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Abstract

We study an infinite-horizon periodic-review remanufacturing inventory system with random
demand and product returns. The quantity of returned products each period depends on the
historical demands following a distributed lag model. A firm operating the system remanufac-
tures product returns into a serviceable product to fulfill customer demand. When needed, the
serviceable product can also be manufactured/ordered. Manufacturing and remanufacturing
have different lead times. The firm decides manufacturing quantity each period in order to
minimize the expected long-run average cost of inventory holding, demand backlogging, and
manufacturing. We first establish the existence of stationary optimal policy under the long-run
average cost criterion using the vanishing discount factor approach together with a coupling
argument. Via state space reduction, we further prove that the optimal policy is a so-called
forecast-adjusted base-stock (FABS) policy when the maximum return lag is shorter than the
manufacturing lead time. When the maximum return lag is longer than the manufacturing lead
time, the optimal policy becomes state-dependent base-stock type. Due to the challenge of the
computation of optimal solution and its implementation of the latter case, we adopt the FABS
policy in general, provide an exact evaluation procedure via stationary analysis, and develop
easily computable approximations for the optimal base-stock level. In a numerical study, we
show that the FABS policy and the approximations are very effective; moreover, the FABS
policy performs much better than a simple base-stock policy that does not incorporate forecast
of product return, which demonstrate the value of return forecast.

Keywords: Remanufacturing, demand-dependent product return, optimal policy, approxima-
tions, long-run average cost

1 Introduction

Remanufacturing industry is an integral part of circular economy and is growing fast attributed to

recent technical advances like additive manufacturing, data analytics, and internet of things as well
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as increasing public awareness of sustainable development. Via a series of processes and new tech-

nologies, remanufacuring restores used or broken components/products returned by customers to

like-new condition. The key industry sectors that practice remanufacturing include aerospace, au-

tomotive, heavy-duty and off-road equipment, and electronic and electrical equipment. In Europe,

it is estimated that remanufacturing generates €30 billion annual turnover and employs roughly

190,000 people Parker et al. (2015). As noted in a recent New York Times article Rosen (2020),

remanufacturing is different from refurbishing, a refurbished engine might be equivalent to one in

excellent working condition but has already been in service for 30,000 miles whereas a remanu-

factured engine is equivalent to one that has not been in service. Customers would return their

products because either the product is broken/replaced by a new one or the product is leased and

it has to be returned at the end of the leasing period. By remanufacturing returned products,

a company can save cost and energy of manufacturing from raw materials, generate additional

revenue, and establish “environmental-friendly” images to the public.

One operational challenge of processing product returns faced by many remanufacturing pro-

grams is that the quantity and timing of returns are unknown and they are closely related to the

historical demand of the product and how the product is used. A case studied in Bayiz and Tang

(2004) consider a company selling thermoluminescent badges and find it useful to describe the

quantity of returned badges as a function of previous demands. Clottey et al. (2012) report that

product returns can be accurately estimated using certain statistical method based on historical

demand information. The uncertainty associated with the quantity and the timing of product

returns and their dependency on the historical demand cause great complexities in managing a

remanufacturing inventory system. For example, a manufacturer of retreaded tyres, whose return

depending on its sales (tyres can be retreaded up to 10 times). Ink/Toner cartridge manufacturers

sell/remanufacture/resell their products, and the returns depend on the sales (toner cartridge can

be remanufactured up to 4 times).

In this paper, we study a firm that collects returned products (also called cores) and reman-

ufactures them into a serviceable product for meeting random customer demand over an infinite

planning horizon. The quantity of returned product each period is random and dependent on

the historical demand through the distributed lag model (Bayiz and Tang, 2004; Shang et al.,

2020; Toktay et al., 2000). When there are no enough cores, the serviceable product can also

be manufactured from raw materials (or ordered from external suppliers). For example, if the

components/parts cannibalized from cores are insufficient, it is quite common in practice for a

manufacturer, e.g., Caterpillar, to use new components/parts in remanufactured products1. Each

period the firm receives and remanufactures all the cores while deciding manufacturing quantity

if needed. Unused inventory at the end of each period incurs holding cost while excess demand

is backlogged and incurs shortage cost. The firm aims to minimize the expected long-run average

1https://www.caterpillar.com/en/company/sustainability/remanufacturing.html
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cost of the system.

The main contributions of the paper are summarized below.

First, we establish the existence of stationary optimal policy that minimizes the expected long-

run average cost of the system using the vanishing discount factor approach together with a coupling

argument. Different from the prior studies, the inventory dynamics and state transition are more

complex in our system due to the consideration of correlated product demand and return. A direct

formulation and analysis of the dynamic program will show that the optimal policy depends on

a state variable that includes all the previous demands during the maximum lag of return (the

maximum number of periods the product spends with customers before being returned), which

largely hinders the implementation of the policy. Via a state transformation, we are able to re-

duce the dimensionality of the state space and provide a sharper characterization of the optimal

manufacturing policy: When the maximum lag of return is shorter than the manufacturing lead

time, the optimal policy is forecast-adjusted base-stock (FABS)–if the inventory position after re-

manufacturing the returned products and adjusted by return forecast at the beginning of each

period is lower than a constant base-stock level, manufacture up to the base-stock level; otherwise,

manufacture nothing. When the maximum return lag is longer than the manufacturing lead time,

the optimal policy becomes state-dependent base-stock type, depending on the demands realized

in the previous periods (from the most recent period backward covering the disparity between the

maximum return lag and the manufacturing lead time).

Second, as the optimal policy may still be state-dependent in general, which is difficult to

compute and implement, to simplify the control of a general remanufacturing system, we focus on

the FABS policy and develop simple approximations for the optimal base-stock level. To this end,

we conduct stationary analysis of the long-run average cost under a FABS policy, which involves

the analysis of the overshooting process as the inventory position may exceed the base-stock level

due to product returns, and employ heave-traffic analysis to obtain closed-form approximations of

the base-stock level for the FABS policy. Numerically we show that the FABS policy performs

close to the optimal one when the maximum return lag is longer than the manufacturing lead time.

Moreover, the approximation of the base-stock level is effective, i.e., the resulting cost is close to the

one under the optimal FABS policy. We further numerically demonstrate the superior performance

of the FABS policy by comparing it with a simple base stock policy that does not incorporate

forecast of product return.

1.1 Literature Review

This paper contributes to the literature of managing inventory systems with product returns, which

dates back to Simpson (1978) who studies the optimal policy for a periodic-review inventory model
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with a single type of return. Several papers have extended Simpson (1978) in various ways. Decroix

(2006) considers remanufacturing in a serial inventory system. Zhou et al. (2011) characterize

optimal remanufacturing/manufacturing policies for systems with multiple types of returns. Tao

et al. (2012) extend the model in Zhou et al. (2011) with random remanufacturing yield. Gong and

Chao (2013) and Gong and Liu (2024) consider capacity constraints. When manufacturing and

remanufacturing have different lead times, Xin and Yang (2022) show that a constant-order two-

threshold policy is asymptotically optimal as the manufacturing lead time grows large. These papers

focus on characterizing the optimal or asymptotically optimal policies under a major assumption

that product returns and demands across different periods are independent.

The work on inventory systems with stochastic and correlated demands and returns is rather

limited due to its complexity. Motivated by the supply chain of Kodak’s single-use camera, Toktay

et al. (2000) use a closed queueing network model to investigate inventory policies that minimize

the procurement, inventory holding, and lost sales costs of a remanufacturing system. Kiesmüller

and Van Der Laan (2001) adopt a base-stock policy for a remanufacturing inventory system with

product returns that depend on the historical demand. They show that the system behaves quite

differently from the system that the returns and demand are independent and neglecting such

dependency may result in poor performance. Tao and Zhou (2014) introduce a balancing policy

for a finite-horizon remanufacturing system that allows return to depend on the past demands and

show that the expected cost under this balancing policy is at most twice of the optimal one. Miao

(2023) and Bu et al. (2023) both consider return processes that are correlated with past sales.

Miao (2023) studies a finite-horizon system with zero lead time, introducing a heuristic whose cost

is shown to be at most four times of the optimal cost. Bu et al. (2023) study a lost-sales inventory

system using two policies: a base-stock policy and a myopic policy. They demonstrate that both

policies are asymptotically optimal as the unit penalty cost approaches infinity. Our work differs

from these studies in that we characterize the optimal policy for the remanufacturing inventory

system under the long-run average cost criterion and derive simple approximations for the optimal

base-stock level of the FABS policy.

Our paper proves the existence of stationary optimal long-run average policy for a remanu-

facturing inventory system with correlated demands and returns. There is a stream of literature

discussing the conditions for verifying the long-run average optimality of Markov decision processes

(MDP), see, e.g., Schal (1993), Huh et al. (2011), Feinberg et al. (2012) and Feinberg and Lewis

(2018). Feinberg and Lewis (2018) provide sufficient conditions to prove that the optimal pol-

icy for the discounted infinite-horizon problem converges to the optimal policy for the long-run

average problem via the vanishing discount factor approach. Our proof validates the conditions

in Feinberg and Lewis (2018) in our system, which is nontrivial given the high-dimensional state

space in our problem with correlated returns over time. More recently, Avci et al. (2020) consider

an inventory system with Markov-modulated demand by assuming current demand state is only
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partially observable and show the existence of stationary optimal policy under the long-run average

cost. Similarly, Bai et al. (2023) analyze a partially observable lost-sales inventory system where

the inventory level is only observed when it reaches zero, and they establish the long-run average

optimality. Different from the papers above, we consider remanufacturing of product returns and

so the inventory dynamics are more complex.

Our paper employs some results in heavy-traffic analysis to develop approximations for the

optimal base-stock level of the FABS policy, so it is broadly related to the prior studies on heavy

traffic approximation for production-inventory systems. For example, Toktay and Wein (2001)

consider a production-inventory system where the demand process is governed by a Martingale

Model of Forecast Evolution (MMFE) and they apply heavy traffic approximations to analyze

the forecast-corrected base-stock policy. Plambeck and Ward (2006) study the optimal control of a

high-volume assemble-to-order system and prove the asymptotic optimality of their proposed policy

in the heavy-traffic regime. Ata and Barjesteh (2023) provide an approximate analysis of dynamic

pricing, outsourcing, and scheduling policies for a multiclass make-to-stock manufacturing system

in heavy traffic. Gao and Huang (2024) study a model slightly more general than that in Ata and

Barjesteh (2023) and prove the asymptotic optimality of their proposed policy in the heavy-traffic

regime.

The rest of the paper is organized as follows. In Section 2, we introduce the model. In Section

3, we conduct a state transformation that helps reduce the dimensionality of the state space. In

Section 4, we characterize the optimal policy. In Section 5, we analyze the FABS policy and

derive approximations for optimal base stock levels. In Section 6, we conduct a numerical study

to demonstrate the effectiveness of the FABS policy and the approximations. Section 7 concludes.

All the proofs are relegated to the Appendix. Throughout the paper, y+ = max{y, 0}, y− =

max{−y, 0}, y ∧ y′ = min{y, y′} and y ∨ y′ = max{y, y′} for any y, y′ ∈ R.

2 The Model

Consider a remanufacturer or a manufacturer’s remanufacturing division (referred to as the firm

hereafter) who receives product returns and remanufactures them to meet customer demand (e.g.,

orders from service requirement of certain equipment/product) over a planing horizon with infinite

number of periods, indexed by n = 1, 2 . . .. In each period, some customers who have bought/used

the product earlier may return their products to the firm, either due to the end of use or end of

the life cycle. The returned products are also referred to as the cores. The firm remanufactures

the cores and puts them into inventory for serving future customer demand. If the firm anticipates

the amount of remanufactured product is not enough, additional units can be manufactured (e.g.,

new parts, new cells for batteries) or ordered (e.g., from a core broker). We also refer to the
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remanufactured/manufactured product as the serviceable product. Demand for the serviceable

product is assumed to be i.i.d. across different periods. Product returns are random in each

period and depend on the previous demands (e.g., Goh and Varaprasad 1986, Kelle and Silver

1987, Toktay et al. 2000, Kiesmüller and Van Der Laan 2001, Clottey et al. 2012, Tao et al. 2012).

Unused serviceable inventory in one period is carried over to the next while unsatisfied demand is

backlogged. Inventory holding and demand backlogging incur costs. The firm aims to minimize

the expected long-run average cost of the system.

The sequence of events within each period is as follows: First, at the beginning of period n, the

firm receives the serviceable product manufactured in the previous periods. Next, the firm receives

random returns Rn and remanufactures all of them into serviceable products, which is a common

practice when dealing with high-value products or components. Without loss of generality, we

assume the remanufacturing lead time, denoted as Lr, is zero. If not, we can redefine the return

process as R′
n = Rn−Lr for Lr > 0. Following this, the firm decides the quantity Qn to manufacture

from raw materials with unit cost k, subject to a positive manufacturing lead time, denoted as L.

