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Abstract

Langevin dynamics (LD) has been proven to be a powerful technique for optimizing
a non-convex objective as an efficient algorithm to find local minima while eventu-
ally visiting a global minimum on longer time-scales. LD is based on the first-order
Langevin diffusion which is reversible in time. We study two variants that are based on
non-reversible Langevin diffusions: the underdamped Langevin dynamics (ULD) and
the Langevin dynamics with a non-symmetric drift (NLD).

Adopting the techniques of Tzen, Liang and Raginsky [TLR18] for LD to non-
reversible diffusions, we show that for a given local minimum that is within an arbitrary
distance from the initialization, with high probability, either the ULD trajectory ends
up somewhere outside a small neighborhood of this local minimum within a recurrence
time which depends on the smallest eigenvalue of the Hessian at the local minimum or
they enter this neighborhood by the recurrence time and stay there for a potentially
exponentially long escape time. The ULD algorithms improve upon the recurrence time
obtained for LD in [TLR18] with respect to the dependency on the smallest eigenvalue
of the Hessian at the local minimum. Similar result and improvement are obtained for
the NLD algorithm.

We also show that non-reversible variants can exit the basin of attraction of a local
minimum faster in discrete time when the objective has two local minima separated by
a saddle point and quantify the amount of improvement. Our analysis suggests that
non-reversible Langevin algorithms are more efficient to locate a local minimum as well
as exploring the state space. Our analysis is based on the quadratic approximation
of the objective around a local minimum. As a by-product of our analysis, we obtain
optimal mixing rates for quadratic objectives in the 2-Wasserstein distance for two
non-reversible Langevin algorithms we consider.
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1 Introduction

We consider the stochastic optimization problem:

min
x∈Rd

F (x) := EZ∼P [f(x, Z)] =

∫
Z
f(x, z)P (dz), (1.1)

where f : Rd × Z → R is a real-valued, smooth, possibly non-convex objective function
with two inputs, the decision vector x ∈ Rd and a random vector Z with probability
distribution P defined on a set Z. A standard approach for solving stochastic optimization
problems is to approximate the expectation as an average over independent observations
z = (z1, z2, . . . , zn) ∈ Zn and to solve the problem:

min
x∈Rd

F (x) :=
1

n

n∑
i=1

f(x, zi). (1.2)

Such problems with finite-sum structure arise frequently in many applications including
data analysis and machine learning. For example, in the context of stochastic learning
problems, if z = (a, b) is an input-output pair of data sampled from an unknown underlying
joint distribution, the function f corresponds to the loss function f(x, z) of using the
decision variable x and input a to predict b. This formulation encompasses a number of
regression and classification problems where f can be both convex and non-convex with
respect to its first argument. For example, for linear and logistic regressions, f is convex
whereas f is typically non-convex for non-linear regression problems and for optimization
problems arising in training of neural networks where the decision variable x corresponds
to the choice of the parameters of the neural network we want to fit to the dataset z (see
e.g. [GBCB16]). In this work, our primary focus will be non-convex objectives.

First-order methods such as gradient descent and stochastic gradient descent and their
variants with momentum have been popular for solving large-scale optimization problems
due to their empirical performance, their scalability and cheaper iteration and storage cost
compared to second-order methods in high dimensions [Ber15, Bub14]. These first-order
methods admit some theoretical guarantees to locate a local minimizer, however their
convergence depends strongly on the initialization (a different initial point can result in
convergence to a different stationary point) and they do not have guarantees to visit a
global minimum. The (gradient descent) Langevin dynamics (LD) is a variant of gradient
descent where a properly scaled Gaussian noise is added to the gradients:

Xk+1 = Xk − η∇F (Xk) +
√

2ηβ−1ξk,

where η > 0 is the stepsize, ξk is a d-dimensional anistropic Gaussian noise with distribu-
tion N (0, I) where for every k, the noise ξk is independent of the (filtration) past up to time
k and β is called the inverse temperature parameter. With proper choice of the parame-
ters and under mild assumptions, LD algorithm converges to a stationary distribution that
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concentrates around a global minimum (see e.g. [RRT17, BM99, GM91]) from an arbi-
trary initial point. Therefore, LD algorithm has a milder dependency on the initialization,
visiting a global minimum eventually.1

The analysis of the convergence behavior of LD is often based on viewing LD as a
discretization of the associated stochastic differential equation (SDE), known as the over-
damped Langevin diffusion or the first-order Langevin diffusion,

dX(t) = −∇F (X(t))dt+
√

2β−1dBt, (1.3)

where Bt is a d-dimensional standard Brownian motion (see e.g. [GM91, BM99]). Under
some mild assumptions on F : Rd → R, this SDE admits a unique stationary distribution:

π(dx) =
1

Γ
e−βF (x)dx, (1.4)

where Γ > 0 is a normalizing constant. Without the noise term, overdamped Langevin
SDE reduces to the gradient descent dynamics

x′(t) = −∇F (x(t)), (1.5)

which is an ordinary differential equation (ODE) that arises naturally in the study of LD
(see e.g. [GM91], [FGQ97, Sec. 4]). This ODE is the continuum limit of the gradient
descent algorithm as the stepsize goes to zero (see e.g. [SRBd17]).

Langevin dynamics has a long history, and has also been studied under simulated an-
nealing algorithms in the optimization, physics and statistics literature and its asymptotic
convergence guarantees are well known (see e.g. [Gid85, Haj85, GM91, KGV83, BT93,
BLNR15, BM99]). However, finite-time performance guarantees for LD have not been
studied until more recently. In particular, Raginsky et al. [RRT17] showed that Langevin
dynamics with stochastic gradients converges to an ε-neighborhood of a global minimizer
of (1.2) in poly(β, d, 1

λ∗
, 1
ε ) iterations where λ∗ is a spectral gap parameter related to the

overdamped Langevin SDE. Zhang et al. [ZLC17] showed that LD with stochastic gradi-
ents is able to escape shallow local minima, hitting an ε-neighborhood of a local minimizer
in time polynomial in the variables β, d and ε. More recently, Tzen et al. [TLR18] showed
that for a given local optimum x∗, with high probability and arbitrary initialization, either
LD iterates arrive at a point outside an ε-neighborhood of this local minimum within a
recurrence time Trec = O

(
1
m log(1

ε )
)

where m is smallest eigenvalue of the Hessian ∇2F (x∗)
at the local minimum or they enter this ε-neighborhood by the recurrence time and stay
there until a potentially exponentially long escape time Tesc. The escape time Tesc mea-
sures how quickly the LD algorithm can get away from a given neighborhood around a

1In the worst case, the number of iterations required to converge to a global minimum can be exponential
in the dimension for an objective with multiple minima, in particular finding a global minimum of a non-
convex objective is hard in general. However, when the objective has further structure such as a growth
condition, the dependency can also be polynomial in dimension.
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Figure 1: Double-well example. Here, ∆F = F (σ) − F (a1). There are exactly two local
minima a1 and a2 which are separated with a saddle point σ.

local minimum, therefore it can be viewed as a measure of the effectiveness of LD for the
search of a global minimizer, whereas the recurrence time Trec can be viewed as the order of
the time-scale for which search for local minima in the basin of attraction of that minimum
happens [TLR18]. Typically, we have Trec � Tesc, both time-scales are associated to the
discrete-time LD dynamics, however they are often analyzed and estimated by consider-
ing the recurrence time and the exit time of the continuous-time overdamped Langevin
diffusion [RRT17, GM91]. The simplest non-convex function studied frequently in the lit-
erature that sheds light into the exit time behavior of overdamped Langevin dynamics is
the double-well example demonstrated in Figure 1, where the objective F has two local
minima a1, a2 separated by a saddle point σ in between. For the overdamped Langevin
diffusion, it is known that the expected time of the process starting from a1 and hitting a
small neighborhood of a2 is given by

E
[
θβa1→a2

]
= [1 + oβ(1)] · 2π

µ∗(σ)
· eβ[F (σ)−F (a1)] ·

√
| det Hess F (σ)|
det Hess F (a1)

. (1.6)

Here, oβ(1) → 0 as β → ∞, det Hess F (x) stands for the determinant of the Hessian of
F at x, and −µ∗(σ) is the unique negative eigenvalue of the Hessian of F at the saddle
point σ. This formula is known as the Eyring-Kramers formula for reversible diffusions.
Its rigorous proof was first obtained by [BGK04] by a potential analysis approach, and
then by [HKN04] through Witten Laplacian analysis. We refer to [Ber13] for a survey on
mathematical approaches to the Eyring-Kramers formula.

