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Abstract

Score-based generative modeling with prob-
ability flow ordinary differential equations
(ODEs) has achieved remarkable success in
a variety of applications. While various fast
ODE-based samplers have been proposed in
the literature and employed in practice, the
theoretical understandings about convergence
properties of the probability flow ODE are still
quite limited. In this paper, we provide the
first non-asymptotic convergence analysis for
a general class of probability flow ODE sam-
plers in 2-Wasserstein distance, assuming ac-
curate score estimates and smooth log-concave
data distributions. We then consider various
examples and establish results on the itera-
tion complexity of the corresponding ODE-
based samplers. Our proof technique relies
on spelling out explicitly the contraction rate
for the continuous-time ODE and analyzing
the discretization and score-matching errors
using synchronous coupling; the challenge in
our analysis mainly arises from the inherent
non-autonomy of the probability flow ODE
and the specific exponential integrator that
we study.

1 Introduction

Score-based generative models (SGMs) (Sohl-Dickstein
et al., 2015; Song and Ermon, 2019; Ho et al., 2020;
Song et al., 2021), or diffusion models, have achieved re-
markable success in a range of applications, particularly
in the realm of image and audio generation (Rombach

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

et al., 2022; Ramesh et al., 2022; Popov et al., 2021).
These models employ a unique approach where sam-
ples from a target data distribution are progressively
corrupted with noise through a forward process. Sub-
sequently, the models learn to reverse this corrupted
process in order to generate new samples.

In this paper, we aim to provide theoretical guarantees
for the probability flow ODE (ordinary differential
equation) implementation of SGMs, proposed initially
in Song et al. (2021). The forward process in SGMs,
denoted by (xt)t∈[0,T ], follows the stochastic differential
equation (SDE):

dxt = −f(t)xtdt+ g(t)dBt, x0 ∼ p0, (1)

where both f(t) and g(t) are scalar-valued non-negative
continuous functions of time t, (Bt) is the stan-
dard d-dimensional Brownian motion, and p0 is the
d−dimensional (unknown) target data distribution.
Two popular choices of forward processes in the litera-
ture are Variance Exploding (VE) SDEs and Variance
Preserving (VP) SDEs (Song et al., 2021); see Section 2
for more details. If we denote pt(x) as the probability
density function of xt in (1), then Song et al. (2021)
showed that there exists an ODE:

dx̃t

dt
= f(T − t)x̃t +

1

2
(g(T − t))2∇x log pT−t(x̃t),

x̃0 ∼ pT , (2)

where the solution x̃t at time t ∈ [0, T ], is distributed
according to pT−t. The ODE (2) is called the probability
flow ODE. Note that the probability flow ODE involves
the score function, ∇x log pt(x), which is unknown. In
practice, it can be approximated using neural networks
which are trained with appropriate score-matching tech-
niques (Hyvärinen and Dayan, 2005; Vincent, 2011;
Song et al., 2020). Once the score function is esti-
mated, one can sample x̃0 from a normal distribution
to initialize the ODE, and numerically solve the ODE
forward in time with any ODE solvers such as Euler
Song et al. (2021) or Heun’s 2nd order method Karras
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et al. (2022). The resulting sample generated at time
T can be viewed as an approximate sample from the
target distribution since x̃T ∼ p0.

A large body of work on diffusion models has recently
investigated various methods for faster generation of
samples based on the probability flow ODE; see, e.g.,
(Lu et al., 2022; Karras et al., 2022; Zhang and Chen,
2023; Zhao et al., 2023; Song et al., 2023). While
these methods are quite effective in practice, the the-
oretical understandings of this probability flow ODE
approach are still quite limited. To our best knowledge,
Chen et al. (2023e) established the first non-asymptotic
convergence guarantees for the probability flow ODE
sampler in the Kullback-Leibler (KL) divergence, but
it did not provide concrete polynomial dependency on
the dimension d and 1/ϵ, where ϵ is the prescribed
error between the data distribution and the generated
distribution. Chen et al. (2023c) considered a specific
VP-SDE as the forward process (where f ≡ 1 and
g ≡

√
2), and provided polynomial-time guarantees for

some variants of the probability flow ODE in the total
variation (TV) distance. Specifically, the algorithms
they analyzed rely on the use of stochastic corrector
steps, so the samplers are not fully deterministic. Li
et al. (2024b) also considered a specific VP-SDE as
the forward processes and analyzed directly a discrete-
time version of probability flow ODEs and obtained
convergence guarantees for fully deterministic samplers
in TV. Very recently, Li et al. (2024a) extended Li
et al. (2024b) and established nonasymptotic conver-
gence guarantees in TV for the accelerated DDIM-type
deterministic sampler.

These theoretical studies have mostly focused on con-
vergence analysis of probability flow ODE samplers
in TV distance between the data distribution and the
generated distribution. However, practitioners are of-
ten interested in the 2-Wasserstein (W2) distance. For
instance, in image-related tasks, Fréchet Inception Dis-
tance (FID) is a widely adopted performance metric
for evaluating the quality of generated samples, where
FID measures the W2 distance between the distribu-
tion of generated images and the distribution of real
images Heusel et al. (2017). We also note that TV
distance does not upper bound 2-Wasserstein distance
on Rd (see e.g. Gibbs and Su (2002)). In addition,
previous works (Chen et al., 2023c; Li et al., 2024b,a)
have studied specific choices of f and g in their con-
vergence analysis of ODE-based samplers. However,
it has been shown in Song et al. (2021) that the em-
pirical performance of probability flow ODE samplers
depends crucially on the choice of f and g in (2), which
indicates the importance of selecting these parameters
(noise schedules) of diffusion models. This leads to the
following question which we study in this paper:

Can we establish Wasserstein convergence guarantees
for probability flow ODE samplers with general

functions f and g?

Our Contributions.

• We establish non-asymptotic convergence guaran-
tees for a general class of probability flow ODEs
in 2-Wasserstein distance, assuming that the score
function can be accurately learned and the data
distribution has a smooth and strongly log-concave
density (Theorem 3.4). In particular, we allow gen-
eral functions f and g in the probability flow ODE
(2), and our results apply to both VP and VE SDE
models. Theorem 3.4 directly translates to an up-
per bound on the iteration complexity, which is the
number of sampling steps needed for the ODE sam-
pler to yield ϵ−accuracy in 2-Wasserstein distance
between the data distribution and the generative
distribution of the SGMs.

• We specialize our result to ODE samplers with
specific functions f and g that are commonly used
in the literature, and we find the complexity of
VE-SDEs is worse than that of VP-SDEs for the
examples we analyze (see Table 1 for details). This
theoretical finding is consistent with the empirical
observation in Song et al. (2021), where they found
that the empirical performance of probability flow
ODE samplers depends on the choice of f and
g, and the sample quality for VE-SDEs is much
worse than VP-SDEs for high-dimensional data.

• We obtain an iteration complexity bound
Õ
(√

d/ϵ
)

of the ODE sampler for each of the
three examples of VP-SDEs studied, where d is the
dimension of the data distribution and Õ ignores
the logarithmic factors and hides dependency on
other parameters. We also show that (see Propo-
sition 3.12) under mild assumptions there are no
other choices of f and g so that the iteration com-
plexity can be better than Õ

(√
d/ϵ
)
.

• Our main proof technique relies on spelling out
an explicit contraction rate in the continuous-time
ODE and providing a careful analysis in control-
ling the discretization and score-matching errors.
Our proof technique is inspired by iteration com-
plexity results in the context of Langevin algo-
rithms for sampling in the literature (Dalalyan
and Karagulyan, 2019); the smooth strong log-
concavity of data distribution allows us to obtain
contraction for the probability flow ODE using the
synchronous coupling. Yet our analysis is more
sophisticated and subtle even under the smooth
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strong log-concavity assumption. First, in the liter-
ature of sampling strongly-log-concave target den-
sities, where Langevin algorithms are often used,
the underlying dynamics is time-homogeneous, and
the strong log-concavity and smoothness assump-
tions can be directly used (see e.g. Dalalyan and
Karagulyan (2019)), whereas for probability flow
ODEs, it is non-autonomous, and the strong-log-
concavity and smoothness constants need to be
carefully analyzed and spelled out which are time-
dependent. Second, the usage of exponential in-
tegrator also makes the analysis more subtle, as
compared to the Euler discretization of the ODE.
We incorporate the exponential integrator and
the interpolation in the discretization to design
an continuous-time auxiliary ODE, and then con-
trol the error between this auxiliary ODE and
the probability flow ODE. Finally, in order to fur-
ther analyze the VE-SDE and VP-SDE examples
in Section 3.3 (see Corollaries 3.8-3.11, Proposi-
tion 3.12), the inherent non-autonomous property
of the probability flow ODE makes the analysis
much trickier and subtle. One has to perform a
series of inequalities based on the formula in The-
orem 3.4 in order to spell out the leading order
terms to obtain the iteration complexities.

1.1 Related Work

In addition to the deterministic sampler based on proba-
bility flow ODEs, another major family of diffusion sam-
plers is based on discretization of the reverse-time SDE,
which is obtained by reversing the forward process (1)
in time (Anderson, 1982; Cattiaux et al., 2023)). This
leads to SDE-based stochastic samplers due to the noise
in the reverse-time SDE. Compared with SDE-based
samplers, ODE-based deterministic samplers are often
claimed to converge much faster, at the cost of slightly
inferior sample quality; see e.g. Yang et al. (2023). In
recent years, there has been a significant surge in re-
search focused on the convergence theory of SDE-based
stochastic samplers for diffusion models, particularly
when assuming access to precise estimates of the score
function; see, e.g., Block et al. (2020); De Bortoli et al.
(2021); De Bortoli (2022); Lee et al. (2022, 2023); Chen
et al. (2023a,d); Li et al. (2024b); Chen et al. (2023b);
Gao et al. (2025); Benton et al. (2024a); Tang and
Zhao (2024). These studies have mostly focused on the
convergence analysis of SDE-based stochastic samplers
in TV or KL divergence. (De Bortoli, 2022; Chen et al.,
2023a,d) provided Wasserstein convergence bound for
the SDE-based sampler for the DDPM model in Ho
et al. (2020) for bounded data distribution, in which
case the 2-Wasserstein distance can be bounded by the
TV distance. Gao et al. (2025) established convergence
guarantees for SDE-based samplers for a general class of

SGMs in 2-Wasserstein distance, for unbounded smooth
log-concave data distribution. Our study differs from
these studies in that we consider deterministic samplers
based on the probability flow ODE implementation of
SGMs.

Our work is also broadly related to flow based meth-
ods or flow matching, see e.g. Lipman et al. (2022);
Albergo and Vanden-Eijnden (2022). The flow match-
ing framework is more general than the probability
flow ODE, because it approximates a flow between two
arbitrary distributions. In particular, flow matching
reduces to probability flow ODE for diffusion models
when the starting distribution is Gaussian. The the-
oretical analysis of flow matching methods are still
limited, and there are currently very few error bounds
in Wasserstein distance for flow matching methods with
a fully deterministic sampling scheme. Two very recent
studies on such bounds are Benton et al. (2024b) and
Albergo et al. (2023). While both studies have consid-
ered the errors due to the approximate flow/velocity,
they do not consider the error arising from numerically
solving the ODE. Hence, these results are not about
the iteration complexity of the sampling scheme, which
we study for the probability flow ODE. Cheng et al.
(2023) recently provided convergence guarantees for a
progressive flow model, which differs from score-based
diffusion models in that the flow model they consider
is deterministic in the forward (data-to-noise) process.

Notations. For any d-dimensional random vector x
with finite second moment, the L2-norm of x is defined
as ∥x∥L2

=
√
E∥x∥2, where ∥ · ∥ denotes the Euclidean

norm. We denote L(x) as the law of x. For any two
Borel probability measures µ1, µ2 ∈ P2(Rd), the space
consisting of all the Borel probability measures on Rd

with the finite second moment (based on the Euclidean
norm), the standard 2-Wasserstein distance Villani
(2009) is defined by

W2(µ1, µ2) :=
√

inf E [∥x1 − x2∥2],

where the infimum is taken over all joint distributions of
the random vectors x1,x2 with marginal distributions
µ1, µ2. A differentiable function F from Rd to R is
said to be µ-strongly convex and L-smooth (i.e. ∇F is
L-Lipschitz) if for every u,v ∈ Rd,

µ

2
∥u− v∥2 ≤ F (u)− F (v)−∇F (v)⊤(u− v)

≤ L

2
∥u− v∥2.

2 Preliminaries

Recall p0 ∈ P(Rd) denotes the unknown data distri-
bution which has a density, where P(Rd) is the space
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of all probability measures on Rd. Given i.i.d. sam-
ples from p0, the problem of generative modelling is to
generate new samples that (approximately) follow the
data distribution.

We consider the probability flow ODE (see (2)) based
implementation of SGMs for sample generation, see e.g.
Song et al. (2021). The functions f and g in (2) can
be general in our study, and in particular, our study
covers the following two classes of models commonly

used in the literature: (1) f(t) ≡ 0 and g(t) =
√

d[σ2(t)]
dt

for some nondecreasing function σ(t), e.g., g(t) = aebt

for some positive constants a, b. The corresponding
forward SDE (1) is referred to as Variance Exploding
(VE) SDE. (2) f(t) = 1

2β(t) and g(t) =
√
β(t) for some

nondecreasing function β(t), e.g., β(t) = at+b for some
positive constants a, b. The corresponding forward SDE
(1) is referred to as Variance Preserving (VP) SDE.

To implement the ODE (2), one needs to (a) sample
from a tractable distribution (aka prior distribution)
to initialize the ODE, (b) estimate the score function
∇x log pt(x), and (c) numerically solve/integrate the
ODE. We next discuss these three issues (or error
sources).