This reflects the practical scenario where manufacturing new products often takes longer than

remanufacturing, especially when new parts must be sourced from external suppliers. Finally,

random customer demand for the product Dn is realized and filled by the serviceable product

inventory to the largest extent possible. The mean and variance of demand are E[Dn] = λ and

V ar[Dn] = σ2, respectively, for n = 1, 2, .... If the end-of-period inventory level In is greater than

zero, the firm incurs a holding cost h per unit; otherwise the unmet demand is fully backlogged

and the firm incurs a unit backlogging cost b.

For many remanufacturing programs, the product returns depend closely on the previous de-

mands of the product. For example, the cores like the engines of Caterpillar or John Deere

are those purchased/leased previously by customers. Hence, we assume Rn is correlated with

Dt, t = n− 1, . . . , n− τ :

Rn = p1Dn−1 + p2Dn−2 + . . .+ pτDn−τ + ϵn, (1)

where we call τ the maximum return lag and pt, t = 1, . . . , τ , represents the proportion of demand

that will return t periods later. Here, pt is usually called the reaction coefficient, ϵn is the noise

term and we assume that {ϵn} is a sequence of i.i.d. random variables with mean zero and variance

κ2, which are independent of Dn for any n. We assume
∑τ

t=1 pt < 1, as the average return should

not exceed the original demands and there is often attrition due to quality issues. The model (1)

is also known as the distributed lag model, and there are various methods to estimate the value of

pt, t = 1, . . . , τ through historical demand and return data, see, for example, Toktay et al. (2000)

and Clottey et al. (2012). Such a return model is among the most popular ones in the literature

on forecasting of product returns (Shang et al., 2020).

Let IPn denote the serviceable product inventory position (= on hand inventory + pipeline
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inventory − demand backlog) after remanufacturing the cores received Rn but before manufacturing

new product at period n. Then

IPn+1 = IPn +Qn −Dn +Rn+1. (2)

Let In be the inventory level at the end of period n. Given a manufacturing lead time of L, we

have,

In+L = IPn +Qn −D[n, n+ L] +R[n+ 1, n+ L], (3)

where D[n, n+ L] := Dn +Dn+1 + · · ·+Dn+L and R[n+ 1, n+ L] := Rn+1 + Rn+2 + · · ·+ Rn+L

represent the demand and product returns during the lead time, respectively. Let D̂n := (Dn, Dn−1

, ..., Dn−τ+2), representing the previous τ − 1 periods of demand including that in period n, where

Dn−i is the demand at period n − i, for i = 0, 1, ..., τ − 2. Define g(y) as the total holding and

backlogging costs when the inventory level at the end of a period is y, such that g(y) = hy++ by−.

For n ≥ L + 1, the system cost in period n consists of inventory holding and backlogging costs

incurred in period n, and the manufacturing cost incurred in period n − L, i.e., kQn−L + g(In).

The firm aims to minimize the long-run expected average system cost.

Formally, this problem can be formulated as a discrete-time Markov decision process (MDP).

The state of the MDP is represented by (IPn, D̂n−1), where IPn is the inventory position following

the dynamics described in equation (2), and D̂n−1 is a vector containing τ − 1 realized demands

before period n, i.e., D̂n−1 = (Dn−1, ..., Dn−τ+1). The action in period n is the manufacturing

quantity Qn ≥ 0. For the state dynamics, we note that

IPn+1 = IPn +Qn −Dn +Rn+1 = IPn +

τ−1∑
i=1

pi+1Dn−i − (1− p1)Dn +Qn + ϵn+1,

D̂n = (Dn, Dn−1, ..., Dn−τ+2),

where (Dn−1, ..., Dn−τ+2) is determined by D̂n−1. Hence, one can spell out the transition probabil-

ity function q((IPn+1, D̂n)|(IPn, D̂n−1), Qn) given the distribution of Dn and ϵn+1 (if necessary).

Moreover, the single-period cost function c(IPn, D̂n−1, Qn) is given by,

c(IPn, D̂n−1, Qn) = kQn + E
[
g(In+L)|(IPn, D̂n−1, Qn)

]
. (4)

To facilitate our analysis later, we make the following assumption which states that the one-

period demand and the noise in the return model are bounded random variables (which can be

either discrete or continuous). A distinctive feature of our system is the inclusion of exogenous

historical demands in the state space. The states across different time are correlated, and part of the

state is independent of the manufacturing/ordering policy. Hence, we introduce the boundedness

assumption for technical purposes. Similar assumptions have been made in the related literature.
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For example, Beyer and Sethi (1997) consider a finite collection of possible demand states under

the Markovian demands. Similarly, Huh et al. (2011) explore a finite-state Markov-modulated

environment.

Assumption 1. There exist constants D, D̄, ϵ and ϵ̄, such that D1 ∈ [D, D̄] and ϵ1 ∈ [ϵ, ϵ̄].

By Assumption 1, we have the state space S = R × [D, D̄]τ−1. The objective is to minimize

the long-run average expected costs per unit time. Specifically, for a given initial state (x, d̂) where

d̂ = (d0, d−1, ..., d2−τ ) and a feasible (stationary) policy π, let

Φπ(x, d̂) = lim inf
N→∞

1

N
Eπ
[ N∑

n=1

c(IPn, D̂n−1, Qn)
∣∣∣IP1 = x, D̂0 = d̂

]
= lim inf

N→∞

1

N
Eπ

[
N∑

n=1

(
kQn + hI+n+L + bI−n+L

)∣∣∣IP1 = x, D̂0 = d̂

]
. (5)

The firm aims to find a (stationary) policy π∗ such that it is average-cost optimal, that is,

Φπ∗
(x, d̂) = inf

π
Φπ(x, d̂), for any (x, d̂). (6)

The average-cost MDP (6) described above features an uncountably infinite state space, a non-

compact action space, and an unbounded one-period cost function. A priori, the existence of a

stationary optimal policy is not clear, though there are general sufficient conditions (which can

be nontrivial to verify) for the existence under certain assumptions (see, e.g. Feinberg and Lewis

(2018)). In addition, the dimension of the state space is τ , which can be large in practice. Hence,

even we assume the existence of stationary optimal policies, directly computing such policies based

on the Bellman equation is challenging numerically due to the curse of dimensionality. In what

follows, we address these issues. In particular, we will show the existence of stationary optimal

policies and characterize the optimal policy via a state transformation. In the next section, we first

analyze the associated infinite-horizon discounted problem and present an important result on the

state space dimensionality reduction.

3 State Space Dimensionality Reduction

In this section, we first examine the structure of the optimal policy for the finite-horizon problem,

and we show that by incorporating past demand information, the state space S with dimension τ can

be transformed into a reduced-size state space of dimension max{τ − L, 1}. We then demonstrate

that this result extends to the infinite-horizon discounted problem. Such results, combined with

the vanishing discount factor approach, provide insights about the structure of the optimal policy

for the average-cost MDP we consider.
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For a finite-horizon N , let Vn,α(x, d̂) be the optimal discounted costs from period n to period

N , with discount factor α ∈ [0, 1). Specifically, for (x, d̂) ∈ S,

Vn,α(x, d̂) = inf
π

Eπ

[ N∑
t=n

αt−1 c(IPt, D̂t−1, Qt) |IPn = x, D̂n−1 = d̂

]
, (7)

and we set VN+1,α(x, d̂) = 0. We also define the infinite-horizon optimal discounted cost Vα(x, d̂)

as

Vα(x, d̂) = inf
π

Eπ

[ ∞∑
n=1

αn−1c(IPn, D̂n−1, Qn)
∣∣∣IP1 = x, D̂0 = d̂

]
. (8)

We first show that the single-period cost function can be expressed in an alternative form.

Define

r(d̂) :=

τ−1∑
j=1

βjd1−j +

L∑
j=1

(γj + 1)E[Dt+L−j ] =

τ−1∑
j=1

βjd1−j +

L∑
j=1

(γj + 1)λ, (9)

where βj =
∑τ∧(j+L)

i=j+1 pi and γj =
∑τ∧j

i=1 pi − 1. From the definition of c(x, d̂, q) in (4), equation (3)

and the definition of Rn in (1), we can immediately obtain the following result.

Lemma 1. The single-period cost function can be rewritten as:

c(x, d̂, q) = kq + ℓ(x+ q + r(d̂)), (10)

where

ℓ(z) = E

g
z +

L∑
j=1

γjDt+L−j −Dt+L +
L∑

j=1

ϵt+j −
L∑

j=1

(γj + 1)λ

 . (11)

This simplification reveals that the impact of past demand information d̂ on the single-period

cost function is completely captured by r(d̂), which is linear in d̂. Consequently, the optimality

equation for the finite-horizon problem (7) can be written as, for n = 1, 2, ..., N ,

Vn,α(x, d̂) = min
y≥x

{
k(y − x) + ℓ(y + r(d̂)) + αE

[
Vn+1,α(y −Dn +Rn+1, D̂n)|D̂n−1 = d̂

]}
. (12)

One can interpret r(·) in (9) in the following way. Let rn,n+i be the forecast of product returns

in period n+ i given the available information about the demand history Fn−1 at the beginning of

period n, that is,

rn,n+i = E[Rn+i|Fn−1].
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Let dn denote the actual demand realization in period n. From the return-demand relationship in

(1), we can obtain

rn,n+i =

{
p1E[Dn+i−1] + . . .+ piE[Dn] + pi+1dn−1 + . . .+ pτdn−τ+i, 1 ≤ i < τ ,

p1E[Dn+i−1] + . . .+ pτE[Dn−τ+i], i ≥ τ ,
(13)

One can easily see that

r(D̂n−1) =

L∑
i=1

rn,n+i.

Hence, r(D̂n−1) can be interpreted as a forecasting model to predict total returns during the

manufacturing lead time. Intuitively, if anticipating some returns in the future periods, particularly

during the manufacturing lead time, the firm would adjust its manufacturing quantity to avoid

unnecessary costs related to inventory holding and backlogging.

Next, we transform the state of the MDPs (with state space S) based on r(·) in (9) to incorporate

the information used in forecasting returns. Define

zn = IPn + r(D̂n−1), (14)

which we refer to as the adjusted inventory position. The adjusted inventory position zn consists

of the inventory position IPn and the predicted returns during the manufacturing lead time. We

have the following result.

Proposition 2. The state space S can be simplified as follows:

(1) If L ≥ τ − 1, the new state in period n is zn ∈ R.

(2) If L < τ − 1, the new state in period n is (zn,Dn−1), where Dn−1 = (Dn−1, ..., Dn−τ+L+1).

The new state space X = R× [D, D̄]τ−L−1.

Having transformed the states, we can now establish the equivalence between the original finite-

horizon MDP (7) and a new MDP with transformed states. Specifically, if L < τ − 1, we set

JN+1,α(z,d) = 0, where d = (d0, ..., d2−τ+L) and recursively define for n = N,N − 1, ..., 1,

Jn,α(z,d) = min
w≥z

{
kw + ℓ(w) + αE

[
Jn+1,α

(
w − D̃n,Dn

)
|Dn−1 = d

]}
− kz, (15)

where

D̃n := r(D̂n−1) +Dn −Rn+1 − r(D̂n). (16)
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Note that Jn,α(z,d) depends on N , and will be denoted as J
(N)
n,α (z,d) when needed. Similarly,

if L ≥ τ − 1, we set ĴN+1,α(z) = 0, and recursively define for n = N,N − 1, ..., 1,

Ĵn,α(z) =min
w≥z

{
kw + ℓ(w) + αE

[
Ĵn+1,α

(
w − D̃n

)]}
− kz.

Proposition 3 demonstrates the equivalence of optimal value functions between the original

MDP and the new MDP with transformed states, under the finite-horizon setting.

Proposition 3. For n = 1, 2, ..., N + 1, if L < τ − 1, Vn,α(x, d̂) = Jn,α(x + r(d̂),d); otherwise,

Vn,α(x, d̂) = Ĵn,α(x+ r(d̂)).

The above result can be readily extended to the infinite-horizon discounted setting. Note that

J
(N)
n,α (z,d) in (15) increases in N because the expected single-period cost is non-negative. Hence, we

define Jα(z,d) and Ĵα(z) as the limit of J
(N)
1,α (z,d) and Ĵn,α(z), respectively, as N goes to infinity:

Jα(z,d) = lim
N→∞

J
(N)
1,α (z,d), Ĵα(z) = lim

N→∞
Ĵ
(N)
1,α (z).

Jα(z,d) and Ĵα(z) correspond to the optimal discounted costs of the infinite-horizon problem after

the state transformation, in the cases where L < τ − 1 or L ≥ τ − 1, respectively.

Proposition 4. If L < τ − 1, Vα(x, d̂) = Jα(x+ r(d̂),d); otherwsie, Vα(x, d̂) = Ĵα(x+ r(d̂)).

Propositions 3 and 4 demonstrate that the information about past demands, captured by r(d̂),

can be embedded into the adjusted inventory position through a simple transformation. This is a

key insight that we will use when we analyze the average-cost MDP (6) via the vanishing discount

factor approach in the next section.

4 Optimal Policies

In this section, we analyze the average-cost MDP (6) defined in Section 2. In particular, we

establish the existence of stationary optimal policy and characterize its structure. To facilitate the

presentation, we first introduce the definitions of two important policies, based on the new states

introduced in Section 3.

