Reward-Directed Score-Based Diffusion Models via g-Learning

Xuefeng Gao* Jiale Zhat Xun Yu Zhout

September 7, 2024

Abstract

We propose a new reinforcement learning (RL) formulation for training continuous-time
score-based diffusion models for generative Al to generate samples that maximize reward func-
tions while keeping the generated distributions close to the unknown target data distributions.
Different from most existing studies, our formulation does not involve any pretrained model for
the unknown score functions of the noise-perturbed data distributions. We present an entropy-
regularized continuous-time RL problem and show that the optimal stochastic policy has a
Gaussian distribution with a known covariance matrix. Based on this result, we parameterize
the mean of Gaussian policies and develop an actor—critic type (little) g-learning algorithm to
solve the RL problem. A key ingredient in our algorithm design is to obtain noisy observations
from the unknown score function via a ratio estimator. Numerically, we show the effectiveness
of our approach by comparing its performance with two state-of-the-art RL methods that fine-
tune pretrained models. Finally, we discuss extensions of our RL formulation to probability flow
ODE implementation of diffusion models and to conditional diffusion models.

Keywords: Generative Al, score-based diffusion models, reward function, continuous-time
reinforcement learning, g-learning, stochastic differential equations

1 Introduction

Diffusion models form a powerful family of probabilistic generative Al models that can capture
complex high-dimensional data distributions (Sohl-Dickstein et al. 2015a, Song and Ermon 2019,
Ho et al. 2020, Song et al. 2021). The basic idea is to use a forward process to gradually turn the
(unknown) target data distribution to a simple noise distribution, and then reverse this process
to generate new samples. A key technical barrier is that the time-reversed backward process
involves a so-called score function that depends on the unknown data distribution; thus learning
the score functions (called “score matching”) becomes the main objective of these models. Diffusion
models have achieved state-of-the-art performances in various applications such as image and audio
generations (Rombach et al. 2022, Ramesh et al. 2022) and molecule generation (Hoogeboom et al.
2022, Wu et al. 2022). See, e.g., Yang et al. (2023) for a survey on diffusion models.

*Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong
Kong, China. E-mail: xfgao@se.cuhk.edu.hk

TDepartment of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong
Kong, China. E-mail: jialezha@link.cuhk.edu.hk

tDepartment of Industrial Engineering and Operations Research and The Data Science Institute, Columbia Uni-
versity, New York, NY 10027, USA. Email: xz2574@columbia.edu

In standard diffusion models, the goal is typically to generate new samples whose distribution
closely resembles the target data distribution (e.g. “generate more cat pictures”, or “write a Shake-
spearean play”). Standard score-based diffusion models are trained (i.e. estimating score functions
using neural nets) by minimizing weighted combination of score matching losses (Hyvérinen and
Dayan 2005, Vincent 2011, Song et al. 2020). However, in many applications, we often have pref-
erences about the generated samples from diffusion models (e.g. “generate prettier cat pictures”,
or “write a Shakespearean thriller that happened in New York”). A common way to capture this
is to use a reward function, either handcrafted (e.g. a utility function) or learned (through human
feedbacks), to evaluate the quality of generated samples related to the preferences. This has led
to an interesting recent line of research on how to adapt standard diffusion models to optimizing
reward functions. Several approaches have been proposed, including discrete-time reinforcement
learning (RL) (Black et al. 2024, Fan et al. 2023), continuous-time stochastic control/RL (Uehara
et al. 2024, Zhao et al. 2024), backpropagation of reward function gradient through sampling (Clark
et al. 2024), supervised learning (Lee et al. 2023), and guidance (Dhariwal and Nichol 2021). These
studies, however, focus on fine-tuning certain pretrained diffusion models, whose score functions
have already be learned, to maximize the values of additional reward functions.

In this paper, we put forward a significantly different approach where we directly train a diffusion
model from scratch for reward optimization using RL, without involving any pretrained model. There
are two motivations behind this approach. One is practical: in many applications, especially for
new or special-purpose tasks, a pretrained model may not exist or existing pretrained models may
not be easily adapted and fine-tuned. The other is (more importantly) conceptual: fine-tuning a
pretrained model is essentially a model-driven approach for dealing with the unknown score function
(i.e. first estimate the score function and then optimize), which is prone to model misspecification
and misleading risks.! By contrast, our approach is model-free and data-driven, not relying on a
good pretrained model. More on this later.

We consider continuous-time score-based diffusion models in Song et al. (2021), which utilize
stochastic differential equations (SDEs) for noise blurring and sample generations. The denois-
ing/reverse process also follows an SDE whose drift includes the unknown score function (the
gradient of the log probability density of the noise-perturbed data distribution). We take the
continuous-time framework because a) the SDE-based formulation is general and unifies several
celebrated diffusion models, including the score matching with Langevin dynamics (SMLD) (Song
and Ermon 2019) and the denoising diffusion probabilistic modeling (DDPM) (Ho et al. 2020);
b) it leads to not only the SDE-based implementation of score diffusions, but also the probability
flow ordinary difference equation (ODE) implementation (Song et al. 2021); and c) there are more
analytical tools available for the continuous setting that enable a rigorous and thorough analysis
leading to interpretable (instead of black-box) and general (instead of ad hoc) algorithms.

Due to the need of optimizing rewards of the generated samples, we propose a continuous-time
RL formulation for adapting diffusion models to reward functions. In this formulation, because the
score function in the drift of the denoising process is unknown, we take it as the control (action)
variable. This idea of regarding scores as actions, first put forth in Uehara et al. (2024), Zhao
et al. (2024), is quite natural because the problem now has two somewhat competing criteria:
score matching (i.e. the generated samples should be close to the true distribution) and terminal

"We stress the word “model” here specifically refers to the score function, and “model misspefication” refers to
poor estimations of the score. Existing works on reward maximization and fine-tuning pretrained models may still
use a data-driven RL approach to deal with an unknown reward function.

reward (i.e. the samples should align with the preferences); so an adjustable control can be used to
achieve the best trade-off between the two. Specifically, we introduce an objective function that is
a weighted combination of two parts: a running reward that penalizes (regularizes) the Kullback—
Leibler (KL) divergence from the denoising process with the true score function, and a terminal
reward of the generated samples based on the preference. This naturally leads to an RL problem
with continuous state and action spaces in which the system dynamics are known but the running
reward function is unknown (because it involves the true score function) and the terminal reward is
possibly unknown. We can therefore adapt and apply the theory and algorithms developed recently
for general continuous-time RL with controlled diffusions (Wang et al. 2020, Jia and Zhou 2022a,b,
2023).

However, there is a critical issue one needs to address in this formulation. While the general
theory in (Wang et al. 2020, Jia and Zhou 2022a,b, 2023) allows unknown reward functions, it
requires access to a noisy observation (a “reinforcement signal”) of the reward every time a state
is visited. It is natural to assume that we have such signals from the terminal reward (e.g. human
rating of aesthetic quality of a generated image). However, obtaining signals from the running
reward in our RL problem is subtle, because the KL divergence term in the objective involves the
unknown score function. To overcome this difficulty, we express the true score function as the ratio
of two expectations with respect to the data distribution. Because we have access to i.i.d. samples
from the unknown data distribution, we derive a simple ratio estimator as a noisy observation from
the true score, allowing us to obtain a reinforcement signal from the running reward whenever an
action is applied. This procedure is not computationally expensive as we do not need to generate
new samples from any distributions.

To solve the resulting RL problem for continuous-time diffusion models, we adapt the approach
in Jia and Zhou (2023) to develop theory and algorithms for our RL problem. Specifically, we take
the entropy-regularized, exploratory framework of Wang et al. (2020) and optimize over stochastic
policies. We show that the optimal stochastic policy for our problem is Gaussian with a known
covariance matrix and an unknown mean function. This key theoretical result suggests that we
need to consider Gaussian policies only and parameterize their mean functions when designing
RL algorithms. Based on this insight, we develop an actor—critic type algorithm, based on the
(little) g-learning theory established in Jia and Zhou (2023), to solve our RL problem. We then
implement the algorithm and conduct experiments for two examples with synthetic training data:
a one-dimensional Gaussian mixture distribution and a two-dimensional Swiss rolls dataset (Sohl-
Dickstein et al. 2015b, Lai et al. 2023). We find that our RL algorithm performs well in these
experiments.

Thanks to the continuous-time setting, we can extend our RL formulation to ODE-based models
in a straightforward manner. The probability flow ODE implementation of diffusion models is
another mainstream approach for sample generations, in addition to the SDE-based one; see, e.g.,
Song et al. (2020), Song et al. (2021), Karras et al. (2022), Lu et al. (2022). Compared with
SDE-based samplers, ODE-based deterministic samplers often converge to the data distribution
much faster with fewer sampling steps, at the cost of slightly inferior sample quality. We adapt
our continuous-time RL formulation to ODE-based models, where the system dynamics are now
described by controlled ODEs. We show that the optimal stochastic policy is still Gaussian, and
the algorithm designed for the SDE-based formulation still applies after one replaces the SDE-
based sampler by ODE counterparts. We implement the resulting algorithm for two ODE-based
samplers: ODE-Euler which is based on Euler discretization of the probability flow ODE, and

DDIM of Song et al. (2020). We find that the algorithm performs well and indeed accelerates the
training process compared with the SDE-based formulation. On the other hand, while we mainly
focus on unconditional diffusion models, our RL formulation can be readily extended to conditional
diffusion models which are used for conditional data generations such as in text-to-image models.

We now explain the key differences between our work and several closely related ones. Black
et al. (2024) propose to fine-tune discrete-time diffusion models using RL and directly optimize the
reward function (without KL regularization). The denoising process is formulated as a multi-step
Markov decision process and the action at each step corresponds to the next denoising state. They
then present a policy gradient algorithm, referred to as DDPO, to solve their RL problem. Fan et al.
(2023) have a similar discrete-time RL formulation, but they add the KL divergence between the
fine-tuned model and the pretrained model to the objective to prevent overfitting the reward. They
also use a policy gradient method called DPOK to solve the problem. Our paper differs from these
two in a few important aspects. First, we consider a continuous-time RL formulation for continuous-
time diffusion models, where the action is a substitute of the unknown score controlling the drift
of the reverse-time SDE. Therefore, our framework and the resulting theory and algorithm are
fundamentally different from theirs. Second, compared with Black et al. (2024), Fan et al. (2023)
that focus on the DDPM based denoising process with stochastic transitions, our approach not
only applies to SDE-based implementation of diffusion models, but also can be readily extended to
probability flow ODE implementation. Last but most importantly, in dealing with the unknown
score function, the pretrained approach is essentially model-driven whose performance crucially
depends on the availability of a good pretrained model, whereas our approach is driven by data —
the noisy signals from the score. To wit, we penalize the deviation from the (unknown) true score
model in our RL objective, rather than from a (known) pretrained model as in Fan et al. (2023).
As a consequence, our formulation encourages the generated samples to stay close to the true data
distribution while maximizing the reward, whereas theirs are to incentivize the samples to stay
close to the pretrained data distribution which is not necessarily always of the high quality.