First, we discuss (a), the prior distribution. Note that
pT is unknown. To provide an unifying analysis for
probability flow ODEs with general f and g (including
both VE and VP SDE models), we choose the prior
distribution to be a normal distribution p̂T given as
follows:

p̂T := N

(
0,

∫ T

0

e−2
∫ T
t

f(s)ds(g(t))2dt · Id

)
, (3)

and Id is the d-dimensional identity matrix. To see why
this is a reasonable choice, we note that the forward
SDE (1) has an explicit solution

xt = e−
∫ t
0
f(s)dsx0 +

∫ t

0

e−
∫ t
s
f(v)dvg(s)dBs. (4)

Hence, we can the take the distribution of the Brownian
integral

∫ t

0
e−
∫ t
s
f(v)dvg(s)dBs in (4), which is p̂T , as

an approximation of pT , so that

W2(pT , p̂T ) ≤ e−
∫ T
0

f(s)ds∥x0∥L2
.

(See Lemma B.3 in the Appendix for the details.)
Hence, we consider the ODE:

dyt

dt
= f(T − t)yt +

1

2
(g(T − t))2∇ log pT−t(yt),

y0 ∼ p̂T , (5)

as an approximation of the ODE (2) which starts from
pT .

Remark 2.1. If the forward process is a VP-SDE with
a stationary distribution which is normal, one can also
take it as the prior distribution and our main result in
this paper can be adapted to this setting.

We next consider (b) score matching, i.e., approximate
the unknown true score function ∇x log pt(x) using a
time-dependent score model sθ(x, t), which is often
a deep neural network parameterized by θ. To train
the score model, one can use, for instance, denoising
score matching Song et al. (2021), where the training
objective for optimizing the neural network is given by

min
θ

∫ T

0

[
λ(t)Ex0

Ext|x0

∥∥∥sθ(xt, t)

−∇xt
log pt|0(xt|x0)

∥∥∥2]dt. (6)

Here, λ(·) : [0, T ] → R>0 is some positive weight-
ing function, x0 ∼ p0 is the data distribution, and
pt|0(xt|x0) is the density of xt given x0, which is Gaus-
sian due to the choice of the forward SDE in (1). Be-
cause one has i.i.d. samples from p0, the distribution of
x0, the objective in (6) can be approximated by Monte
Carlo methods and the resulting loss function can be
then optimized.

After the score function is estimated, we introduce a
continuous-time process that approximates (5):

dzt
dt

= f(T − t)zt +
1

2
(g(T − t))2sθ(zt, T − t),

z0 ∼ p̂T , (7)

where we replace the true score function in (5) by the
estimated score sθ.

Finally, we discuss (c) numerically solve the ODE (7)
for generation of new samples. There are various meth-
ods proposed and employed in practice, including Euler
(Song et al., 2021), Heun’s 2nd order method (Karras
et al., 2022), DPM solver (Lu et al., 2022), exponential
integrator (Zhang and Chen, 2023), to name just a
few. In this paper, we consider the following exponen-
tial integrator (i.e. exactly integrating the linear part)
discretization of the ODE (7) for our theoretical conver-
gence analysis. Let η > 0 be the stepsize and without
loss of generality, let us assume that T = Kη, where K
is a positive integer. Next, we introduce an exponential
integrator discretization of the ODE (7). By freezing
the nonlinear nonlinear term (i.e. the sθ(zt, T −t) term
on RHS of (7)) and letting the linear term flow (i.e. the
zt term on RHS of (7)), we obtain the following ODE
approximation of ODE (7): for any (k − 1)η ≤ t < kη,

dẑt
dt

= f(T−t)ẑt+
1

2
(g(T−t))2sθ(ẑ(k−1)η, T−(k−1)η).

By solving the above (linear) ODE for (k−1)η ≤ t < kη,
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we have

ẑkη = e
∫ kη
(k−1)η

f(T−t)dt
ẑ(k−1)η

+
1

2
sθ(ẑ(k−1)η, T − (k − 1)η)

·
∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt. (8)

By letting uk = ẑkη for any k, we obtain the iterations
for the exponential integrator discretization (uk)

∞
k=0 of

the ODE (7): for any k = 1, 2, . . . ,K,

uk = e
∫ kη
(k−1)η

f(T−t)dt
uk−1

+
1

2
sθ(uk−1, T − (k − 1)η)

·
∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt, (9)

where u0 ∼ p̂T .

We are interested in the convergence of the generated
distribution L(uK) to the data distribution p0, where
L(uK) denotes the law or distribution of uK . Specifi-
cally, our goal is to bound the 2-Wasserstein distance
W2(L(uK), p0), and investigate the number of iterates
K that is needed in order to achieve ϵ accuracy, i.e.
W2(L(uK), p0) ≤ ϵ.

3 Main Results

In this section we state our main results. The proofs
are deferred to the Appendix.

3.1 Assumptions

The first assumption is on the density of data distribu-
tion p0, which implies that x0 ∼ p0 is L2-integrable.

Assumption 3.1. Assume that the density p0 is
differentiable and positive everywhere. Moreover,
−∇ log p0 is m0-strongly convex and L0-smooth for
some m0, L0 > 0.

The assumption of strong-log-concavity data distribu-
tion has also been imposed in (Bruno et al., 2023; Gao
et al., 2025) for convergence analysis of diffusion models.
We need this assumption mainly because we consider
Wasserstein convergence analysis of ODE-based deter-
ministic samplers. In particular, the ODE (5) may not
have a contraction in 2-Wasserstein distance without
such an assumption; see Remark 3.7 in Section 3.2 for
details.

Our next assumption is about the true score function
∇x log pt(x) for t ∈ [0, T ]. We assume that the score
function ∇x log pt(x) is Lipschtiz in time, where the

Lipschitz constant has at most linear growth in ∥x∥. As-
sumption 3.2 is needed in controlling the discretization
error of the ODE (7). For Gaussian data distributions
p0, one can compute the score function ∇x log pt(x)
analytically based on (4) and readily verify that this
assumption holds.

Assumption 3.2. There exists some constant L1 such
that for all x:

sup
1≤k≤K

(k−1)η≤t≤kη

∥∥∇ log pT−t(x)−∇ log pT−(k−1)η(x)
∥∥

≤ L1η(1 + ∥x∥). (10)

Most studies on convergence analysis of diffusion mod-
els assume some form of L2 error for score learning and
focus on the sampling phase. Our next assumption
is on this score-matching error. Recall (uk) are the
iterates defined in (9).

Assumption 3.3. Assume that there exists M > 0
such that

sup
k=1,...,K

∥∥∥∇ log pT−(k−1)η (uk−1)

− sθ (uk−1, T − (k − 1)η)
∥∥∥
L2

≤M. (11)

Assumption 3.3 is related to the score perturbation
lemma in the seminal work (Chen et al., 2023c).
However, they need to assume the Hessian of score
∇2 log pt(x) is bounded by L for any t and x, where L
is independent of T , to obtain the desired dependency
on dimension d and ϵ.

3.2 Main Result

We are now ready to state our main result.

Theorem 3.4. Suppose that Assumptions 3.1, 3.2 and
3.3 hold and the stepsize η ≤ η̄, where η̄ > 0 has an
explicit formula given in (27) in Appendix A. Then,

W2(L(uK), p0) ≤ e−
∫Kη
0

µ(t)dt · ∥x0∥L2︸ ︷︷ ︸
Initialization error

+ E1(f, g,K, η, L1)︸ ︷︷ ︸
Discretization error

+ E2(f, g,K, η,M,L1)︸ ︷︷ ︸
Score matching error

.

(12)
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Here, µ(t) is given in (24) in Appendix A and

E1(f, g,K, η, L1)

:=

K∑
k=1

K∏
j=k+1

γj,η · e
∫Kη
kη

f(T−t)dt

·

(
L1

2
η (1 + ∥x0∥L2

+ ω(T ))ϕk,η +

√
η

2
νk,η

√
ψk,η

)
,

(13)

E2(f, g,K, η,M,L1)

:=

K∑
k=1

K∏
j=k+1

γj,η · e
∫Kη
kη

f(T−t)dt · M
2
ϕk,η, (14)

where ϕk,η is given in (21), ψk,η is given in (22), γj,η is
given in (23), L(t) is given in (26), δj(T − t) is defined
in (30), ω(T ) is defined in (32) and νk,η is given in
(33) in Appendix A.

While the bound in Theorem 3.4 looks quite complex,
it can be easily interpreted as follows.

The first term in (12), referred to as the initialization
error, characterizes the convergence of the continuous-
time probability flow ODE (yt) in (5) to the distribu-
tion p0 without discretization or score-matching errors.
Specifically, it bounds the error W2(L(yT ), p0), which
is introduced due to the initialization of the probabil-
ity flow ODE (yt) at p̂T instead of pT (see Proposi-
tion 4.1). One can find from the definition (24) that
µ(t) > 0 and hence the initialization error goes to zero
when we pick T = Kη to be sufficiently large, i.e.,
e−
∫Kη
0

µ(t)dt · ∥x0∥L2 → 0, as Kη → ∞.

The second and third terms in (12) quantify the dis-
cretization and score-matching errors in running the
algorithm (uk) in (9). Note that the assumption η ≤ η̄
in Theorem 3.4 implies that γj,η ∈ (0, 1) in (23),
which plays the role of a contraction rate of the er-
ror ∥ykη − uk∥L2

over iterations (see Proposition 4.2).
Conceptually, it guarantees that as the number of iter-
ations increases, the discretization and score-matching
errors in the iterates (uk) do not propagate and grow
in time. One can show that for fixed T = Kη, the
discretization error E1(f, g,K, η, L1) → 0, when η → 0
and the score matching error E2(f, g,K, η,M,L1) is
linear in M which goes to 0 as M → 0.

By combing the above three terms, we infer that we
can first choose a large T = Kη, and then choose a
small stepsize η so that W2(L(uK), p0) can be made
small (provided that M is small).

Remark 3.5. Theorem 3.4 holds for the ODE-based
sampler with exponential integrator discretization. Our
analysis also goes through for the simple Euler method.
For other methods such as Heun’s 2nd order solver

and DPM solver, the methodology used in the current
paper cannot be directly applied. In particular, we
need to study their discretization errors and it will
require different analysis.

Remark 3.6 (Comparison of iteration complexities).
Chen et al. (2023c) analyzed probability flow ODE
with stochastic corrector steps in TV and established
iteration complexity of Õ(d/ϵ2) (respectively Õ(

√
d/ϵ))

when the stochastic corrector step is based on the over-
damped (respectively underdamped) Langevin diffu-
sion. Li et al. (2024b) analyzed a discrete time version
of fully deterministic ODE and established an iteration
complexity of Õ(d2/ϵ + d3/

√
ϵ) in TV. Both studies

consider specific VP-SDEs as forward processes. Our
paper consider fully deterministic ODE-based samplers
and Wasserstein convergence guarantees. Note that TV
plus strong log-concavity does not imply 2-Wasserstein
convergence. For VP-SDEs, Theorem 3.4 implies that
the iteration complexity is Õ(

√
d/ϵ) (for the examples

considered) under our assumptions; see Table 1 for
details.

Remark 3.7. Assumption 3.1 plays two roles for obtain-
ing the upper bound in Theorem 3.4.

First, the m0-strong-convexity of −∇ log p0 guarantees
that µ(t) > 0 (which appears in the first term of (12)),
which guarantees the 2-Wasserstein contraction and
the convergence of the continuous-time probability flow
ODE (yt) in (5) to the distribution p0 without dis-
cretization or score-matching errors. Indeed, one can
easily verify from (24) that µ(t) → 0 as m0 → 0, which
indicates that strong-convexity of −∇ log p0 is neces-
sary; otherwise the ODE (5) will not have a contraction.
Chen et al. (2023c) addressed this issue by modifying
the ODE sampler and adding stochastic correcter steps
via Langevin dynamics to establish TV convergence
under weaker assumptions on data distributions. The
samplers they study hence are not fully deterministic
as in standard probability flow ODEs. By contrast,
we analyzed the fully deterministic ODE sampler and
established Wasserstein convergence.

Second, the m0-strong-convexity of −∇ log p0, together
with the L0-Lipschitzness of ∇ log p0, guarantees that
the discretization and score-matching error at each
iterate k can be explicitly controlled as in Theorem 3.4.
In particular, Assumption 3.1 guarantees that γj,η ∈
(0, 1) when the stepsize η ≤ η̄, which controls the
propagation of the discretization and score-matching
errors as the number of iterates grows. The m0-strong-
convexity of −∇ log p0 is necessary since one can easily
verify that η̄ → 0 and γj,η /∈ (0, 1) as m0 → 0.
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3.3 Examples

In this section, we consider several examples of the
forward processes and discuss the implications of Theo-
rem 3.4. In particular, we consider a variety of choices
for f and g in the forward SDE (1), and investigate
the iteration complexity, i.e., the number of iterates
K that is needed in order to achieve ϵ accuracy, i.e.
W2(L(uK), p0) ≤ ϵ. While the bound in Theorem 3.4
is quite sophisticated in general, it can be made more
explicit when we consider special f and g.

Example 1. We first consider a VE-SDE example
from Song et al. (2021). Let f(t) ≡ 0 and g(t) = aebt

for some a, b > 0, we can obtain the following corollary
from Theorem 3.4.
Corollary 3.8. Let f(t) ≡ 0 and g(t) = aebt for some
a, b > 0. Then, we have W2(L(uK), p0) ≤ O(ϵ) after
K = O

(
d3/2 log(d/ϵ)

ϵ3

)
iterations provided that M ≤ ϵ2√

d

and η ≤ ϵ3

d3/2 .