Definition 1. A FABS (Forecast-Adjusted Base-Stock) policy is defined as the policy that raises

the adjusted inventory position zn to a constant SF in each period n.

That is, the manufacturing quantity in period n under a FABS policy is given by

Qn = max
{
SF − r(D̂n−1)− IPn, 0

}
. (17)
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Definition 2. A FABS-F policy is defined if L < τ − 1 and it is given as follows: there exists

a function Sd
F(·) : Rτ−L−1 → R such that if the adjusted inventory position zn < Sd

F(Dn−1), then

manufacture up to Sd
F(Dn−1); otherwise, not manufacture any.

That is, the manufacturing quantity in period n under a FABS-F policy is given by

Qn = max
{
Sd

F(Dn−1)− r(D̂n−1)− IPn, 0
}
.

In the following, with slight abuse of notation, we refer to the constant SF in Definition 1 as a

base stock level, and the function Sd
F (·) in Definition 2 as a state-dependent base stock level.

Now we analyze the optimal policy that minimizes the average cost Φπ(x, d̂) given in (5). The

main result of this section is presented in the following theorem.

Theorem 5. Suppose Assumption 1 holds.

(i) There exists a stationary policy π∗ that is average-cost optimal and the optimal average cost

is independent of the initial state, i.e., Φπ∗
(x, d̂) = infπ Φ

π(x, d̂) = inf(x,d̂)∈S infπ Φ
π(x, d̂).

(ii) If L ≥ τ − 1, then there exists a constant S∗
F such that the FABS policy with the base-stock

level S∗
F is average-cost optimal.

(iii) If L < τ − 1, then there exists a function Sd∗
F (·) : [D, D̄]τ−L−1 → R such that the FABS-

F policy with the state-dependent base-stock level Sd∗
F (·) is average-cost optimal. Moreover,

Sd∗
F (d) is nonincreasing in di for i = 0,−1, . . . , L− τ + 2.

Theorem 5 (i) shows the existence of a stationary optimal policy for the average-cost MDP

(6). This result is non-trivial, because problem (6) has an uncountable state space, a non-compact

action space, and an unbounded single-period cost function. Theorem 5 (ii) and (iii) characterize

the structure of the optimal policy. Under the original state space S = R× [D, D̄]τ−1 for (6), one

would expect that the optimal stationary policy is a mapping from S to A = R+. If L ≥ τ − 1,

Theorem 5 (ii) helps reduce the problem to finding an optimal base stock level (which is a scalar)

instead of optimal functions on S. Similarly, if L < τ − 1, Theorem 5 (iii) reduces the problem

to finding an optimal state-dependent base stock level/function on [D, D̄]τ−L−1. Such reductions

are essentially based on the state transformation discussed in Section 3 for the finite-horizon and

infinite-horizon discounted problems, and the vanishing discount factor method that connects the

average-cost problem with the infinite-horizon discounted problem. The structural results obtained

here not only provide insights about the optimal policy, but also facilitate computations due to the

dimension reduction. We provide a sketch of the proof of Theorem 5 in the following, and relegate

the detailed proof to Appendix B.
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We first discuss how to prove Theorem 5 (ii) and (iii), because the proof strategy is conceptually

easier to explain (but technically it is highly non-trivial). The key ingredient of the proof is the

following result, which characterizes the structure of the optimal policy for the infinite-horizon

discounted problem (8).

Proposition 6. Suppose Assumption 1 holds. Consider the infinite-horizon discounted problem

(8) with α ∈ [0, 1).

(a) If L ≥ τ − 1, then there exists a constant S∗
F,α such that the FABS policy with the base-stock

level S∗
F,α is optimal.

(b) If L < τ − 1, then there exists a function Sd∗
F,α(·) : [D, D̄]τ−L−1 → R such that the FABS-

F policy with the state-dependent base-stock level Sd∗
F,α(·) is optimal. Moreover, Sd∗

F,α(d) is

nonincreasing in di for i = 0,−1, . . . , L− τ + 2.

We relegate the proof of Proposition 6 into the appendix. With Proposition 6, one can then prove

Theorem 5 (ii) and (iii) by applying the results in Feinberg and Lewis (2018), which hold for MDPs

with non-compact action set and unbounded single-period cost functions. In particular, Theorem

4.3 in Feinberg and Lewis (2018) establishes the convergence of optimal discount-cost actions to

optimal average-cost actions for infinite-horizon problems, as the discount factor approaches 1.

However, to apply Theorem 4.3 in Feinberg and Lewis (2018), it requires verify Assumption (W*)

and Assumption (B) of Feinberg and Lewis (2018) hold for our system. If both assumptions

hold, Theorem 5 (i) can also be readily proved by applying Theorem 4.1 in Feinberg and Lewis

(2018) (or Theorem 4 in Feinberg et al. (2012)). While verifying Assumption (W*) is relatively

straightforward, major difficulties lie in verifying Assumption (B) for our system. In particular, the

key challenge is to show the uniform boundedness of the relative discounted cost functions, i.e., for

any (z,d) ∈ X,

sup
α∈[0,1)

[
Jα(z,d)− inf

(z,d)∈X
Jα(z,d)

]
< ∞. (18)

Different from the inventory system studied in Feinberg and Lewis (2018), the state in our model

involves not only the inventory position but also historical demands which are not controllable,

which causes difficulties in proving (18).

In the following, we outline the key idea in proving (18) when L < τ − 1. The scenario where

L ≥ τ −1 is simpler to analyze (as the transformed state is of dimension one) and can be addressed

in a similar manner.

To prove (18), by Proposition 4, it is equivalent to show for any given (z,d) ∈ X,

sup
α∈[0,1)

uα(z,d) < ∞, (19)
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where

uα(z,d) = Jα(z,d)−mα, and mα = inf
(x,d̂)∈S

Vα(x, d̂) = inf
(z,d)∈X

Jα(z,d).

Denote by zα,d the optimal adjusted inventory position given the past demand vector d, i.e.,

Jα(zα,d,d) = infz∈R Jα(z,d). The key idea of proving (19) is to construct a feasible policy, denoted

by πσ, such that the system with an initial state (z,d) under the policy πσ can be coupled with the

system under the optimal (discounted) policy at some stopping time denoted by N (z,d) (which is

designed to be greater than τ). In particular, under policy πσ, the state (zα,DN (z,d)−1
,DN (z,d)−1)

becomes attainable with an initial state (z,d)) at time N (z,d), and policy πσ then follows the

optimal discounted policy from this period onward.

Using the optimalilty equation satisfied by Jα and the fact that N (z,d) ≥ τ , one can show that

mα ≥ E
[
αN (z,d)−1 inf

z∈R
Jα

(
z,DN (z,d)−1

)]
= E

[
αN (z,d)−1Jα

(
zα,DN (z,d)−1

,DN (z,d)−1

)]
.

In addition, because πσ is a feasible policy, we obtain that Jα(z,d) ≤ Jπσ

α (z,d). This implies

uα(z,d) ≤ Jπσ

α (z,d)− E
[
αN (z,d)−1Jα

(
zα,DN (z,d)−1

,DN (z,d)−1

)]
,

= Eπσ

[N (z,d)−1∑
n=1

αn−1ℓ(zn) + αN (z,d)−1k
(
zα,DN (z,d)−1

− zN (z,d)

)∣∣∣z1 = z,D0 = d

]
,

which amounts to the total discounted cost for the system under πσ before the stopping time

N (z,d). Using Assumption 1, we can then show it is uniformly bounded for all α ∈ [0, 1), by

bounding zα,d and the moments of N (z,d). This concludes the sketch of the proof.

We remark that our approach outlined above is significantly different from the proof of Propo-

sition 6.3 in Feinberg and Lewis (2018), which verifies Assumption (W*) and Assumption (B) and

establishes the optimality of (s, S) policies for inventory control problems with setup costs.

5 Stationary Analysis of FABS Policy and Approximations

Theorem 5 establishes the optimality of the FABS policy when L ≥ τ − 1, highlighting the impor-

tance of determining an appropriate base-stock level SF. If L < τ − 1, the optimal policy is no

longer FABS, and computing the optimal state-dependent base-stock function Sd
F(·) is computa-

tionally challenging, especially when τ ≫ L. Hence, the firm might want to simply employ a FABS

policy as a heuristic to manage the system. This requires identifying a “good” constant base-stock

level SF to approximate the state-dependent base-stock function Sd
F(·) when L < τ − 1. In the

following, we provide an exact procedure to evaluate the system’s long-run average cost under the
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FABS policy with a given base-stock level SF. Moreover, we will develop simple approximations

that allow for fast computation of a “good” base-stock level SF.

5.1 The Overshoot Process

Recall that under a FABS policy, the manufacturing quantity is based on the adjusted inventory

position and given by (17). Different from the classic inventory system without product return,

under a base-stock policy, the inventory position before manufacturing IPn in period n may not

always be less than or equal to the base-stock level SF. This is mainly due to remanufacturing of

the cores. This causes some challenge to derive the steady state inventory position (we will show

the existence later) and the resulting system cost. To facilitate our analysis, we introduce the

overshoot process {On : n ≥ 1}, which is defined by

On = max

[
IPn − (SF −

L∑
i=1

rn,n+i), 0

]
. (20)

Note that On will vanish in a classic inventory system without returns when following a stationary

base-stock policy. Using (2) and the fact that On −Qn = IPn − (SF −
∑L

i=1 rn,n+i), we can derive

the dynamics of the overshoot process under a FABS policy as follows:

On+1 = max

[
IPn +Qn −Dn +Rn+1 − (SF −

L∑
i=1

rn+1,n+1+i), 0

]

= max

[
IPn +Qn − (SF −

L∑
i=1

rn,n+i)−Dn +Rn+1 +

L∑
i=1

(rn+1,n+1+i − rn,n+i), 0

]

= max

[
On −Dn +Rn+1 +

L∑
i=1

(rn+1,n+1+i − rn,n+i), 0

]
. (21)

By (1) and (13), it can be readily verified that

On+1 = max{On + θDn + ϵn+1, 0}, L ≥ τ − 1, (22)

On+1 = max{On +An, 0}, otherwise. (23)

where θ := −1 +
∑τ

i=1 pi < 0, and

An := −

(
1−

L+1∑
i=1

pi

)
Dn + pL+2Dn−1 + . . .+ pτDn−τ+L+1 + ϵn+1. (24)

Hence, the overshoot process {On : n ≥ 1} is a Lindley random walk, also known as a Lindley

recursion, in the literature (Asmussen, 2003). When L ≥ τ − 1, the increments {θDn + ϵn+1}
are i.i.d., with E[θDn + ϵn+1] = θλ and V ar(θDn + ϵn+1) = θ2σ2 + κ2. On the other hand, when
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L ≥ τ−1, the increments {An} are correlated. Indeed, {An : n ≥ 1} is a strictly stationary sequence

with finite-lag dependence, and can be extended to form a stationary processs {An : −∞ < n < ∞}
(Loynes, 1962). Note that E[An] = θλ, and it is also straightforward to compute the asymptotic

variance limt→∞
1
tV ar

(∑t
i=1Ai

)
= θ2σ2 + κ2. Hence, the mean and the asymptotic variance are

identical to those of the i.i.d. sequence {θDn + ϵn+1}. This observation will be used later (see

Lemma 9).

From the Lindley recursion for {On}, we immediately obtain the following result (see, e.g.,

(Asmussen, 2003, Chapter III.6) and Loynes (1962)).

Lemma 7. When
∑τ

i=1 pi < 1, On converges in distribution to an almost surely finite random

variable O∞ as n → ∞, where

O∞
d
=

{
supk≥0

∑k
i=1(θDi + ϵi), if L ≥ τ − 1,

supk≥0

∑k
i=1A−i, otherwise,

(25)

and
d
= denotes equal in distribution.

5.2 Performance Evaluation of the FABS Policy

With the analysis of the overshoot process above, we next discuss the inventory process, which

enables us to evaluate the long-run average cost of any given FABS policy. From (3) and (17), we

obtain that the inventory level at the end of period n+ L is given by

In+L = SF −
L∑
i=1

rn,n+i +On −
n+L∑
i=n

Di +
n+L∑
i=n+1

Ri

= SF +On −Dn+L +

(
L∑
i=1

[Rn+i − E[Rn+i|Fn−1]]−
L−1∑
i=0

Dn+i

)
= SF +On −Dn+L + Yn,L, (26)

where

Yn,L :=

(
L∑
i=1

[Rn+i − E[Rn+i|Fn−1]]−
L−1∑
i=0

Dn+i

)
. (27)

Let Dc
j := Dj − λ. It is clear that for i ≥ τ , we have

Rn+i − E[Rn+i|Fn−1] = Rn+i − λ(1 + θ) = p1D
c
n+i−1 + . . .+ pτD

c
n+i−τ + ϵn+i, (28)

and for 1 ≤ i ≤ τ − 1, we have

Rn+i − E[Rn+i|Fn−1] =
i∑

j=1

pjD
c
n+i−j + ϵn+i. (29)
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Therefore, Yn,L (which depends on demand Dt, t = n, . . . , n + L − 1) is independent of On and

Dn+L for each fixed n, and its mean is −Lλ. The variance of Yn,L is given by

Lκ2 +

τ−1∑
j=1

(

j∑
i=1

pi − 1)2 + (L− τ + 1)(
τ∑

i=1

pi − 1)2

σ2, if L ≥ τ − 1, (30)

and

Lκ2 +

 L∑
j=1

(

j∑
i=1

pi − 1)2

σ2, if L < τ − 1. (31)

Note that the distribution of −Dn+L + Yn,L is independent of n. Hence, the sequence of

random variables {−Dn+L + Yn,L : n ≥ 1} converges in distribution to a random variable −D + Y

where D has the same distribution as demand D1, and it is independent of Y which has the same

distribution as Y1,L. Since On and −Dn+L+Yn,L are independent for each fixed n and On converges

in distribution to O∞ when
∑τ

t=1 pt < 1, it follows that {In+L : n ≥ 0} converges in distribution

to an almost surely finite random variable

I∞ := SF +O∞ −D + Y, (32)

where the three random variables O∞, D and Y are independent. We summarize this result in the

following lemma. Recall that we assume
∑τ

t=1 pt < 1.