To compare our approach with the fine-tuning approach in Black et al. (2024) and Fan et al.
(2023), we conduct experiments on the 2-dimensional Swiss Roll data. Although DDPO and DPOK
were originally developed for conditional generations (e.g. text-to-image models), they can be easily
adapted to unconditional data generations. We find that DDPO of Black et al. (2024) suffers from
the issue of reward over-optimization, where the generated distribution diverges too far from the
original data distribution. On the other hand, DPOK of Fan et al. (2023) has a similar performance
as our g-learning algorithm, provided that the pretrained model is of good quality. However, if the
pretrained model is not good enough in the sense that the pretrained distribution is not close to
the data distribution, our g-learning algorithm outperforms DPOK significantly.

Finally, we mention two contemporary studies Uehara et al. (2024), Zhao et al. (2024) that con-
sider fine-tuning pretrained continuous-time diffusion models using entropy-regularized control/RL.
The key difference in the problem formulations is again that they penalize the deviation from a
known pretrained score/diffusion model, while we penalize the deviation from the unknown true
score model. In addition, our objective involves an unknown running reward, making our problem
an RL one instead of a stochastic control as in Uehara et al. (2024). In sum, our theory and
algorithms are conceptually different from these two papers.

The rest of the paper is organized as follows. In Section 2, we briefly review continuous-time
score-based diffusion models. In Section 3, we discuss the continuous-time RL formulation for
reward maximizations in diffusion models. Section 4 presents our main theoretical result, based on

which we design an actor—critic type g-learning algorithm in Section 5. In Section 6, we present
the results of the numerical experiments. Section 7 highlights extensions to ODE models and
conditional diffusion models. Finally, Section 8 concludes.

2 Quick Review on Continuous-Time Score-Based Diffusion Models

For reader’s convenience we briefly recall the continuous-time score-based diffusion models with
SDEs (Song et al. 2021). Denote by pp € P(R?) the unknown continuous data distribution, where
P(R?) is the space of all probability measures on R?. Given i.i.d samples from pg, standard diffusion
models aim to generate new samples whose distribution closely resembles the data distribution. In
this classical setting, one does not consider the preference/reward of the generated samples.

e Forward process and reverse process.

Fix T' > 0. We consider a d—dimensional forward process (Xt)ic[o,7], Which is a Ornstein-
Uhlenbeck (OU) process satisfying the following SDE

dx; = — f(t)xedt + g(t)dBy, (1)

where xy is a random variable following the (unknown target) distribution py, (B:) is a
standard d-dimensional Brownian motion which is independent of xg, and both f(¢) > 0 and
g(t) > 0 are (known) scalar-valued continuous functions of time ¢. The solution to (1) is

t

x;, = e~ Jo I()dsxy —i—/ e U F0dvg()dB,, te[0,T). (2)
0

Note that the forward model (1) is fairly general and it includes variance exploding SDEs,

variance preserving SDEs, and sub variance preserving SDEs that are commonly used in the

literature; see Song et al. (2021) for details.

Denote by p;(-) the probability density function of x;, and py(:[xo) the density function of
x; given xq for t € [0,T]. By (2), pyo(-|x0) is Gaussian which has an analytical form.

Now consider the reverse (in time) process (X¢);e(o,7], Where
it = X7 ¢, t e [O,T] (3)

Under mild assumptions, the reverse process still satisfies an SDE (Anderson 1982, Haussmann
and Pardoux 1986, Cattiaux et al. 2023):

d%, = [f(T —)% + (9(T — 1))2V log pr_(&)|dt + g(T —)dW;, te [0,T), (4)

where (W;) is a standard Brownian motion in R?, and the term Vylogp:(-) in (4) is called
the score function. By (3), the reverse process starts from a random location Xg ~ pp, where
pr is the probability density/distribution of x7 (here and henceforth, probability distribution
and probability density function are used interchangeably). Thus, at time T, we have Xp ~
po, where pg is the target distribution we want to generate samples from. However, the
distribution pr is unknown because it depends on the unknown target distribution py. Because

the aim of generative diffusion models is to convert random noises into random samples from
po, by (2) we can choose a random (Gaussian) noise v, with

vi=N <0, / ' e=2 S (s (g(4)) 24t - Id) , (5)

0

as a proxy to pp, where I is the d—dimensional identity matrix; see Song et al. (2021), Lee
et al. (2022). Note that v is the distribution of the random variable fot eI Fldvg(5)dB, in
(2), which is easy to sample because it is Gaussian, and will be henceforth referred to as the
prior distribution.”

Remark 1. When considering variance preserving SDEs where f(t) = 2a(t) and g(t) =

Va(t) for some nondecreasing positive function ., it is also common to use the stationary
distribution of the forward SDE, which is N'(0,1y), as the prior distribution. Taking a(t) = 2
as an example, we deduce from (5) thatv = N (0, (1 — 6_2T) . Id), which converges to N'(0, I)
as T becomes large.

In view of (4), we now consider the SDE:
dzy = [f(T — t)z¢ + (9(T — t))*V1og pr—¢(ze)] dt + g(T — t)dWy, 2o ~ v, (6)

where v is independent of the Brownian motion W. Because v = pp, one expects that the
distribution of zp will be close to that of X7 which is pg.

e Training diffusion models via score matching.

The score function Vi log ps(-) in (6) is unknown because the data distribution pg is unknown.
One can estimate it with a time-state score model sg(-, -), which is often a deep neural network
parameterized by €, by minimizing the score matching loss:

min By yrj0,7) A()Ex, [Iso(t,xt) — Vi, logpt(xt)HQ] : (7)

Here, A(-) : [0,T] — Rxq is some positive weighting function (e.g. A(t) = g(¢)?), and U[0, T
is the uniform distribution on [0,7]. This objective is intractable because Vx log p:(-) is un-
known. Several approaches have been developed in literature to tackle this issue, including
denoising score matching (Vincent 2011, Song et al. 2021), sliced score matching (Song et al.
2020) and implicit score matching (Hyvéarinen and Dayan 2005). Here, we take denoising
score matching for illustration. One can show that (7) is equivalent to the following objective

. 2
meln]EtNU[O,T])‘(t)Eonxt|xo HS@(t,Xt) - VXt logpt|0(xt‘X0)H i| ’ (8)

where xg ~ po is the data distribution, and pyo(-[x0) is the density of x; given xg, which is
Gaussian by (2). Because we have access to i.i.d. samples from pg (i.e. training data), the
objective in (8) can be approximated by Monte Carlo, and the resulting loss function can be
then optimized using e.g. stochastic gradient descent.

2 Although one could take an empirical estimate of E[xr] = e~ I F($)dsR[xy] as the mean of the prior distribution
v, in practice v is often chosen with mean zero because of two reasons: a) one can rescale the data to make them to
have zero mean; see e.g. Ho et al. (2020); and b) the mean is close to zero when T is sufficiently large due to the
exponential discounting (for variance preserving SDEs).

e Algorithms.

After the score function is estimated, the true score function in (6) is replaced by the esti-
mated score sg, and the reverse SDE (6) is discretized to obtain an implementable algorithm.
Alternatively, one can use the probability flow ODE based implementation; see Section 4
of Song et al. (2021) for details. The generated samples at time 7' are expected to follow
approximately the data distribution, provided that the score is estimated accurately.

3 Problem Formulation

Standard training of diffusion models via score matching (8) — called pretrained models — does not
consider preferences about the generated samples. A standard way to capture preferences is to add a
reward function that evaluates the quality of generated samples related to the specified preferences.
This is essentially a model-based approach — first learn a pre-trained model by estimating the score
function and then optimize. This paper takes a conceptually different approach, one that is in the
spirit of RL, namely, to learn optimal policies directly without attempting to first learn a model.
This leads naturally to a continuous-time RL formulation.

3.1 Reward-directed diffusion models

The key idea is that because the score term Vlogpr_¢(z;) in (6) is unknown, we regard it as a
control. With a reward function, this leads to the following stochastic control problem:

T
o {5 ‘E[h(y})] — E [/0 (g(T —)% - |V log pr—i(y2) — at|2dt} } ()
subject to

dy} = [f(T =)y} + (9(T — t)*ar] dt + g(T — t)dWs, yo ~v. (10)

Here, a; € R? denotes the control action at time ¢, (y®) is the controlled state process, h is the
terminal reward function for the generated sample y%, and 3 > 0 is a weighting coefficient.

The first term in the objective function (9) captures the preference on the generated samples.
In this study, we do not require the reward/utility function & to be differentiable as in Clark et al.
(2024), nor do we necessarily assume that its functional form is known. What we do assume is that
given a generated sample y3. we can obtain a noisy observation (“a reward signal”) of the reward
h evaluated at that sample (e.g. a human evaluation of the aesthetic quality of an image).

The second term in the objective (9) has the following interpretation. Consider a deterministic
feedback policy so that a; = w(t,y;) for some deterministic function w. Let P? and PY" be the
induced distribution (i.e., path measures over C([0, 7], R%)) by the SDEs (6) and (10), respectively.
Then Girsanov’s theorem gives that under some regularity conditions (see, e.g. Uehara et al. 2024,
Appendix C or Tang 2024, Proposition 3.3)

a 1 T
KL 7%) = 3 | [6T = 0 Vogpr_i(y?) — w(t.yD) P
T
=38 | [6 =0 [V Iogpr_iv?) - | (1)

where the expectation is taken with respect to (y?) where yo ~ v. This justifies the second term of
(9) in terms of KIL-divergence.