Example 2. Next, we consider another VE-SDE ex-
ample from Gao et al. (2025), where f ≡ 0 and g has
polynomial growth in time. This example is inspired by
Karras et al. (2022) that considers f(t) ≡ 0, g(t) =

√
2t,

where the discretization time steps are defined accord-
ing to a polynomial noise schedule.
Corollary 3.9. Let f(t) ≡ 0 and g(t) = (b + at)c

for some a, b > 0, c ≥ 1/2. Then, we have

W2(L(uK), p0) ≤ O(ϵ) after K = O
(

d
1

(2c+1)
+ 3

2

ϵ
2

2c+1
+3

)
iter-

ations provided that M ≤ ϵ2√
d

and η ≤ ϵ3

d
3
2
.

Example 3. Next, we consider a VP-SDE example,
with constant f, g. This includes the special case f ≡ 1,
g ≡

√
2 that is considered in Chen et al. (2023c). In

particular, we consider f ≡ b
2 , g ≡

√
b for some b > 0.

We obtain the following corollary from Theorem 3.4.
Corollary 3.10. Assume f ≡ b

2 , g ≡
√
b for some

b > 0. Then, we have W2(L(uK), p0) ≤ O(ϵ) after
K = O

(√
d
ϵ (log(dϵ ))

2
)

iterations provided that M ≤
ϵ

log(
√
d/ϵ)

and η ≤ ϵ√
d log(

√
d/ϵ)

.

Example 4. Finally, we consider a VP-SDE example
where f, g have polynomial growth. We consider f(t) =
1
2 (b+at)

ρ and g(t) =
√
(b+ at)ρ, where a, b > 0, which

is proposed in Gao et al. (2025). This includes the
special case f(t) = 1

2 (b + at) and g(t) =
√
b+ at, i.e.

ρ = 1, that is studied in Ho et al. (2020). Then we can
obtain the following corollary from Theorem 3.4.
Corollary 3.11. Assume f(t) = 1

2 (b+at)
ρ and g(t) =√

(b+ at)ρ. Then, we have W2(L(uK), p0) ≤ O(ϵ)

after K = O
(√

d
ϵ (log(dϵ ))

ρ+2
ρ+1

)
iterations provided that

M ≤ ϵ
log(

√
d/ϵ)

and η ≤ ϵ√
d log(

√
d/ϵ)

.

We observe from Corollary 3.11 that the complexity
K deceases as ρ increases. However, this does not
suggest that the optimal complexity is achieved when
ρ → ∞ since our complexity only keeps track the
dependence on d and ϵ, and ignores any pre-factor that
can depend on ρ which might go to infinity as ρ→ ∞.
Indeed, it follows from η ≤ η̄ in Theorem 3.4 that
η ≤ log(2)

max0≤t≤T f(t) = 2 log(2)
(b+aT )ρ → 0 as ρ→ ∞ so that the

complexity will explode as ρ→ ∞.

In Table 1, we summarize the results about the iteration
complexity for the examples discussed in Section 3.3.
An immediate observation from Table 1 is that the it-
eration complexity depends on f, g and the complexity
of VE-SDEs is worse than that of VP-SDEs, at least
for the examples we analyze. This theoretical finding is
generally consistent with Song et al. (2021), where they
observed empirically that the performance of proba-
bility flow ODE samplers (with Euler or Runge-Kutta
solvers) depends on the choice of forward SDEs and the
sample quality for VE-SDEs is much worse than VP-
SDEs for high-dimensional data. Another observation
from Table 1 is that the best iteration complexity is
of order Õ(

√
d/ϵ) from the examples we studied. One

natural question is whether there are other choices of
f, g so that the iteration complexity becomes better
than Õ(

√
d/ϵ). We next show that the answer to this

question is negative, if we use the result in Theorem 3.4.

Proposition 3.12. Under the assumptions in The-
orem 3.4, we further assume mint≥0(g(t))

2L(t) >

0 and max0≤s≤t µ(s) ≤ c1

(∫ t

0
µ(s)ds

)ρ
+ c2 uni-

formly in t for some c1, c2, ρ > 0, where
µ(s) is defined in (24). We also assume that
lim infT→∞

∫ T

0
e−2

∫ T
s

f(v)dv(g(s))2ds > 0. If we use
the upper bound (12), then in order to achieve ϵ
accuracy, i.e. W2(L(uK), p0) ≤ ϵ, we must have
K = Ω̃

(√
d/ϵ
)
, where Ω̃ ignores the logarithmic de-

pendence on ϵ and d.

The assumptions in Proposition 3.12 are mild and one
can readily check that they are satisfied for all the
examples in Table 1 that achieve the iteration com-
plexity Õ

(√
d
ϵ

)
. If we ignore the dependence on the

logarithmic factors of d and ϵ, we can see from Table 1
that all the VP-SDE examples achieve the lower bound
in Proposition 3.12.

4 Outline of the Proof of Theorem 3.4

We provide an outline for the proof of our main re-
sult (Theorem 3.4). At a high level, we analyze three
sources of errors: (1) the initialization of the algorithm
at p̂T instead of pT , (2) the estimation error of the
score function, and (3) the discretization error of the
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Table 1: Summary of the iteration complexity of the algorithm (9) for various examples in terms of ϵ and
dimension d. Here f, g correspond to the drift and diffusion terms in the forward SDE (1), and a, b, ρ are positive
constants. K is the number of iterates, M is the score-matching approximation error, and η is the stepsize
required to achieve accuracy level ϵ (i.e. W2(L(uK), p0) ≤ ϵ).

f g K M η

0 aebt O
(

d3/2 log( d
ϵ )

ϵ3

)
O
(

ϵ2√
d

)
O
(

ϵ3

d3/2

)
0 (b+ at)c O

(
d

1
(2c+1)

+ 3
2

ϵ
2

2c+1
+3

)
O
(

ϵ2√
d

)
O
(

ϵ3

d
3
2

)
b
2

√
b O

(√
d
ϵ (log(dϵ ))

2
)

O
(

ϵ
log(

√
d/ϵ)

)
O
(

ϵ√
d log(

√
d/ϵ)

)
b+at
2

√
b+ at O

(√
d
ϵ (log(dϵ ))

3
2

)
O
(

ϵ
log(

√
d/ϵ)

)
O
(

ϵ√
d log(

√
d/ϵ)

)
(b+at)ρ

2 (b+ at)
ρ
2 O

(√
d
ϵ (log(dϵ ))

ρ+2
ρ+1

)
O
(

ϵ
log(

√
d/ϵ)

)
O
(

ϵ√
d log(

√
d/ϵ)

)

continuous-time ODE (7).

First, we study the error introduced due to the initial-
ization at p̂T instead of pT . Recall the probability flow
ODE yt given in (5), which has the same dynamics as
x̃t (defined in (2)) but with a different prior distribu-
tion y0 ∼ p̂T (in contrast to x̃0 ∼ pT ). The following
result bounds W2(L(yT ), p0).

Proposition 4.1. Assume p0 is m0-strongly-log-
concave. Then, we have

W2(L(yT ), p0) ≤ e−
∫ T
0

µ(t)dt∥x0∥L2 , (15)

where µ(t) is given in (24) in Appendix A.

The main challenge in analyzing the ODE yt lies in
studying the term ∇ log pT−t(yt). In general, this term
is neither linear in yt nor admits a closed-form expres-
sion. However, when p0 is strongly log-concave, it is
known that that ∇x log pT−t(x) is also strongly con-
cave (see e.g. Gao et al. (2025)). This fact allows us
to establish Proposition 4.1 whose proof will be given
in Appendix B.1.1.

Now we consider the algorithm (9) with iterates (uk),
and bound the errors due to both score estimations and
discretizations. For any k = 0, 1, 2, . . . ,K, uk has the
same distribution as ûkη, where ût is a continuous-time
process with the dynamics:

dût

dt
= f(T − t)ût

+
1

2
(g(T − t))2sθ

(
û⌊t/η⌋η, T − ⌊t/η⌋η

)
,

(16)

with the initial distribution û0 ∼ p̂T . We have the
following result that provides an upper bound for
∥ykη − ûkη∥L2 in terms of ∥y(k−1)η − û(k−1)η∥L2 .
Proposition 4.2. Assume that p0 is m0-strongly-log-
concave, and ∇ log p0 is L0-Lipschitz. Then, for any

k = 1, 2, . . . ,K,

∥ykη − ûkη∥L2

≤ γk,η · e
∫ kη
(k−1)η

f(T−t)dt∥y(k−1)η − û(k−1)η∥L2

+
L1

2
η (1 + ∥x0∥L2

+ ω(T ))ϕk,η

+
M

2
ϕk,η +

√
η

2
νk,η

√
ψk,η, (17)

where γk,η, ϕk,η and ψk,η are defined in (23), (21) and
(22) respectively, and ω(T ) is defined in (32) and νk,η
is given in (33) in Appendix A.

Proposition 4.2 provides the guarantees on how the
errors due to both score estimations and discretizations
propagate as the number of iterates k increases. By
iterating over k = 1, 2, . . . ,K, we immediately get:

∥yKη − ûKη∥L2

≤ E1(f, g,K, η, L1) + E2(f, g,K, η,M,L1), (18)

where E1(f, g,K, η, L1) and E2(f, g,K, η,M,L1) are
the discretization and score matching errors given in
(13)-(14). Since ûkη has the same distribution as uk,
we have

W2(L(yKη),L(uK)) ≤ ∥yKη − ûKη∥L2
. (19)

Finally, by the triangle inequality for 2-Wasserstein
distance, we can decompose the 2-Wasserstein error
in terms of the 2-Wasserstein error due to the initial-
ization of the algorithm at p̂T instead of pT and the
2-Wasserstein error due to both score estimations and
discretizations, we obtain:

W2(L(uK), p0)

≤ W2(L(uK),L(yKη)) +W2(L(yKη), p0), (20)

where we used T = Kη. Hence, Theorem 3.4 follows
by applying (15), (18), (19) and (20).
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Remark 4.3. Lemma 4 in Chen et al. (2023c) provides
a single-step discretization analysis of the probabil-
ity flow ODE in Wasserstein distance, but the (local)
bound it provides is crude because it applies Gronwall’s
inequality, which leads to an exponential growing factor
when applied recursively. In contrast, our proof lever-
ages the strong log-concavity of the data distribution
and carefully analyzes the discretization error globally.
Hence, our Wasserstein analysis is novel and differs
from the analysis in Chen et al. (2023c).

5 Conclusion

This paper provides the first non-asymptotic conver-
gence analysis for a general class of probability flow
ODE samplers in 2-Wasserstein distance, assuming ac-
curate score estimates and a smooth log-concave data
distribution. Our analysis provides some insights about
the iteration complexity of deterministic ODE-based
samplers for different choices of forward SDEs in diffu-
sion models.

Our work serves as a first step to better understand the
convergence of deterministic ODE-samplers in Wasser-
stein distance. It is a significant open question how to
relax our current assumption of the strong-log-concave
data distribution. Our proof techniques borrow the
idea of synchronous coupling studied in the context of
sampling from unnormalized densities using Langevin
algorithms (Dalalyan and Karagulyan, 2019). To ob-
tain Wasserstein convergence rates for using Langevin
algorithm to sample from non-log-concave distributions,
one may use more sophisticated coupling methods such
as reflection coupling to obtain contraction rates of
(Langevin) SDEs, see e.g. Eberle (2016). However, the
probability flow ODE is an ODE, not an SDE, and
it is not clear whether one can find an analogue of
reflection coupling in the context of probability flow
ODEs. Similarly, functional inequalities, another major
approach to obtain convergence (typically in KL diver-
gence) bounds for sampling with Langevin algorithms
without strong-log-concavity (see e.g. Theorem 5.2.1
in Bakry et al. (2014)), are also not directly applica-
ble to probability flow ODEs. Hence, one might need
significantly different techniques to obtain Wasserstein
convergence rates for ODE-based samplers without the
log-concavity assumption.

In addition, while our work focuses on the sampling
phase of diffusion models, another significant open prob-
lem is to investigate the training phase, i.e., understand
when the score function can be accurately learned, and
combine the results with the analysis of sampling to es-
tablish end-to-end guarantees for diffusion models (see
e.g. Chen et al. (2023b)). We leave these investigations
to the future.
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you include:

(a) Citations of the creator If your work uses
existing assets. [Not Applicable]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]
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(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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APPENDIX

The Appendix is organized as follows:

• In Appendix A, we summarize the notations given in Table 2 in the main paper, that are used in presenting
the main results.

• In Appendix B, we provide the proofs of the main results of the paper.

• We present some additional technical proofs in Appendix C.

• We provide the derivation of results for various examples in Section 3.3 in the main paper and additional
details in Appendix D.

A Key Quantities

In this section, we first summarize in the following Table 2 the the key quantities that play a major role in
presenting the main results in the main paper.

Table 2: Summary of quantities, their interpretations and the sources

Quantities Interpretations Sources/References

η̄ in Theorem 3.4 Upper bound for the stepsize (27)
µ(t) in (24) Contraction rate of W2(L(yT ), p0) (35)
L(t) in (26) Lipschitz constant of ∇x log pt(x) Lemma B.4

γj,η in (23) Contraction rate of discretization Proposition 4.2and score-matching errors in uj

ϕk,η in (21) A component in the discretization Theorem 3.4and score-matching errors in uj

ψk,η in (22) A component in the discretization Theorem 3.4and score-matching errors in uj

δj(T − t) in (30) A component in the contraction rate of discretization Proposition B.2and score-matching errors in uj

ω(T ) in (32) sup0≤t≤T ∥xt∥L2
(63)

νk,η in (33) Bound for sup(k−1)η≤t≤kη

∥∥yt − y(k−1)η

∥∥
L2

Lemma B.5

Next, we provide the definitions for the key quantities in Table 2.