We note that in many practical applications, for instance in the training of neural
networks, the eigenvalues of the Hessian at local extrema concentrate around zero and
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the magnitude of the eigenvalues m and µ∗(σ) can often be very small [SBL16, CCS+17].

In this case, the recurrence time Trec and the expected hitting time E
[
θβa1→a2

]
, being

quantities that scale inversely with m and µ∗(σ) respectively, can be quite large. This
results in slow convergence of the overdamped process to its equilibrium [BGK05]. It is
also known that the overdamped Langevin diffusion is a reversible2 Markov process, and
reversible processes can be much slower than their non-reversible variants that admit the
same equilibrium distribution in terms of their convergence rate to the equilibrium (see
e.g. [S+09, LNP13, DHN00, HHMS93, HHMS05, EGZ17, GO07]).

There are two popular non-reversible variants of overdamped Langevin that can improve
its performance in practice for a variety of applications [LNP13, Sec. 4]. The first variant
is based on the underdamped Langevin diffusion, also known as the second-order Langevin
diffusion,

dV (t) = −γV (t)dt−∇F (X(t))dt+
√

2γβ−1dBt, (1.7)

dX(t) = V (t)dt, (1.8)

where X(t), V (t) ∈ Rd for each t, and γ is known as the friction coefficient, and Bt is a
standard d-dimensional Brownian motion. This diffusion goes back to Kramers [Kra40]
and was derived in the physics literature to model particles moving in a potential subject
to random noise. It is known that under mild assumption on F , the Markov process (X,V )
is ergodic and have a unique stationary distribution

π(dx, dv) =
1

ΓU
exp

(
−β
(

1

2
‖v‖2 + F (x)

))
dxdv, (1.9)

where ΓU > 0 is a normalizing constant. Hence, the marginal distribution in X of the
Gibbs distribution π(dx, dv) is exactly the same as the invariant distribution (1.4) of the
overdamped Langevin dynamics (1.3). We refer the reader to [Pav14] for more on un-
derdamped Langevin diffusions. The discretized dynamics are called the underdamped
Langevin dynamics (ULD):3

Vk+1 = Vk − η[γVk +∇F (Xk)] +
√

2γβ−1ηξk, (1.10)

Xk+1 = Xk + ηVk, (1.11)

where (ξk)k≥0 is a sequence of i.i.d standard Gaussian random vectors in Rd. Recent work
[GGZ18] showed that ULD admits better non-asymptotic performance guarantees com-
pared to known guarantees for LD in the context of non-convex optimization when the

2We note that overdamped Langevin SDE is reversible in the sense that if X0 is distributed according
to the stationary measure π, then (Xt)0≤t≤T and (XT−t)0≤t≤T have the same law. Mathematically, this
is equivalent to the infinitesimal generator of Xt process being (self-adjoint) symmetric in L2(π) [LNP13,
RW00]. Roughly speaking, reversibility of a Markov process says that statistical properties of the process
are preserved if the process is run backwards in time.

3This algorithm is also known as the inertial Langevin dynamics or the Hamiltonian Langevin Monte
Carlo algorithm.
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objective satisfies a dissipativity condition. Recent work also showed that ULD or alterna-
tive discretizations of the underdamped diffusion can sample from the Gibbs distribution
more efficiently than LD when F is globally strongly convex [CCBJ17, DRD18, MS17] or
strongly convex outside a compact set [CCA+18].

The second variant of overdamped Langevin involves adding a drift term to make the
dynamics non-reversible:

dX(t) = −AJ(∇F (X(t)))dt+
√

2β−1dBt, AJ = I + J, (1.12)

where J 6= 0 is a d×d anti-symmetric matrix, i.e. JT = −J and I is the d×d identity ma-
trix, and Bt is a standard d-dimensional Brownian motion. It can be shown that such a drift
preserves the stationary distribution (1.4) (Gibbs distribution) of the overdamped Langevin
dynamics [HHMS05, LNP13, Pav14, GM16]. Note that the non-reversible Langevin diffu-
sion reduces to the overdamped Langevin diffusion (1.3) when J = 0. When F is quadratic,
the X(t) process in (1.12) is Gaussian. Using the rate of convergence of the covariance of
X(t) as the criterion, [HHMS93] showed that J = 0 is the worst choice, and improvement
is possible if and only if the eigenvalues of the matrix associated with the linear drift term
are not identical. [LNP13] proved the existence of the optimal J such that the rate of
convergence to equilibrium is maximized, and provided an easily implementable algorithm
for constructing them. [WHC14] proposed two approaches to obtain the optimal rate of
Gaussian diffusion and they also made the comparison with [LNP13]. [GM16] studied op-
timal linear drift for the speed of convergence in the hypoelliptic case. For more general
non-quadratic F , [HHMS05] showed by comparing the spectral gaps that by adding J 6= 0,
the convergence to the Gibbs distribution is at least as fast as the overdamped Langevin
diffusion (J = 0), and is strictly faster except for some rare situations. [DLP16] showed
that the asymptotic variance can also be reduced by using the non-reversible Langevin
diffusion.

Finally, the discretization of the non-reversible Langevin diffusion (1.12) leads to

Xk+1 = Xk − ηAJ(∇F (Xk)) +
√

2ηβ−1ξk, (1.13)

which we refer to as the non-reversible Langevin dynamics (NLD).

2 Contributions

In this paper, we study two non-reversible variants of the gradient Langevin dynamics,
the underdamped Langevin dynamics (ULD) and the non-reversible Langevin dynamics
(NLD).

First, we consider the special case of quadratic objectives and derive an explicit char-
acterization of the rate of convergence to the stationary distribution in the 2-Wasserstein
metric. Our exponential rate is optimal and unimprovable in the sense that it is achieved
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for some quadratic functions and initialization. Our results show that both non-reversible
diffusions mix faster than the reversible Langevin diffusion. Our mixing rate results im-
prove upon the existing results by Cheng et al. [CCBJ17] and Dalalyan and Riou-Durand
[DRD18] developed earlier for the more general case when F is a strongly convex function
with Lipschitz gradients.

Second, we investigate the metastability behavior of non-reversible Langevin algorithms
for non-convex objectives. We extend the results of [TLR18] obtained for Langevin dy-
namics to non-reversible Langevin dynamics and show that for a given local minimum that
is within an arbitrary distance r from the initialization, with high probability, either ULD
trajectory ends up somewhere outside an ε-neighborhood of this local minimum within a re-

currence time T Urec = O
(
| log(m)|√

m
log(r/ε)

)
or they enter this neighborhood by the recurrence

time and stay there for a potentially exponentially long escape time. The analogous result
shown in [TLR18] for reversible LD requires a recurrence time of Trec = O

(
1
m log(r/ε)

)
.

This shows that underdamped dynamics requires a smaller recurrence time by a square
root factor in m (ignoring a log(m) factor). Since the recurrence time can be viewed as
a measure of the efficiency of the search of a local minimum [TLR18], our results sug-
gest that underdamped Langevin dynamics operate on a faster time-scale to locate a local
minimum. This is also consistent with our results for the quadratic objectives. We also
show analogous results for NLD proving that its recurrence time improves upon that of LD
under some assumptions.

Third, we consider the mean exit time from the basin of attraction of a local minimum
for non-reversible algorithms. We focus on the double-well example (illustrated in Figure
1) which has been the recent focus of the literature [BR16, LMS17] as it is the simplest non-
convex function that gives intuition about the more general case and for which mean exit
time has been studied in continuous time.4 We show that these results can be translated into
discrete time if the stepsize parameter is small enough and the inverse temperature is large
enough. Our analysis shows that non-reversible dynamics can exit the basin of attraction
of a local minimum faster under some conditions and characterizes the improvement for
both ULD and NLD compared to LD when the parameters of these algorithms are chosen
appropriately. These results support the numerical evidence that non-reversible algorithms
can explore the state space more efficiently (see e.g. [CDC15, CFG14, GM16]) and bridges
a gap between the theory and practice of Langevin algorithms.