Lemma 8. The inventory level {In+L : n ≥ 1} under any given FABS policy with base-stock level

SF converges in distribution to the almost surely finite random variable I∞ in (32).

We can now evaluate the long-run average cost under the FABS policy with a given base stock

level SF . We denote this policy by πSF . By the definitions of On and Qn, we have

On+1 −Qn+1 = On +

L∑
i=1

(rn+1,n+1+i − rn,n+i)−Dn +Rn+1.

Hence, we obtain

EπSF [Qn+1] = EπSF [On+1 −On] + E[Dn −Rn+1] = EπSF [On+1 −On] + |θ|λ.

By Assumption 1, we know that {On : n ≥ 1} is uniformly integrable (see e.g., p.270 of Asmussen

(2003) and Loynes (1962)). Moreover, when θ < 0, On converges in distribution to O∞ as n → ∞,

regardless of the value of O1 which depends on the initial state (IP1, D̂0) = (x, d̂). It follows that

the long-run average manufacturing cost is given by

lim
N→∞

1

N
EπSF

[
N∑

n=1

kQn

∣∣∣IP1 = x, D̂0 = d̂

]
= k|θ|λ. (33)
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Moreover, by (26), {In+L : n ≥ 1} is also uniformly integrable. This implies

lim
N→∞

1

N
EπSF

[
N∑

n=1

(
hI+n+L + bI−n+L

)∣∣∣IP1 = x, D̂0 = d̂

]
= EπSF [hI+∞ + bI−∞] < ∞.

Therefore, the average cost under the FABS policy πSF is simply given by

C(SF) := k|θ|λ+ hEπSF [I+∞] + bEπSF [I−∞], (34)

where I∞ is given by (32), and its distribution depends on SF .

It is ideal if we could find S∗
F that minimizes C(SF). This, however, requires the knowledge

of the distribution of I∞ in (32), which in turn requires the knowledge of the distribution of O∞.

When L ≥ τ − 1, it is known that by (22), the distribution function of O∞ satisfies the so-called

Lindley integral equation, which is is difficult to solve in general, both analytically and numerically

(see, e.g., Blanchet and Glynn (2006)). Moreover, when L < τ − 1, it is even more challenging to

compute the exact distribution of O∞ due to the correlations in the sequence of {An} in (24). As a

result, we will instead employ approximations for the distribution of O∞ so that the (approximate)

optimal base-stock level S∗
F can be easily solved.

5.3 Approximations

To develop approximations for the distribution of O∞, we consider the heavy traffic regime, i.e., θ

approaches zero, or equivalently,
∑τ

i=1 pi approaches one. This means that most of the previous

demanded products will be eventually returned, which would occur in practice when the products

are leased to customers or the firm provides strong incentives (ask the customers to pay some

deposit and will give back the deposit upon return of the product). The heavy-traffic (or diffusion)

approximation is well studied in the applied probability literature. Based on the discussion in

Section 5.1, we immediately obtain the following result, see, e.g., Kingman (1961) and Jacobs

(1980).

Lemma 9. In the heavy traffic limit, O∞ has an exponential distribution with parameter 2|θ|λ/[θ2σ2+

κ2]. Specifically, 2|θ|λ
θ2σ2+κ2 ·O∞ converges in distribution to an exponential random variable with rate

1 as θ := −1 +
∑τ

i=1 pi → 0.

This result holds for both L ≥ τ − 1 and L < τ − 1. Based on this result, we propose the

following two approximations for O∞. The first approximation is based on Kingman (1961).

Approximation 1: We approximate O∞ by a random variable Õ∞ whose distribution is given

as follows:

P(Õ∞ = 0) = 1−
τ∑

i=1

pi = −θ,
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P (Õ∞ > x) = (1 + θ) · e2θλx/[θ2σ2+κ2], for x ≥ 0. (35)

The second approximation is based on Siegmund (1979) for a corrected diffusion approxima-

tion of random walks, and is conceptually similar to the approximation of the work-in-process

distribution in Toktay and Wein (2001) (see Equation (3) there).

Approximation 2: We approximate O∞ by a random variable Õ∞ whose distribution is given

as follows:

P(Õ∞ = 0) = 1− exp(2θλβ/[θ2σ2 + κ2])

P(Õ∞ > x) = e2θλ(x+β)/[θ2σ2+κ2], for x ≥ 0, (36)

where β = 0.583
√
θ2σ2 + κ2. This value of β is given in Siegmund (1979) for the special case when

the step size of the random walk is i.i.d. normal, and we use it in our approximation similarly as

Toktay and Wein (2001).

While some refinements of Siegmund’s corrected diffusion approximation has been studied in

the literature (see e.g. Blanchet and Glynn (2006)), we will focus on the above two approximations

due to their simplicity. With the preceding approximations of the distribution of O∞, we can derive

the distribution (approximately) of I∞ based on (32). Then, under a given base-stock level SF, we

can evaluate the resulting long-run average cost C(SF) in (34). We next discuss how to find the

near-optimal base-stock level S̃F under this approximation.

Note that in order to find the optimal S∗
F, we need to solve the following problem in view of

(34):

min
SF

{
hE[(SF +O∞ + Y −D)+] + bE[(SF +O∞ + Y −D)−]

}
.

This optimization problem is essentially a newsvendor problem. Applying the approximations

for the distribution of O∞, we immediately have the following result. Denote by F−1
X the quantile

function associated with a random variableX, which is defined as F−1
X (y) = inf{x ∈ R : FX(x) ≥ y}

for y ∈ R.

Proposition 10. The optimal base stock level for the FABS Policy S∗
F can be approximated by

S̃F = F−1
D−Y−Õ∞

(
b

b+ h

)
,

where D,Y and Õ∞ are independent and the distribution of Õ∞ is given by either (35) or (36).

In the next section, we will numerically investigate the performance of FABS policy and the

approximations developed in Proposition 10 across a wide range of system parameters.
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6 Numerical Study

In this section, we first compare the performance of the FABS policy with that of the optimal policy

for small-scale problems (Section 6.1) so that exact computations based on dynamic programming is

viable. Then, we investigate the effectiveness of our approximations of the optimal base-stock level

of the FABS policy (Section 6.2). We further compare the performance of the FABS policy with that

of simple base stock policies (defined later) to illustrate the value of return forecast (Section 6.3).

Finally, we briefly discuss the impact of misspecification of the return model (Section 6.4). All the

experiments are programmed using MATLAB while running on a computer with Intel(R) Core(TM)

i5-11500 CPU 2.71 GHz and 16 GB of RAM.

6.1 Performance of the FABS Policy

We compare the performance of the (optimal) FABS policy with that of the optimal policy. We

focus on the case where L < τ − 1, because we have shown in Theorem 5 that the FABS policy

is optimal when L ≥ τ − 1. When L < τ − 1, computing the optimal policy is challenging for

high-dimensional problems (that is, when τ is much greater than L), so we focus on small-scale

problems here. We measure the performance of the FABS policy using the relative optimality gap

defined as
C(S∗

F)−OPT

OPT
× 100%,

where OPT denotes the long-run average cost of the optimal policy, and C(S∗
F) denotes the average

cost of the optimal FABS policy.

We use binomial distribution B(10, 0.6) for demand D. We assume the noise ϵn in the return

model has a simple two-point distribution given by P(ϵn = −2) = P(ϵn = 2) = 0.5. We set the

unit manufacturing cost k = 1.2 and the unit holding cost h = 1. We consider three different

scenarios for the return model: (1) τ = 3 with (p1, p2, p3) = (0.1, 0.1, 0.75); (2) τ = 4 with

(p1, p2, p3, p4) = (0.1, 0.1, 0.1, 0.65); and (3) τ = 5 with (p1, p2, p3, p4, p5) = (0.1, 0.1, 0.1, 0.1, 0.55).

Under each scenario, we choose different values of the unit backlogging cost b and manufacturing

lead time L as shown in Table 1. To compute OPT under a given set of system parameters,

we apply the relative value iteration algorithm (Bertsekas et al. (2011)). In addition, to compute

C(S∗
F), we simulate the system under a FABS policy with 100 independent replications and compute

the average cost for a given SF . We then find the optimal base stock level S∗
F via exhaustive search.

Each replication consists of 105 periods, ensuring the stability and reliability of the results.

Table 1 reports the average costs of the FABS policy and the optimal policy, and the relative

optimality gap. We can observe from Table 1 that the cost of FABS policy is very close to the

optimal cost. In particular, the relative optimality gap is consistently below 2% across all the

instances. We also test some additional small-scale problems under different demand distributions,
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and the relative optimality gap remains consistently low. One observation from this small scale

numerical study is that the FABS would perform worse if τ −L becomes larger or the backlogging

cost b is smaller (the service level is lower), in which case the exact state information is more

valuable.

Table 1: Relative optimality gap of FABS policy

τ L b optimal cost FABS cost optimality gap (%)

5

2 1.5 6.93 7.02 1.30
3 1.5 7.26 7.32 0.83
2 4.0 9.10 9.19 0.99
3 4.0 9.66 9.72 0.62

4
1 1.5 6.51 6.62 1.66
2 1.5 6.90 6.94 0.58
1 4.0 8.38 8.50 1.43
2 4.0 9.02 9.09 0.82

3
1 1.5 6.42 6.50 1.17
1 4.0 8.25 8.34 1.05

We illustrate the optimal policy (computed via relative value iteration) when L < τ−1 in Table

2. Set τ = 4, L = 1, h = 1, b = 1.5, and (p1, p2, p3, p4) = (0.1, 0.1, 0.1, 0.65). Recall from Theorem 5

that the FABS-F policy with the state-dependent base-stock level Sd∗
F (d) (d = (d0, d−1)) is average-

cost optimal. Table 2 shows the value of Sd∗
F (d). We can observe that the optimal state-dependent

base-stock level Sd∗
F (d0, d−1) is not in a simple form such as a linear function of (d0, d−1). Moreover,

Sd∗
F (d0, d−1) decreases as d0 or d−1 increases. Nevertheless, the performance of the FABS policy

with a constant base-stock level is remarkably good for small-scale problems, as evidenced in Table

1.

6.2 Effectiveness of Approximations for FABS Policy

To implement the optimal FABS policy, determining the optimal base-stock level S∗
F often involves

significant search costs. In this section, we investigate the effectiveness of our approximations of

S∗
F developed in Section 5.3 (see Proposition 10).