For any k = 1, 2, . . . ,K, we define:

ϕk,η :=

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt, (21)

ψk,η :=

∫ kη

(k−1)η

e2
∫ kη
t

f(T−s)ds · (g(T − t))4(L(T − t))2dt, (22)

and for any j = 1, 2, . . . ,K, we also define:

γj,η := 1−
∫ jη

(j−1)η

δj(T − t)dt+
L1η

2

∫ jη

(j−1)η

(g(T − t))2dt, (23)
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For any 0 ≤ t ≤ T , we define:

µ(t) :=
m0(g(t))

2

2
(
e−2

∫ t
0
f(s)ds +m0

∫ t

0
e−2

∫ t
s
f(v)dv(g(s))2ds

) , (24)

m(t) :=
(g(t))2

1
m0
e−2

∫ t
0
f(s)ds +

∫ t

0
e−2

∫ t
s
f(v)dv(g(s))2ds

− 2f(t), (25)

L(t) := min

{(∫ t

0

e−2
∫ t
s
f(v)dv(g(s))2ds

)−1

,
(
e
∫ t
0
f(s)ds

)2
L0

}
, (26)

We also define:

η̄ := min {η̄1, η̄2} , (27)

η̄1 := min

 log(2)

max0≤t≤T f(t)
, min
0≤t≤T


1
4 (g(t))

2

1
m0

e−2
∫ t
0 f(s)ds+

∫ t
0
e−2

∫ t
s f(v)dv(g(s))2ds

1
4 (g(t))

4(L(t))2 + L1

2 (g(t))2


 , (28)

η̄2 := min
0≤t≤T


e−2

∫ t
0 f(s)ds

m0
+
∫ t

0
e−2

∫ t
s
f(v)dv(g(s))2ds

1
2 (g(t))

2

 . (29)

For any k = 1, 2, . . . ,K and (k − 1)η ≤ t ≤ kη, we define:

δk(T − t) :=
1
2e

−
∫ t
(k−1)η

f(T−s)ds(g(T − t))2

1
m0
e−2

∫ T−t
0

f(s)ds +
∫ T−t

0
e−2

∫ T−t
s

f(v)dv(g(s))2ds
− η

4
(g(T − t))4(L(T − t))2, (30)

and finally, let us define:

θ(T ) := sup
0≤t≤T

e−
1
2

∫ t
0
m(T−s)dse−

∫ T
0

f(s)ds∥x0∥L2
, (31)

ω(T ) := sup
0≤t≤T

(
e−2

∫ t
0
f(s)ds∥x0∥2L2

+ d

∫ t

0

e−2
∫ t
s
f(v)dv(g(s))2ds

)1/2

, (32)

and for any k = 1, 2, . . . ,K,

νk,η := (θ(T ) + ω(T ))

∫ kη

(k−1)η

[
f(T − s) +

1

2
(g(T − s))2L(T − s)

]
ds

+ (L1T + ∥∇ log p0(0)∥)
∫ kη

(k−1)η

1

2
(g(T − s))2ds. (33)

B Proofs of the Main Results

B.1 Proof of Theorem 3.4

To prove Theorem 3.4, we study the three sources of errors discussed in Section 2 for convergence analysis: (1)
the initialization of the algorithm at p̂T instead of pT , (2) the estimation error of the score function, and (3) the
discretization error of the continuous-time process (7).

First, we study the error introduced due to the initialization at p̂T instead of pT . Recall the probability flow
ODE yt given in (5):

dyt =

[
f(T − t)yt +

1

2
(g(T − t))2∇ log pT−t(yt)

]
dt, y0 ∼ p̂T . (34)

As discussed in Section 2, the distribution of yT differs from p0, because y0 ∼ p̂T ̸= pT . The following result
provides a bound on W2(L(yT ), p0).
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Proposition B.1 (Restatement of Proposition 4.1). Assume that p0 is m0-strongly-log-concave. Then, we have

W2(L(yT ), p0) ≤ e−
∫ T
0

µ(t)dt∥x0∥L2 , (35)

where µ(t) is given in (24).

Notice that the term ∥x0∥L2
in Proposition B.1 is finite since Assumption 3.1 implies that x0 ∼ p0 is L2-integrable

(see e.g. Lemma 11 in Gürbüzbalaban et al. (2021)).

The key idea of the proof of Proposition B.1 is to observe that when p0 is strongly log-concave, the term
∇x log pT−t(x) is also strongly concave (see e.g. Gao et al. (2025)). This fact allows us to establish Proposition B.1.
The proof of Proposition B.1 will be given in Section B.1.1.

Now we consider the algorithm (9) with iterates (uk), and bound the errors due to score estimations and
discretizations together. For any k = 0, 1, 2, . . . ,K, uk has the same distribution as ûkη, where ût is a continuous-
time process with the dynamics:

dût =

[
f(T − t)ût +

1

2
(g(T − t))2sθ

(
û⌊t/η⌋η, T − ⌊t/η⌋η

)]
dt, (36)

with the initial distribution û0 ∼ p̂T . We have the following result that provides an upper bound for ∥ykη− ûkη∥L2

in terms of ∥y(k−1)η − û(k−1)η∥L2
. This result plays a key role in the proof of Theorem 3.4.

Proposition B.2 (Restatement of Proposition 4.2). Assume that p0 is m0-strongly-log-concave, i.e. − log p0 is
m0-strongly convex and ∇ log p0 is L0-Lipschitz. For any k = 1, 2, . . . ,K,

∥ykη − ûkη∥L2
≤

(
1−

∫ kη

(k−1)η

δk(T − t)dt+
L1

2
η

∫ kη

(k−1)η

(g(T − t))2dt

)
· e
∫ kη
(k−1)η

f(T−t)dt∥y(k−1)η − û(k−1)η∥L2

+
L1

2
η (1 + ∥x0∥L2

+ ω(T ))

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt

+
M

2

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt

+
√
ηνk,η

(∫ kη

(k−1)η

[
1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L(T − t)

]2
dt

)1/2

, (37)

where δk(t), 0 ≤ t ≤ T , is defined in (30), ω(T ) is defined in (32) and νk,η is given in (33).

We remark that the coefficient in front of the term
∥∥y(k−1)η − û(k−1)η

∥∥
L2

in (37) lies in between zero and one.
Indeed, we can see that assumption η ≤ η̄ := min(η̄1, η̄2) in Theorem 3.4 implies that η ≤ η̄1, where η̄1 is defined
in (28) which yields that

η ≤ min
0≤t≤T


1
2 e

−η max0≤t≤T f(t)
(g(t))2

1
m0

e−2
∫ t
0 f(s)ds+

∫ t
0
e−2

∫ t
s f(v)dv(g(s))2ds

1
4 (g(t))

4(L(t))2 + L1

2 (g(t))2

 , (38)

and assumption η ≤ η̄ := min(η̄1, η̄2) in Theorem 3.4 implies that η ≤ η̄2, where η̄2 is defined in (29) which yields
that

η ≤ min
0≤t≤T

{
1

m0
e−2

∫ t
0
f(s)ds +

∫ t

0
e−2

∫ t
s
f(v)dv(g(s))2ds

1
2e

−ηmin0≤t≤T f(t)(g(t))2

}
, (39)

and it follows from (38)-(39) and the definition of δj(t) in (30) that δj(T − t) ≥ L1

2 η(g(T − t))2 for every
j = 1, 2, . . . ,K and (j − 1)η ≤ t ≤ jη and ηmax(j−1)η≤t≤jη δj(t) < 1 for every j = 1, 2, . . . ,K such that for any
j = 1, 2, . . . ,K,

0 ≤ 1−
∫ jη

(j−1)η

δj(T − t)dt+
L1

2
η

∫ jη

(j−1)η

(g(T − t))2dt ≤ 1.

Now we are ready to prove Theorem 3.4.
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Proof of Theorem 3.4. Since ûkη has the same distribution as uk, by applying (37) recursively, we have

W2(L(yKη),L(uK)) ≤ ∥yKη − ûKη∥L2

≤
K∑

k=1

K∏
j=k+1

(
1−

∫ jη

(j−1)η

δj(T − t)dt+
L1

2
η

∫ jη

(j−1)η

(g(T − t))2dt

)

· e
∫Kη
kη

f(T−t)dt

(
L1

2
η (1 + ∥x0∥L2 + ω(T ))

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt

+
M

2

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt

+
√
ηνk,η

(∫ kη

(k−1)η

[
1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L(T − t)

]2
dt

)1/2)
.

Moreover, we recall that T = Kη and by triangle inequality for 2-Wasserstein distance,

W2(L(uK), p0) ≤ W2(L(uK),L(yKη)) +W2(L(yKη), p0). (40)

By applying Proposition B.1 and (40), we get

W2(L(uK), p0) ≤ e−
∫Kη
0

µ(t)dt · ∥x0∥L2 + E1(f, g,K, η, L1) + E2(f, g,K, η,M,L1), (41)

where µ(t) is given in (24) and we recall from (13)-(14) that

E1(f, g,K, η, L1) :=

K∑
k=1

K∏
j=k+1

γj,η · e
∫Kη
kη

f(T−t)dt ·

(
L1

2
η (1 + ∥x0∥L2

+ ω(T ))ϕk,η +

√
η

2
νk,η

√
ψk,η

)
, (42)

E2(f, g,K, η,M,L1) :=

K∑
k=1

K∏
j=k+1

γj,η · e
∫Kη
kη

f(T−t)dt · M
2
ϕk,η, (43)

where ϕk,η is given in (21), ψk,η is given in (22), γj,η is given in (23), L(t) is given in (26), δj(T − t) is defined in
(30), ω(T ) is defined in (32) and νk,η is given in (33). The proof is complete.

B.1.1 Proof of Proposition B.1

Before we proceed to the proof of Proposition B.1, let us first introduce a technical lemma.
Lemma B.3. It holds that:

W2(pT , p̂T ) ≤ e−
∫ T
0

f(s)ds∥x0∥L2 . (44)

Proof of Lemma B.3. We recall that pT is the distribution of xT which has the expression (see (4))

xT = e−
∫ T
0

f(s)dsx0 +

∫ T

0

e−
∫ T
s

f(v)dvg(s)dBs, (45)

and p̂T (see (3)) is the distribution of

x̂T =

∫ T

0

e−
∫ T
s

f(v)dvg(s)dBs. (46)

Therefore, it follows from (45) and (46) that

W2(pT , p̂T ) ≤ ∥xT − x̂T ∥L2
= e−

∫ T
0

f(s)ds∥x0∥L2
.

This completes the proof.

Now, we are ready to prove Proposition B.1.
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Proof of Proposition B.1. We recall that

dx̃t =

[
f(T − t)x̃t +

1

2
(g(T − t))2∇ log pT−t(x̃t)

]
dt, (47)

with the initial distribution x̃0 ∼ pT and

dyt =

[
f(T − t)yt +

1

2
(g(T − t))2∇ log pT−t(yt)

]
dt,

with the initial distribution y0 ∼ p̂T .

It is proved in Gao et al. (2025) that log pT−t(x) is a(T − t)-strongly-concave, where

a(T − t) :=
1

1
m0
e−2

∫ T−t
0

f(s)ds +
∫ T−t

0
e−2

∫ T−t
s

f(v)dv(g(s))2ds
. (48)

Next, let us recall from (25) the definition of m(T − t):

m(T − t) := (g(T − t))2a(T − t)− 2f(T − t), 0 ≤ t ≤ T, (49)

where a(T − t) is defined in (48). We can compute that

d
(
∥x̃t − yt∥2e

∫ t
0
m(T−s)ds

)
= m(T − t)e

∫ t
0
m(T−s)ds∥x̃t − yt∥2dt+ 2e

∫ t
0
m(T−s)ds⟨x̃t − yt, dx̃t − dyt⟩

= m(T − t)e
∫ t
0
m(T−s)ds∥x̃t − yt∥2dt+ 2e

∫ t
0
m(T−s)ds⟨x̃t − yt, f(T − t)(x̃t − yt)⟩dt

+ 2e
∫ t
0
m(T−s)ds

〈
x̃t − yt,

1

2
(g(T − t))2 (∇ log pT−t(x̃t)−∇ log pT−t(yt))

〉
dt

≤ e
∫ t
0
m(T−s)ds

(
m(T − t) + 2f(T − t)− (g(T − t))2a(T − t)

)
∥x̃t − yt∥2dt

= 0.

This implies that
∥x̃t − yt∥2e

∫ t
0
m(T−s)ds ≤ ∥x̃0 − y0∥2, (50)

so that
E∥x̃T − yT ∥2 ≤ e−

∫ T
0

m(T−s)dsE∥x̃0 − y0∥2. (51)

Consider a coupling of (x̃0,y0) such that x̃0 ∼ pT , y0 ∼ p̂T and E∥x̃0 − y0∥2 = W2
2 (pT , p̂T ).

Next, we recall from Lemma B.3 that

W2(pT , p̂T ) ≤ e−
∫ T
0

f(s)ds∥x0∥L2
. (52)

By combining (51) with (52), we conclude that

W2
2 (L(yT ), p0) = W2(L(yT ),L(x̃T )) ≤ E∥x̃T − yT ∥2

≤ e−
∫ T
0

m(T−s)dsW2
2 (pT , p̂T )

≤ e−
∫ T
0

m(s)dse−2
∫ T
0

f(s)ds∥x0∥2L2
= e−2

∫ T
0

µ(t)dt∥x0∥2L2
,

where

µ(t) = f(t) +
m(t)

2
=

m0(g(t))
2

2
(
e−2

∫ t
0
f(s)ds +m0

∫ t

0
e−2

∫ t
s
f(v)dv(g(s))2ds

) ,
and we have used (49). The proof is complete.
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B.1.2 Proof of Proposition B.2

We first state a key technical lemma, which will be used in the proof of Proposition B.2.