Notations

Throughout the paper, for any two real numbers x, y, we use the notation x ∧ y to denote
min{x, y} and x∨y to denote max{x, y}. For any n×n matrix A, we use λi(A), 1 ≤ i ≤ n,
to denote the n eigenvalues of A. We also assume that H is the Hessian matrix ∇2F

4To our knowledge, a rigorous mathematical theory that characterizes the mean escape time for non-
reversible Langevin algorithms beyond the double well example for general non-convex functions is non-
existent at the moment.
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evaluated at the local minimum x∗, and is positive definite. The norm ‖ · ‖ denotes the
2-norm of a vector and the (spectral norm) 2-norm of a matrix.

In our analysis, we will use the following 2-Wasserstein distance. For any two Borel
probability measures ν1 and ν2 with finite second moments, the 2-Wasserstein distance is
defined as

W2(ν1, ν2) := inf
Y1∼ν1,Y2∼ν2

(
E‖Y1 − Y2‖2

)1/2
,

where the infimum is taken over all the random couples (Y1, Y2) taking values in Rd × Rd
with marginals ν1 and ν2. We refer the reader to [Vil09] for more on Wasserstein distances.

3 Special case: Quadratic objective

We first consider the case when F is a strongly convex quadratic function

F (x) =
1

2
xTHx− bT1 x+ c1, (3.1)

where H is a d×d symmetric positive definite matrix with eigenvalues {λi}di=1 in increasing
order, i.e. λ1 ≤ λ2 ≤ · · · ≤ λd, and b1 is a d-dimensional vector and c1 is a scalar. Let

m := λ1 ≤M := λd

be the lower and upper bounds on the eigenvalues, where m is the strong convexity constant
and M is the Lipschitz constant of the gradient

∇F (x) = Hx− b1 .

In this case, the Langevin diffusion corresponds to a particular Gaussian process known
as the Ornstein-Uhlenbeck process. If the objective gradient is linearized around a point,
such dynamics would naturally arise. Understanding the behavior of Langevin diffusion for
this simpler special case have proven to be useful for analyzing the more general case when
F can be non-convex [RRT17], [Pav14, Sec. 6.3], [HN04] as well as shedding light into the
convergence behavior of Langevin algorithms, see e.g. [DNP17, BG02]. Our analysis for
characterizing the recurrence time of ULD and NLD will also build on our results in this
section developed for quadratic objectives.

It is known that the overdamped Langevin diffusion mixes at the exponential rate
e−mt with respect to the 2-Wasserstein metric [BGG12]. We next show that underdamped
Langevin and non-reversible Langevin diffusions mix with a faster exponential rate.

3.1 Underdamped Langevin diffusion

By strong convexity, the quadratic function F (x) given in (3.1) has a unique minimum at
x∗H := H−1b1. We write

X(t) = Y (t) + x∗H .
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Thus, we have the decomposition

∇F (X(t)) = HY (t).

Then, we can write the underdamped diffusion in matrix form as

d

[
V (t)
Y (t)

]
= −Hγ

[
V (t)
Y (t)

]
dt+

√
2γβ−1I(2)dB

(2)
t ,

where B
(2)
t is a 2d-dimensional standard Brownian motion and

Hγ :=

[
γI H
−I 0

]
, I(2) :=

[
I 0
0 0

]
. (3.2)

This process is an Ornstein-Uhlenbeck process with a solution[
V (t)
Y (t)

]
= e−tHγ

[
V (0)
Y (0)

]
+
√

2γβ−1

∫ t

0
e(s−t)HγI(2)dB(2)

s , (3.3)

where [V (0), Y (0)] ∈ R2d is the initial point (see e.g. [Øks98]) and Hγ and I(2) are defined
in (3.2). Then it follows that the vector [V (t), Y (t)]T follows a 2d-dimensional Gaussian
distribution for all t with mean µt and covariance Σt given by

µt := e−tHγ [V (0), Y (0)]T , (3.4)

Σt := 2γβ−1

∫ t

0
e−sHγI(2)e−sH

T
γ ds. (3.5)

It follows from (1.9) that the stationary distribution of [Y (t), V (t)] is

π(dy, dv) ∝ e−
1
2
βyTHy−β

2
‖v‖2dydv,

which is a Gaussian distribution with mean and covariance given by

µ∞ = [0, 0]T , Σ∞ = β−1

[
H−1 0

0 I

]
,

and the marginal stationary distribution of the Y (t) process is given by

π(dy) ∝ e−
1
2
βyTHydy.

Natural questions to ask are the following:

Q1. Let νt(dy) be the probability law of the underdamped process Y (t) at time t. How fast
does the underdamped process converge to its equilibrium π(dy) in the W2 metric?
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Q2. How does the convergence depend on the constants m and M?

These questions are naturally related to how fast µt and Σt converges to its equilibrium
values µ∞ and Σ∞. Dalalyan and Riou-Durand [DRD18] showed recently that

W2

(
νt(dy), π(dy)

)
≤ C0(β)e

−m√
M+m

t
(3.6)

for some explicit constant C0 that depends on β. In [DRD18], the bound in (3.6) holds
for β = 1, and the result in (3.6) can be extended to general β > 0 by applying Lemma 1
in [DRD18]. For general β > 0, we should replace t by

√
β−1t and m and M by βm and

βM to apply (3.6), and the exponent in (3.6) remains invariant. This improves upon the
mixing rate e−(m/2M)t obtained in [CCBJ17] for strongly convex F for γ = 2 and β = M
in the underdamped SDE (see Theorem 5 5 in [CCBJ17]). It is known that overdamped
Langevin diffusion mixes at rate e−mt in the 2-Wasserstein metric [DRD18], the rate in
(3.6) improves upon this rate when M +m ≥ 1. Next, in Theorem 3, we show a stronger
result that shows that the underdamped diffusion mixes at rate e−

√
mt when F is a strongly

convex quadratic.
Let πt(dv, dy) denote the probability law of the underdamped process (V (t), Y (t)) at

time t. The 2-Wasserstein distance between the two Gaussian distributions πt(dv, dy) ∼
N (µt,Σt) and π(dy, dv) ∼ N (µ∞,Σ∞) admits an explicit formula (see e.g. [Gel90])

W2
2 (πt(dv, dy), π(dv, dy)) = ‖µt − µ∞‖22 + Tr

(
Σt + Σ∞ − 2

(
Σ

1/2
t Σ∞Σ

1/2
t

)1/2
)
. (3.7)

Inserting formulas (3.4)–(3.5) into (3.7) leads to an explicit expression for the Wasserstein
distance. In particular we see from (3.4) that ‖µt − µ∞‖ is controlled by ‖e−tHγ‖ 6, where
‖ · ‖ denotes the spectral norm (2-norm) of a matrix. In the next lemma, we provide an
estimate on ‖e−tHγ‖, in particular achieving the fastest mixing rate e−

√
mt requires tuning

the parameter γ.

Lemma 1. (i) If γ ∈ (0, 2
√
m), then∥∥e−tHγ∥∥ ≤ Cε̂e−√m(1−ε̂)t ,

where

Cε̂ :=
1 +M√

m(1− (1− ε̂)2)
, ε̂ := 1− γ

2
√
m
∈ (0, 1). (3.8)

(ii) If γ = 2
√
m, then,∥∥e−tHγ∥∥ ≤√CH + 2 + (m+ 1)2t2 · e−

√
mt

5In our notation, our F is the β−1F in [CCBJ17], but the rate e−(m/2M)t is preserved.
6E.g. ‖µt − µ∞‖ ≤ ‖e−tHγ‖ · ‖[V (0), Y (0)]‖ and ‖Σt − Σ∞‖ ≤ 2γβ−1

∫∞
t
‖e−sHγ‖2ds.

10



where CH is a constant that depends only on the eigenvalues of H and is defined as

CH := max
i:λi>m

(1 + λi)
2

λi −m
. (3.9)

Remark 2. In Lemma 1, when γ = 2
√
m, the matrix Hγ has double eigenvalues that are

not simple (the eigenvalues have a Jordan block of size 2). As a consequence, in this case,
there is a factor

√
CH + 2 + (m+ 1)2t2 in front of the exponential e−

√
mt that grows with

t and it is not possible to replace this factor with a universal constant that does not depend
on t. This behavior is also the reason why the constant Cε̂ ↑ ∞ in part (i) of Lemma 1 as
γ ↑ 2

√
m.