Remark 2 (Connections between (11) and score matching). It is worth noting that if we let yg ~ pr
and zy ~ pr, then we can compute that

ay 1 T
KLE) = 38| [0T - 002 [V logpria) - w(t,) al]

T
= %E _/0 (g(t)? - |V logpi(zp_¢) — w(T — t,zT_t)Ith}
r prT
=58 [607 100 - wir — tx . (12

where the last equality follows from the time reversal of diffusion processes (see (4)), and the
expectation there is taken with respect to the randomness in the forward process (x;) in (1). This
is exactly the score matching loss in (7) with the likelihood weighting \(t) = %g(t)2; see Song et al.
(2021) for details. In particular, it was shown in Song et al. (2021) that KL(P?||PY™) > KL(po||y2)
when yog ~ pr and zg ~ pr, and (12) serves as an efficient proxy for maximum likelihood training
of score-based generative models. Finally, the hyperparameter 5 in (9) represents the weights placed
on score matching and human preferences. When B = 0, the problem (9) essentially reduces to a
score matching problem.

Denote

r(t,y,a) == —(g(T —))* - |Vlogpr_(y) — af, (13)

the running reward function (or instantaneous reward) at time ¢ in the objective (9). Because the
true score function Vlogpr_.(+) is unknown, this running/instantaneous reward function is also
unknown. Moreover, recall that the true terminal reward function h is also generally unknown.
Hence, we need an RL formulation of the problem (9)—(10), where exploration is necessary due to
these unknown rewards. This is discussed in the next subsection.

3.2 Stochastic policies and exploratory formulation

We now adapt the exploratory formulation for continuous-time RL in Jia and Zhou (2023) to our
problem setting. A distinctive feature of our problem is that the RL agent knows the environment
(the functions f, g are known in the SDE model (10)), but she does not know the instantaneous
reward function r and the terminal reward function A. So she still needs to do “trial and error”
— to try a strategically designed sequence of actions, observe the corresponding state process and
a stream of running rewards and terminal reward samples/signals, and continuously update and
improve her action plans based on these observations. For this purpose, the agent employs stochastic
policies in our RL setting.

Mathematically, let 7 : (t,y) € [0,T] x R? — & (-|t,y) € P(RY) be a given stochastic feedback
policy, where P(R?) is a collection of probability density functions defined on RY. Assume that
the probability space is rich enough to support {Z;,0 < ¢ < T'}, a process of mutually independent
copies of a random variable uniformly distributed over [0, 1], which is independent of the Brownian
motion in (10). Let Gy = FV VvV 0(Z;,0 < t < 5) V o(r) be the sigma-algebra at time s that

includes the information F¥ generated by the Brownian motion, that generated by the copies of
the uniform random variable (for action randomizations) and that generated by an independent
normal random variable v. At each time s, an action as is sampled from the distribution 7 (-|s, y2).
Denote by a™ = {aT : 0 < s < T'} the action process generated by 7. Consider the sample state
process y™ = {y7T : 0 < s < T} corresponding to a specific copy of a™. By (10), it follows the SDE

dyT = [f(T — s)yT + (9(T —t))*aT] ds + g(T — s)dW, s € (0,T], y§ ~v. (14)

To encourage exploration, we follow Wang et al. (2020), Jia and Zhou (2023) and add an entropy
regularizer to the running reward, and define

_ T
J(t,y,m) =, [[(rloyT.a) ~ Ologrm(aTls,y7)) ds + Sh(3T) (15)
t
_ T
=Ey, [/ (=g*(T —t) - |Viogpr—s(yT) — aT|* — Olog w(aT|s,yT)) ds + Bh(yT)| .
t

where Egy is the expectation conditioned on yJ' = y, and taken with respect to the randomness
in the Brownian motion and action randomization. Here # > 0 is the temperature parameter that
controls the level of exploration.® The function J(-,-,) in (15) is called the value function of the
(stochastic) policy 7. The goal of RL is to solve the following optimization problem:

max/ J(0,y,m)dv(y),

well
where II is the set of admissible stochastic policies defined below, following Jia and Zhou (2023).
Definition 1. A policy w = w(-|-,-) is called admissible, if

(i) w(-|t,y) € P(RY), supp m(-|t,y) = R? for every (t,y) € [0,T] x R? and m(alt,y) : (t,y,a) €
[0,T] x R x R? — R is measurable;

(i) Jga|mw(alt,y) —w(alt’,y')|da — 0 as (t',y') — (t,y). Moreover, there is a constant C' > 0
independent of (t,a) such that

/ |7 (alt,y) — m(alt,y)| da < Cly —¥/|, Vy,y’ € R%
]Rd

(i) Y(t,y), Jga|logm(alt,y)|m(alt,y)da < C(1+|y[P) for somep > 1 and C is a positive constant;
for any ¢ > 1, [palal?m(alt,y)da < Cy(1+ |y|P) for some p > 1 and Cy is a positive constant
that can depend on q.

For our analysis it is also useful to define

“(t,y) = . 1
J*(ty) = max J(t,y, m) (16)

Before we proceed to present our theoretical result, we discuss a key ingredient required in our
RL algorithm design. In general RL problems, we either have access to the reward function or have

3The entropy regularization is a commonly used technique to improve exploration in RL, originally introduced for
MDPs; see e.g. Haarnoja et al. (2018).

noisy observations from it for our learning. In our problem, the running/instantaneous reward
function (13) involves the unknown true score Vlog pr_.(-). To obtain signals from this unknown
running reward, we express the score function as the ratio of two expectations with respect to the
data distribution. Specifically, note that

) = | pio(xxalpo(xo)dxo = Bxpmpn o).

where we recall that pyo(-[xo) is the conditional density of x; given xg. By the forward process (2),
we know that pyjo(-[xo) is Gaussian with

Prjo(x|x0) ! exp < x — e~ o F)doxgy |2)
t|0 0) = d X - —o [t #(v)dv .
(2r fre2 s goyas) ™\ 2fy IO g(o) s

It follows that
VDt (%) _ Exorpo [Vxrjo (]%0)]
pi(x) Exo~po [ptIO(X‘XO)]

—(x—e~ 15 F(s)ds)
Ja e 2 IS T@av (g (s))2ds

Exo~opo [Pejo (x]%0)]

1 IExofvp() [pt|0(x‘x0)) X()] —ft f(s)ds
| —x+ e Jo) 17
f —2 [F@)dv(g())2ds (T Eemlpio(xlx0)] "

Therefore, given m i.i.d. samples (x}) from the data distribution pg, a simple ratio estimator for
the true score Vy log p:(x) at given (t,x) is

— 1 . S [pejo(x|xf) - x§] o S Fs)ds
Vi log pi(x) = fte_2f F@)dv (g(5))2ds (+max{zg1[pt|0(x\xf))],me} - (18)

vx 1Og bt (X) =

Exoroe [pt|o<x|><o> -

where € > 0 is some prespecified small constant. Note that we use max{}> /", [pyo(x[x})], me}
instead of Y 7", [pyo(x|x()] in (18) to avoid division by extremely small numbers for numerical
stability. It directly follows from (13) that we can obtain a noisy observation of the running reward
at time ¢ given by

Tt = —92(T - t) : |v]0ng—t(Yt) - at|2- (19)

For fixed (t,x), the simple ratio estimator in (18) provides a nonparametric approach to estimate
the true score Vy log py(x). It is efficient to compute the estimator, because py|o(x|xo) has an explicit
form, and no new samples need to be generated. In addition, while this ratio estimator is generally
biased, it is asymptotically exact as the number of data samples m — oo by the strong law of large
numbers. On the other hand, the true score function is a function of all (¢,x). Thus, using this
method to accurately estimate the score function for every (t,x) can be computational expensive,
and this is not what we pursue. In our study, we only use (18) as a noisy score, which allows us
to compute the reward signal (19) as we go, namely we compute it only when a state—action pair
(yt, at) is visited at time ¢t < T'. Finally, it is also unnecessary to use all the data samples from pg in
computing (18), though a larger sample size will generally lead to a lower variance of the running
reward signal (19).

10

4 Theory

In this section, we present our main theoretical results, which provide the optimal stochastic policy
to the RL problem in (16). To this end, we first recall the system dynamics (10) and the running
reward (13). We then introduce the (generalized) Hamiltonian H : [0, T] x R x RY x R? x R¥*4 — R
associated with (9)—(10) (see e.g. Yong and Zhou 2012):

H(t,y,a,p,q)
= —(g(T — 1))*|Vlog pr—¢(y) — al* + [f (T — t)y + (g(T — t))*a] o p + %(Q(T —1))%0q. (20

Equation (13) of Jia and Zhou (2023) yields that the optimal stochastic policy #w*(-|¢,y) for the
problem (16) is given by

* 1 * *
™ (a‘ta y) X exp <9H(t7y7a7 Jy (ta y)a Jyy(tvy))> .

However, H in our case, (20), is quadratic in a, leading to the following result.

Proposition 1. The optimal stochastic policy 7*(-|t,y) is a Gaussian distribution in R¢:

() ~ N <u*(t7y) (21)

I
' 2¢%(T — t) d) ’
where

* 1 *
pi(ty) = Viegpr—i(y) + 5 - Jy(t,y)- (22)

This result provides some interesting insights. First, the mean p*(¢,y) of the optimal stochastic
policy consists of two parts: the score Vlogpr_.(y) that we try to match in (9), and an additional
term % - Jy(t,y) that arises due to the consideration of maximizing the terminal reward h of the
generated samples. The optimal value function J*(¢,y) in (16) can be shown to satisfy the following

HJB equation, a nonlinear PDE (see Equation (14) of Jia and Zhou 2023):

W(t,y) + 0 log [/]Rd exp <0H(t,y,a, gy Jyy)) da] =0, (23)

J(Ty) = B-hy). (24)
Note that we do not attempt to solve this PDE because the Hamiltonian H involves the unknown
true score function (we never solve any HJB eqautions in the realm of RL). However, (23) illustrates
the impacts of the terminal reward function h as well as the temperature parameter # and the score
Vlogpr—i(y) on the mean of the optimal Gaussian policy (22). We also observe from (21) that
the optimal Gaussian policy has a covariance matrix ﬁ - I;, whose magnitude is, naturally,
proportional to the temperature parameter # > 0. Meanwhile, the exploration level is inversely
proportional to g?(T —t). This is intuitive because g represents the strength of the noise we add to
blur the original samples. The higher this noise the less additional noise we need for exploration.
Inspired by Proposition 1, in our RL algorithms to be presented in Section 5, we only need to
consider Gaussian policies in the following form:

7Pt y) ~ N (wu,y), for all (1,), (25)

0
20%(T —t) Id)

where the mean ¥ (t,y) is parameterised by some vector 1.