In view of Assumption 1, we use the truncated normal distribution for demand Dn ∈ [λ−3σ, λ+

3σ], with mean λ = 5, variance σ2, i.e., Dn ∼ TN(5, σ2, 5 − 3σ, 5 + 3σ). In addition, we assume

the noise in the return model ϵn ∼ TN(0, κ2,−3κ, 3κ). We fix the unit holding cost h = 1, the

unit manufacturing cost k = 3, the maximum return lag τ = 5, and choose the values of the other

parameters from Table 3. The selected parameters represent different levels of service requirement,

manufacturing lead time, and return noise variability. They also capture different return rates
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Table 2: Optimal state-dependent base-stock level Sd∗
F (d)

d0

d−1 0 1 2 3 4 5 6 7 8 9 10

0 12.90 12.90 12.88 12.62 12.18 11.88 11.48 11.08 10.78 10.22 9.88
1 12.90 12.90 12.64 12.16 11.98 11.58 11.10 10.84 10.18 9.88 9.36
2 12.90 12.72 12.28 11.98 11.68 11.24 10.88 10.24 9.88 9.38 8.98
3 12.78 12.26 12.08 11.72 11.22 10.88 10.28 9.98 9.46 9.02 8.48
4 12.38 12.02 11.78 11.22 10.88 10.38 9.98 9.38 8.98 8.38 7.98
5 12.08 11.74 11.22 10.88 10.42 10.08 9.48 9.08 8.46 7.98 7.48
6 11.88 11.24 10.98 10.40 9.98 9.58 9.08 8.54 7.98 7.38 6.78
7 11.28 10.88 10.38 10.02 9.58 9.08 8.48 8.08 7.38 6.72 6.18
8 10.98 10.38 9.98 9.58 9.08 8.58 7.98 7.40 6.78 6.22 5.58
9 10.48 10.08 9.48 9.08 8.48 8.04 7.38 6.74 6.18 5.58 4.88
10 9.98 9.52 8.98 8.38 7.98 7.38 6.78 6.24 5.58 4.90 4.28

Table 3: Set of Parameters

b
1.5
5
10

L
1
2
5

κ
0.5
1
2

σ
1
2

(p1, p2, p3, p4, p5)

(0.10, 0.10, 0.10, 0.10, 0.10)
(0.14, 0.14, 0.14, 0.14, 0.14)
(0.19, 0.19, 0.19, 0.19, 0.19)
(0.45, 0.00, 0.00, 0.00, 0.45)
(0.48, 0.00, 0.00, 0.00, 0.48)

as well as return patterns, for example, (p1, p2, p3, p4, p5) = (0.14, 0.14, 0.14, 0.14, 0.14) means for

demand in any period, 14% of such demand will return in each of the subsequent 5 periods and

the total return rate is 70%; (p1, p2, p3, p4, p5) = (0.45, 0.00, 0.00, 0.00, 0.45) means for demand in

any period, 45% of such demand will return in the immediate next period while another 45% will

return 5 periods later and the total return rate is 90%. There are 3× 3× 3× 2× 5 = 270 problem

instances in total.
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To evaluate the effectiveness of approximations of S∗
F developed in Section 5.3, we denote by ϵf

the (relative) cost gap:

ϵf =
C(S̃F )− C(S∗

F)

C(S∗
F)

× 100%,

where S̃F denotes the approximated optimal base-stock level of the FABS policy in Proposition 10.

To compute C(S̃F ), we simulate the system under the FABS policy with S̃F . The computation of

C(S∗
F) is similar, but the optimal base stock level S∗

F is computed via exhaustive search as described

in Section 6.1. In our experiments, we find that searching an optimal base stock level S∗
F takes about

140 seconds on average for each instance, while solving S̃F (using Proposition 10) only requires less

than 0.001 seconds on average.

Figure 1 illustrates the cost gap ϵf for each of the two approximation methods discussed in

Section 5.3. The x-axis represents the cost gap introduced by each approximation method, while

the y-axis shows the percentage of problem instances (out of 270) of each cost gap. From Figure 1,

we can observe that Approximation 1 results in cost gaps that are very close to 0 in approximately

40% of the instances, with all cost gaps smaller than 5.5%. In contrast, Approximation 2 results in

cost gaps that are very close to 0 in approximately 76% of the instances, but the maximum cost gap

can reach up to 8%. The average cost gap ϵf for Approximation 1 is 0.4%, with a maximum of 5.5%

while for Approximation 2, the average ϵf is 0.3%, with a maximum of 7.9%. Overall, these cost

gaps are close to 0, indicating that both approximations are very effective. This can be explained as

when
∑

i pi is close to 1 (heavy traffic), the approximations are known to be effective; when
∑

i pi

is considerably less than 1 (light traffic), overshoot is unlikely to occur and so its approximation

has minimum effect.

Figure 1: Comparison of cost gaps of two approximation methods
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6.3 Value of Return Forecast

In this section, we compare the performance of the FABS policy with that of simple base stock

policies for illustrating the value of return forecast. Under a simple base stock policy with base-stock

level S, the firm manufactures up to S if IPn < S in period n; otherwise, it does not manufacture.

Hence, unlike the FABS policy, the firm does not adjust the inventory position based on the return

forecast when implementing the simple base stock policy.

Intuitively, because the FABS policy utilizes return forecast, it will reduce the uncertainty faced

by the firm and should outperform the simple base stock policy. We define the relative saving of

the FABS policy as
CB(S

∗
B)− C(S∗

F)

C(S∗
F)

× 100%,

where CB(S
∗
B) is the optimal cost under the simple base-stock policy and S∗

B is the corresponding

optimal base-stock level. It is interesting to see when the relative saving from the FABS policy

tends to be large, i.e., the value of incorporating return forecast is high. We assume demand

Dn ∼ TN(5, σ2, 5− 3σ, 5+3σ) and the return noise ϵn ∼ TN(0, κ2,−3κ, 3κ), as in Section 6.2. We

consider the unit manufacturing cost k = 3, the unit holding cost h = 1, and the unit backlogging

cost b = 10.

First, we examine the effect of variability, including both the noise of return and demand. We

fix L = 4, τ = 6, p1 = p2 = ... = p6 = 0.125, and set one of the two parameters, either σ (demand

variance) or κ (return noise variance), to 1, while varying the other within a range of 0.5 to 4.3.

The results are plotted in Figure 2(a). It can be observed that the value of return forecast decreases

as κ increases whereas it increases and then decreases (slightly) as σ becomes larger. Both demand

variability and noise variability contribute to the overall variability of returns. It is intuitive that

the value of return forecast becomes smaller as the return noise variability increases. On the other

hand, when demand variability is not high, the return forecast is more accurate, making the FABS

policy outperforms the simple base-stock more. However, when demand variability becomes large,

the (relative) benefit of return forecasting is smaller, as demand variability starts to considerably

increase the system’s cost.

Next, we examine the impact of return rates on the value of return forecast. We plot the results

in Figure 2(b), where we fix L = 4, τ = 6, κ = σ = 1, and vary
∑6

i=1 pi from 0.5 to 0.9. We consider

three different scenarios for the return rates (pi) to examine their effects on the value of return

forecast. The results show that the relative saving increases with the total return rate. As
∑6

i=1 pi

increases, more of the future return uncertainty is attributed to demand variability. Consequently,

utilizing past demand information for return forecasting becomes increasingly beneficial for the

firm. Moreover, it can be observed that if the return rate is concentrated on p6 (p1 = p2 = · · · =
p5 = 0.05), the value of return forecast is significantly larger than the scenario where the return
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rate is distributed equally across six periods ((p1 = p2 = · · · = p5 = p6). However, when the return

rate is concentrated on p1 (p2 = p3 = · · · = p6 = 0.05), the value of return forecast becomes smaller

than the other scenarios.

Figure 2: Impact of variability and return rate
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(b) Impact of
∑

i pi

Figure 3: Impact of the maximum distributed lag τ and manufacturing lead timeL
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(b) L = 4

We next study the effect of manufacturing lead time L. We fix τ = 6, σ = κ = 1, p1 = p2 =

. . . = p6, and vary L from 2 to 10. The results are presented in Figure 3(a). We can see that as

the lead time L increases, the value of return forecast first increases and then decreases, peaked

roughly at L = τ − 1. When L > τ − 1, with a longer lead time, the total uncertainty faced by the

firm increases, where as the information on returns remains unchanged. Consequently, the value

return forecast decreases. On the other hand, when the lead time L is shorter than τ − 1, a longer

lead time implies more effective utilization of return forecast, which increases its value.

Finally, we study the effect of the maximum return lag τ . We fix L = 4, σ = κ = 1, and

p1 = p2 = ... = pτ , and vary τ from 2 to 10. We plot the value of return forecast as a function of

τ in Figure 3(b). We can observe that as the maximum return lag τ increases, the value of return

forecast first increases and then decreases (slowly). On one hand, as τ increases, it is more important
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to utilize the past demand information to forecast return and decide manufacturing quantity. On

the other, as p distributed thinner across τ periods, the most valuable part of information (within

L+ 1) becomes smaller.

6.4 Return Model Misspecification

In this section we briefly discuss the issue of model misspecification. For illustration, we consider

a simplified setting where the true return model is given by (1) with τ > 1, but the firm may

not correctly specify it. In particular, we assume the firm considers a “false” return model with

R̂n = p̂1Dn−1 + ϵn where p̂1 =
∑τ

i=1 pi so that the average return rate is the same as the one

under the true return model. Under this misspecified return model, a simple base-stock policy

can be shown optimal (following the same analysis as in Section 4). In the following, we compare

the system costs under the correct and misspecified return model. We compute the relative cost

increase, i.e., [system cost under the policy assuming R̂n − optimal system cost]/optimal system

cost ×100%.

Figure 4 present the cost increase under three different patterns of return rates which represent

distinct distributions of return rates over time. We consider the unit manufacturing cost k = 3, the

unit holding cost h = 1, and the unit penalty cost b = 10. We set L = 5, τ = 6, which indicates

that the FABS policy is optimal. We fix σ = κ = 1 and vary
∑

i pi from 0.5 to 0.9. We observe that

the cost resulted from model misspecification increases as
∑

i pi increases and can be as high as

9%. Moreover, a less even distributed return over the previous demands results in a higher model

misspecification cost.

Figure 4: Impact of model misspecification

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

C
o

s
t 

o
f 

m
is

s
p

e
c
if
ic

a
ti
o

n
(%

)

26



7 Conclusion

We study a periodic-review remanufacturing inventory system, where the quantity of returned

products each period is random and dependent on the demands of the previous periods, following

the distributed lag model. A firm operating the system remanufactures all the cores returned each

period while deciding additional manufacturing quantity to fulfill random customer demand. The

firm aims to minimize the expected long-run average manufacturing, inventory holding, and demand

backlogging cost. We establish the existence of optimal stationary policy via the vanishing discount

factor approach. Moreover, we conduct a state-space reduction that facilitates the characterization

of the optimal policy. In particular, when the manufacturing lead time is longer than the maximum

return lag, we show that a FABS policy that incorporates return forecast with constant base-stock

level is optimal; otherwise, a state-dependent base-stock policy is optimal with the base-stock level

decreasing in the state. As the optimal state-dependent policy is hard to compute and implement,

we apply the FABS policy in both scenarios and provide a procedure to evaluate the FABS policy.

We further develop simple approximations for the optimal base-stock level. Our numerical results

demonstrate that the FABS policy performs very close to optimal in general and our approximations

are very effective. We further numerically examine the value of return forecast and the impact of

return model misspecification.
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Appendix: Proofs

A Proofs of Propositions 2, 3, 4 and 6

A.1 Proof of Proposition 2

We can readily infer from (14) and (2) that the dynamics of zn is given by:

zn+1 = zn +Qn − D̃n, (A.1)

where D̃n is given in (16). Using the definition of r(d̂) in (9), we can obtain the explicit form of

D̃n:

D̃n =


(
1−

∑τ
i=1 pi

)
Dn − ϵn+1, if L ≥ τ − 1,(

1−
∑L+1

i=1 pi

)
Dn − ϵn+1 −

∑τ−L−1
j=1 pL+1+jDn−j , if L < τ − 1.

(A.2)

Hence, if L ≥ τ − 1, we obtain that D̃n is independent of Fn−1 (the history of demand) and zn.

It follows that {zn} is a controlled Markov process and the state (IPn, D̂n−1) in the original MDP

can be reduced to the one-dimensional state zn. On the other hand, if L < τ − 1, we observe that

D̃n is correlated with past demands via Dn−1 = (Dn−1, ..., Dn−τ+L+1). It follows that the state

(IPn, D̂n−1) in the orignal MDP can be reduced to a lower-dimensional state (zn,Dn−1).

A.2 Proof of Proposition 3

We prove the first part (when L < τ − 1) of Proposition 3 through induction. The proof for

L ≥ τ − 1 follows a similar approach and is therefore omitted.

For n = N + 1, by the definition of JN+1,α(·) and VN+1,α(·), we have,

VN+1,α(x, d̂) = JN+1,α(x+ r(d̂),d) = 0.

Assume that for n = k + 1, we have

Vk+1,α(x, d̂) = Jk+1,α(x+ r(d̂),d), for any (x, d̂) ∈ S.

It follows that

Vk+1,α(w − r(D̂k−1)−Dk +Rk+1, D̂k) = Jk+1,α(w − r(D̂k−1)−Dk +Rk+1 + r(D̂k),Dk)

= Jk+1,α(w − D̃k,Dk), (A.3)
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where the second equality is due to the definition of D̃k. From the optimality equation in (12),

letting z = x+ r(d̂) and w = y + r(d̂), we have,

Vk,α(x, d̂) = min
w≥z

{
k(w − z) + ℓ(w)

+ αE
[
Vk+1,α

(
w − r(D̂k−1)−Dk +Rk+1, D̂k

)∣∣∣D̂k−1 = d̂
]}

.

By (A.3), we have,

Vk,α(x, d̂) = min
w≥z

{
k(w − z) + ℓ(w) + αE

[
Jk+1,α

(
w − D̃k,Dk

)
|D̂k−1 = d̂

]}
.

From (A.2), we know that if L < τ − 1, Jk,α

(
w− D̃k,Dk

)
is independent of (Dk−τ+L, .., Dk−τ+1).

Hence, we obtain

Vk,α(x, d̂) = min
w≥z

{
k(w − z) + ℓ(w) + αE

[
Jk+1,α

(
w − D̃k,Dk

)∣∣∣Dk−1 = d
]}

.

By the optimality equation in (15), we get Vk,α(x, d̂) = Jk,α(x + r(d̂),d). The proof is therefore

complete.