Recall from (1.9) that for the underdamped diffusion in (1.7)-(1.8), we have the sta-
tionary distribution of the X process π(dx) ∝ e−βF (x)dx. Based on the previous lemma
and a standard coupling approach, we obtain the following convergence result in the 2-
Wasserstein distance.

Theorem 3. Consider the underdamped Langevin diffusion with parameter γ for a quadratic
objective given by (3.1). Let πt,γ denote the law of X(t) at time t for the underdamped
Langevin diffusion in (1.8). We have the following:

(i) If γ < 2
√
m, then for every t ≥ 0,

W2(πt,γ , π) ≤ Cε̂e−
√
m(1−ε̂)t · W2(π0,γ , π),

where Cε̂ and ε̂ are defined in (3.8).

(ii) If γ = 2
√
m, then for every t ≥ 0,

W2(πt,γ , π) ≤
√
CH + 2 + (m+ 1)2t2 · e−

√
mt · W2(π0,γ , π).

where CH is a constant defined by (3.9).

(iii) For any γ > 0, we have

W2(π0,γ , π) ≤
(

2‖X(0)‖2 +
4

m

(
‖b1‖2

2m
+
d

β

))1/2

.

Remark 4. Following the proof technique of Theorem 3, it can be shown that if γ > 2
√
m,

then W2(πt,γ , π) decays with an exponential rate e−t
γ−
√
γ2−4m
2 which is a slower decay than

the e−
√
mt rate achieved for γ = 2

√
m. In this sense, the choice of γ = 2

√
m optimizes

the convergence rate to the stationary distribution. This is illustrated in Figure 3.1. A
similar result was known in dimension one (see [Ris89, Sec. 10.2], [Pav14, Section 6.3],
[EGZ17, Sec. 1.6]), our result generalizes this result to arbitrary dimension d and gives
explicit constants.
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Figure 2: The exponent of the Wasserstein rate is optimized for the choice of γ = 2
√
m.

This is illustrated in the figure for m = 0.01.

Theorem 3 shows that a convergence rate of e−
√
mt is achievable by tuning the parameter

γ and specifies all the constants and dependence to initialization explicitly. We note that
the exponent in t in our analysis is optimal and is achieved for some quadratic functions.

3.2 Non-reversible Langevin diffusion

We will show that the non-reversible Langevin diffusion given by (1.12) can converge to
its equilibrium with a faster exponential rate compared to the e−mt rate of overdamped
Langevin diffusion. With a change of variable X(t) = Y (t) + x∗H , the non-reversible
Langevin dynamics given in (1.12) become

dY (t) = −AJHY (t)dt+
√

2β−1dBt, AJ = I + J,

which admits the solution

Y (t) = e−tAJHY (0) +
√

2β−1

∫ t

0
e(s−t)AJHdBs.

We observe that, the convergence behavior of the Y (t) process to its equilibrium is con-
trolled by the decay of

∥∥e−tAJH∥∥ in time t. It is expected that the decay of ‖e−tAJH‖ in
time t is related to the real part of the eigenvalues

λJi := Re (λi(AJH))

12



indexed with increasing order and their multiplicity. We note that when J = 0, we have
AJ = I and λJi = λi which are the eigenvalues of H. Hwang et al. [HHMS93] showed that
for any anti-symmetric J , we have the following result.

Lemma 5 ([HHMS93, Theorem 3.3]). For any anti-symmetric matrix J , we have

m = λ1 ≤ λJ1 ≤ λJd ≤ λd = M,

and m = λ1 = λJ1 if and only if the following condition holds:

(C1) There exists non-zero vectors u and v in Rd and ρ ∈ R such that u + iv is an
eigenvector of AJH with eigenvalue m + iρ and u + iv is an eigenvector of J with
eigenvalue iρ and Ju = −ρv, Jv = ρu.

A consequence of Lemma 5 is that λJ1 ≥ λ1 = m with the equality being satisfied only
if a special (non-generic) condition (C1) given in Lemma 5 holds. Considering the Jordan
normal form of AJH, there exists an invertible matrix S such that

S−1(AJH)S = diag
(
Ĵ1, Ĵ2, . . . , Ĵ`

)
,

where the latter is a block diagonal matrix with diagonals Ĵi, 1 ≤ i ≤ `, with Ĵi being the
Jordan block corresponding to the i-th eigenvalue. This leads to the immediate bound∥∥e−tAJH∥∥ =

∥∥∥Se−tĴS−1
∥∥∥ ≤ ‖S‖ ∥∥S−1

∥∥∥∥∥e−tĴ∥∥∥ ≤ CJ(1 + tn1−1)e−tλ
J
1 ,

where CJ is a universal constant that depends on J and n1 is the size of the Jordan block
Ĵ1 corresponding to the eigenvalue λJ1 (with the convention that a simple eigenvalue is
corresponding to a Jordan block of size one). This is summarized in the following lemma:

Lemma 6. There exists a positive constant CJ that depends on J such that∥∥e−tAJH∥∥ ≤ CJ(1 + tn1−1)e−tλ
J
1 ,

where n1 is the maximal size of a Jordan block of AJH corresponding to the eigenvalue
λJ1 . It follows that for any ε̃ > 0, there exist some constant CJ(ε̃) that depends on ε̃ and J
such that for every t ≥ 0,

‖e−tAJH‖ ≤ CJ(ε̃)e−tmJ (ε̃), mJ(ε̃) := λJ1 − ε̃. (3.10)

Remark 7. When J = 0, we have AJH = H which has the simple eigenvalue m =
λJ1 = λ1. Since H is positive definite, and ‖e−tH‖ = e−tλ

J
1 = e−tm and we can take

n1 = 1 and CJ = 1/2 in Lemma 6. A consequence of Lemmas 5 and 6 is that unless the
condition (C1) holds, non-reversible Langevin leads to a faster exponential decay compared
to reversible Langevin, i.e λJ1 > λ1.

13



One could also ask what is the choice of the matrix J that can maximize the exponent
λJ1 that appears in Lemma 6, i.e., let

Jopt := arg max
J=−JT

λJ1 .

A formula for Jopt and an algorithm to compute it is known (see [LNP13, Fig. 1]), however
this is not practical to compute for optimization purposes as it requires the knowledge of
the eigenvectors and eigenvalues of the matrix H which is unknown. Nevertheless, Jopt
gives information about the extent of acceleration that can be obtained. It is known that

λ
Jopt
1 =

Tr(H)

d
,

as well as a characterization of the constants CJopt and n1 arising in Lemma 6 when J = Jopt
[LNP13, equation (46)]. We see that md ≤ Tr(H) ≤M(d− 1) +m as the smallest and the
largest eigenvalue of H is m and M . Therefore, we have

1 ≤ λ
Jopt
1

λ1
≤ M(d− 1) +m

md
.

The acceleration is not possible (the ratio above is 1) if and only if all the eigenvalues of
H are the same and are equal to m; i.e. when M = m and Tr(H) = md. Otherwise,

Jopt can accelerate by a factor of M(d−1)+m
md which is on the order of the condition number

κ := M/m up to a constant d−1
d which is close to one for d large.

We recall that π denotes the stationary distribution of the Langevin diffusion, that
is, π(dx) ∝ exp(−βF (x))dx. Let πt,J denote the law of X(t) at time t defined in (1.12).
Using Lemma 6, we can show the following convergence rate in Wasserstein distances using
a proof technique similar to the proof of Theorem 3.

Theorem 8. For every t ≥ 0,

W2(πt,J , π) ≤ CJ(1 + tn1−1)e−tλ
J
1 ·
(

2‖X(0)‖2 +
4

m

(
‖b1‖2

2m
+
d

β

))1/2

,

where CJ , n1, λJ1 are defined in Lemma 6.

In the next section, we will discuss non-convex objectives. The results from this section
will play a crucial role to understand the behavior of Langevin algorithms near a local
minimum which can be approximated by an Ornstein-Uhlenbeck process.

4 Recurrence and escape times for non-reversible Langevin
dynamics

It is known that the reversible Langevin algorithm converges to a local minimum in time
polynomial with respect to parameters β and d, the intuition being that the expectation

14



of the iterates follows the gradient descent dynamics which converges to a local minimum
[ZLC17, FGQ97]. It is also known that once Langevin algorithms arrive to a neighbor-
hood of a local optimum, they can spend exponentially many iterations in dimension to
escape from the basin of attraction of this local minimum. This behavior is known as
“metastability” and has been studied well [BGK05, BGK04, Ber13, TLR18].