Lemma B.4 (Gao et al. (2025)). Suppose that Assumption 3.1 holds. Then, ∇x log pT−t(x) is L(T − t)-Lipschitz
in x, where L(T − t) is given in (26).

Proof of Proposition B.2. First, we recall that for any (k − 1)η ≤ t ≤ kη,

yt = y(k−1)η +

∫ t

(k−1)η

[
f(T − s)ys +

1

2
(g(T − s))2∇ log pT−s(ys)

]
ds,

ût = û(k−1)η +

∫ t

(k−1)η

[
f(T − s)ûs +

1

2
(g(T − s))2sθ

(
û(k−1)η, T − (k − 1)η

)]
ds,

which implies that

ykη = e
∫ kη
(k−1)η

f(T−t)dt
y(k−1)η +

1

2

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2∇ log pT−t(yt)dt,

ûkη = e
∫ kη
(k−1)η

f(T−t)dt
û(k−1)η +

1

2

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2sθ
(
û(k−1)η, T − (k − 1)η

)
dt.

It follows that

ykη − ûkη

= e
∫ kη
(k−1)η

f(T−t)dt (
y(k−1)η − û(k−1)η

)
+

∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t(y(k−1)η)−∇ log pT−t

(
û(k−1)η

))
dt

+

∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t(yt)−∇ log pT−t(y(k−1)η)

)
dt

+

∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t

(
û(k−1)η

)
− sθ

(
û(k−1)η, T − (k − 1)η

))
dt.

This implies that

∥ykη − ûkη∥L2

≤

∥∥∥∥∥e∫ kη
(k−1)η

f(T−t)dt (
y(k−1)η − û(k−1)η

)
+

∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t(y(k−1)η)−∇ log pT−t

(
û(k−1)η

))
dt

∥∥∥∥∥
L2

+

∥∥∥∥∥
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t(yt)−∇ log pT−t(y(k−1)η)

)
dt

∥∥∥∥∥
L2

+

∥∥∥∥∥
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2

·
(
∇ log pT−t

(
û(k−1)η

)
− sθ

(
û(k−1)η, T − (k − 1)η

))
dt

∥∥∥∥∥
L2

. (53)

Next, we provide upper bounds for the three terms in (53).
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Bounding the first term in (53). We can compute that∥∥∥∥∥e∫ kη
(k−1)η

f(T−t)dt (
y(k−1)η − û(k−1)η

)
+

∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t(y(k−1)η)−∇ log pT−t

(
û(k−1)η

))
dt

∥∥∥∥∥
2

= e
2
∫ kη
(k−1)η

f(T−t)dt ∥∥y(k−1)η − û(k−1)η

∥∥2
+

∥∥∥∥∥
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t(y(k−1)η)−∇ log pT−t

(
û(k−1)η

))
dt

∥∥∥∥∥
2

+ 2

∫ kη

(k−1)η

〈
e
∫ kη
(k−1)η

f(T−t)dt (
y(k−1)η − û(k−1)η

)
,

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t(y(k−1)η)−∇ log pT−t

(
û(k−1)η

))〉
dt.

We know from Gao et al. (2025) that log pT−t(x) is a(T − t)-strongly-concave, where a(T − t) is given in (48).
Hence we have∥∥∥∥∥e∫ kη

(k−1)η
f(T−t)dt (

y(k−1)η − û(k−1)η

)
+

∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t(y(k−1)η)−∇ log pT−t

(
û(k−1)η

))
dt

∥∥∥∥∥
2

≤

(
1−

∫ kη

(k−1)η

mk(T − t)dt

)
e
2
∫ kη
(k−1)η

f(T−t)dt ∥∥y(k−1)η − û(k−1)η

∥∥2
+

(∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L(T − t)
∥∥y(k−1)η − û(k−1)η

∥∥dt)2

≤

(
1−

∫ kη

(k−1)η

mk(T − t)dt+
η

2

∫ kη

(k−1)η

(g(T − t))4(L(T − t))2dt

)
· e2

∫ kη
(k−1)η

f(T−t)dt ∥∥y(k−1)η − û(k−1)η

∥∥2 ,
where we applied Cauchy-Schwartz inequality and Lemma B.4, and mk(T − t) is defined as:

mk(T − t) := e−
∫ t
(k−1)η

f(T−s)ds(g(T − t))2a(T − t), (k − 1)η ≤ t ≤ kη, (54)

for every k = 1, 2, . . . ,K. Hence, we conclude that∥∥∥∥∥e∫ kη
(k−1)η

f(T−t)dt (
y(k−1)η − û(k−1)η

)
+

∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t

(
y(k−1)η

)
−∇ log pT−t

(
û(k−1)η

))
dt

∥∥∥∥∥
L2

≤

(
1−

∫ kη

(k−1)η

δk(T − t)dt

)
e
∫ kη
(k−1)η

f(T−t)dt ∥∥y(k−1)η − û(k−1)η

∥∥
L2
, (55)

where we used the inequality
√
1− x ≤ 1− x

2 for any 0 ≤ x ≤ 1 and the definition of δk(T − t) in (30) which can
be rewritten as

δk(T − t) :=
1

2
e−
∫ t
(k−1)η

f(T−s)ds(g(T − t))2a(T − t)− η

4
(g(T − t))4(L(T − t))2, (k − 1)η ≤ t ≤ kη,
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where a(T − t) is given in (48).

Bounding the second term in (53). Using Lemma B.4, we can compute that∥∥∥∥∥
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t(yt)−∇ log pT−t(y(k−1)η)

)
dt

∥∥∥∥∥
2

≤

(∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L(T − t)∥yt − y(k−1)η∥dt

)2

≤ η

∫ kη

(k−1)η

[
1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L(T − t)

]2
∥yt − y(k−1)η∥2dt,

which implies that∥∥∥∥∥
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t(yt)−∇ log pT−t

(
y(k−1)η

))
dt

∥∥∥∥∥
L2

≤

(
E

[
η

∫ kη

(k−1)η

[
1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L(T − t)

]2
∥yt − y(k−1)η∥2dt

])1/2

≤

(
η

∫ kη

(k−1)η

[
1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L(T − t)

]2
dt · sup

(k−1)η≤t≤kη

E∥yt − y(k−1)η∥2
)1/2

=
√
η

(∫ kη

(k−1)η

[
1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L(T − t)

]2
dt

)1/2

sup
(k−1)η≤t≤kη

∥∥yt − y(k−1)η

∥∥
L2
. (56)

Bounding the third term in (53). We notice that∥∥∥∥∥
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t(û(k−1)η)− sθ

(
û(k−1)η, T − (k − 1)η

))
dt

∥∥∥∥∥
L2

≤

∥∥∥∥∥
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−(k−1)η(û(k−1)η)− sθ

(
û(k−1)η, T − (k − 1)η

))
dt

∥∥∥∥∥
L2

+

∥∥∥∥∥
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t

(
û(k−1)η

)
−∇ log pT−(k−1)η

(
û(k−1)η

))
dt

∥∥∥∥∥
L2

.

By Assumption 3.3, we have∥∥∥∥∥
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−(k−1)η(û(k−1)η)− sθ

(
û(k−1)η, T − (k − 1)η

))
dt

∥∥∥∥∥
L2

≤ M

2

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt. (57)

Moreover, by Assumption 3.2, we have∥∥∥∥∥
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t

(
û(k−1)η

)
−∇ log pT−(k−1)η

(
û(k−1)η

))
dt

∥∥∥∥∥
L2

≤
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
∥∥∇ log pT−t

(
û(k−1)η

)
−∇ log pT−(k−1)η

(
û(k−1)η

)∥∥
L2

dt

≤
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L1η
(
1 +

∥∥û(k−1)η

∥∥
L2

)
dt

≤ L1

2
η
(
1 +

∥∥y(k−1)η − û(k−1)η

∥∥
L2

+ ∥y(k−1)η∥L2

)∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt. (58)
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Furthermore, we can compute that∥∥y(k−1)η

∥∥
L2

≤
∥∥y(k−1)η − x̃(k−1)η

∥∥
L2

+
∥∥x̃(k−1)η

∥∥
L2
, (59)

where x̃t is defined in (2). Moreover, by (50) in the proof of Proposition B.1, we have∥∥y(k−1)η − x̃(k−1)η

∥∥
L2

≤
(
E∥x̃0 − y0∥2

)1/2
= e−

∫ T
0

f(s)ds∥x0∥L2 ≤ ∥x0∥L2 , (60)

where we applied (4) to obtain the equality in the above equation. Moreover, since x̃t = xT−t in distribution for
any t ∈ [0, T ], we have ∥∥x̃(k−1)η

∥∥
L2

=
∥∥xT−(k−1)η

∥∥
L2

≤ sup
0≤t≤T

∥xt∥L2
=: ω(T ). (61)

Next, let us show that ω(T ) can be computed as given by the formula in (32). By equation (4), we have

d
(
∥xt∥2e2

∫ t
0
f(s)ds

)
= 2f(t)∥xt∥2e2

∫ t
0
f(s)dsdt

+ 2e2
∫ t
0
f(s)ds⟨xt, dxt⟩+ e2

∫ t
0
f(s)ds · d · (g(t))2dt.

By taking expectations, we obtain

d
(
E∥xt∥2e2

∫ t
0
f(s)ds

)
= e2

∫ t
0
f(s)ds · d · (g(t))2dt,

which implies that

E∥xt∥2 = e−2
∫ t
0
f(s)dsE∥x0∥2 + d

∫ t

0

e−2
∫ t
s
f(v)dv(g(s))2ds. (62)

Therefore, we conclude that

ω(T ) = sup
0≤t≤T

∥xt∥L2 = sup
0≤t≤T

(
e−2

∫ t
0
f(s)ds∥x0∥2L2

+ d

∫ t

0

e−2
∫ t
s
f(v)dv(g(s))2ds

)1/2

. (63)

Therefore, by applying (58), (59), (60) and (61), we have∥∥∥∥∥
∫ kη

(k−1)η

1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2
(
∇ log pT−t

(
û(k−1)η

)
−∇ log pT−(k−1)η

(
û(k−1)η

))
dt

∥∥∥∥∥
L2

≤ L1

2
η
∥∥y(k−1)η − û(k−1)η

∥∥
L2

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt

+
L1

2
η (1 + ∥x0∥L2 + ω(T ))

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt.

It follows that the third term in (53) is upper bounded by

L1

2
η
∥∥y(k−1)η − û(k−1)η

∥∥
L2

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt

+
L1

2
η (1 + ∥x0∥L2

+ ω(T ))

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt

+
M

2

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt. (64)
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Bounding (53). On combining (55), (56) and (64), we conclude that

∥ykη − ûkη∥2L2

≤

{(
1−

∫ kη

(k−1)η

δk(T − t)dt+
L1

2
η

∫ kη

(k−1)η

(g(T − t))2dt

)
e
∫ kη
(k−1)η

f(T−t)dt ∥∥y(k−1)η − û(k−1)η

∥∥
L2

+
L1

2
η (1 + ∥x0∥L2 + ω(T ))

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt

+
M

2

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt

+
√
η

(∫ kη

(k−1)η

[
1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L(T − t)

]2
dt

)1/2

sup
(k−1)η≤t≤kη

∥yt − y(k−1)η∥L2

}2

. (65)

We need one more result, which provides an upper bound for sup(k−1)η≤t≤kη ∥yt − y(k−1)η∥L2
. The proof of

Lemma B.5 is given in Appendix C.1.

Lemma B.5. For any k = 1, 2, . . . ,K,

sup
(k−1)η≤t≤kη

∥∥yt − y(k−1)η

∥∥
L2

≤ (θ(T ) + ω(T ))

∫ kη

(k−1)η

[
f(T − s) +

1

2
(g(T − s))2L(T − s)

]
ds

+ (L1T + ∥∇ log p0(0)∥)
∫ kη

(k−1)η

1

2
(g(T − s))2ds.

where we recall from (31)-(32) that

θ(T ) := sup
0≤t≤T

e−
1
2

∫ t
0
m(T−s)dse−

∫ T
0

f(s)ds∥x0∥L2
,

ω(T ) := sup
0≤t≤T

(
e−2

∫ t
0
f(s)ds∥x0∥2L2

+ d

∫ t

0

e−2
∫ t
s
f(v)dv(g(s))2ds

)1/2

.

By applying Lemma B.5, we conclude from (65) that

∥ykη − ûkη∥2L2

≤

{(
1−

∫ kη

(k−1)η

δk(T − t)dt+
L1

2
η

∫ kη

(k−1)η

(g(T − t))2dt

)
e
∫ kη
(k−1)η

f(T−t)dt ∥∥y(k−1)η − û(k−1)η

∥∥
L2

+

(
L1

2
η (1 + ∥x0∥L2

+ ω(T )) +
M

2

)∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt

+
√
ηνk,η

(∫ kη

(k−1)η

[
1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L(T − t)

]2
dt

)1/2}2

,

where νk,η is defined in (33). The proof of Proposition B.2 is hence complete.
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B.2 Proof of Proposition 3.12

Proof of Proposition 3.12. First of all, we have

RHS of (12)

≥ e−
∫Kη
0

µ(t)dt∥x0∥L2
+

K∑
k=1

K∏
j=k+1

(
1−

∫ jη

(j−1)η

δj(T − t)dt

)

· √ηνk,η

(∫ kη

(k−1)η

[
1

2
(g(T − t))2L(T − t)

]2
dt

)1/2

≥ e−
∫Kη
0

µ(t)dt∥x0∥L2
+

K∑
k=1

(
1− η max

1≤j≤K
max

(j−1)η≤t≤jη
δj(T − t)

)K−k

· ηνk,η min
0≤t≤T

(
1

2
(g(t))2L(t)

)

≥ e−
∫Kη
0

µ(t)dt∥x0∥L2
+

K∑
k=1

(
1− max

0≤t≤T
µ(T − t)

)K−k

· ηνk,η min
0≤t≤T

(
1

2
(g(t))2L(t)

)

= e−
∫Kη
0

µ(t)dt∥x0∥L2 +
1− (1− ηmax0≤t≤T µ(t))

K

max0≤t≤T µ(t)
· νk,η min

0≤t≤T

(
1

2
(g(t))2L(t)

)
≥ e−

∫Kη
0

µ(t)dt∥x0∥L2
+

1− e−Kηmax0≤t≤T µ(t)

max0≤t≤T µ(t)
· νk,η min

0≤t≤T

(
1

2
(g(t))2L(t)

)
,

where µ(t) is given in (24), δj(T − t) is defined in (30) and the equality above is due to the formula for the finite
sum of a geometric series and we used the inequality that 1 − x ≤ e−x for any 0 ≤ x ≤ 1 to obtain the last
inequality above.