A.3 Proof of Proposition 4

We prove the first part (when L < τ − 1) of Proposition 4. The second part when L ≥ τ − 1 can

be established with a similar argument.

From Proposition 3, we have,

lim
N→∞

V (N)
n,α (x, d̂) = lim

N→∞
J (N)
n,α (x+ r(d̂),d).

Theorem 3.4 in Feinberg and Lewis (2018) shows that if Assumption (W*) holds, then V
(N)
1,α (x, d̂) ↑

Vα(x, d̂) as N → ∞. For our system, Assumption (W*) indeed holds, and we defer the verification

of this assumption to Appendix B.1. Hence, we have,

Vα(x, d̂) = lim
N→∞

V
(N)
1,α (x, d̂) = lim

N→∞
J
(N)
1,α (x+ r(d̂),d) = Jα(x+ r(d̂),d).

The proof is therefore complete.

A.4 Proof of Proposition 6

We prove part (b) of Proposition 6. Part (a) can be shown by a similar (and slightly simpler)

argument.
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For an N -horizon discounted problem, define for n = 1, 2, ..., N ,

Gn,α(w,d) = kw + ℓ(w) + αE[Jn+1,α(w − D̃n,Dn)|Dn−1 = d].

Thus, by (15) we obtain Jn,α(z,d) = minw≥z Gn,α(w,d)− kz. In addition, by a similar argument

as in the proof of Proposition 4, we obtain that Jα(z,d) defined before is the optimal cost of the

infinite-horizon discounted problem after the state transformation. Note that one can readily verify

Jα(z,d) < ∞, for given (z,d) ∈ X and α ∈ [0, 1). This is relatively straightforward because one can

bound Jα(z,d) by the discounted costs of using a policy that orders nothing, which can be shown

to be finite. Hence, we have the following optimality equation:

Jα(z,d) = min
w≥z

{kw + ℓ(w) + E[Jα(w − D̃+,D+)|D0 = d]} − kz, (A.4)

whereD
d
= D1, ϵ

d
= ϵ1,D+ = (D, d0, ..., d−τ+L+3), and D̃+ =

(
1−
∑L+1

i=1 pi

)
D−ϵ−

∑τ−1−L
j=1 pL+1+jd1−j

following from the definition of D̃n in (16). Letting

Gα(w,d) = kw + ℓ(w) + αE[Jα(w − D̃+,D+)|D0 = d],

we obtain Jα(z,d) = minw≥z Gα(w,d) − kz. We have the following result, the proof of which is

deferred to the end of this section.

Lemma A.1. For any demand vector d ∈ [D, D̄]τ−L−1, Gn,α(w,d) and Jn,α(w,d) are convex in

w, for n = 1, 2, ..., N . As a result, Gα(w,d) and Jα(w,d) are convex in w for fixed d.

Let

Sd∗
F,α(d) = argminw∈RGα(w,d),

where by convention, if there are multiple minimizers of Gα(w,d), S
d∗
F,α(d) is the smallest one. By

Lemma A.1, Gα(w,d) and Jα(w,d) are convex in w. Then we have

Jα(z,d) = min
w≥z

Gα(w,d)− kz = Gα(max{Sd∗
F,α(d), z},d)− kz. (A.5)

Thus, given (z,d) ∈ X, the optimal action at this state is Q∗
α(z,d) = (Sd∗

F,α(d)−z)+. It follows that

the FABS-F policy with state-dependent base-stock level Sd∗
F,α(d) is optimal for the infinite-horizon

discounted MDP with state space X.

It remains to show the FABS-F policy is also optimal for the infinite-horizon discounted MDP

(8) with state space S. By (8), we have the following optimality equations, for (x, d̂) ∈ S,

Vα(x, d̂) = min
y≥x

{
k(y − x) + ℓ(y + r(d̂)) + αE[Vα(y −D +R+, D̂+)|D̂0 = d̂]

}
, (A.6)
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where D̂+ = (D, d0, ..., d−τ+3), and R+ = p1D+ p2d0 + ...+ pτd−τ+2 + ϵ. Using Proposition 4 and

(A.7), we obtain

Vα(x, d̂) = Jα(x+ r(d̂),d) = min
w≥x+r(d̂)

{
kw + ℓ(w) + E[Jα(w − D̃+,D+)|D0 = d]

}
− k(x+ r(d̂))

= kw∗ + ℓ(w∗) + E[Jα(w∗ − D̃+,D+)|D0 = d]− k(x+ r(d̂)),

where w∗ = max{Sd∗
F,α(d), x + r(d̂)} by (A.5). From the definition of D̃n in (16), we get D̃+ =

r(D̂0) +D −R+ − r(D̂+). We can then infer from Proposition 4 that

Jα(w
∗ − D̃+,D+) = Vα(w

∗ − r(D̂+)− D̃+,D+) = Vα(w
∗ − r(D̂0)−D +R+,D+).

It follows that

Vα(x, d̂) = kw∗ + ℓ(w∗) + E[Vα(w
∗ − r(d̂)−D +R+, D̂+)|D̂0 = d̂]− k(x+ r(d̂)).

This implies y∗ = w∗ − r(d̂) achieves the minimum in (A.6), and hence the optimal manufacturing

quantity at state (x, d̂) is given by Q(x, d̂) = (Sd∗
F,α(d) − x − r(d̂))+. Therefore, the FABS-F

policy with state-dependent base-stock level Sd∗
F,α(d) is also optimal for the original infinite-horizon

discounted problem (8).

To prove the second claim that Sd∗
F,α(d) is nonincreasing in di, we need the following result. The

proof is deferred to the end of this section.

Lemma A.2. JN
n,α(w,d) is supermodular in (w, di), for any i = 0,−1, . . . , L−τ+2, n = 1, 2, ..., N .

As a result, Jα(w,d) = limN→∞ JN
n,α(w,d) is supermodular in (w, di), for any i = 0,−1, . . . , L −

τ + 2.

Now let G̃m,α(w,d
′) = Gm,α(w,−d′), where d′ = −d. By Theorem 6.2 in Topkis (1978) and

Lemma A.2, since G̃m,α(w,d
′) is submodular in (w, d′i) for i ∈ 0,−1, . . . , 2− τ , which implies that

Sd∗
F,α(d) is nonincreasing in di. The proof is complete.

Proof of Lemma A.1. We prove the result by induction. First, JN+1,α(w,d) is clearly convex

in w by definition. Suppose Jn+1,α(w,d) is convex in w for n = N,N − 1 . . . , k. Then Gk,α(w,d)

is convex in w because ℓ(w) is convex in w. Let Sn(d) = argminw∈RGn,α(w,d). By minimizing

Gk,α(w,d) over {w : w ≥ z}, we have Jk,α(w,d) = Gk,α(max{w, Sn(d)},d), which is convex in w.

Hence, we have proved the first part of the lemma.

By the definition of Jα(z,d), we have J
(N)
1,α ↑ Jα(z,d) as N → ∞. By Monotone Convergence

Theorem, we obtain G
(N)
1,α (w,d) ↑ Gα(w,d) as N → ∞. It then follows from the first part of the

lemma that Gα(w,d) and Jα(w,d) are also convex in w. □

Proof of Lemma A.2. We prove the result by induction. JN+1,α(z,d) is trivially supermodular

in (z, di) for all i. Suppose Jm+1,α(z,d) is supermodular in (z, di) for all i. Let J̃m,α(z,d) =
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Jm,α(z, d0, d−1, ...− di, di−1, dL−τ+2). Note that

J̃m,α(z,d) = min
w≥z

{
kw + ℓ(w) + E

[
Jm+1,α

((
w −

(
1−

L+1∑
i=1

pi

)
Dm + ϵm+1

+

τ−L−1,j ̸=1−i∑
j=1

pL+1+jd1−j − pL+2−idi, (Dm, d0, d−1, ...− di, . . . , d3−τ+L)
)]− kz,

where the bracketed terms are submodular in (w, di) from the inductive assumption and the convex-

ity of Jm,α(w,d) in w. Hence, By Theorem 4.3 of Topkis (1978), i.e., the submodularity preserves

under minimization over a sublattice, J̃m,α(z,d) is submodular in (z, di). This holds true for any

pair of (z, di) and so Jm,α(z,d) is supermodular in (z, di) for all i. This completes the proof.

B Proof of Theorem 5

In this section, we prove Theorem 5. Our proof relies on the results established in Feinberg and

Lewis (2018), but it is substantially different from the proof in Feinberg and Lewis (2018) due to

the high-dimensional state space in our problem with correlated returns over time. The proof is

lengthy, so we divide it into several steps for clarity. In Appendix B.1, we verify Assumption (W*) in

Feinberg and Lewis (2018). In Appendix B.2, we verify that Assumption (B) in Feinberg and Lewis

(2018) holds for our system, highlighting significant challenges encountered during this verification

process. In Appendix B.3, we prove Theorem 5 based on the analysis in Appendices B.1 and B.2.

Auxiliary lemmas are proved in Appendix B.4. Throughout this section, we focus on analyzing the

case when L < τ − 1. The scenario where L ≥ τ − 1 is simpler to analyze (as the transformed state

of the MDP is of dimension one) and can be addressed in a similar manner.

B.1 Verification of Assumption (W*) in Feinberg and Lewis (2018)

Assumption (W*) of Feinberg and Lewis (2018) holds, if (i) the single-period cost function c is

bounded below and inf-compact (which implies K-inf-compact by Proposition 3.2 in Feinberg and

Lewis (2018)); (ii) the transition probability is weakly continuous. We verify these two conditions

below.

(1) Firstly, we show that c is inf-compact on state space S. Consider the level sets of the

function c, Dc(λ) = {(x, d̂, a) ∈ S × R+ : c(x, d̂, a) ≤ λ}. The single-period cost function c(x, d̂, a)

is inf-compact if all the level sets Dc(λ) are compact, for λ ∈ R. Given a λ, it is not hard to see

that there exists a constant Mλ > 0 such that ℓ(x+ a+ r(d̂)) > λ if |x+ a+ r(d̂)| > Mλ because

ℓ(y) → ∞ as |y| → ∞. Moreover, the ordering cost is less than λ implying 0 ≤ a < λ/k. For
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λ ∈ R, if (x, d̂, a) ∈ Dc(λ), then it satisfies that |x+ a+ r(d̂)| ≤ Mλ, |a| ≤ λ/k and d̂ ∈ [D, D̄]τ−1,

which implies that Dc(λ) is bounded. Since c(x, d̂, a) is continuous with respect to (x, d̂, a), Dc(λ)

is closed. Hence, the one-period cost function c(x, d̂, a) is inf-compact.

(2) The transition probability is weakly continuous if for any sequence {(xi, d̂i
, ai), i ≥ 0}

converges to (x, d̂, q), where (x, d̂, a), (xi, d̂
i
, ai) ∈ S × R+, then

E[f(IPn+1, D̂n)|IPn = xi, D̂n−1 = d̂
i
, Qn = ai] → E[f(IPn+1, D̂n)|IPn = x, D̂n−1 = d̂, Qn = a],

as i → ∞, for any bounded and continuous function f . Recall the state dynamics:

IPn+1 = IPn +Qn −Dn +Rn+1 = IPn +

τ−1∑
i=1

pi+1Dn−i +Qn − (1− p1)Dn + ϵn+1,

D̂n = (Dn, Dn−1, ..., Dn−τ+2).

Then by the Dominated Convergence Theorem, we have,

lim
i→∞

E[f(IPn+1, D̂n)|IPn = xi, D̂n−1 = d̂
i
, Qn = ai]

= lim
i→∞

E[f(xi + ai +
τ−1∑
i=1

pi+1d
i
1−i − (1− p1)Dn + ϵn+1, (Dn, d

i
0, ..., d

i
2−τ ))]

= E[f(x+ a+

τ−1∑
i=1

pi+1d1−i − (1− p1)Dn + ϵn+1, (Dn, d0, ..., d2−τ ))]

= E[f(IPn+1, D̂n)|IPn = x, D̂n−1 = d̂, Qn = a].

Hence, the transition probability is weakly continuous. The proof is therefore complete. □

B.2 Verification of Assumption (B) in Feinberg and Lewis (2018)

Recall Assumption (B) in Feinberg and Lewis (2018):

(i) There exists a policy π and an initial state (x, d̂) ∈ S such that the corresponding long-run

average cost is finite;

(ii) For any (x, d̂) ∈ S, supα∈[0,1)
[
Vα(x, d̂)− inf(x,d̂)∈S Vα(x, d̂)

]
< ∞.

In Section 5, we have already argued that the long-run average cost of the FABS policy is finite.

Hence Assumption (B)(i) holds.