Recently, Tzen et al. [TLR18] provided a finer characterization of this metastability
phenomenon and showed that for a particular local minimum, if the stepsize η is small
enough and the inverse temperature β is large enough, with an arbitrary initialization, at
least one of the following two events will occur with high probability: (1) The Langevin
trajectory will end up being outside of the ε-neighborhood of this particular optimum
within a short recurrence time Trec = O( 1

m log(1
ε )) where m > 0 is the smallest eigenvalue

of the Hessian at the local minimum. (2) The Langevin dynamics’ trajectory enters this
ε-neighborhood by the recurrence time and stays there for a potentially exponentially long
escape time Tesc. In Section 3, we observed that both underdamped Langevin and reversible
Langevin concentrates around the local (global) minimum faster in continuous-time for the
quadratic objectives. When the stepsize is small, we also expect similar results to hold in
discrete time. In this section, we will study the recurrence time and escape time T Urec and
T Uesc of underdamped Langevin dynamics (ULD) and the corresponding time-scales T Jrec and
T Jesc for non-reversible Langevin dynamics (NLD). We will show that recurrence time of
underdamped and non-reversible Langevin algorithms will improve upon that of reversible
Langevin algorithms in terms of its dependency to the smallest eigenvalue of the Hessian at
a local minimum. Our analysis is based on linearizing the gradient of the objective around
a local minimum and is based on the results derived in the previous section on quadratic
objectives. We will also show in Section 5 that for the double-well potential, the mean
exit times from the basin of attraction of a local minimum7 for non-reversible Langevin
dynamics will improve upon that of reversible Langevin dynamics in terms of dependency
to the curvature at the saddle point.

Throughout the rest of the paper, we impose the following assumptions.

Assumption 9. We impose the following assumptions.

(i) The functions f(·, z) are twice continuously differentiable, non-negative valued, and

|f(0, z)| ≤ A, ‖∇f(0, z)‖ ≤ B,
∥∥∇2f(0, z)

∥∥ ≤ C,
uniformly in z ∈ Z for some A,B,C > 0.

(ii) f(·, z) have Lipschitz-continuous gradients and Hessians, uniformly in z ∈ Z, there

7Formally, we define the basin of attraction of a local minimum x∗ as the set of all initial points x0 ∈ Rd
such that the gradient flow ODE given in (1.5) with initial point x0 converges to x∗ as time t goes to
infinity.
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exist constants L,M > 0 so that for all x, y ∈ Rd,

‖∇f(x, z)−∇f(y, z)‖ ≤M‖x− y‖,∥∥∇2f(x, z)−∇2f(y, z)
∥∥ ≤ L‖x− y‖. (4.1)

(iii) The empirical risk F (·) is (m, b)-dissipative 8:

〈x,∇F (x)〉 ≥ m‖x‖2 − b. (4.2)

(iv) The initialization satisfies ‖X0‖ ≤ R :=
√
b/m.

The first assumption and the second assumption on gradient Lipschitzness is standard
(see e.g. [MSH02, TLR18, EGZ17, CCBJ17]). The second assumption on the Lipschitzness
of the Hessian is also frequently made in the literature [TLR18, CFM+18, DRD18], this
allows a more accurate local approximation of the Langevin dynamics as an Ornstein-
Uhlenbeck process. The third assumption on dissipativity is also standard in the literature
to ensure convergence of Langevin diffusions to the stationary measure. It is not hard
to see from dissipativity condition (4.2) in Assumption 9 (iii) above that for any local
minimum x∗ of the Hessian matrix H = ∇2F , which is positive definite and the minimum
eigenvalue of H is m, then we have ‖x∗‖ ≤ R =

√
b/m. This indicates that we can choose

an initialization X0 to satisfy ‖X0‖ ≤ R =
√
b/m as in part (iv) of Assumption 9.

4.1 Underdamped Langevin dynamics

In this section, we investigate the behavior around local minima for the underdamped
Langevin dynamics (1.10)-(1.11) by studying recurrence and escape times with the choice
of the friction coefficient γ = 2

√
m which is optimal for the convergence rate as discussed

in Section 3. We also give an analogous theorem for the case γ < 2
√
m in Section E of the

Appendix; the remaining case γ > 2
√
m can also be treated similarly.

Before we state the main result, we summarize the technical constants that will be used
in Table 1 9. In the following result and the rest of the paper unless we specify otherwise, the
notation O(·) hides dependency to the constants CH , M , L. We give explicit expressions
for all the constants in the proofs.

Theorem 10. Fix γ = 2
√
m, δ ∈ (0, 1) and r > 0. For a given ε satisfying

0 < ε < εU = min {O(r),O(m)} ,
8In terms of notations, the dissipativity constant m here is taken to be the same as the minimum

eigenvalue of the Hessian matrix H in this section, as well as for the quadratic case in Section 3. With
abuse of notations, we use m both for non-convex and convex cases.

9In Table 1, Ccx, Ccv give the uniform L2 bounds for the continuous-time processes X(t) and V (t) defined
in (1.8) and (1.7) respectively, and Cdx , Cdv give the uniform L2 bounds for the discrete-time processes Xk
and Vk defined in (1.11) and (1.10) respectively, and K1 and K2 are used in the upper bound on the stepsize
η under which the uniform L2 bounds for the discrete-time processes are valid, see Lemma 24 for details.
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Constants Source

εU1 =

√
CH + 2 + (m+ 1)2

(CH + 2)m+ (m+ 1)2
r, εU2 = 2

√
2(CH + 2 + (m+ 1)2)1/4 e

−1/2r

m1/4
(B.1), (B.2)

εU3 =

√
m

4L

(√
CH + 2 + m+1√

m
+

√
(CH+2)m+(m+1)

8
√
CH+2+(m+1)2

) , εU := min
{
εU1 , ε

U
2 , ε

U
3

}
(B.3)

ηU1 =
εe−(1+γ+M)

8B
, ηU2 =

δε2e−2(1+γ+M)

384(M2Ccx + (1 + γ)2Ccv)T Urec

(B.22), (B.20)

ηU3 =
4γδ2

9βM2CdvT Uesc

(B.9)

ηU4 = min

{
γ

K2
(d/β +A/β),

γλ

2K1

}
, ηU := min

{
1, ηU1 , η

U
2 , η

U
3 , η

U
4

}
(B.36)

βU
1

=
256(2CHm+ 4m+ (m+ 1)2)

mε2

(
d log(2) + log

(
6
√

4m+M2 + 1T + 3

δ

))
(B.11)

βU
2

=
512dηγ log(21/4e1/46δ−1T Urec/η)

ε2e−2(1+γ+M)η
, βU := max{βU

1
, βU

2
} (B.21)

Ccx :=

(
βM

2 + βγ2(2−λ)
4

)
R2 + βBR+ βA+ 3

4β‖V (0)‖2 + d+A
λ

1
8(1− 2λ)βγ2

(B.34)

Ccv :=

(
βM

2 + βγ2(2−λ)
4

)
R2 + βBR+ βA+ 3

4β‖V (0)‖2 + d+A
λ

β
4 (1− 2λ)

(B.35)

K1 = max

{
32M2

(
1
2 + γ

)
(1− 2λ)βγ2

,
8
(

1
2M + 1

4γ
2 − 1

4γ
2λ+ γ

)
β(1− 2λ)

}
(B.37)

K2 = 2B2

(
1

2
+ γ

)
(B.38)

Cdx =

(
βM

2 + βγ2(2−λ)
4

)
R2 + βBR+ βA+ 3

4β‖V (0)‖2 + 4(d+A)
λ

1
8(1− 2λ)βγ2

(B.39)

Cdv =

(
βM

2 + βγ2(2−λ)
4

)
R2 + βBR+ βA+ 3

4β‖V (0)‖2 + 4(d+A)
λ

β
4 (1− 2λ)

(B.40)

λ =
1

8
∧ m

2M + γ2
, A :=

βm

2M + γ2

(
B2

2M + γ2
+

b

m

(
M +

1

2
γ2

)
+A

)
(B.31), (B.32)