11

5 qg-Learning Algorithm

In this section, we present an algorithm to solve our continuous-time RL problem (16). In particular,
we adapt the g-learning algorithms developed recently in Jia and Zhou (2023), which are of actor—
critic type. For reader’s convenience, we first introduce some definitions and theoretical result in
Jia and Zhou (2023) that are important for developing our algorithm.

Following Jia and Zhou (2023), we define the so-called optimal ¢g—function by

9J*(t,y)

o+ H Y0 (6 y), Ty, (L), T), (hy,a) € 0,T] x R xR,

q(t,y,a) = »yy

where J* is the optimal value function given in (16), and the Hamiltonian function H is defined in
(20). One can readily infer from (23) that (see Proposition 8 in Jia and Zhou 2023)

1
/ exp (eq*(t,y,a)> da=1, forall (t,z) € [0,T] x RY,
R4

and the optimal stochastic policy 7*(+|t,y) in Proposition 1 is simply

* 1 *
7w (alt,y) = exp <9q (t,y,a)> :

We next state the martingale condition that characterizes the optimal value function J* and
the optimal g-function; see Theorem 9 in Jia and Zhou (2023). This result is essential because it
provides the theoretical foundation for designing our g-learning algorithm.

Proposition 2. Let a function J* € CY2([0,T) x Ry)NC([0,T] x Ry) and a continuous function
G* [0, T] x RY x RY — R be given satisfying
. 1
P =), [ew (eq*@,y,a)) da=1, forall (t,5) € 0, T xR%. (26)
Rd

Assume that J* and JZ‘ both have polynomial growth. Then

(i) If J* and q* are respectively the optimal value function and the optimal g-function, then for
any m € II and for all (t,y) € [0,T] x R, the following process

~

J*(s,y™) + / (0, yTaT) — G (0, yT, aT))dv (27)
t

is an ({Gs}s>0,P) martingale, where y™ = {y™ : t < s < T} satisfies (14) with yT =y.

(i3) If there exists w € II such that for all (t,y), the process (27) is an ({Gs}s>0,P) martingale
where y[' =y, then J* and ¢* are respectively the optimal value function and the optimal
q-function.

We are now ready to develop and state the algorithm to solve our continuous-time RL problem
(16). Consider the parameterized Gaussian policies w¥(-|¢,y) in (25). It is useful to note that

1
7% (alt,y) = exp <9q¢(t, Y, a)> :

12

where

0 = (= 0l w0) - o (7). (29)

This function ¢¥ is a resulting parameterization of the optimal g-function ¢* which satisfies the equa-
tion fRd exp (%qw(t, Y, a)) da = 1. We also choose the value function approximator J® parametrized
by © for the optimal value function J*. We aim to learn the optimal value function and g-function
simultaneously by updating (©,), based on the martingale characterization in Proposition 2. In
particular, we follow Jia and Zhou (2023) and use the so-called martingale orthogonality condi-
tions. These conditions state that a process M is a (square-integrable) martingale with respect to
a filtration F if and only if E fOT HidM,; = 0 for any process H (called a test function) on [0, 7] that
is progressively measurable (with respect to F) with E[fOT |H;|?dt] < oc. For detailed discussions,
see (Jia and Zhou 2022a, Section 4.2).
For our problem, we choose the following G;—adapted test functions & and (;:

J°
90

0 dg”
(tayt)7 Ct 6w

The martingale characterization in Theorem 2 leads to the following system of equations in (0,1)):

Ltyr e

.
P T P Y P P P
B | [6 (a00ym) 4 T o = o T o) | <o

T
P ¥ ¥ g¥ v ¥
EP |:/0 Ct (dJe(t’ Y) + T(tu Y G4)dt - qw(ta Y G4)dt):| = 0

We solve these equations using stochastic approximation to update (0,1)):
r » TR "
© 0 tao [& (WO)+ r(tyT o)it - gy o i),
0
r ¥ TR "
vevray [6 (aryT)yt o i - ¢ yE o).
0

Because ¢¥(t,y,a) = Ologw¥(alt,y), the above updating rule is essentially an actor—critic policy
gradient method based on temporal difference d.J®(t, yfw). Algorithm 1 gives the pseudo codes.

Remark 3. In Algorithm 1, the update rule for (©,1) in (29)-(30) is essentially the stochastic
gradient descent (SGD) type method. To see this, define

(t’La@ 1/}) (Z+l7ytz+1) - J (Zayt) +Tt At —q (tivytiaati)At)

where j(tz-+1,yti+1) = JG(tHl,ytHl), it =0,..., K — 1, which however are treated as constants free
of parameter ©. Then

l\DM—l

= 9 1
Z 76 (Gt 0.0, Av=—g) Z-[G(E:0,9))".
i=0 0

13

Algorithm 1 g-Learning Algorithm (SDE-based unconditional generation)

Inputs: m samples from data distribution, horizon T, time step At, number of episodes N, number
of mesh grids K = T'/At, initial learning rates ag, oy, and a learning rate schedule function [(-) (a
function of the number of episodes), functional forms of parameterized value function J®(-,-) and
p¥(-,-), temperature parameter 6, functions f, g in (1), and € in (18).
Required program: environment simulator (y',7) = Environmenta:(t,y,a) that takes current
time-state pair (¢,y) and action a as inputs and generates state 3 (by a numerical solver of SDE
(14)) at time ¢ + At and sample instantaneous reward 7 (see (19)) at time ¢ as outputs. Policy
¥ (-|t,y) in (25), and g-function ¢¥(¢,y,a) in (28).
Learning procedure:
Initialize ©, 1.
for episode 7 =1 to N do
Initialize £ = 0. Sample initial state yo ~ v and store y;, < yo.
while £ < K do
Generate action ar, ~ 7Y (:[tg, yt,.)-
Apply at, to environment simulator (y,7) = Environmentas(tg, vz, ,at,), and observe new
state y and reward 7 as outputs. Store y;, , <=y and 1y, < 7.
Update k <+ k + 1.

end while
For every i =0,1,--- , K — 1, compute and store test functions
8J° oq¥
i T Al tia i) t; s Ytir @
& = g i), G = 0 — (i, g, az,).-
Compute

A@ = Z Eti [J@(t’i+1ayti+1) - J (iy Yt;) + Tt; At — qw(tiaytiaati)At]a

A%Z) = Z Cti [J@(ti+layt¢+1) - J (i Yt;) +Tt At — q (laytiaati)At]'

Update © and ¢ by

O « O +1(j)ap A6, (29)
Y+ 1(j)ayAy. (30)

end for

14

Therefore, the update of (©,v) in (29)-(30) can be considered as a gradient descent method for
minimizing the following mean-square loss function:

K-1

L(©,¢) =) [G(t;0,9))*. (31)

=0

As a result, instead of the SGD in (29)-(30), we can also optimize the loss function (31) by ap-
plying other optimization methods such as the Adam optimizer (Kingma and Ba 2015) to update
these parameters. In our experiments, we use Adam because it converges much faster than SGD.
In addition, to further accelerate the training process, the above loss function could be estimated
more accurately through the empirical mean of a batch of losses under the same (©,1). Specifi-
cally, we could collect a batch of B trajectories simultaneously, calculate the above loss for each of
the B sample paths, denoted by L(b)(@,w),b =1,..., B, and then use the following batch loss for
optimization:

B
Lioen(©,%) = 5 3" 10(0,0)
b=1

Remark 4. In the classical setting of training diffusion models using score matching, the training
data (i.e. samples from py) are used in Monte Carlo approximation of the expectation in the
(denoising) score matching objective (8). In our RL formulation, however, the training data are
used for approximating the score via the ratio estimator in (18) in order to obtain noisy samples of
the running reward.

6 Experiments

In this section, we implement Algorithm 1 and conduct “proof-of-concept” experiments for two
toy examples with synthetic training data, one involving a one-dimensional (1D) Gaussian mixture
distribution and the other a two-dimensional (2D) Swiss rolls dataset. We further show the effec-
tiveness of our RL approach by comparing its performance against those of two state-of-the-art RL
fine-tuning methods. All the experiments are conducted on a MacBook Pro with 4 Intel i5 Cores.

6.1 General setup

We first provide some details on the implementation, including the environment (i.e. SDE model
(14)) and its simulator, as well as the structure of the neural networks used for the parameterized
actor ¥ and critic J©.

e SDE/Environment simulator.

The implementation of Algorithm 1 requires an environment simulator describing the (con-
trolled) denoising process. This corresponds to a numerical solver of the controlled SDE
(14).

For (14), we take

15

for both the 1D and 2D examples, leading to the prior distribution v in (5) as
vi=N(0,(1-e?) 1;), d=1,2.

Other forms of f and g can also be considered, but we choose (32) because it is simple and such
a choice already yields satisfactory numerical results as we will see below. We numerically
solve the controlled SDE (14) via the standard Euler-Maruyama discretization, i.e., for some
small At > 0 and t < T, y5 p, — ¥F ~ [f(T =)yF + (9(T — t))%af] - At + g(T — t)VAL - &,
where & ~ N (0, ;). The SDE (or environment) simulator under a policy 7 is given by (with
a slight abuse of notation for yJ")

Yiiar — Vi = yf +2af | At + V2AL-£, yi ~ v (33)

e Neural network approximators.

We use two neural networks (NNs) for the policy u¥ (i.e., the mean of the Gaussian policy in
(25)) and value function J®, respectively. Because we consider low-dimensional examples, the
structure of those two NNs are similar, except that the output dimensions are different; see
Table 1 below for details. As noted in Remark 3, we choose the Adam optimizer to optimize
these two NNs, and we will specify the hyperparameters values for the training processes

later.
Layer ID | Input Dimension Output Dimension Activation Function
1 (Input) d+1 64 Tanh
2 (Hidden) 64 64 ReLU
3 (Output) 64 ptod, Jo:1

Table 1: Neural networks setting

6.2 1D example - mixed Gaussian

We first consider an example where the RL agent is provided with m = 300 samples drawn from a
mixture of two 1D Gaussians:

1 1
= N (=3,1)+ ZN(3,1)
We consider a reward function

h(y) = —(y — 6)°, (34)

indicating the agent’s preference for the generated samples to be close to 6 (which is located at the
right tail of pp).