In this section, we focus on validating Assumption (B) (ii), which poses a significantly greater

challenge. When L < τ − 1, it is equivalent to show for any given (z,d) ∈ X,

sup
α∈[0,1)

uα(z,d) < ∞, (B.1)
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where

uα(z,d) = Jα(z,d)−mα, and mα = inf
(z,d)∈X

Jα(z,d). (B.2)

To establish (B.1), we first bound mα from below and then construct a feasible policy to upper

bound the optimal value function Jα(z,d) for the infinite-horizon discounted problem. To facilitate

the presentation, we introduce some notation. Define

Xα = {(z,d) ∈ X : Jα(z,d) = mα},

Xα,d = {z ∈ R : Jα(z,d) = inf
z∈R

Jα(z,d)}, d ∈ [D, D̄]τ−L−1.
(B.3)

Now we show how to obtain a lower bound of mα. Let πα be the optimal stationary policy for

the discounted infinite-horizon problem Jα(z,d), whose existence is implied by Theorem 3.4 (vii)

of Feinberg and Lewis (2018). Consider any state (z1,d0) ∈ X and any time t ≥ τ . Let z1t be the

adjusted inventory position at period t of the inventory system following policy πα, with the initial

state (z1,d0). Denote by (z1t ,Dt−1) the state of the above inventory system at period t. Then we

have

Jα(z
1,d0) ≥ E

[
αt−1Jα(z

1
t ,Dt−1)|z1 = z1,D0 = d0

]
≥ E

[
αt−1 inf

z∈R
Jα(z,Dt−1)

]
,

where the first inequality follows from the fact that the single-period cost is non-negative, and the

second inequality holds because Dt−1 is independent of the initial state when t > τ . Then, for a

stopping time T (with respect to the natural filtration generated by historical demand and forecast

noise) satisfying T ≥ τ , we have

Jα(z
1,d0) ≥ E

[
αT −1 inf

z∈R
Jα(z,DT −1)

]
. (B.4)

With the above inequality, for any state (zα,dα) ∈ Xα and (z,d) ∈ X, letting (zα,dα) replace

(z1,d0) in (B.4), we can obtain

mα = Jα(z
α,dα) ≥ E

[
αT −1 · inf

z∈R
Jα(z,DT −1)

]
. (B.5)

Next, we construct a feasible policy, its resulting cost is then the upper bound of the optimal

value function Jα(z,d). Let π
σ be the policy defined by the following rules depending on the initial

state (z,d): (i) the policy does not order before period τ ; (ii) after period τ , the policy does not

order until the adjusted inventory position zn is lower than zα,Dn−1 , for any zα,Dn−1 ∈ Xα,Dn−1 ,

for n = τ, τ + 1, ... If zn < zα,Dn−1 , the policy orders up to level zα,Dn−1 and then switch to the

optimal policy πα. Given an initial state (z,d), denote by

N (z,d) := inf
{
n ≥ τ : zn < zα,Dn−1

}
= inf

{
n ≥ τ : z − D̃[1, n− 1] < zα,Dn−1

}
, (B.6)
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which is the first time that the policy πσ places an order. Here, the second equation holds due to

(A.1). Define Jπσ

α (z,d) as the value function of the policy πσ for the infinite-horizon discounted

problem. Since πσ is a feasible policy, we have

Jα(z,d) ≤ Jπσ

α (z,d). (B.7)

We next analyze Jπσ

α (z,d). It is not difficult to show that

Jπσ

α (z,d) = Eπσ

[N (z,d)−1∑
n=1

αn−1ℓ(zn) + αN (z,d)−1k
(
zα,DN (z,d)−1

− zN (z,d)

)
(B.8)

+αN (z,d)−1Jα

(
zα,DN (z,d)−1

,DN (z,d)−1

)∣∣∣ z1 = z,D0 = d

]
,

where the first term on the right-hand-side of the above question represents the holding/backlogging

costs (the policy πσ does not order before period N (z,d)), the second term represents the ordering

cost at period N (z,d), and the third term represents the discounted future cost after period N (z,d)

when following/switching to the discounted optimal policy πα.

We can now proceed to bound uα(z,d) for α ∈ [0, 1). Letting N (z,d) replace T in (B.5), we

have,

mα = Jα(z
α,dα) ≥ E

[
αN (z,d)−1 · inf

z∈R
Jα(z,DN (z,d)−1)

]
. (B.9)

Using (B.7), (B.8) and (B.9), we obtain

uα(z,d) = Jα(z,d)−mα

≤ Jπσ

α (z,d)− E
[
αN (z,d)−1 · inf

z∈R
Jα
(
z,DN (z,d)−1

)]

≤ Eπσ

[N (z,d)−1∑
n=1

αn−1ℓ(zn) + αN (z,d)−1k
(
zα,DN (z,d)−1

− zN (z,d)

) ∣∣∣z1 = z,D0 = d

]

+ E
[
αN (z,d)−1Jα

(
zα,DN (z,d)−1

,DN (z,d)−1

)]
− E

[
αN (z,d)−1 · inf

z∈R
Jα
(
z,DN (z,d)−1

) ]
.

By the definition of Xα,d in (B.3), we have,

Jα (zα,d,d) = inf
z∈R

Jα (z,d) , for d ∈ [D, D̄]τ−L−1.

Then, we have,

E
[
αN (z,d)−1Jα

(
zα,DN (z,d)−1

,DN (z,d)−1

)]
− E

[
αN (z,d)−1 · inf

z∈R
Jα
(
z,DN (z,d)−1

) ]
= 0.

Therefore, we can get the following upper bound of uα(z,d):

uα(z,d) ≤ Eπσ

[N (z,d)−1∑
n=1

αn−1ℓ(zn) + αN (z,d)−1k
(
zα,DN (z,d)−1

− zN (z,d)

)∣∣∣z1 = z,D0 = d

]
. (B.10)
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It remains to show the right hand side of (B.10) is uniformly bounded with respect to α ∈ [0, 1).

We need the following lemma, the proof of which is deferred to Appendix B.4.

Lemma B.1. There exists a compact set [yL, yU ] ⊆ R such that Xα,d ⊆ [yL, yU ] for all α ∈ [0, 1)

and d ∈ [D, D̄]τ−L−1.

Lemma B.1 implies that zα,d ∈ [yL, yU ] for all α ∈ [0, 1) and d ∈ [D, D̄]τ−L−1. With this result,

we can first bound the second term in the right hand side of (B.10). We consider two cases: (i)

N (z,d) ≥ τ + 1 and (ii) N (z,d) = τ . For Case (i), we note that by the dynamics of zn in (A.1)

and the definition of N (z,d) in (B.6), we have

zN (z,d) = zN (z,d)−1 − D̃N (z,d)−1 ≥ zα,DN (z,d)−2
− D̃N (z,d)−1.

By Assumption 1, we infer that there exists a constant M such that |D̃n| ≤ M for any n. It then

follows that zα,DN (z,d)−1
− zN (z,d) ≤ zα,DN (z,d)−1

− zα,DN (z,d)−2
+ D̃N (z,d)−1 ≤ yU − yL + M . For

Case (ii), we need a separate analysis because it might occur that zτ−1 < zα,Dτ−2 . In this case,

from the dynamic of zn in (A.1) with z1 = z, we have

zτ = z1 − D̃[1, τ − 1] ≥ z − (τ − 1)M.

It then follows from Lemma B.1 that

zα,DN (z,d)−1
− zN (z,d) = zα,Dτ−1 − zτ ≤ yU + (τ − 1)M − z.

Because α ≤ 1, We then conclude that the term

Eπσ

[
αN (z,d)−1k

(
zα,DN (z,d)−1

− zN (z,d)

)∣∣∣z1 = z,D0 = d

]
is uniformly bounded for all α ∈ [0, 1).

We next bound the first term in the right hand side of (B.10). Because the stopping time

N (z,d) depends on α and is difficult to analyze directly, we introduce another stopping time that

is independent of α and that bounds N (z,d). Specifically, define for a given (z,d) ∈ X,

Ñ (z,d) = inf
{
n ≥ τ : z − D̃[1, n− 1] ≤ yL

}
. (B.11)

By Lemma B.1, we immediately have N (z,d) ≤ Ñ (z,d). Since the holding/backlogging cost is

non-negative and α ≤ 1, we have,

Eπσ

N (z,d)−1∑
n=1

αn−1ℓ(zn)
∣∣∣z1 = z,D0 = d

 ≤ Eπ◦

Ñ (z,d)−1∑
n=1

ℓ(zn)
∣∣∣z1 = z,D0 = d

 , (B.12)

where π◦ denotes the policy that does nothing. Note that the right-hand-side of the above inequality

does not depend on α, and it is indeed finite as shown in the following result. The proof of

Lemma B.2 is also deferred to Appendix B.4.
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Lemma B.2. Suppose Assumption 1 holds. For a given (z,d) ∈ X, we have,

Eπ◦
[ Ñ (z,d)−1∑

n=1

ℓ(zn)
∣∣∣z1 = z,D0 = d

]
< ∞, (B.13)

where π◦ denotes the policy that does nothing.

Therefore, we can conclude from (B.10) that given (z,d) ∈ X, uα(z,d) is uniformly bounded

for all α ∈ [0, 1), that is, (B.1) holds. The proof is hence complete. □

B.3 Proof of Theorem 5

In this section we prove Theorem 5. Because we have shown Assumption (W*) and Assumption

(B) in Feinberg and Lewis (2018) hold for our system, Part (i) of Theorem 5 immediately follows

from Theorem 4.1 in Feinberg and Lewis (2018) (or Theorem 4 in Feinberg et al. (2012))

In the following, we provide a proof of Theorem 5 (iii). Theorem 5 (ii) can be proved by a

similar (and slightly simpler) argument.

Let {αn}n=1,2,... be a sequence of discount factors with αn ∈ [0, 1) and αn ↑ 1. According to

Proposition 6, we consider a function Sd∗
F,αn

(d) that is nonincreasing in d. The optimal action at the

state (x, d̂) for the infinite-horizon discounted problem (8) with discount factor αn is Q∗
αn

(x, d̂) =

(Sd∗
F,αn

(d) − x − r(d̂))+. By Theorem 4.5 of Feinberg and Lewis (2018), if Assumption (W*) and

Assumption (B) hold, the sequence of {Q∗
αn

(x, d̂) : n ≥ 1} is bounded. It follows that the sequence

{Sd∗
F,αn

(d) : n ≥ 1} is bounded above.

Next we show that the sequence {Sd∗
F,αn

(d) : n ≥ 1} is also bounded below. We prove it

by contradiction. Suppose there exists a subsequence {αnm}m=1,2,... of discount factors such that

limm→∞ Sd∗
F,αnm

(d) = −∞. Then we have Q∗
αnm

(x, d̂) → 0 as m → ∞. By Theorem 4.3(ii) in

Feinberg and Lewis (2018), this suggests that the optimal ordering policy for the long-run average

problem is ordering nothing. We denote this policy by π◦. By (4), (10) and the definition of ℓ(·),
we have,

ℓ(IPn + r(D̂n−1)) = E[g(IPn −D[n, n+ L] +R[n+ 1, n+ L]|D̂n−1].

Hence, we can infer from the dynamics of IPn in (2) and obtain for n ≥ τ,

Eπ◦
[
ℓ(IPn + r(D̂n−1))

∣∣∣IP1 = x, D̂0 = d̂
]

= E
[
g(x−D[1, n+ L] +R[2, n+ L])

∣∣∣D̂0 = d̂
]

≥ g
(
E
[
x−D[1, τ ] +R[2, τ ]|D̂0 = d̂

]
− (n+ L− τ)E[D1 −R1]

)
,
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where we have used Jensen’s inequality. Then, from Equation (5), we have

Φπ◦
(x, d̂) = lim inf

N→∞

1

N
Eπ◦
[ N∑

t=1

c(IPt, D̂t−1, Qt)
∣∣∣IP1 = x, D̂0 = d̂

]
= lim inf

N→∞

1

N
Eπ◦

[
N∑
t=1

ℓ(IPt + r(D̂t−1))
∣∣∣IP1 = x, D̂0 = d̂

]

≥ lim inf
N→∞

1

N
Eπ◦

[
N∑

n=1

g
(
E
[
x−D[1, τ ] +R[2, τ ]|D̂0 = d̂

]
− (n+ L− τ)E[D1 −R1]

)]
,

where the first equality follows from the definition in (5), and the second equality holds because

policy π◦ orders nothing. Note that g(y) = hy+ + by− and E[D1 − R1] ̸= 0. It follows that

Φ(x, d̂)π
◦
= ∞, which contradicts with Assumption (B)(i) verified in Section B.2. Therefore, the

sequence {Sd∗
F,αn

(d) : n ≥ 1} is bounded below.

Because {Sd∗
F,αn

(d) : n ≥ 1} is bounded, we let Sd∗
F (d) be a limit point of this sequence. Recall

that Q∗
αn

(x, d̂) = (Sd∗
F,αn

(d) − x − r(d̂))+. We infer that the sequence {Q∗
αn

(x, d̂) : n ≥ 1} has a

limit point given by (Sd∗
F (d) − x − r(d̂))+. By Theorem 4.3(ii) in Feinberg and Lewis (2018), we

deduce that the FABS-F policy with base-stock level Sd∗
F (d) is optimal for the long-run average

problem. Furthermore, the function Sd∗
F (d) is nonincreasing in d. The proof is hence complete.

B.4 Proofs of Auxililary Lemmas (Lemmas B.1 and B.2)

In this section, we prove Lemma B.1 and Lemma B.2, which have been used in the verification of

Assumption (B)(ii) in Feinberg and Lewis (2018) in Appendix B.2.