Table 1: Summary of the constants used in Section 4.1 and where they are defined.
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where εU is more formally defined in Table 1, and we define the recurrence time

T Urec = − 1√
m
W−1

(
−ε2√m

8r2
√
CH + 2 + (m+ 1)2

)
= O

(
| log(m)|√

m
log
(r
ε

))
, (4.3)

and the escape time
T Uesc := T Urec + T ,

for any arbitrary T > 0, where W−1 is the lower branch of the Lambert W function 10.
Consider an arbitrary initial point x for the underdamped Langevin dynamics and a

local minimum x∗ at a distance at most r. Assume that the stepsize η satisfies

η ≤ ηU = min

{
O(ε),O

(
m2βδε2

(md+ β)T Urec

)
,O

(
m3/2δ2

(md+ β)T Uesc

)
,O

(
m1/2β

d+ β

)}
,

where more formally ηU is defined in Table 1 and β satisfies

β ≥ βU = max

{
Ω

(
d+ log((T + 1)/δ)

mε2

)
,Ω

(
dηm1/2 log(δ−1T Urec/η)

ε2

)}
,

where more formally βU is defined in Table 1, for any realization of training data z, with
probability at least 1− δ w.r.t. the Gaussian noise, at least one of the following events will
occur:

1. ‖Xk − x∗‖ ≥ 1
2

(
ε+ re−

√
mkη
)

for some k ≤ η−1T Urec.

2. ‖Xk − x∗‖ ≤ ε+ re−
√
mkη for every η−1T Urec ≤ k ≤ η−1T Uesc.

Remark 11. Notice that in Theorem 10, the definition of η and β are coupled since ηU

depends on β and βU depends on η. A closer look reveals that when η is sufficiently small,

the first term in the definition of βU dominates the second term and βU is independent of
η. So to satisfy the constraints in Theorem 10, it suffices to first choose β to be larger than
the first term in βU and then choose η to be sufficiently small.

Remark 12. Theorem 10 is about the empirical risk but the ideas can be generalized to
population risk problems. More specifically, we can apply Theorem 10 to obtain Theorem
39 for the population risk in Section F of the Appendix, similar to Theorem 3 in [TLR18].

Remark 13. In [TLR18], the overdamped Langevin algorithm is used and the recurrence

time Trec = O
(

1
m log( rε)

)
, while our recurrence time T Urec = O

(
| log(m)|√

m
log( rε)

)
for the

underdamped Langevin algorithm, which has a square root factor improvement.

10The Lambert W function W (x) is defined via the solution of the algebraic equation W (x)eW (x) = x.
When x ≥ 0, W (x) is uniquely defined. When −e−1 ≤ x < 0, W (x) has two branches, the upper branch
W0(x) and the lower branch W−1(x), see e.g. [CGH+96].
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Remark 14. The recurrence time T Urec defined in (4.3) using the Lambert W function is
indeed the unique solution greater than 1√

m
of the algebraic equation 11:

T Urece−
√
mT Urec =

ε2

8r2
√
CH + 2 + (m+ 1)2

.

Since ε < εU and by the definition of εU in Table 1, we have ε < εU ≤ 2
√

2(CH + 2 + (m+

1)2)1/4 e−1/2r
m1/4 so that ε2

8r2
√
CH+2+(m+1)2

< 1√
m
e−1 and thus T Urec ≥ 1√

m
is well-defined and

moreover for every x ≥ T Urec, the function x 7→ xe−
√
mx is decreasing in x.

4.2 Non-reversible Langevin dynamics

In this section, we investigate the behavior around local minima for the non-reversible
Langevin dynamics (1.13) by studying recurrence and escape times. We recall from (3.10)
in Lemma 6 that for any ε̃ > 0, there exists some constant CJ(ε̃) that may depend on J
and ε̃ such that for every t ≥ 0:

‖e−tAJH‖ ≤ CJ(ε̃)e−tmJ (ε̃), mJ(ε̃) = (λJ1 − ε̃).

Note that by considering t = 0, it is clear CJ(ε̃) ≥ 1.
Before we state the main result, we summarize the technical constants that will be used

in Table 2. 12

Theorem 15. Fix δ ∈ (0, 1) and r > 0. Given ε > 0 satisfying

ε < εJ = min

{
O
(
mJ(ε̃)

CJ(ε̃)

)
,O(rCJ(ε̃))

}
,

where εJ is more formally defined in Table 2, we define the recurrence time

T Jrec :=
2

mJ(ε̃)
log

(
8r

CJ(ε̃)ε

)
= O

(
1

mJ(ε̃)
log

(
r

CJ(ε̃)ε

))
, (4.4)

and the escape time T Jesc := T Jrec + T for any arbitrary T > 0.
For any initial point x and a local minimum x∗ at a distance at most r. Assume the

stepsize η satisfies

η ≤ ηJ = min

{
O (ε) ,O

(
δε2m3

(m+ β−1d)T Jrec

)
,O
(

δ2m3

(d+mβ + dm3)T Jesc

)}
,

11We used the fact that the solution to the algebraic equation ax = px, p > 0, p 6= 1, a 6= 0, can be
expressed as x = − 1

log p
W (− 1

a
log p), where W is the Lambert W function.

12In Table 2, Cc gives the uniform L2 bound forX(t) in the continuous time dynamics (1.12) (see Corollary
29) and Cd gives the uniform L2 bound for Xk in the discrete time dynamics (1.13) (see Corollary 31), and
C1 is used in the upper bound on the relative entropy between the probability measures of the discrete and
continuous dynamics (see (C.4)).
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Constants Source

εJ1 =
mJ(ε̃)

4CJ(ε̃)(1 + ‖J‖)L(1 + 1
64CJ (ε̃)2

)
, εJ2 = 8rCJ(ε̃) (C.1)

εJ = min{εJ1 , εJ2 }

ηJ1 =
εe−(1+‖J‖)M

8(1 + ‖J‖)B
(C.10)

ηJ2 =
δε2e−2(1+‖J‖)M

384(1 + ‖J‖)2M2CcT Jrec

(C.11)

ηJ3 =
2δ2

9C1T Jesc

(C.7)

ηJ4 =
1

M(1 + ‖J‖)2
(C.3)

ηJ := min
{

1, ηJ1 , η
J
2 , η

J
3 , η

J
4

}
βJ

1
=

128CJ(ε̃)2

mJ(ε̃)ε2

(
d

2
log(2) + log

(
6(1 + ‖J‖)MT + 3

δ

))
(C.9)

βJ
2

=
512dη log(21/4e1/46δ−1T Jrec/η)

ε2e−2(1+‖J‖)Mη
(C.12)

βJ := max
{
βJ

1
, βJ

2

}
Cc :=

MR2 + 2BR+B + 4A

m
+

2b(M +B)

m2
+

4Mβ−1d(M +B)

m3
+

b

m
log 3 (C.18)

Cd :=
MR2 + 2BR+B + 4A

m
+

8(M +B)Mβ−1d

m3
+

2(M +B)b

m2
+

b

m
log 3 (C.19)

C1 := 6(β((1 + ‖J‖)2M2Cd +B2) + d)(1 + ‖J‖)2M2 (C.5)

Table 2: Summary of the constants used in Section 4.2 and where they are defined.
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where more formally ηJ is defined in Table 2 and β satisfies

β ≥ βJ = max

{
Ω

(
CJ(ε̃)2

mJ(ε̃)ε2

(
d+ log

(
T + 1

δ

)))
,Ω

(
dη log(δ−1T Jrec/η)

ε2

)}
,

where more formally βJ is defined in Table 2, for any realization of training data z, with
probability at least 1− δ w.r.t. the Gaussian noise, at least one of the following events will
occur:

1. ‖Xk − x∗‖ ≥ 1
2

(
ε+ re−mJ (ε̃)kη

)
for some k ≤ η−1T Jrec.

2. ‖Xk − x∗‖ ≤ ε+ re−mJ (ε̃)kη for every η−1T Jrec ≤ k ≤ η−1T Jesc.

where CJ(ε̃ and mJ(ε̃ are given by (3.10).

Remark 16. Notice that in Theorem 15, the definition of η and β are coupled since ηJ

depends on β and βJ depends on η. A closer look reveals that when η is sufficiently small,

the first term in the definition of βJ dominates the second term and βJ is independent of
η. So to satisfy the constraints in Theorem 15, it suffices to first choose β to be larger than
the first term in βJ and then choose η to be sufficiently small.