Next, by the definition of νk,η in (33), we have

νk,η ≥ η
√
d

(∫ T

0

e−2
∫ T
s

f(v)dv(g(s))2ds

)1/2

min
0≤t≤T

(g(t))2L(t).

Therefore, in order for RHS of (12) ≤ ϵ, we must have

e−
∫Kη
0

µ(t)dt∥x0∥L2
≤ ϵ,

which implies that Kη → ∞ as ϵ→ 0 and in particular

T = Kη = Ω(1), (66)

(since under our assumptions on f and g, µ(t) which is defined in (24) is positive and continuous so that
∫ t

0
µ(s)ds

is finite for any t ∈ (0,∞) and strictly increasing from 0 to ∞ as t increases from 0 to ∞), and we also need

1− e−Kηmax0≤t≤T µ(t)

max0≤t≤T µ(t)
· η

√
d

(∫ T

0

e−2
∫ T
s

f(v)dv(g(s))2ds

)1/2

· 1
2

(
min

0≤t≤T
(g(t))2L(t)

)2

≤ ϵ. (67)

Note that max0≤t≤T µ(t) = max0≤t≤Kη µ(t). Together with e−
∫Kη
0

µ(t)dt = O(ϵ/
√
d) (since ∥x0∥L2 ≤ O(

√
d)

from (77)) and the assumption that max0≤s≤t µ(s) ≤ c1

(∫ t

0
µ(s)ds

)ρ
+ c2 uniformly in t for some c1, c2, ρ > 0, it

is easy to see that max0≤t≤Kη µ(t) = O
((

log
(√

d/ϵ
))ρ)

. Moreover, since we assumed mint≥0(g(t))
2L(t) > 0,

we have µ(t) > 0 for any t. Together with T = Kη = Ω(1) from (66), we have max0≤t≤T µ(t) ≥ Ω(1). Since
Kη → ∞ as ϵ → 0, we have 1 − e−Kηmax0≤t≤T µ(t) = Ω(1). Therefore, it follows from (67) that η = Õ

(
ϵ√
d

)
,

where Õ ignores the logarithmic dependence on ϵ and d and we used the assumption mint≥0(g(t))
2L(t) > 0 and

lim infT→∞
∫ T

0
e−2

∫ T
s

f(v)dv(g(s))2ds > 0. Hence, we conclude that we have the following lower bound for the

complexity: K = Ω̃
(√

d
ϵ

)
, where Ω̃ ignores the logarithmic dependence on ϵ and d. This completes the proof.



Convergence Analysis for General Probability Flow ODEs of Diffusion Models in Wasserstein Distances

C Additional Technical Proofs

C.1 Proof of Lemma B.5

Proof of Lemma B.5. We can compute that for any (k − 1)η ≤ t ≤ kη,

yt − y(k−1)η =

∫ t

(k−1)η

[
f(T − s)ys +

1

2
(g(T − s))2∇ log pT−s(ys)

]
ds,

and moreover

x̃t − x̃(k−1)η =

∫ t

(k−1)η

[
f(T − s)x̃s +

1

2
(g(T − s))2∇ log pT−s(x̃s)

]
ds, (68)

so that

yt − y(k−1)η = x̃t − x̃(k−1)η

+

∫ t

(k−1)η

[
f(T − s)(ys − x̃s) +

1

2
(g(T − s))2 (∇ log pT−s(ys)−∇ log pT−s(x̃s))

]
ds,

and therefore ∥∥yt − y(k−1)η

∥∥
L2

≤
∥∥x̃t − x̃(k−1)η

∥∥
L2

+

∫ t

(k−1)η

[
f(T − s) +

1

2
(g(T − s))2L(T − s)

]
∥ys − x̃s∥L2

ds.

We obtained in the proof of Proposition B.1 that

∥yt − x̃t∥L2
≤ e−

1
2

∫ t
0
m(T−s)ds∥y0 − x̃0∥L2

,

and moreover, from the proof of Proposition B.1, we have ∥y0 − x̃0∥L2 ≤ e−
∫ T
0

f(s)ds∥x0∥L2 so that

∥yt − x̃t∥L2
≤ e−

1
2

∫ t
0
m(T−s)dse−

∫ T
0

f(s)ds∥x0∥L2
.

Therefore, we have∥∥yt − y(k−1)η

∥∥
L2

≤
∥∥x̃t − x̃(k−1)η

∥∥
L2

+ θ(T )

∫ kη

(k−1)η

[
f(T − s) +

1

2
(g(T − s))2L(T − s)

]
ds, (69)

where θ(T ) bounds sup0≤t≤T ∥yt − x̃t∥L2 and it is given in (31).

Next, it follows from (68) that∥∥x̃t − x̃(k−1)η

∥∥
L2

≤
∫ t

(k−1)η

[
f(T − s)∥x̃s∥L2

+
1

2
(g(T − s))2∥∇ log pT−s(x̃s)∥L2

]
ds, (70)

and we have

∥∇ log pT−s(x̃s)∥L2 ≤ ∥∇ log pT−s(x̃s)−∇ log pT−s(0)∥L2
+ ∥∇ log pT−s(0)∥L2

≤ L(T − s) ∥x̃s∥L2
+ ∥∇ log pT−s(0)∥

≤ L(T − s) ∥x̃s∥L2
+ L1T + ∥∇ log p0(0)∥, (71)

where we applied Assumption 3.2 to obtain the last inequality above.

Therefore, we have∥∥x̃t − x̃(k−1)η

∥∥
L2

≤ ω(T )

∫ t

(k−1)η

[
f(T − s) +

1

2
(g(T − s))2L(t− s)

]
ds

+ (L1T + ∥∇ log p0(0)∥)
∫ t

(k−1)η

1

2
(g(T − s))2ds, (72)
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where we recall that x̃s has the same distribution as xT−s and we also recall from (63) that ω(T ) = sup0≤t≤T ∥xt∥L2

with an explicit formula given in (32) (see the derivation that leads to (63) in the proof of Proposition B.2) Hence,
we conclude that uniformly for (k − 1)η ≤ t ≤ kη,∥∥yt − y(k−1)η

∥∥
L2

≤ (θ(T ) + ω(T ))

∫ kη

(k−1)η

[
f(T − s) +

1

2
(g(T − s))2L(T − s)

]
ds

+ (L1T + ∥∇ log p0(0)∥)
∫ kη

(k−1)η

1

2
(g(T − s))2ds.

This completes the proof.

D Derivation of Results in Section 3.3

In this section, we prove the results that are summarized in Table 1 in Section 3.3. We discuss variance exploding
SDEs in Appendix D.1, variance preserving SDEs in Appendix D.2.

D.1 Variance-Exploding SDEs

In this section, we consider variance-exploding SDEs with f(t) ≡ 0 in the forward process (1). We can immediately
obtain the following corollary of Theorem 3.4.
Corollary D.1. Assume that Assumptions 3.1, 3.2, and 3.3 hold and η ≤ η̄, where η̄ > 0 is defined in (27).
Then, we have

W2(L(uK), p0) ≤ e−
∫Kη
0

µ(t)dt∥x0∥L2

+

K∑
k=1

K∏
j=k+1

(
1−

∫ jη

(j−1)η

δ(T − t)dt+
L1

2
η

∫ jη

(j−1)η

(g(T − t))2dt

)

·

(
L1

2
η

1 + 2∥x0∥L2
+

√
d

(∫ T

0

(g(t))2dt

)1/2
∫ kη

(k−1)η

(g(T − t))2dt

+
M

2

∫ kη

(k−1)η

(g(T − t))2dt+
√
ηνk,η

(∫ kη

(k−1)η

1

4
(g(T − t))4(L(T − t))2dt

)1/2)
, (73)

where for any 0 ≤ t ≤ T :

δ(T − t) :=
1
2 (g(T − t))2

1
m0

+
∫ T−t

0
(g(s))2ds

− η

4
(g(T − t))4(L(T − t))2, (74)

where L(T − t) := min

((∫ T−t

0
(g(s))2ds

)−1

, L0

)
and

νk,η :=

2∥x0∥L2 +
√
d

(∫ T

0

(g(t))2dt

)1/2
∫ kη

(k−1)η

1

2
(g(T − s))2L(T − s)ds

+ (L1T + ∥∇ log p0(0)∥)
∫ kη

(k−1)η

1

2
(g(T − s))2ds, (75)

where µ(t) is defined as:

µ(t) :=
1
2 (g(t))

2

1
m0

+
∫ t

0
(g(s))2ds

. (76)

The term ∥x0∥L2 in Corollary D.1 has square root dependence on the dimension d. Indeed, by Lemma 11 in
Gürbüzbalaban et al. (2021), we have

∥x0∥L2
≤
√
2d/m0 + ∥x∗∥, (77)
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where x∗ is the unique minimizer of − log p0.

In the next few sections, we consider special functions g in Corollary D.1 and derive the corresponding results in
Table 1.

D.1.1 Example: f(t) ≡ 0 and g(t) = aebt

When g(t) = aebt for some a, b > 0, we can obtain the following result from Corollary D.1.
Corollary D.2 (Restatement of Corollary 3.8). Let g(t) = aebt for some a, b > 0. Then, we have W2(L(uK), p0) ≤
O(ϵ) after K = O

(
d3/2 log(d/ϵ)

ϵ3

)
iterations provided that M ≤ ϵ2√

d
and η ≤ ϵ3

d3/2 .

Proof. Let g(t) = aebt for some a, b > 0. First, we can compute that

(g(t))2L(t) = min

(
(g(t))2∫ t

0
(g(s))2ds

, L0(g(t))
2

)
= min

(
2be2bt

e2bt − 1
, L0

a2

4b2
(e2bt − 1)2

)
.

If e2bt ≥ 2, then e2bt − 1 ≥ 1
2e

2bt and (g(t))2L(t) ≤ 4b. On the other hand, if e2bt < 2, then (g(t))2L(t) ≤ L0
a2

4b2 .
Therefore, for any 0 ≤ t ≤ T ,

(g(t))2L(t) ≤ max

(
4b,

L0a
2

4b2

)
.

By the definition of µ(t) in (76), we can compute that

µ(t) =
1
2m0(g(t))

2

1 +m0

∫ t

0
(g(s))2ds

=
1
2m0a

2e2bt

1 +m0
a2

2b (e
2bt − 1)

. (78)

This implies that ∫ t

0

µ(s)ds =
1

2

∫ t

0

2bm0a
2e2bsds

2b−m0a2 +m0a2e2bs
=

1

2
log

(
2b−m0a

2 +m0a
2e2bt

2b

)
. (79)

By letting t = T = Kη in (79) and using (77), we obtain

e−
∫Kη
0

µ(t)dt∥x0∥L2
≤

√
2b√

2b−m0a2 +m0a2e2bKη

(√
2d/m0 + ∥x∗∥

)
.

Moreover,

νk,η ≤
(
2
√

2d/m0 + 2∥x∗∥+
√
d
a√
2b

(
e2bT − 1

)1/2)
max

(
4b,

L0a
2

4b2

)
η

2

+ (L1T + ∥∇ log p0(0)∥)
a2

4b

(
e2b(T−(k−1)η) − e2b(T−kη)

)
, (80)

and for any 0 ≤ t ≤ T :

0 ≤ 1−
∫ jη

(j−1)η

δ(T − t)dt+
L1

2
η

∫ jη

(j−1)η

(g(T − t))2dt ≤ 1,

where δ(·) is defined in (74), provided that the condition η ≤ η̄ (where η̄ is defined in (27)) holds, that is:

η ≤ min

 min
0≤t≤T


1
2 (g(t))

2

1
m0

+
∫ t
0
(g(s))2ds

1
4 (g(t))

4(L(t))2 + L1

2 (g(t))2

 , min
0≤t≤T

{
1

m0
+
∫ t

0
(g(s))2ds

1
2 (g(t))

2

} , (81)

which holds provided that

η ≤ min

 min
0≤t≤T


1
2a

2e2bt

1
m0

+ a2

2b (e
2bt−1)

1
4 max

(
16b2,

L2
0a

4

16b4

)
+ L1

2 a
2e2bt

 , min
0≤t≤T

{
1

m0
+ a2

2b (e
2bt − 1)

1
2a

2e2bt

} . (82)
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Since 1− x ≤ e−x for any 0 ≤ x ≤ 1, we conclude that

K∏
j=k+1

(
1−

∫ jη

(j−1)η

δ(T − t)dt+
L1

2
η

∫ jη

(j−1)η

(g(T − t))2dt

)

≤
K∏

j=k+1

e
−
∫ jη
(j−1)η

δ(T−t)dt+
L1
2 η

∫ jη
(j−1)η

(g(T−t))2dt
= e−

∫Kη
kη

δ(T−t)dt+
L1
2 η

∫Kη
kη

(g(T−t))2dt,

where δ(·) is defined in (74). Moreover,

∫ Kη

kη

δ(T − t)dt ≥
∫ Kη

kη

1
2m0a

2e2b(T−t)dt

1 +m0
a2

2b (e
2b(T−t) − 1)

− 1

4
(K − k)η2 max

(
16b2,

L2
0a

4

16b4

)
=

1

2
log

(
2b−m0a

2 +m0a
2e2b(T−kη)

2b−m0a2 +m0a2e2b(T−Kη)

)
− 1

4
(K − k)η2 max

(
16b2,

L2
0a

4

16b4

)
,

and

L1

2
η

∫ Kη

kη

(g(T − t))2dt =
L1

2
η
a2

2b

(
e2b(K−k)η − 1

)
.