Proof of Lemma B.1. We use an approach inspired by the proofs of Theorem 6 and Lemma

6 in Feinberg et al. (2012), but our analysis is more sophisticated due to the presence of the

(uncontrolled) demand vector encoded in the state of the MDP when L < τ −1. We first introduce

some notations. We define for d ∈ [D, D̄]τ−L−1 and α ∈ [0, 1),

m̃α(d) = infz∈R Jα(z,d), uα,d(z) = Jα(z,d)− m̃α(d). (B.14)

By the definition of set Xα,d, we have

Xα,d = {z ∈ R : Jα(z,d)− inf
z∈R

Jα(z,d) ≤ 0} = {z ∈ R : uα,d(z) ≤ 0}.

The main idea of proving Lemma B.1 is to find a function f : R → R that is inf-compact (i.e., all

level sets are compact), independent of α and d, such that uα,d(z) ≥ f(z) for all α and d. It then

implies that

Xα,d = {z ∈ R : uα,d(z) ≤ 0} ⊆ {z ∈ R : f(z) ≤ 0}, for all α ∈ [0, 1),d ∈ [D, D̄]τ−L−1, (B.15)
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where the set {z ∈ R : f(z) ≤ 0} is compact because f is inf-compact.

We next construct such a function f(·). By definition, we have

uα,d(z) + m̃α(d)− αmα = Jα(z,d)− αmα

= inf
w≥z

{
k(w − z) + ℓ(w) + αE[Jα(w − D̃+,D+)|D0 = d]

}
− αmα

= inf
w≥z

{
k(w − z) + ℓ(w) + αE[Jα(w − D̃+,D+)−mα|D0 = d]

}
≥ inf

w≥z

{
k(w − z) + ℓ(w)

}
:= J0(z),

where the second equation follows from the optimality equation (A.7), the inequality is due to the

the definition of mα in (B.2), and J0(z) is simply the optimal value function for the infinite-horizon

problem with discount factor α = 0 and it is independent of d. It follows that

uα,d(z) ≥ J0(z)− sup
d∈[D,D̄]τ−L−1, α∈[0,1)

(m̃α(d)− αmα) := f(z). (B.16)

It remains to show f in (B.16) is well defined (i.e. finite) and it is inf-compact. It is easy to see

that J0 is well defined on R and it is an inf-compact function by using a similar argument as the

one used in Appendix B.1. The more challenging part is to show f is finite and well defined, i.e.,

λ∗ := sup
d∈[D,D̄]τ−L−1,α∈[0,1)

(m̃α(d)− α ·mα) < ∞. (B.17)

To prove (B.17), we first note that

λ∗ = sup
α∈[0,1), d∈[D,D̄]τ−L−1

(m̃α(d)−mα + (1− α) ·mα)

≤ sup
α∈[0,1), d∈[D,D̄]τ−L−1

(m̃α(d)−mα) + sup
α∈[0,1)

(1− α) ·mα

(B.18)

In the proof of Lemma 6 of Feinberg et al. (2012), it has been that supα∈[0,1)(1 − α) ·mα < +∞.

Hence, it suffices to prove

sup
α∈[0,1), d∈[D,D̄]τ−L−1

(m̃α(d)−mα) < ∞. (B.19)

To prove (B.19), we note from the definition of m̃α(d) in (B.14) that m̃α(d) ≤ Jα(z,d) for any z.

In addition, there exists (zα,dα) ∈ Xα such that mα = Jα(z
α,dα) by its definition. It then follows

that for any z,

m̃α(d)−mα ≤ Jα(z,d)− Jα(z
α,dα). (B.20)
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The key idea to bound the right-hand-side of the above equation is to construct a feasible policy,

denoted by πδ, and select a proper initial adjusted inventory position z∗ so that the inventory system

with an initial state (z∗,d) under the policy πδ will be coupled at some future time with another

system with an initial state (zα,dα) under the infinite-horizon discounted optimal policy denoted

by πα. Let z
δ
n (zαn ) and Qδ

n (Qα
n) denote the adjusted inventory position and manufacturing quantity

in the system under policy πδ (policy πα respectively), and the dependency of these quantities on

the initial state has been made implicit for notational simplicity. For simplicity, the latter system

will be referred to the optimal system in the following, and we denote by zαn the adjusted inventory

position of this optimal system at period n with zα1 = zα. Now we specify the feasible policy πδ

as follows: Do not manufacture before period τ − L; At period τ − L, we manufacture up to level

zατ−L + Qα
τ−L and then switch to policy πα onward. We will choose the initial adjusted inventory

position z∗ to be very low (to be specified later), so that the inventory system under policy πδ will

have an adjusted inventory position lower than zατ−L. Then this system will be coupled with the

optimal system at period τ − L, and behaves the same as the optimal system afterwards. This

follows by the design of the policy πδ and the fact thatDn−1 = (Dn−1, ..., Dn−τ+L+1) is independent

of the initial demand state D0 after period τ − L. Based on this discussion, we infer that

Jα(z∗,d)− Jα(z
α,dα) = E

[ τ−L∑
n=1

αn−1kQδ
n + αn−1ℓ(zδn +Qδ

n)
]
− E

[ τ−L∑
n=1

αn−1kQα
n + αn−1ℓ(zαn +Qα

n)
]
,

≤ E
[ τ−L∑
n=1

αn−1k(Qδ
n −Qα

n)
]
+ E

[ τ−L−1∑
n=1

αn−1ℓ(zδn +Qδ
n)
]
, (B.21)

It remains to specify z∗ and bound the right-hand-side of (B.21). By Assumption 1, there exists

a constant M ≥ 0 such that |D̃n| ≤ M . Set z∗ = zα − 2(τ − L− 1)M. Then one can readily verify

zδτ−L ≤ zατ−L. To see this, note that the policy πδ does not manufacture before period τ −L, which

implies that zδτ−L = z∗ −
∑τ−L−1

n=1 D̃n ≤ z∗ + (τ − L− 1)M by (A.1). Moreover, it is clear that for

the optimal system we have zατ−L ≥ zα −
∑τ−L−1

n=1 D̃n ≥ zα − (τ − L − 1)M . Hence by the choice

of z∗ we obtain zδτ−L ≤ zατ−L. Next we bound the right-hand-side of (B.21). By the design of the

policy πδ, we obtain

E
[ τ−L∑
n=1

αn−1(Qδ
n −Qα

n)
]
= ατ−L−1 · E

[
Qδ

τ−L −Qα
τ−L

]
− E

[ τ−L−1∑
n=1

αn−1Qα
n

]
= ατ−L−1 · E

[
zατ−L − zδτ−L

]
− E

[ τ−L−1∑
n=1

αn−1Qα
n

]
.

It is clear that zδτ−L = z∗−
∑τ−L−1

n=1 D̃n ≥ zα−3(τ−L−1)M . In addition, zατ−L = zα+
∑τ−L−1

n=1 Qα
n−∑τ−L−1

n=1 D̃n ≤ zα +
∑τ−L−1

n=1 Qα
n + (τ − L− 1)M . This suggests that for any α ∈ [0, 1),

E
[ τ−L∑
n=1

αn−1(Qδ
n −Qα

n)
]
≤ ατ−L−1 · E

[ τ−L−1∑
n=1

Qα
n + 4(τ − L− 1)M

]
− E

[ τ−L−1∑
n=1

αn−1Qα
n

]
13



≤ 4(τ − L− 1)M.

Finally, we bound the term E
[∑τ−L−1

n=1 αn−1ℓ(zδn + Qδ
n)
]
in (B.21), which is clearly bounded by

E
[∑τ−L−1

n=1 ℓ(zδn + Qδ
n)
]
. From the definition of ℓ(·) and the fact that the policy πδ does not

manufacture before period τ − L, we have

E
[ τ−L−1∑

n=1

αn−1ℓ(zδn +Qδ
n)
]
= E

[ τ−L−1∑
n=1

αn−1g
(
zδn −

L∑
i=1

rn,n+i −
L∑
i=0

Dn+i +
L∑
i=1

Rn+i

)]
.

By the definition of function g(·), we know that g(y) ≤ (h ∨ b)|y| for any y. In addition, by

Assumption 1, there exists a constant U that is independent of n such that for n = 1, 2, ...,

∣∣∣− L∑
i=1

rn,n+i −
L∑
i=0

Dn+i +

L∑
i=1

Rn+i

∣∣∣ ≤ U.

Moreover, for n < τ − L, we have |zδn| = |z∗ −
∑n−1

i=1 D̃i| ≤ |zα|+ 3(τ − L− 1)M by the definition

of z∗. Because there is a constant C such that |zα| ≤ C uniformly in α ∈ [0, 1) (see Theorem 4.2 in

Feinberg and Lewis (2018)), we can then infer that

E
[ τ−L−1∑

n=1

αn−1ℓ(zδn +Qδ
n)
]
≤ (τ − L− 1) · (U + C + 3(τ − L− 1)M) .

Hence we can obtain from (B.21) that

m̃α(d)−mα ≤ Jα(z∗,d)− Jα(z
α,dα) ≤ (τ − L− 1) · (4kM + U + C + 3(τ − L− 1)M) . (B.22)

The constant on the right-hand-side of the above equation is independent of α and d, and it is

finite. Hence, we obtain (B.19). The proof is therefore complete. □

Proof of Lemma B.2.

By the definition of ℓ(·) in (11) and the definition of rn,n+i in (13), we obtain

Eπ◦
[ Ñ (z,d)−1∑

n=1

ℓ(zn)
∣∣∣z1 = z,D0 = d

]

= Eπ◦
[ Ñ (z,d)−1∑

n=1

g
(
zn −

L∑
i=1

rn,n+i −
L∑
i=0

Dn+i +
L∑
i=1

Rn+i

)∣∣∣z1 = z,D0 = d

]
.

Because the policy π◦ does not order, we get

zn = z1 − D̃[1, n− 1] = z − D̃[1, n− 1], for n < Ñ (z,d).
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By Assumption 1, there exist positive constants M and U such that |D̃n| ≤ M and |−
∑L

i=1 rn,n+i−∑L
i=0Dn+i +

∑L
i=1Rn+i| ≤ U for all n. It follows that for n < Ñ (z,d),∣∣∣∣∣zn −

L∑
i=1

rn,n+i −
L∑
i=0

Dn+i +
L∑
i=1

Rn+i

∣∣∣∣∣ ≤ |z|+ Ñ (z,d)M +U.

Thus, we have

Eπ◦
[ Ñ (z,d)−1∑

n=1

ℓ(zn)
∣∣∣z1 = z,D0 = d

]
≤ E

[
(h ∨ b)(Ñ (z,d)− 1)

(
|z|+ Ñ (z,d)M +U

)]
. (B.23)

Therefore, if we can prove that the first two moments of Ñ (z,d) are finite, then inequality

(B.13) holds. It is difficult to analyze the moments of the stopping time Ñ (z,d) in (B.11) directly,

because the the random variables {D̃n}n=1,2,... defined in (A.2) are not independent when L < τ−1.

Hence, we introduce a new random variable that bounds Ñ (z,d). Define

T̃ (z,d) = inf

n ≥ τ :
n−τ+L∑
j=1

(
τ∑

i=1

pi − 1

)
Dj +

n−τ+L∑
j=1

ϵj ≤ yL − y(z,d)

 ,

where

y(z,d) = z +
τ−L−2∑
j=0

τ∑
i=j+L+2

pid−j +
τ−L−2∑
j=0

(
L+1+j∑
i=1

pi − 1

)
D + (τ − L− 1)ϵ̄.

Note that the sequence of random variables {(
∑τ

i=1 pi − 1)Dj+ϵj+1 : j ≥ 1} is i.i.d. Hence, T̃ (z,d)

is essentially the first passage time of a random walk. By the definition of D̃n in (16), we have for

(z1,D0) = (z,d) ∈ X and n ≥ τ ,

z − D̃[1, n− 1] = z +
n−τ+L∑
j=1

(
τ∑

i=1

pi − 1

)
Dj +

n−1∑
j=1

ϵj+1

+

τ−L−2∑
j=0

τ∑
i=j+L+2

pid−j +

τ−L−2∑
j=0

(
L+1+j∑
i=1

pi − 1

)
Dn−1−j

≤
n−τ+L∑
j=1

(
τ∑

i=1

pi − 1

)
Dj +

n−τ+L∑
j=1

ϵj+1 + y(z,d).

This directly implies Ñ (z,d) ≤ T̃ (z,d). Because we assume
∑τ

t=1 pt < 1, we can then infer from

Theorem 2.1 of Gut (1974) that for a given (z,d) ∈ X,

E[Ñ (z,d)] ≤ E[T̃ (z,d)] < ∞, E[Ñ 2(z,d)] ≤ E[T̃ 2(z,d)] < ∞.

Hence, by (B.23), we have

Eπ◦
[ Ñ (z,d)−1∑

n=1

ℓ(zn)
∣∣∣z1 = z,D0 = d

]
< ∞.

This concludes the proof of Lemma B.2. □
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