Remark 17. Theorem 15 is about the empirical risk but the ideas can be generalized to
population risk problems. In particular, we can apply Theorem 15 to obtain Theorem 40
for the population risk in Section F of the Appendix, similar to Theorem 3 in [TLR18].

Remark 18. In [TLR18], the overdamped Langevin algorithm is used and the recurrence

time Trec = O
(

1
m log( rε)

)
, while our recurrence time T Jrec = O

(
1

mJ (ε̃) log( r
CJ (ε̃)ε)

)
for the

non-reversible Langevin algorithm, and if CJ(ε̃) = O(1), then T Jrec = O
(

1
mJ (ε̃) log( rε)

)
,

which has the improvement over the overdamped Langevin algorithm since mJ(ε̃) > m in
general.

5 Exit time for non-reversible Langevin dynamics

The escape time studied in the previous section quantifies the amount of time spent in a
neighborhood of a local optimum. However, for convergence to the stationary distribution
or to a small neighborhood of the global minimum, Langevin trajectory needs to not only
escape from the neighborhood of a local optimum but also exit the basin of attraction of
the current minimum and transit to the basin of attraction of other local minima including
the global minima. In particular, the convergence rate to a global minimum is controlled
by the mean exit time of a Langevin diffusion from the basin of attraction of a local
minima in a potential landscape (i.e. F (·) in (1.3)) [BGK05]. The mean exit time is
described by the celebrated Eyring-Kramers formula in statistical physics. The formula

21



is named after Eyring and Kramers’ respective papers [Eyr35, Kra40]. For surveys and
recent developments, see, e.g. [Ber13, BR16, LMS17]. Although Kramer’s formula is
relatively well understood for reversible Langevin algorithms, it is not available for non-
reversible Langevin diffusions for a general non-convex objective except for the double-well
example [BR16, LMS17] described in Figure 1. Nevertheless, the double-well example is
the simplest non-convex function that is considered as an important benchmark which
provides intuition about the more general but much harder case of arbitrary smooth and
non-convex objectives. Furthermore, the existing results are available in continuous time
but not in discrete time.

Throughout this section, we consider a double-well potential F : Rd → R, which has
two local minima a1 < a2. The two local minima are separated by a saddle point σ.
We will show that non-reversible Langevin dynamics in discrete-time can lead to faster
(smaller) exit times. In addition to Assumption 9 (i)-(iii), we make generic assumptions
that F ∈ C3, the Hessian of F at each of the local minima is positive definite, and that the
Hessian of F at the saddle point σ has exactly one strictly negative eigenvalue (denoted as
−µ∗(σ) < 0) and other eigenvalues are all positive.

5.1 Underdamped Langevin dynamics

Recall the underdamped Langevin diffusion defined in (1.7)–(1.8) and the underdamped
Langevin dynamics (ULD) defined in (1.10)–(1.11). As ULD tracks the underdamped
diffusion closely when the stepsize is small, we first discuss the exit times for the under-
damped diffusion to get some intuition for the accerelation compared with the overdamped
Langevin diffusion.

5.1.1 Acceleration of exit times in continuous time dynamics

Denote Θβ
a1→a2 as the first time of that the underdamped diffusion (1.7)–(1.8) starting

from a1 and hitting a small neighborhood of a2. When dimension d = 1, it was derived
originally in [Kra40] that

E
[
Θβ
a1→a2

]
= [1 + oβ(1)] · 2π

µ∗
· eβ[F (σ)−F (a1)] ·

√
|F ′′(σ)|
F ′′(a1)

, (5.1)

where

µ∗ =
1

2
·
(√

γ2 − 4F ′′(σ)− γ
)
.

In view of (1.6), we can deduce that if

γ − F ′′(σ) < 1,
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we have when d = 1,

lim
β→∞

E
[
Θβ
a1→a2

]
E
[
θβa1→a2

] =
−F ′′(σ)

µ∗
< 1.

That is, for large β, the mean exit time of one dimensional underdamped diffusion is strictly
smaller than that of the overdamped diffusion when µ∗ > −F ′′(σ).

For general dimension d, Remark 5.2 in [BR16] suggests that13 we have

E
[
Θβ
a1→a2

]
= [1 + oβ(1)] · 2π

µ∗
· eβ[F (σ)−F (a1)] ·

√
| det Hess F (σ)|
det Hess F (a1)

,

where, with slight abuse of notations, µ∗ is the unique positive eigenvalue of the matrix

Ĥγ(σ) =

[
−γI −Lσ
I 0

]
, (5.2)

where Lσ is the Hessian matrix of F at the saddle point σ. So to compare with the expected
exit time for the overdamped diffusion in (1.6), we need to compare µ∗ and µ∗(σ). One
can readily show that14 the unique positive eigenvalue µ∗ of the matrix Ĥγ(σ) is given by
the positive eigenvalue of the 2× 2 matrix[

−γ µ∗(σ)
1 0

]
,

which suggests that

µ∗ =
1

2
·
(√

γ2 + 4µ∗(σ)− γ
)
. (5.3)

So if
γ + µ∗(σ) < 1, (5.4)

where we recall that −µ∗(σ) is the unique negative eigenvalue of the Hessian of F at the
saddle point σ, then we have µ∗ > µ∗(σ) and therefore for d ≥ 2,

lim
β→∞

E
[
Θβ
a1→a2

]
E
[
θβa1→a2

] =
µ∗(σ)

µ∗
< 1. (5.5)

That is, for sufficiently large β, we achieve acceleration; i.e. the mean exit time for the
underdamped diffusion in arbitrary dimension is smaller compared with that of the over-
damped diffusion. Roughly speaking, the condition (5.4) says that if the curvature of the

13For the underdamped diffusion, the diffusion matrix is not invertible. It is argued in Remark 5.2 in
[BR16] that the analogue of (1.6), i.e., the Eyring-Kramers formula, can still be expected to hold in this
underdamped case. A rigorous mathematical proof for general dimension is not known in the literature to
the best of our knowledge.

14The argument of the proof is similar as that in Section 3.
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saddle point in the negative descent direction is not too steep (i.e. if µ∗(σ) < 1), we can
choose γ small enough to accelerate the exit time of the reversible Langevin dynamics.
Intuitively speaking, it can be argued that the underdamped process can climb hills faster
and can explore the state space faster as it is less likely to go back to the recent states
visited due to the momentum term [BR16]. However, an explanation of why and when
underdamped process can accelerate overdamped dynamics is far from being understood.
However, it is expected that γ should not be too large to achieve acceleration, because
it is known that when γ gets larger, underdamped diffusion behaves like the overdamped
diffusion [BR16, Section 5.5], [LMS15, Section 2.6], [LRS10]. When F is a quadratic, our
results from Section 3 also show that γ needs to be properly chosen to get the fastest
convergence rate and as γ gets larger than the threshold 2

√
m, the convergence rate to the

equilibrium deteriorates (see Figure 3.1).
In particular, if we choose γ = O(

√
µ∗(σ)), we see from (5.3) that µ∗ = O(

√
µ∗(σ))

and therefore, it follows from (5.5) that

lim
β→∞

E
[
Θβ
a1→a2

]
E
[
θβa1→a2

] =
µ∗(σ)

µ∗
= O

(√
µ∗(σ)

)
< 1. (5.6)

This shows that amount of acceleration with underdamped dynamics obtained can be
arbitrarily large and treating other parameters as a constant, underdamped dynamics’ exit
time improves upon that of overdamped dynamics by a square root factor in µ∗(σ).

5.1.2 Acceleration of exit times in discrete time dynamics

Next we consider the discrete time dynamics (1.10)–(1.11). It can be intuitive to expect
a similar result as (5.6) to hold for the discrete exit times when the step size is small.
However, this requires the exit time of the underdamped discrete dynamics to be close
to that of the continuous time diffusion. We rely on [BGG17] and proceed with a formal
discussion.

To apply the results in [BGG17], we consider a sequence of bounded domains Dn

indexed by n so that the following conditions hold: first, the region Dn contains a1, a2, σ
for large n; second, as n increases, Dn increases to the set D∞ = Oc(a2) := Rd\O(a2),
where O(a2) denotes a small neighborhood of a2; third, the underdamped SDE (diffusion)
is non-degenerate along the normal direction to the boundary of Dn with probability one.