In our experiment, we consider different 5’s and implement Algorithm 1 under hyperparameters
shown in Table 2. For each trained model with a particular value of 3, we generate 300 samples (i.e.
300 terminal states yr from the SDE simulator (33)). The resulting probability density functions
(PDFs), computed via kernel density estimation using the Python seaborn library, are plotted in
Figure 1.

16

| 7777 Po
empirical p,
B=0

B=0.1
B=1.0

Density

0.00

. T
-10.0 =75

Figure 1: Learned probability densities of generated samples under different 5’s in 1D example

We have the following observations from Figure 1. First, when 8 = 0, our continuous-time
RL formulation (9) essentially reduces to score matching, and our RL algorithm indeed generates
samples with a PDF that matches closely with the empirical PDF pg that are computed using the
300 samples from the Gaussian mixture distribution. It is worthwhile to note that the empirical
PDF still deviates away from the true density py due to the small number of samples (m = 300)
taken, and the two densities will become closer with a larger sample size. Second, when S is 0.1,
our RL algorithm generates more samples that are closer to the right mode of the Gaussian mixture
distribution, due to the specific reward function (34). Finally, when S is large, say 1, the reward
term (3 - h dominates the score matching term in (9). In this case, the algorithm generates samples
that are closer to 6, and the generated distribution is significantly different from the original data

distribution.

Inputs/Hyperparameters | Setting
Sample Size m 300
Terminal Time T° 5)
Time Step At 0.25
Number of Episodes 50,000
Batch Size B 300
Learning Rate a, 0.001
Learning Rate ag 0.001
Scheduler I(episode) 1
Temperature 0 5
Lower Bound ¢ 1020

Table 2: Hyperparameters

15 4

10 4

-10 1

Figure 2: 300 samples from Swiss roll data

17

u
7.5 10.0

. SN Ry, °
ST o
'.:' ‘io '3.

fs] °
L L
S -k il
°k
eegtes g B

6.3 2D example - Swiss roll

We next consider 2D Swiss Rolls data, and plot m = 300 training samples drawn from the dataset
in Figure 2.* Consider a non-differentiable reward function

h(y1,y2) = 1yeiosg, (U1,92) € R%.

This reward function encourages generated samples to stay within the rectangular region [—5, 6] xR.

We again consider different 5’s and implement Algorithm 1 with hyperparameters shown in
Table 2. The numerical results are visualized in Figure 3. Similar to the 1D example, when 5 = 0,
our RL algorithm produces samples distributed close to the data distribution shown in Figure 2.
As we increase the value of 3, the generated samples become more concentrated on the rectangular
region [—5,6] x R. When S is large enough, say 30, all the generated samples tend to stay inside
the region where y; € [—5, 6], visually resembling a French croissant.

B=0 B=4 B=10 B=30
’ R ey, e Y
0 - M, AN g (° |
RS LR K7 LIS ; o, | . Pele i e ...
S et BRSO _out P N I sl YRR W,
- ...;. '.-:‘ g8 i :: . i .o o2 i . o
K AL . S SR R ¢ Lk
AR SR e e R e ik
ST ogh P 1 WS L Y . D) hes 2 N
—10 ‘:.t 'J"’ oo%, d:-‘ . q} ~.é'h. .f:*‘} i .“ ...“‘.. 4} -q.:-..“
-10 5 [yl 5 10 15 -10 -5 0 yl 5 10 15 -10 5) yl 5 10 15 10 -5 0 yl 5 10 15

Figure 3: 300 generated samples under different 8’s for 2D Swiss rolls

6.4 Comparison with the pretrain-then-fine-tune approach

In this section, we compare our continuous-time RL approach with those developed for fine-tuning
pretrained discrete-time diffusion models.

Specifically, we consider two benchmark fine-tuning methods, DDPO and DPOK, proposed by
Black et al. (2024) and Fan et al. (2023), respectively. Both DDPO and DPOK are online RL meth-
ods for fine-tuning a pretrained diffusion model to generate samples with higher terminal rewards.
Note that this is the key difference of their formulations compared with ours: our formulation does
not involve a pretrained model and our algorithm is not designed for fine-tuning. For reader’s
convenience, we first briefly review their formulations.

Black et al. (2024) and Fan et al. (2023) formulate the denoising process of a discrete-time
diffusion model, called the denoising diffusion probabilistic model (DDPM), as a Markov decision
process (MDP). Specifically, denote by {y, }5*_, the denoising process (with a slight abuse of nota-
tions), where yq is sampled from a normal distribution, and let the one-step transition probabilities
{pe (¥t Iyt)}, (often modeled as Gaussian) be parameterized by ¢. Given a pretrained diffu-
sion model pyre = pg,, DDPO and DPOK aim to fine-tune it to maximize the expected reward of
generated samples by updating ¢. They regard the transition pg(ys,.,|ys,) as a stochastic policy

4We use the dataset provided by sklearn package of python in https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make_swiss_roll.html. This dataset is also used in other studies on diffusion models;
see e.g. Sohl-Dickstein et al. (2015b) and Lai et al. (2023).

18

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html

and apply the policy gradient algorithm. To do so, they formulate a finite-horizon MDP with state
s, action a, policy 7?, deterministic transition dynamics P and reward R as follows:

Stk = Yt;w atk = Ytk+17 7r¢(atk|5tk) = p¢(ytk+1 |ytk)7 P(St;ﬁ_l‘stka atk) = 1Stk+1:atk’

R(stk,atk) = 0, Vki = 0, ,K — 2, R(stK_l,atK_l) = h(atK_l) = h(ytK)

Denote by pg(yo.x) == p(yo) Hszl Po(Yi, |y,) the joint distribution of the denoising trajectory
{y1, 1< ,. The objective of DDPO and DPOK is given below, with v = 0 for DDPO (i.e. purely
reward-directed) and v > 0 for DPOK:

K

m(;n qub()’o:K) _ﬁ : h(ytK) + - ZKL (p¢(ytk ’ytkq)prre(ytk |ytk—1)) . (35)
k=1

Here, ppre(Yt,|Yt, ,) is the one-step transition probability distribution under the pretrained diffu-
sion model, KL(-||-) is the KL-divergence between distributions, and (3, are weights balancing the
trade-off between the terminal reward h and the deviation from the pretrained model. One can
easily see that our RL formulation is significantly different from the ones in Black et al. (2024) and
Fan et al. (2023) at least in two aspects: First, we penalize the deviation from the (unknown) true
score model, rather than a (known) pretrained score or diffusion model. Second, the setting (i.e.
continuous-time) and definitions of actions and policies in our formulation are entirely different
from theirs.

We now compare the performance of our algorithm with those of DDPO and DPOK. For
illustrations, we focus on the 2D Swiss roll data discussed in Section 6.3 along with the reward
function h(y1,y2) = 1y,¢/-5,6- To adapt DDPO and DPOK to score-based diffusion models, we
consider the discrete-time denoising process {y;, }1_ similar to (33):

ytk+1 =Yt + [Ytk + Zﬂw(tm}’tk) At + v 2At - §7 Yo~V

where t11 = tx + At, and p¥ is the policy or score neural network discussed earlier (see (25)).
Then, the one-step transition py(ye, |yt ,) is Gaussian with mean effectively parameterized by u,
and one can compute the KL-divergence in (35) explicitly. The pretrained score network P, as
required by DDPO and DPOK, is obtained by applying our Algorithm 1 with hyperparameters
shown in Table 2 and 8 = 0, although one can use other standard score matching methods. For our
g-learning algorithm, the controlled state process y? is updated according to the dynamics (33).
To make a fair comparison, the neural network ;¥ used in all the three algorithms share the same
structure which is the one displayed in Table 1. Moreover, the pretrained network pP"¢ is used as
the initialization of 4% in our algorithm. Finally, for all the algorithms, we set 7' = 10, At = 0.25
and K =T /At = 40.

We first report the numerical results in Table 3 and Figure 4 for the scenario when a “good”
pretrained model (referred to as Pretrained Model A) is given. Here, by “good” we mean that
Model A generates samples whose distribution is very close to the true data distribution pg as
measured by the KL divergence. Given this pretrained model, DDPO fine-tunes it for pure reward
maximization (without any KL regularization). Table 3 shows that DDPO generates samples
achieving the maximal empirical mean reward, but with a large KL divergence from the true data
distribution. On the other hand, both DPOK and our g-learning method trade off two criteria:

19

reward and KL-divergence. For a fair comparison, we compare the KL-divergence values of the
two algorithms under the same level of expected reward of the generated samples. This is achieved
by choosing different values of the weight § for the reward in DPOK (while setting v = 1 in its
objective) and our model, because DPOK penalizes deviation from the pretrained model while we
penalize deviation from the true score model. Table 3 displays the empirical mean KL divergence to
the data distribution pg (and the corresponding 95% confidence interval) of 300 samples obtained
by DPOK and our algorithm, when the terminal expected rewards are set to be 0.7, 0.8 and 0.9,
respectively. To get those metrics, we generate 100 batches of 300 samples (i.e. yr), compute the
KL divergence to the Swiss roll data pg for each batch via the estimation method introduced in
Wang et al. (2009), and compute the 95% confidence interval based on the 100 batches. We can
observe that the performances of our g-learning algorithm and DPOK are similar in the current
scenario of a good pretrained model. For visualization, Figure 4 plots 300 samples generated by
different algorithms with a fixed expected reward level 0.8. It is clear that samples generated from
DDPO diverge from the data distribution significantly, while samples obtained from DPOK and
our g-learning algorithm have similar distributions to the data distribution.

Algorithm Reward (Elh(yr)]) T KL(p(y1)||lpo) 4
Pretrained model A 0.52 £ 0.006 0.17 £ 0.019
DDPO 1.00 £+ 0.001 2.97 £ 0.024
DPOK 0.70 £ 0.004 0.21 £ 0.021
g-Learning 0.70 & 0.005 0.29 £ 0.023
DPOK 0.80 &+ 0.004 0.38 £ 0.023
g-Learning 0.80 £+ 0.003 0.39 £ 0.026
DPOK 0.90 £+ 0.003 0.69 £+ 0.024
g-Learning 0.90 £ 0.003 0.66 + 0.024

Table 3: Empirical mean rewards and KL-divergences (with 95% confidence) based on (100 batches
of) 300 samples generated by diffusion models fine-tuned/trained with different algorithms, when
a good pretrained model is available.