By applying Corollary D.1 with T = Kη, we conclude that

W2(L(uK), p0)

≤

√
2b
(√

2d/m0 + ∥x∗∥
)

√
2b−m0a2 +m0a2e2bKη

+

K∑
k=1

√
2b√

2b−m0a2 +m0a2e2b(K−k)η
e
(K−k)η2 1

4 max

(
16b2,

L2
0a4

16b4

)
+

L1
2 η a2

2b (e
2b(K−k)η−1)

·

((
M

2
+
L1

2
η

(
1 + 2

(√
2d/m0 + ∥x∗∥

)
+

√
d
a√
2b

(e2bKη − 1)1/2
))

· a
2

2b

(
e2b(K−k+1)η − e2b(K−k)η

)
+
η

2
max

(
4b,

L0a
2

4b2

)
·

((
2
√
2d/m0 + 2∥x∗∥+

√
d
a√
2b

(
e2bT − 1

)1/2)
max

(
4b,

L0a
2

4b2

)
η

2

+ (L1T + ∥∇ log p0(0)∥)
a2

4b

(
e2b(T−(k−1)η) − e2b(T−kη)

)))
.

By the mean-value theorem, we have

e2b(K−(k−1))η) − e2b(K−k)η ≤ 2be2b(K−(k−1))ηη,
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which implies that

W2(L(uK), p0)

≤ O

( √
d

ebKη

)
+O

(
e

1
4Kη2 max

(
16b2,

L2
0a4

16b4

)
+

L1
2 η a2

2b e
2bKη

·
K∑

k=1

1

eb(K−k)η
·

((
M + L1η

√
debKη

)
e2b(K−(k−1))ηη + ηebKηη

√
d

+ η2e2b(K−(k−1))η + e2b(K−(k−1))ηη2(Kη)

))

≤ O

( √
d

ebKη

)

+O

(
e
Kη2 max

(
16b2,

L2
0a4

16b4

)
·

((
M + L1η

√
debKη

)
ebKη +Kη2

√
d+ η(Kη)ebKη

))
≤ O(ϵ),

and (82) holds such that the condition η ≤ η̄ (where η̄ is defined in (27)) holds provided that

Kη =
log(

√
d/ϵ)

b
, M ≤ ϵ2√

d
, η ≤ ϵ3

d3/2
,

which implies that K ≥ O
(

d3/2 log(d/ϵ)
ϵ3

)
. This completes the proof.

D.1.2 Example: f(t) ≡ 0 and g(t) = (b+ at)c

Karras et al. (2022) considers f(t) ≡ 0, g(t) =
√
2t with non-uniform discretization time steps, where the time

steps are defined according to a polynomial noise schedule. Inspired by Karras et al. (2022), we next consider
g(t) = (b+ at)c for some a, b, c > 0, we can obtain the following result from Corollary D.1.
Corollary D.3 (Restatement of Corollary 3.9). Let g(t) = (b+ at)c for some a, b > 0, c ≥ 1/2. Then, we have

W2(L(uK), p0) ≤ O(ϵ) after K = O
(

d
1

(2c+1)
+ 3

2

ϵ
2

2c+1
+3

)
iterations provided that M ≤ ϵ2√

d
and η ≤ ϵ3

d
3
2
.

Proof. When g(t) = (b+ at)c for some a, b, c > 0, we can compute that

(g(t))2L(t) = min

(
(b+ at)c

1
a(2c+1) ((b+ at)2c+1 − b2c+1)

, L0(b+ at)2c

)
. (83)

If t ≥ b
a , then

(b+ at)c

1
a(2c+1) ((b+ at)2c+1 − b2c+1)

≤ (b+ at)c

1
a(2c+1) (1−

1
22c+1 )(b+ at)2c+1

≤ a(2c+ 1)

(1− 1
22c+1 )b

. (84)

If t ≤ b
a , then

L0(b+ at)2c ≤ L0(2b)
2c. (85)

Therefore, it follows from (83), (84) and (85) that

(g(t))2L(t) ≤ max

(
a(2c+ 1)

(1− 1
22c+1 )b

, L0(2b)
2c

)
.

By (76), we have

e−
∫Kη
0

µ(t)dt
(√

2d/m0 + ∥x∗∥
)
=

√
2d/m0 + ∥x∗∥√

1 + m0

a(2c+1) ((b+ aKη)2c+1 − b2c+1)
.
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Furthermore,

νk,η ≤

(
2
(√

2d/m0 + ∥x∗∥
)
+

√
d

(
(b+ aT )2c+1 − b2c+1

a(2c+ 1)

)1/2
)

· 1
2
max

(
a(2c+ 1)

(1− 1
22c+1 )b

, L0(2b)
2c

)
η

+ (L1T + ∥∇ log p0(0)∥)
1

2

(b+ a(T − (k − 1)η))2c+1 − (b+ a(T − kη))2c+1

a(2c+ 1)
, (86)

and for any 0 ≤ t ≤ T :

δ(t) =
1
2 (b+ at)2c

1
m0

+ 1
a(2c+1) ((b+ at)2c+1 − b2c+1)

− 1

4
ηmin

(
(b+ at)2c

1
a2(2c+1)2 ((b+ at)2c+1 − b2c+1)2

, L2
0(b+ at)4c

)
,

(where δ(·) is defined in (74)) satisfies

0 ≤ 1−
∫ jη

(j−1)η

δ(T − t)dt+
L1

2
η

∫ jη

(j−1)η

(g(T − t))2dt ≤ 1,

provided that the condition η ≤ η̄ (where η̄ is defined in (27)) holds.

Since 1− x ≤ e−x for any 0 ≤ x ≤ 1, we conclude that

K∏
j=k+1

(
1−

∫ jη

(j−1)η

δ(T − t)dt+
L1

2
η

∫ jη

(j−1)η

(g(T − t))2dt

)

≤
K∏

j=k+1

e
−
∫ jη
(j−1)η

δ(T−t)dt+
L1
2 η

∫ jη
(j−1)η

(g(T−t))2dt
= e−

∫Kη
kη

δ(T−t)dt+
L1
2 η

∫Kη
kη

(g(T−t))2dt,

where δ(·) is defined in (74). Moreover,

∫ Kη

kη

δ(T − t)dt ≥ 1

2
log

(
1 +

m0

a(2c+ 1)

(
(b+ a(K − k)η)2c+1 − b2c+1

))
− 1

4
(K − k)η2 max

(
a2(2c+ 1)2

(1− 1
22c+1 )2b2

, L2
0(2b)

4c

)
,

and we can compute that

1

2
L1η

∫ Kη

kη

(g(T − t))2dt =
1

2

L1η

a(2c+ 1)

(
(b+ a(K − k)η)2c+1 − b2c+1

)
.
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By applying Corollary D.1 with T = Kη and (77), we conclude that

W2(L(uK), p0)

≤
√
2d/m0 + ∥x∗∥√

1 + m0

a(2c+1) ((b+ aKη)2c+1 − b2c+1)

+

K∑
k=1

e

1
4 (K−k)η2 max

(
a2(2c+1)2

(1− 1
22c+1 )2b2

,L2
0(2b)

4c

)
+ 1

2
L1η

a(2c+1)
((b+a(K−k)η)2c+1−b2c+1)√

1 + m0

a(2c+1) ((b+ a(K − k)η)2c+1 − b2c+1)

·

((
L1

2
η

(
1 + 2

(√
2d/m0 + ∥x∗∥

)
+

√
d

(
(b+ aKη)2c+1 − b2c+1

a(2c+ 1)

)1/2
)

+
M

2

)

· (b+ a(Kη − (k − 1)η))2c+1 − (b+ a(Kη − kη))2c+1

a(2c+ 1)

+
1

2
ηmax

(
a(2c+ 1)

(1− 1
22c+1 )b

, L0(2b)
2c

)
·

((
2
(√

2d/m0 + ∥x∗∥
)
+
√
d

(
(b+ aKη)2c+1 − b2c+1

a(2c+ 1)

)1/2
)

· 1
2
max

(
a(2c+ 1)

(1− 1
22c+1 )b

, L0(2b)
2c

)
η

+ (L1Kη + ∥∇ log p0(0)∥)
1

2

(b+ a(Kη − (k − 1)η))2c+1 − (b+ a(Kη − kη))2c+1

a(2c+ 1)

))
.

This implies that

W2(L(uK), p0)

≤ O

( √
d

(Kη)
2c+1

2

+ eO((Kη)η+(Kη)2c+1η)
K∑

k=1

1

((K − k)η)
2c+1

2

·
((√

d(Kη)
2c+1

2 L1η +M
)
((K − k)η)2cη + η

(
η
√
d(Kη)

2c+1
2 + (Kη)η((K − k)η)2c

)))

≤ O

( √
d

(Kη)
2c+1

2

+ eO((Kη)η+(Kη)2c+1η)

·
((√

d(Kη)
2c+1

2 L1η +M
)
(Kη)c+

1
2 + η

(
Kη

√
d+ (Kη)(Kη)c+

1
2

)))
≤ O(ϵ),

and the condition η ≤ η̄ (where η̄ is defined in (27)) holds provided that

Kη =
d

1
(2c+1)

ϵ
2

2c+1

, M ≤ ϵ2√
d
, η ≤ ϵ3

d
3
2

,

so that K ≥ O
(

d
1

(2c+1)
+ 3

2

ϵ
2

2c+1
+3

)
. This completes the proof.

D.2 Variance-Preserving SDEs

In this section, we consider Variance-Preserving SDEs with f(t) = 1
2β(t) and g(t) =

√
β(t) in the forward process

(1), where β(t) is often chosen as some non-decreasing function in practice. We can obtain the following corollary
of Theorem 3.4.
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Corollary D.4. Under the assumptions of Theorem 3.4, we have

W2(L(uK), p0) ≤
∥x0∥L2√

m0e
∫Kη
0

β(s)ds + 1−m0

+

K∑
k=1

e
∫Kη
kη

1
2β(Kη−t)dt+

∫Kη
kη

ηmax(1,L2
0)(β(Kη−t))2dt+ 1

2L1η
∫Kη
kη

β(Kη−t)dt(
m0e

∫ (K−k)η
0 β(s)ds + 1−m0

) 1
2 e

− 1
2
η max0≤t≤T β(t)

·

((
L1

2
η
(
1 + ∥x0∥L2 +

(
∥x0∥2L2

+ d
)1/2)

+
M

2

)
2
(
e
∫ kη
(k−1)η

1
2β(T−v)dv − 1

)
+
√
ηmax(1, L0) max

(k−1)η≤t≤kη
β(Kη − t)

(
e
∫ kη
(k−1)η

β(T−v)dv − 1
)1/2

·

((
∥x0∥L2

+
(
∥x0∥2L2

+ d
)1/2)(1

2
+ max(1, L0)

)∫ T−(k−1)η

T−kη

β(s)ds

+ (L1T + ∥∇ log p0(0)∥)
∫ T−(k−1)η

T−kη

1

2
β(s)ds

))
. (87)

Proof. We apply Theorem 3.4 applied to the variance-preserving SDE (f(t) = 1
2β(t) and g(t) =

√
β(t)). First,

we can compute that

L(T − t) = min

(∫ T−t

0

e−2
∫ T−t
s

f(v)dv(g(s))2ds

)−1

,
(
e
∫ T−t
0

f(s)ds
)2
L0


= min

(
1

1− e−
∫ T−t
0

β(s)ds
, e
∫ T−t
0

β(s)dsL0

)
.

If e
∫ T−t
0

β(s)ds ≥ 2, then 1

1−e−
∫T−t
0 β(s)ds

≤ 2 and otherwise e
∫ T−t
0

β(s)dsL0 ≤ 2L0. Therefore, for any 0 ≤ t ≤ T ,

L(T − t) ≤ 2max(1, L0).

By applying Theorem 3.4, we have

W2(L(uK), p0) ≤ e−
∫Kη
0

µ(t)dt∥x0∥L2

+

K∑
k=1

K∏
j=k+1

(
1−

∫ jη

(j−1)η

δj(T − t)dt+
L1

2
η

∫ jη

(j−1)η

(g(T − t))2dt

)

· e
∫Kη
kη

f(T−t)dt

(
L1

2
η (1 + ∥x0∥L2 + ω(T ))

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt

+
M

2

∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt

+
√
ηνk,η

(∫ kη

(k−1)η

[
1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L(T − t)

]2
dt

)1/2)
,

where

νk,η := (θ(T ) + ω(T ))

∫ kη

(k−1)η

[
f(T − s) +

1

2
(g(T − s))2L(T − s)

]
ds

+ (L1T + ∥∇ log p0(0)∥)
∫ kη

(k−1)η

1

2
(g(T − s))2ds,
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where

θ(T ) = e−
∫ T
0

1
2β(s)ds∥x0∥L2 ≤ ∥x0∥L2 ,

and

ω(T ) = sup
0≤t≤T

(
e−2

∫ t
0
f(s)ds∥x0∥2L2

+ d

∫ t

0

e−2
∫ t
s
f(v)dv(g(s))2ds

)1/2

= sup
0≤t≤T

(
e−
∫ t
0
β(s)ds∥x0∥2L2

+ d
(
1− e−

∫ t
0
β(s)ds

))1/2
≤
(
∥x0∥2L2

+ d
)1/2

.

