPj(S
πφ

t )dt

]
. (60)

Indeed, for each j = 1, . . . , n, the process {Nπφ
j,t −

∫ t
0 λPj(S

πφ
s )ds : 0 ≤ t ≤ T} is a square-

integrable ({Ft}t≥0, P̄)-martingale. Additionally, the process {Ij(t,Xπφ
t− , S

πφ
t ) : 0 ≤ t ≤ T} is

bounded according to Assumption 1. Thus, the equality (60) holds.

By combining (59) and (60), we can infer that the first term of (57) also equals to the first term
of (31). The proof is hence complete.
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