While DPOK and g-Learning have similar performances in the above experiment, the two are
based on very different optimization objectives. DPOK is a fine-tuning RL method, which requires
the fine-tuned model to be close to the pretrained one. As a result, DPOK may not perform well,
if the pretrained model is not sufficiently good. By contrast, our method does not rely on any
pretrained model and is purely data driven, resulting in robust results. To illustrate, we repeat
the above experiment but with a “bad” pretrained model. This is referred to Pretrained Model B,
which is obtained by implementing Algorithm 1 with 5 = 0 and running the algorithm with only
30,000 iterations (instead of 50,000 iterations used in obtaining Pretrained Model A). In particular,
the generated distribution from Model B has a much higher KL divergence (0.68 vs. 0.17 for Model
A) with respect to the true data distribution. Table 4 reports the corresponding performances
of DPOK and our g-learning algorithm. For a fixed target reward level, DPOK now performs
much worse than our algorithm: the former generates samples with a distribution much further
away from the true data distribution than the latter does. Interestingly, our algorithm can even
improve the quality of a bad pretrained model in the sense of reducing the KL-divergence from the
data distribution pg, while DPOK generates samples with a even bigger divergence when applied

20

Pretrained model A DDPO DPOK g-Learning

20 i i i e generated data
training data
15 . 1 .
: & S o :. ° .:i.
10 1 o, 8% 1 | 7 | o T,
reWelR, A3 e’ o Rl T
o SofFoce P S °
5 ‘: .o:‘ ° .‘é ° G4 » o o;ﬁ 6‘..}-’ .‘ &" .’?o’ o .' :
s, oS e ® " . "“. ° ° ° o 3
L e L
0 5& K z, % oW I o &5
A o 2 o /]
{4 " \ ® oo & @ “&°
® ofasd ° ..&. ¥ ° % & °
-5 e, ° 8 K b -] '.. ° 2° o e%p, o °
® o
W, .o : BN o o 2289, TNy L
o (L
—100 S Fas et . . 1 Yool Nolnge 87050
L]
=15 = T T T T T T T T T T T
-10 0 10 -10 0 10 -10 0 10 -10 0 10

Figure 4: 300 samples generated by diffusion models fine-tuned/trained by different algorithms
with a fixed expected reward of 0.80. The samples obtained from (good) Pretrained Model A are
also plotted for reference.

for reward maximization. For visualization, Figure 5 shows 300 samples generated by different
algorithms with a fixed expected reward level 0.8. The outperformance of our algorithm is evident
in the case when only a low quality pretrained model is available.

Algorithm Reward (El[h(yr)]) T KL(p(y7)||po) 4
Pretrained model B 0.55 £+ 0.005 0.68 £ 0.026
DPOK 0.70 £+ 0.004 0.90 £+ 0.025
g-Learning 0.70 & 0.004 0.30 = 0.023
DPOK 0.80 £ 0.004 1.03 £ 0.027
g-Learning 0.80 £ 0.004 0.42 £+ 0.023
DPOK 0.90 £+ 0.003 1.21 £ 0.028
g-Learning 0.90 £ 0.003 0.64 + 0.026

Table 4: Empirical mean rewards and KL-divergences (with 95% confidence) based on (100 batches
of) 300 samples generated by diffusion models fine-tuned/trained with different algorithms, when
only a bad pretrained model is available.

To summarize the findings from our experiments, DDPO of Black et al. (2024) suffers from
the issue of reward over-optimization, where the generated distributions diverge too far from the
original data distribution. DPOK of Fan et al. (2023) has a similar performance as our g-learning
algirithm, provided that the pretrained model is of good quality. However, if the pretrained model
is not good enough, our g-learning algorithm outperforms DPOK significantly.

7 Extensions

In this section we discuss two extensions of our SDE-based formulation.

21

Pretrained model B DDPO DPOK g-Learning

20 i i i e generated data
odlh © training data
°
15 A E E b
4 '..“. ° ® ® $% “ %
L 2 ° °
10 A ohop o 1 ° foo 1 $. 8 | ote ST
2 %00 o
S| S AERaA], ’ o phN TR e . T
‘P“ . ..,, s y . 20 ‘o o0, ':':."3. y Yoo °
0 A ;;. g ® 4 b g{ ° :. o 1% o . Y
'c . !. ° ...‘ . "\ & @0 © o® a :‘: . g o &
=59 Peo U S & 1 7 g 1 = o ,%%% ° 1 “.¢ ° s o
¢ () [-) 2o o.“.’O.o' . o © o Qe)
i Sy || - il e Bt
—10+ R c:?“' ¢ 1 $ i : .‘. .asi 1 .oe'%
°
—15 - T T T T T T T T T T
-10 0 10 -10 0 10 -10 0 10 -10 0 10

Figure 5: 300 samples generated by diffusion models fine-tuned/trained by different algorithms
with a fixed expected reward of 0.80. The samples obtained from (bad) Pretrained Model B are
also plotted for reference.

7.1 ODE-based formulation

In addition to the SDE-based implementation of diffusion models, another mainstream approach
for sample generations is the probability flow ODE implementation (Song et al. 2021). In this
subsection, we show that our SDE-based RL framework for reward maximization can be easily
extended to the ODE-based formulation.

Recall that the forward process (x¢).e[o,7] satisfies the following SDE:

dx; = —f(t)xdt + g(t)dBy, X0 ~ Po, (36)
and p;(-) denotes the probability density function of x; in (36). Song et al. (2021) show that there
exists an ODE:

dxy _ 1 9 _ _

v T =)+ 5 (9(T = 1)) Vxlogpr—(Xe), %o ~pr, (37)
whose solution at time ¢ € [0,7], X¢, is distributed according to pr_y, i.e., the ODE (37) induces
the same marginal probability density function as the SDE in (4). In particular, X7 ~ pg. The
ODE (37) is called the probability flow ODE.

Motivated by the SDE-based problem formulation (9), we now consider an ODE-based formu-
lation (with a slight abuse of notation):

e seEnom) -z [[o - 02 Vs on - alal} 69
where

8 = |17 = 03 + S(alT —0)Per| . yo (39)

Because the dynamics (y?) is described by a controlled ODE, the Hamiltonian for this problem
becomes

H(t,y,a,p) = —(9(T — t))*|Vlog pr—¢(y) — al* + [f(T — t)y + %(Q(T —t))%alop. (40)

22

Remark 5. Because (39) is an ODE, instead of an SDE, the second term in the objective (38)
can no longer be directly interpreted as the KL divegence between two path measures as in (11).
However, we still keep this term in the objective as in the SDE-based formulation to encourage the
action process not to deviate too much away from the true score function.

Similar to Section 3.2, we can write down the exploratory RL formulation of the above problem.
The sample state process y™ = {y7 : 0 < s < T'}, corresponding to a specific copy of the stochastic
policy a™, follows the ODE with random/normal initialization:

4T = | 1T = 9T + H(0lT ~ 0T [ds, 5€O.TL ¥F (1)

The entropy regularized value function is given by

_ T
J(t,y,ﬂ') = Egy |:/ (_92(T - t) : |VIngT—S<y?) - a;l”? - Hlogw(ag\s,y;r)) ds + ﬂh(y,}‘:) .
t

The goal of RL is to solve the following optimization problem:

max/ J(0,y,7)dv(y), (42)

well

where IT stands for the set of admissible stochastic policies.

It is easy to see that the theory and algorithm for the SDE-based formulation can be developed
for the ODE-based formulation analogously. For instance, because the Hamiltonian in (40) is still
a quadratic function of the action a, we deduce that the optimal stochastic policy for (42) is still
a Gaussian distribution, which has the same form as (21). We can still apply Algorithm 1 to solve
the RL problem (42), except one importance difference. In Algorithm 1, the environment simulator
(i.e. the sampler) is based on the discretization (e.g. Euler-Maruyama) of the SDE in (14). For
the ODE-based formulation, we instead use a numerical solver of the ODE (41) as the sampler.
Many ODE solvers have been developed and employed in practice. For instance, one can use Euler
(Song et al. 2021), DDIM (Song et al. 2020), Heun’s 2nd order method (Karras et al. 2022), DPM
solver (Lu et al. 2022), exponential integrator (Zhang and Chen 2023), among others.

To test our method experimentally, we consider the Swiss roll dataset and implement Algo-
rithm 1 for two ODE-based samplers/simulators: ODE-Euler of Song et al. (2021) and DDIM of
Song et al. (2020). Following Song et al. (2020), we set f = 0 and g = v/2 in our experiment. Then
the controlled ODE (41) becomes

dy™ = aTdt, te[0,T] (43)

where the action plays the role of the score function. The update rule for the ODE-Euler simulator
is given by (again with a slight abuse of notation)

YTy ar = YT +a7 - AL

Moreover, the DDIM simulator, which is simply Euler’s method applied to a reparameterization of
the ODE (43), is given as follows (see Song et al. 2020)

Vioa = YT+ <\/ Lolf) \/ L “(”A“> AT~ Daf.

a(t) a(t + At)

23

where a(t) = m and a(t) =1 for all ¢ > T'. The DDIM simulator converges to (43) as ODE-
Euler when At — 0, but differs from the latter when At is not small (i.e. with fewer sampling steps).
For comparison purpose, when implementing Algorithm 1, we also include the SDE simulator which

takes the following form when f =0 and g = v/2 (similar to (33)):
Yipar =Yi +2a7 - At +V2At-§, £~ N(0,1y).

All the three simulators share the same prior distribution v := N(0, 27T - I4), which is obtained from
(5).

In our experiment, we fix 7' = 5 and vary At (or equivalently the number of sampling steps
K := T/At). The implementation of Algorithm 1 with three different simulators/samplers is
still based on the settings described in Tables 1 and 2. We first consider 8 = 0, in which the
algorithm aims to generate samples that are close to the original data without concerning the
reward. Table 5 shows how the choice of a simulator affects the output quality of the diffusion
model. When there are 50 sampling steps, the RL algorithms trained under either the ODE
or SDE simulator all generate reasonably good samples, although the two ODE-based ones have
slightly better performances. When the number of sampling steps is reduced, the quality of samples
generated from all the simulators decrease, but the SDE-based one decreases more. Figure 6 displays
visually the generated samples by different simulators.