We can compute that∫ kη

(k−1)η

e
∫ kη
t

f(T−s)ds(g(T − t))2dt =

∫ kη

(k−1)η

e
∫ kη
s

1
2β(T−v)dvβ(T − s)ds

= 2
(
e
∫ kη
(k−1)η

1
2β(T−v)dv − 1

)
.

Furthermore, we have

νk,η ≤
(
∥x0∥L2

+
(
∥x0∥2L2

+ d
)1/2)(1

2
+ max(1, L0)

)∫ kη

(k−1)η

β(T − s)ds

+ (L1T + ∥∇ log p0(0)∥)
∫ T−(k−1)η

T−kη

1

2
β(s)ds

=
(
∥x0∥L2 +

(
∥x0∥2L2

+ d
)1/2)(1

2
+ max(1, L0)

)∫ T−(k−1)η

T−kη

β(s)ds

+ (L1T + ∥∇ log p0(0)∥)
∫ T−(k−1)η

T−kη

1

2
β(s)ds.

Next, for VP-SDE, we have f(t) = 1
2β(t) and g(t) =

√
β(t) so that we can compute:

µ(t) =
1
2m0β(t)

e−
∫ t
0
β(s)ds +m0

∫ t

0
e−
∫ t
s
β(v)dvβ(s)ds

=
1
2m0β(t)

e−
∫ t
0
β(s)ds +m0(1− e−

∫ t
0
β(s)ds)

. (88)

It follows that ∫ T

0

µ(t)dt =
1

2

∫ ∫ T
0

β(s)ds

0

m0dx

m0 + (1−m0)e−x
=

1

2
log
(
m0e

∫ T
0

β(s)ds + 1−m0

)
. (89)

Hence, we obtain

e−
∫ T
0

µ(t)dt∥x0∥L2 =
∥x0∥L2√

m0e
∫ T
0

β(s)ds + 1−m0

. (90)

Under the condition η ≤ η̄ (where η̄ is defined in (27)),

0 ≤ 1−
∫ jη

(j−1)η

δj(T − t)dt+
L1

2
η

∫ jη

(j−1)η

(g(T − t))2dt ≤ 1.

Since 1− x ≤ e−x for any 0 ≤ x ≤ 1, we conclude that
K∏

j=k+1

(
1−

∫ jη

(j−1)η

δj(T − t)dt+
L1

2
η

∫ jη

(j−1)η

(g(T − t))2dt

)

≤
K∏

j=k+1

e
−
∫ jη
(j−1)η

δj(T−t)dt+
L1
2 η

∫ jη
(j−1)η

(g(T−t))2dt

= e
−
∑K

j=k+1

∫ jη
(j−1)η

δj(T−t)dt+
L1
2 η

∫Kη
kη

(g(T−t))2dt
,
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where

K∑
j=k+1

∫ jη

(j−1)η

δj(T − t)dt

=

K∑
j=k+1

∫ jη

(j−1)η

1
2e

−
∫ t
(j−1)η

f(T−s)ds(g(T − t))2

1
m0
e−2

∫ T−t
0

f(s)ds +
∫ T−t

0
e−2

∫ T−t
s

f(v)dv(g(s))2ds
dt

−
K∑

j=k+1

∫ jη

(j−1)η

η

4
(g(T − t))4(L(T − t))2dt

=

K∑
j=k+1

∫ jη

(j−1)η

1
2e

− 1
2

∫ t
(j−1)η

β(T−s)dsβ(T − t)

1
m0
e−
∫ T−t
0

β(s)ds +
∫ T−t

0
e−
∫ T−t
s

β(v)dvβ(s)ds
dt

−
∫ Kη

kη

η

4
(β(T − t))2(L(T − t))2dt

=

K∑
j=k+1

∫ jη

(j−1)η

1
2e

− 1
2

∫ t
(j−1)η

β(T−s)dsβ(T − t)(
1

m0
− 1
)
e−
∫ T−t
0

β(s)ds + 1
dt−

∫ Kη

kη

η

4
(β(T − t))2(L(T − t))2dt.

We can further compute that

K∑
j=k+1

∫ jη

(j−1)η

1
2e

− 1
2

∫ t
(j−1)η

β(T−s)dsβ(T − t)(
1

m0
− 1
)
e−
∫ T−t
0

β(s)ds + 1
dt

≥ e−
1
2ηmax0≤t≤T β(t)dt

∫ Kη

kη

1
2β(T − t)(

1
m0

− 1
)
e−
∫ T−t
0

β(s)ds + 1
dt

=
1

2
e−

1
2ηmax0≤t≤T β(t)dt log

(
m0e

∫ (K−k)η
0 β(s)ds + 1−m0

)
.

Moreover, we can compute that

(∫ kη

(k−1)η

[
1

2
e
∫ kη
t

f(T−s)ds(g(T − t))2L(T − t)

]2
dt

)1/2

≤ max(1, L0)

(∫ kη

(k−1)η

e
∫ kη
t

β(T−v)dv(β(Kη − t))2dt

)1/2

≤ max(1, L0) max
(k−1)η≤t≤kη

β(Kη − t)

(∫ kη

(k−1)η

e
∫ kη
t

β(T−v)dvβ(Kη − t)dt

)1/2

= max(1, L0) max
(k−1)η≤t≤kη

β(Kη − t)
(
e
∫ kη
(k−1)η

β(T−v)dv − 1
)1/2

.
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By using T = Kη, we conclude that

W2(L(uK), p0) ≤
∥x0∥L2√

m0e
∫Kη
0

β(s)ds + 1−m0

+

K∑
k=1

e
∫Kη
kη

1
2β(Kη−t)dt+

∫Kη
kη

ηmax(1,L2
0)(β(Kη−t))2dt+ 1

2L1η
∫Kη
kη

β(Kη−t)dt(
m0e

∫ (K−k)η
0 β(s)ds + 1−m0

) 1
2 e

− 1
2
η max0≤t≤T β(t)

·

((
L1

2
η
(
1 + ∥x0∥L2

+
(
∥x0∥2L2

+ d
)1/2)

+
M

2

)
2
(
e
∫ kη
(k−1)η

1
2β(T−v)dv − 1

)
+
√
ηmax(1, L0) max

(k−1)η≤t≤kη
β(Kη − t)

(
e
∫ kη
(k−1)η

β(T−v)dv − 1
)1/2

·

((
∥x0∥L2 +

(
∥x0∥2L2

+ d
)1/2)(1

2
+ max(1, L0)

)∫ T−(k−1)η

T−kη

β(s)ds

+ (L1T + ∥∇ log p0(0)∥)
∫ T−(k−1)η

T−kη

1

2
β(s)ds

))
. (91)

This completes the proof.

D.2.1 Example: β(t) ≡ b

We consider the special case β(t) ≡ b for some b > 0. This includes the special case β(t) ≡ 2 that is studied in
Chen et al. (2023) Chen et al. (2023c).

Corollary D.5 (Restatement of Corollary 3.10). Assume β(t) ≡ b. Then, we have W2(L(uK), p0) ≤ O(ϵ) after
K = O

(√
d
ϵ (log(dϵ ))

2
)

iterations provided that M ≤ ϵ
log(

√
d/ϵ)

and η ≤ ϵ√
d log(

√
d/ϵ)

.

Proof. When β(t) ≡ b for some b > 0, by Corollary D.4 and (77), we can compute that

W2(L(uK), p0) ≤
∥x0∥L2√

m0ebKη + 1−m0

+

K∑
k=1

e(K−k)η 1
2 b+(K−k)η2 max(1,L2

0)b
2+ 1

2L1η
2(K−k)b(

m0eb(K−k)η + 1−m0

) 1
2 e

− 1
2
ηb

·

((
L1

2
η
(
1 + ∥x0∥L2 +

(
∥x0∥2L2

+ d
)1/2)

+
M

2

)
2
(
e

1
2 bη − 1

)
+
√
ηmax(1, L0)b

(
ebη − 1

)1/2 ·((∥x0∥L2
+
(
∥x0∥2L2

+ d
)1/2)(1

2
+ max(1, L0)

)
bη

+ (L1T + ∥∇ log p0(0)∥)
1

2
bη

))
,

which implies that

W2(L(uK), p0) ≤ O

( √
d

e
1
2 bKη

+ eKη2 max(1,L2
0)b

2+ 1
2L1η

2Kb · e
1
2 bKη

(
e
1
2
ηb−1

)

·K

((
M + L1η

√
d
)
η + η2

(√
d+Kη

)))
≤ O(ϵ),
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and the condition η ≤ η̄ (where η̄ is defined in (27)) holds provided that

Kη =
2

b
log

(√
d

ϵ

)
, M ≤ η

√
d, η ≤ ϵ√

d(Kη)
,

which implies that

M ≤ ϵ

log(
√
d/ϵ)

, η ≤ ϵ√
d log(

√
d/ϵ)

and K ≥ O
(√

d
ϵ (log(dϵ ))

2
)
. This completes the proof.

D.2.2 Example: β(t) = (b+ at)ρ

We consider the special case β(t) = (b+ at)ρ. This includes the special case β(t) = b+ at when ρ = 1 that is
studied in Ho et al. (2020). Then we can obtain the following result from Corollary D.4.

Corollary D.6 (Restatement of Corollary 3.11). Assume β(t) = (b+ at)ρ. Then, we have W2(L(uK), p0) ≤ O(ϵ)

after K = O
(√

d
ϵ (log(dϵ ))

ρ+2
ρ+1

)
iterations provided that M ≤ ϵ

log(
√
d/ϵ)

and η ≤ ϵ√
d log(

√
d/ϵ)

.

Proof. When β(t) = (b+ at)ρ, by Corollary D.4 and (77), we can compute that

W2(L(uK), p0)

≤
√
2d/m0 + ∥x∗∥√

m0e
1

a(ρ+1)
((b+aKη)ρ+1−bρ+1) + 1−m0

+

K∑
k=1

e
1+L1η

2a(ρ+1)
((b+a(K−k)η)ρ+1−bρ+1)+ηmax(1,L2

0)
1

a(2ρ+1)
((b+a(K−k)η)2ρ+1−b2ρ+1)(

e
1

a(ρ+1)
((b+a(K−k)η)ρ+1−bρ+1) + 1−m0

) 1
2 e

− 1
2
η(b+aKη)ρ

·

((
M

2
+
L1

2
η
(
1 + 2

(√
2d/m0 + ∥x∗∥

)
+

√
d
))

· 2

(
e

1
2

((b+a(K−k+1)η)ρ+1−(b+a(K−k)η)ρ+1)
a(ρ+1) − 1

)

+
√
η

(
1

2
+ max(1, L0)

)
·

(
e
((b+a(K−k+1)η)ρ+1−(b+a(K−k)η)ρ+1)

a(ρ+1) − 1

)1/2

·

((
2
(√

2d/m0 + ∥x∗∥
)
+
√
d
)(1

2
+ max(1, L0)

) (
(b+ a(K − k + 1)η)ρ+1 − (b+ a(K − k)η)ρ+1

)
a(ρ+ 1)

+ (L1Kη + ∥∇ log p0(0)∥)
1

2

(
(b+ a(K − k + 1)η)ρ+1 − (b+ a(K − k)η)ρ+1

)
a(ρ+ 1)

))
.
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We can compute that

W2(L(uK), p0)

≤ O

( √
d

e
1

2a(ρ+1)
(b+aKη)ρ+1

+

K∑
k=1

e
1+L1η

2a(ρ+1)
((b+a(K−k)η)ρ+1−bρ+1)+ηmax(1,L2

0)
1

a(2ρ+1)
(b+aKη)2ρ+1

(
m0e

1
a(ρ+1)

((b+a(K−k)η)ρ+1−bρ+1) + 1−m0

) 1
2 e

− 1
2
η(b+aKη)ρ

·

((
M + L1η

(
1 + 2

(√
2d/m0 + ∥x∗∥

)
+

√
d
))(

e
1
2 (b+a(K−k+1)η)ρη − 1

)
+
√
η
(
e(b+a(K−k+1)η)ρη − 1

)1/2
·
((√

d+Kη
)
((K − k + 1)η)ρη

)))

≤ O

( √
d

e
1

2a(ρ+1)
(b+aKη)ρ+1

+ eηmax(1,L2
0)

1
a(2ρ+1)

(b+aKη)2ρ+1

· e
1

2a(ρ+1)
(b+aKη)ρ+1

(
e
1
2
η(b+aKη)ρ−1

)

·K

((
M + L1η

√
d
)
(Kη)ρη + η2(Kη)2ρ

(√
d+Kη

)))
≤ O(ϵ),

and the condition η ≤ η̄ (where η̄ is defined in (27)) holds provided that

Kη =
(2a(ρ+ 1))

1
ρ+1

a

(
log
(√

d/ϵ
)) 1

ρ+1 − b

a
, M ≤ η

√
d, η ≤ ϵ√

d(Kη)ρ+1
,

which implies that
M ≤ ϵ

log(
√
d/ϵ)

, η ≤ ϵ√
d log(

√
d/ϵ)

and K ≥ O
(√

d
ϵ (log(dϵ ))

ρ+2
ρ+1

)
. This completes the proof.
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