Simulator | Sampling Steps (At) | Reward (E[h(yr)]) T KL(p(y7)||po) 4
DDIM 0.44 £+ 0.005 0.14 £+ 0.018
ODE-Euler 50 (0.1) 0.44 £+ 0.006 0.11 + 0.016
SDE 0.45 + 0.005 0.18 £+ 0.020
DDIM 0.45 £ 0.005 0.15 £ 0.019
ODE-Euler 10 (0.5) 0.44 £+ 0.006 0.23 £ 0.022
SDE 0.46 + 0.006 0.35 + 0.024
DDIM 0.46 + 0.005 0.72 £ 0.022
ODE-Euler 5 (1.0) 0.44 £+ 0.006 0.56 + 0.024
SDE 0.46 + 0.005 0.83 + 0.026

Table 5: Empirical mean rewards and KL-divergence (with 95% confidence) based on (100 batches
of) 300 samples generated by our algorithm with ODE-based and SDE-based samplers with different
sampling steps and 8 = 0.

24

DDIM ODE-Euler SDE
20 e generated data
training data
oo °
15 ot o o: oo
ey ::“ won‘:o‘. . :0:: .‘o.
10 . o © 30 °
° ° o e ° o ° % L% p N [
g teE . .) 4}." el - iy,
s e afs ° o8 I 00 o gie® 8% °© "‘o S oo U S
° LY & . ® ° ° e . °
» A 'y S Wed| e el Y
. a8 . & teds :“" 3 .in' Tl G ‘. 'c': :
& ‘3.‘."* YA ., .}3“' s o 83 sen, &8 LR
> : ‘t ° -:. 0.." ° 8 .}-‘ '»0 b4 ° "{‘. o oo’ o"' ® % :.‘ ¢
3o o ° A Sing’ %, e, ° " .oN]
X) ° 2 Te2l Lo 3% ° w5 o 200, 5 e %0
10 -.‘.o.. $Y° ¢ L4 o.’“‘ogp. 3.. s © o '?: ..0: '," 2o
15 Coe ° % °)

Figure 6: 300 samples generated by our algorithm for three simulators when 8 = 0 and At = 0.5.

Simulator | Sampling Steps (At) | Reward (E[h(y7)]) T KL(p(y7)||po) 4
DDIM 0.80 + 0.004 0.50 £+ 0.027
ODE-Euler 50 (0.1) 0.80 £ 0.005 0.62 £ 0.022
SDE 0.80 £+ 0.005 0.24 + 0.024
DDIM 0.80 + 0.004 0.61 = 0.025
ODE-Euler 10 (0.5) 0.80 £ 0.004 0.72 + 0.024
SDE 0.80 £ 0.004 0.77 £ 0.024
DDIM 0.80 + 0.004 1.22 £ 0.028
ODE-Euler 5 (1.0) 0.80 £ 0.005 1.07 £+ 0.025
SDE 0.80 + 0.004 1.29 £ 0.027

Table 6: Empirical mean rewards and KL-divergence (with 95% confidence) based on (100 batches
of) 300 samples generated by our algorithm with ODE-based and SDE-based samplers with different
sampling steps when the (fixed) expected reward is 0.8.

We next consider the reward-directed generative task with the same reward function h(y) =
1y c[-5,6) as before, and study the performance of Algorithm 1 with the three different simulators.
Similar to Section 6.4, we train the diffusion model with a properly chosen reward weight 5 so that
the samples generated from the different simulators will earn the same mean reward of 0.80. The
numerical results are presented in Table 6. We can see that when there are 50 sampling steps,
the SDE-based sampler performs the best with a significantly small KL divergence between the
generated distribution and the data distribution. However, as we increase At, the performance of
the SDE-based sampler deteriorates and becomes inferior to the ODE-based samplers. Figure 7
displays the generated samples out of the three simulators with a fixed expected reward of 0.8 and

At = 0.5.

25

DDIM ODE-Euler SDE

20
e generated data o
training data °©
15 °8.% o o800
NGy : ¢ Piegg °
& e o'Poge °

10 %o 0 ,° . 20 ° & 20a88° © .

Ageepioge . . adye: . : JA76Re

e <X ° @ T (e o '%., 9 °
s o ° g ° [4 oo % ® g Se° ’.‘ & ®e
° 8 A 4 V) ° o o e 0.1:
R .o, A - . X) & °
°% ° o’ S e Py °® o0 o
o> 2o AR ¢ . g e’ t7. o L.
2%, ° %) ° o o © o®

S S . o AT e

o) © % ° ° e ° ¥ ° ..,"". 248

¢, o . ° o o o8
0 ."o..:.‘ ° ...:0 .:. ° oo.g.‘ SRS
o

=15 °

Figure 7: 300 samples generated by our algorithm for three simulators with a (fixed) expected of
0.80 and At = 0.5.

To conclude this subsection, the ODE simulators prove to be effective when employed in con-
junction with our RL formulation and g-Learning algorithm for reward-directed diffusion models.
With a smaller number of sampling steps, the ODE simulators significantly reduce the sample gen-
eration time while maintaining an acceptable level of sample quality and reward. In our Algorithm
1, running the SDE-based simulator consumes a significant proportion of the total training time.
Therefore, the ODE formulation is a competitive contender for our reward-directed RL diffusion
model.

7.2 Conditional diffusion models

Diffusion models are often used for conditional data generations, e.g., in text-to-image models. In
this section, we briefly discuss the extension of our framework to conditional diffusion models. We
take the SDE-based formulation as an illustration.

We first introduce some notations. Let (xg,C) be a random vector in R? x R%, where xq
represents the data (e.g. images) and C represents the condition/context (e.g. a text prompt or a
class label). Denote by Pc the (marginal) distribution of C, which is assumed to be either known
or accessible through i.i.d. samples. Denote py(:|c) := P(x¢ € :|C = ¢) the conditional distribution
of xg. Given C = ¢, the standard conditional diffusion model aims to generate samples from the
(unknown) conditional data distribution pg(-|c).

For a conditional diffusion model, the forward process x; (with a slight abuse of notations) at
time ¢ is given by (see e.g. Section 2.2 of Chen et al. 2024):

dXt = —f(t)Xtdt + g(t)dBt, X ~ p0(~|0), (44)

where the noise is added to the data xg, but not to the context c. Denote by p¢(-|c) the conditional
density function of x; at time ¢ given C = ¢. Then the reverse-time SDE (z,) satisfies

dzy = [f(T —t)z; + (9(T —))*Vog pr—i(zilc)| dt + g(T — t)dWs, 2o ~ v, (45)

where the initialization distribution v is still chosen to follow the normal distribution in (5), which
is independent of C = c. In (45), the quantity V logpr_(-|c) is referred to as the conditional score

26

function. In text-to-image models, classifier guidance (Dhariwal and Nichol 2021) or classifier-
free guidance methods (Ho and Salimans 2022) are often used to estimate such conditional score
functions.

To adapt standard conditional diffusion models to reward maximization, we consider the fol-
lowing problem:

s Lm0l & [[o -2 Viepr o) - afa] b o

where

dyf = [f(T =)y} + (9(T — 0))’ar] dt + (T —)dWs, yo ~ v, (47)

and the expectation is taken with respect to the randomness in (y2) and C. In contrast to the
unconditional diffusion model, here the reward function h now depends also on the condition C.
Moreover, the state at time ¢ can be viewed as (¢,y, C), and hence an optimal action process will
also depend on the condition C. Define the running reward for this problem as follows:

r(t,y,c,a) :=—(g(T — t))2 - Viogpr—i(ylc) — a|2. (48)

The exploratory formulation can be defined similarly as in Section 3.2. We let 7 : (¢,y,¢) —
m(-|t,y,c) € P(R?) be a given stochastic feedback policy, which now depends also on the condition
c. The exploratory value function is defined by

J(t,y,c,m)

_ T
—Ef [| @ =0 9108y (571e) — T — Dlogm(aT s, yT.0)) ds + Bh(YT o).
t

where {y7 : 0 < s < T} is the sample state process satisfying the SDE (14), and E?y’c denotes
the expectation conditioned on (¢,y7,C) = (t,y,c¢). We aim to solve the following optimization

problem:

ma / / J(0,, ¢, ®)dv(y)dPo(c).

This problem can be solved similarly as in the unconditional setting. The running reward
signal can be obtained in a similar manner as in the unconditional diffusion model discussed earlier.
Specifically, given condition C = ¢, we have

Exomono (100 Vx
Vx log pi(x|c) = Vxpi(x|c) — —Xo~po(|) [Vijo(X[x0)]
pe(x]c) B mpo(-|e) [Pt]o (X[%0)]
—(x—e” 13 F(s)ds)
Jy e 2RI g(s))2ds

]EX()NpQ(-|C) [pt‘O(X’XO)]

_ t 1 N Eocompo(-lc) [Pr10(X[%0) - X0] o i Fs)ds |
fg e 2L Fdv(g(5))2ds Eoconpo(-|e) [Prjo (X[%0)]

B ympo(-le) [ptO(X|X0) :

27

Therefore, given m i.i.d. samples (x}) from the conditional data distribution py(-|c), a simple ratio
estimator for the true score Vy log pi(x|c) at given t and x is given by

1 '<X+ Yoy [Pt\o(X!XB)" x5 _e_fgf(s)ds>
JE e 2 5@ (g(5))2ds max {7 [pejo (x[x§)], me} ’

—

vx IOg bt (X‘)

where € > 0 is some prespecified small value. It follow that we can obtain a noisy sample of the
instantaneous reward (48) at time ¢ given by

it =—g*(T —t) - |Vlogpr—i(yilc) — ar|*. (49)
From the problem (46), the Hamiltonian becomes

H(t,y,c,a,p,q)
= —(g(T — 1))*|V1og pr—(ylc) — al* + [f(T — t)y + (9(T — t))al o p + %(g(T —1)%oq.

This is still a quadratic function of a, and hence the optimal stochastic policy is still Gaussian as in
Proposition 1. Hence, given the condition ¢, we can consider Gaussian policies in the RL algorithm
design:

0
7V (|t y,¢) ~ N <p¢(t,y, c), m . Id> for all (¢,y,c). (50)
We also use ¢¥ as the function approximator for the optimal ¢-function which is given below:

0d w0
b — 2 P 2
q"(t,y,c,a) = —g"(T = 1) - [a — p¥(t, y,0)|” — - log (gg(T_t)> : (51)
Algorithm 2 summarizes the resulting algorithm for reward maximization in the conditional
diffusion model.

8 Conclusions

In this paper, we provide a continuous-time RL framework for adapting score-based diffusion models
to generate samples that maximize some reward function. The key idea is that of data-driven:
optimization is based on a stream of score signals, instead of on an estimated score model. Our
framework is general and applicable to both SDE and probability flow ODE based implementations
of diffusion models. Numerically, the resulting RL algorithms is shown to perform well on at least
low-dimensional synthetic data sets.

There are many open questions for future research, including speeding up the training processes,
analyzing the convergence of the RL algorithms, adapting the framework to accommodate possibly
several reward/cost functions, and performing high dimensional numerical experiments.

28

Algorithm 2 g-Learning Algorithm (SDE-based conditional generation)

Inputs: condition/context distribution Pc, horizon T', time step At, number of episodes N, number
of mesh grids K = T'/At, initial learning rates ag, ay and a learning rate schedule function I(-)
(a function of the number of episodes), functional forms of parameterized value function JO(-,-, -)
and p¥(-,-,-), temperature parameter #, functions f, g in (1), and € in (18).
Required program: environment simulator (y',7) = Environmenia:(t,y,a) that takes current
time—state pair (¢,y) and action a as inputs and generates state y' (by a numerical solver of SDE
(47)) at time t + At and sample instantaneous reward 7 (see (49)) at time ¢ as outputs. Policy
¥ (-|t,y,c) in (50), and g-function ¢¥(¢,y,c,a) in (51).
Learning procedure:
Initialize ©, 1.
for episode j =1 to N do
Initialize £ = 0. Sample ¢ ~ Pc. Sample initial state yo ~ v and store y;, < yo.
while £ < K do
Generate action ay, ~ 7Y (:|tg, Yz, ,C).
Apply ay, to environment simulator (y,7) = Environmentat(ty, yi, ,ar,), and observe new
state y and reward 7 as outputs. Store vy, , <y and 1y, < 7.
Update k <+ k + 1.
end while

For every i =0,1,--- , K — 1, compute and store test functions
0J® oq¥
= ——(%;, Y., C), = — (4, Yt , C, Q¢).
gtz 8@ (7 yt;) gtz aw (7 ytz tl)
Compute
K-1
AO = Z &, [Je(tHl,ytiH,c) — Jg(ti,yti,c) + 7, At — qw(ti, Yt C, ati)Aﬂ,
i=0

K—1
Ay = Z Ct, [Je(ti+1>yt¢+1>c) — JO(ti, yt,,) + ri, At — ¢¥ (i, i, €, ay,)At].
=0
Update © and % by

O « O +1(j)aeA®,
Y+ 1(j) oy A

end for

29

References

Anderson, B. D. O. (1982). Reverse-time diffusion equation models. Stochastic Processes and their Applica-
tions 12(3), 313-326.

Black, K., M. Janner, Y. Du, I. Kostrikov, and S. Levine (2024). Training diffusion models with reinforcement
learning. In The Twelfth International Conference on Learning Representations.

Cattiaux, P., G. Conforti, I. Gentil, and C. Léonard (2023). Time reversal of diffusion processes under a
finite entropy condition. Annales de I’Institut Henri Poincaré (B) Probabilités et Statistiques 59(4),
1844—1881.

Chen, M., S. Mei, J. Fan, and M. Wang (2024). An overview of diffusion models: Applications, guided
generation, statistical rates and optimization. arXiv preprint arXiv:2404.07771.

Clark, K., P. Vicol, K. Swersky, and D. J. Fleet (2024). Directly fine-tuning diffusion models on differentiable
rewards. In The Twelfth International Conference on Learning Representations.

Dhariwal, P. and A. Nichol (2021). Diffusion models beat GANs on image synthesis. Advances in Neural
Information Processing Systems 34, 8780-8794.

Fan, Y., O. Watkins, Y. Du, H. Liu, M. Ryu, C. Boutilier, P. Abbeel, M. Ghavamzadeh, K. Lee, and K. Lee
(2023). Reinforcement learning for fine-tuning text-to-image diffusion models. Advances in Neural
Information Processing Systems 36.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine (2018). Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In International Conference on Machine Learning, pp.
1861-1870. PMLR.

Haussmann, U. G. and E. Pardoux (1986). Time reversal of diffusions. The Annals of Probability, 1188-1205.

Ho, J., A. Jain, and P. Abbeel (2020). Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems, Volume 33.

Ho, J. and T. Salimans (2022). Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598.

Hoogeboom, E., V. G. Satorras, C. Vignac, and M. Welling (2022). Equivariant diffusion for molecule
generation in 3d. In International conference on machine learning, pp. 8867-8887. PMLR.

Hyvérinen, A. and P. Dayan (2005). Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research 6(4), 695-708.

Jia, Y. and X. Y. Zhou (2022a). Policy evaluation and temporal-difference learning in continuous time and
space: A martingale approach. Journal of Machine Learning Research 23, (154):1-55.

Jia, Y. and X. Y. Zhou (2022b). Policy gradient and actor-critic learning in continuous time and space:
Theory and algorithms. Journal of Machine Learning Research 23, (275):1-50.

Jia, Y. and X. Y. Zhou (2023). g-learning in continuous time. Journal of Machine Learning Research 24(161),
1-61.

Karras, T., M. Aittala, T. Aila, and S. Laine (2022). Elucidating the design space of diffusion-based generative
models. In Advances in Neural Information Processing Systems, Volume 35.

Kingma, D. P. and J. Ba (2015). Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations.

Lai, C.-H., Y. Takida, N. Murata, T. Uesaka, Y. Mitsufuji, and S. Ermon (2023). FP-Diffusion: Improving
score-based diffusion models by enforcing the underlying score fokker-planck equation. In International
Conference on Machine Learning, pp. 18365-18398. PMLR.

Lee, H., J. Lu, and Y. Tan (2022). Convergence for score-based generative modeling with polynomial
complexity. In Advances in Neural Information Processing Systems, Volume 35.

Lee, K., H. Liu, M. Ryu, O. Watkins, Y. Du, C. Boutilier, P. Abbeel, M. Ghavamzadeh, and S. S. Gu (2023).
Aligning text-to-image models using human feedback. arXiv preprint arXiv:2302.12192.

Lu, C., Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu (2022). DPM-solver: A fast ODE solver for diffusion
probabilistic model sampling in around 10 steps. In Advances in Neural Information Processing Systems,
Volume 35, pp. 5775-5787.

Ramesh, A., P. Dhariwal, A. Nichol, C. Chu, and M. Chen (2022). Hierarchical text-conditional image
generation with CLIP latents. arXiv preprint arXiv:2204.06125.

30

Rombach, R., A. Blattmann, D. Lorenz, P. Esser, and B. Ommer (2022). High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10684—-10695.

Sohl-Dickstein, J., E. Weiss, N. Maheswaranathan, and S. Ganguli (2015a). Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning, Volume 37,
pp. 2256-2265. PMLR.

Sohl-Dickstein, J., E. Weiss, N. Maheswaranathan, and S. Ganguli (2015b). Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning, pp. 2256—
2265. PMLR.

Song, J., C. Meng, and S. Ermon (2020). Denoising diffusion implicit models. In International Conference
on Learning Representations.

Song, Y., C. Durkan, I. Murray, and S. Ermon (2021). Maximum likelihood training of score-based diffusion
models. Advances in Neural Information Processing Systems 34, 1415-1428.

Song, Y. and S. Ermon (2019). Generative modeling by estimating gradients of the data distribution. In
Advances in Neural Information Processing Systems, Volume 32.

Song, Y., S. Garg, J. Shi, and S. Ermon (2020). Sliced score matching: A scalable approach to density and
score estimation. In Uncertainty in Artificial Intelligence, pp. 574-584. PMLR.

Song, Y., J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole (2021). Score-based gen-
erative modeling through stochastic differential equations. In International Conference on Learning
Representations.

Tang, W. (2024). Fine-tuning of diffusion models via stochastic control: entropy regularization and beyond.
arXiv preprint arXiv:2403.06279.

Uehara, M., Y. Zhao, K. Black, E. Hajiramezanali, G. Scalia, N. L. Diamant, A. M. Tseng, T. Biancalani,
and S. Levine (2024). Fine-tuning of continuous-time diffusion models as entropy-regularized control.
arXww preprint arXiw:2402.15194 .

Vincent, P. (2011). A connection between score matching and denoising autoencoders. Neural Computa-
tion 23(7), 1661-1674.

Wang, H., T. Zariphopoulou, and X. Y. Zhou (2020). Reinforcement learning in continuous time and space:
A stochastic control approach. Journal of Machine Learning Research 21, (198):1-34.

Wang, Q., S. R. Kulkarni, and S. Verdi (2009). Divergence estimation for multidimensional densities via
k-nearest-neighbor distances. IEEE Transactions on Information Theory 55(5), 2392-2405.

Wu, L., C. Gong, X. Liu, M. Ye, and Q. Liu (2022). Diffusion-based molecule generation with informative
prior bridges. Advances in Neural Information Processing Systems 35, 36533-36545.

Yang, L., Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao, W. Zhang, B. Cui, and M.-H. Yang
(2023). Diffusion models: A comprehensive survey of methods and applications. ACM Copmuting
Surveys 56(4), 1-39.

Yong, J. and X. Y. Zhou (2012). Stochastic controls: Hamiltonian systems and HJB equations, Volume 43.
Springer Science & Business Media.

Zhang, Q. and Y. Chen (2023). Fast sampling of diffusion models with exponential integrator. In International
Conference on Learning Representations.

Zhao, H., J. Zhang, X. Gu, D. Yao, and W. Tang (2024). Score as actions: Diffusion models alignment by
continuous-time reinforcement learning. Working paper.

31

	Introduction
	Quick Review on Continuous-Time Score-Based Diffusion Models
	Problem Formulation
	Reward-directed diffusion models
	Stochastic policies and exploratory formulation

	Theory
	q-Learning Algorithm
	Experiments
	General setup
	1D example - mixed Gaussian
	2D example - Swiss roll
	Comparison with the pretrain-then-fine-tune approach

	Extensions
	ODE-based formulation
	Conditional diffusion models

	Conclusions