Fix the parameters β and γ in the underdamped Langevin dynamics. Denote Θ̂β,n
a1→a2

be the exit time of Xk (from the ULD dynamics) starting from a1 and exiting domain Dn.
Fix ε > 0. One can choose a sufficiently large n and choose a constant η̃(ε, n, γ, β) so that
for stepsize η ≤ η̃(ε, n, γ, β), we have∣∣∣E [Θ̂β,n

a1→a2

]
− E

[
Θβ
a1→a2

]∣∣∣ < 2ε. (5.7)
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To see this, we use Theorems 3.9 and 3.11 in [BGG17]. It suffices to verify their Assump-
tions 3.5 and 3.8. Assumption 3.5 in [BGG17] is automatically satisfied as the region Dn is
bounded, and the drift and the diffusion coefficients of underdamped Langevin diffusions
are continuous. Assumption 3.8 in [BGG17] requires a mild non-characteristic bound-
ary condition for the underdamped dynamics exiting Dn, but with our choice of Dn, this
assumption can be satisfied.

Write θ̂β,na1→a2 as the exit time of Xk (from the overdamped discrete dynamics) starting
from a1 and exiting the domain Dn. Then one can also expect that when n is large and

the step size is small, the mean of θ̂β,na1→a2 will be close to E
[
θβa1→a2

]
, the continuous exit

time of the overdamped diffusion given in (1.6). See Proposition 20 in the next section. It
then follows from (5.6) and (5.7) that for large enough β, n, and sufficiently small stepsize
η, we obtain the acceleration in discrete time:

E
[
Θ̂β,n
a1→a2

]
E
[
θ̂β,na1→a2

] = O
(√

µ∗(σ)
)
< 1.

5.2 Non-reversible Langevin dynamics

Recall the non-reversible Langevin dynamics defined in (1.13) and the corresponding con-
tinuous time dynamics defined in (1.12).

5.2.1 Acceleration of exit times for continuous time dynamics

We first discuss the continuous-time dynamics (1.12). Theorem 5.2 in [LMS17] (see also
[BR16]) showed15 that the expected time of the diffusion X(t) in (1.12) starting from a1

and hitting a small neighborhood of a2 is given by

E
[
τβa1→a2

]
= [1 + oβ(1)] · 2π

µ∗J
· eβ[F (σ)−F (a1)] ·

√
| det Hess F (σ)|
det Hess F (a1)

. (5.8)

Here, oβ(1)→ 0 as β →∞, det Hess F (x) stands for the determinant of the Hessian of F at
x, and −µ∗J is the unique negative eigenvalue of the matrix AJ ·Lσ, where Lσ := Hess F (σ),
the Hessian of F at the saddle point σ. The existence and uniqueness of such a negative
eigenvalue −µ∗J was proved in Lemma 11.1 in [LS18]. To facilitate the presentation, we
denote u for the corresponding eigenvector of AJLσ for the eigenvalue −µ∗J < 0, i.e., we
have

AJLσu = −µ∗Ju. (5.9)

In addition, since Lσ is a real symmetric matrix, we have

Lσ = STDS, (5.10)

15Assumptions (P1)-(P4) in [LMS17] can be readily verified in our setting.
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for a real orthogonal matrix S, where D = diag(µ1, µ2, . . . , µd) with µ1 < 0 < µ2 < . . . < µd
being the eigenvalues of Lσ. It is clear that we have −µ1 = µ∗(σ).

In the case dimension d = 2, it was checked in Section 5.1.4 of [BR16] that µ∗J ≥ µ∗(σ).

From (5.8), this suggests that E
[
τβa1→a2

]
is smaller for non-reversible Langevin diffusions

compared with reversible Langevin diffusions with J = 0. That is, the non-reversible
diffusion exits a local minimum faster. We now present a result showing that this holds
for general dimension d ≥ 2 as well.

Proposition 19. We have µ∗J ≥ µ∗(σ). As a consequence,

lim
β→∞

E
[
τβa1→a2

]
E
[
τβa1→a2

]
J=0

=
µ∗(σ)

µ∗J
≤ 1. (5.11)

The equality is attained if and only if (Su)i = 0 for i = 2, . . . , d where u and S are defined
by (5.9)–(5.10), which occurs if and only if u is a singular vector of J satisfying Ju = 0.

Proposition 19 shows that if J is not singular, the non-reversible dynamics is always
faster in the sense of smaller mean exit times. A natural question to ask is how much
acceleration can be achieved for the exit time with the non-reversible dynamics. The
approach we studied in Section 3 for quadratic functions does not apply here, because
strongly convex quadratics cannot have negative eigenvalues in their Hessian, whereas at
the saddle point the acceleration is achieved by making the negative eigenvalue larger in
magnitude as shown in Proposition 19. We give a characterization of the speed-up in (D.3)
in terms of the eigenvalues µi of the matrix Lσ as well as the eigenvector u of AJLσ in the
Appendix. However, in principle the speed-up can be arbitrarily large. For instance, in
the toy example in dimension two when

Lσ =

[
−1 0
0 1

]
, J =

[
0 a
−a 0

]
with a ∈ R,

after a simple computation we see that µ∗J =
√

1 + a2 and µ∗(σ) = 1 so that the ratio
µ∗(σ)/µ∗J = 1/

√
1 + a2 in (5.11) can be made arbitrarily small.

5.2.2 Acceleration of exit times for discrete time dynamics

Next let us discuss the discrete dynamics (1.13). Unlike the underdamped diffusion which
has a non-invertible diffusion matrix, the non-reversible Langevin diffusion in (1.12) is
uniformly elliptic. So to show the discrete exit time is close to the continuous exit time
for non-reversible Langevin dynamics, we can apply the results in [GM05] and proceed
as follows. Let Bn be the ball centered at zero with radius n in Rd. For n sufficiently
large, we always have a1, a2, σ ∈ Bn. Let D̄n = Bn \ O(a2), where O(a2) denotes a small
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neighborhood of a2. It follows that the set D̄n is bounded for each n, and it increases to
the set Oc(a2) as n is sent to infinity. Write τ̂β,na1→a2 for the first time that the discrete-time
dynamics starting from a1 and exit the region D̄n. Then we can obtain from [GM05] the
following result, which implies the exit times of non-reversible Langevin dynamics is smaller
compared with that of reversible Langevin dynamics. See the Appendix for a proof.

Proposition 20. Fix the antisymmetric matrix J , the temperature parameter β, and ε >
0. One can choose a sufficiently large n and a constant η̄(ε, n, β) so that for stepsize
η ≤ η̄(ε, n, β), we have ∣∣∣E [τ̂β,na1→a2

]
− E

[
τβa1→a2

]∣∣∣ < 2ε.

It then follows from Proposition 19 that for large β we have

E
[
τ̂β,na1→a2

]
E
[
τ̂β,na1→a2

]
J=0

< 1, (5.12)

provided that (Su)i 6= 0 for some i ∈ {2, . . . , d} which occurs if and only if u is a singular
vector of J satisfying Ju = 0.

6 Conclusion

Langevin Monte Carlo has been proven to be a powerful technique for sampling from a
target distribution as well as for optimizing a non-convex objective. The classic Langevin
algorithm is based on the first-order Langevin diffusion which is reversible in time. We
study two variants that are based on non-reversible Langevin diffusions: the underdamped
Langevin diffusion and the Langevin diffusion with a non-symmetric drift.

First, we consider the special case of quadratic objectives and derive an explicit char-
acterization of the rate of convergence of the non-reversible Langevin diffusions to the
stationary distribution in the 2-Wasserstein metric. Our exponential rate is optimal and
unimprovable in the sense that it is achieved for some quadratic functions and initializa-
tion. Our results show that both non-reversible diffusions mix faster than the reversible
Langevin, and we characterize the amount of improvement. In particular, the underdamped
diffusion mixes with a rate that is faster than that of the reversible Langevin by a square
root factor in m (ignoring a | log(m)| term) by tuning the friction coefficient γ properly.

Second, we give a refined analysis of non-reversible Langevin dynamics around a local
minimum, by linearizing the gradient of the objective and building on our results for
quadratic functions. Our results show that iterates for the non-reversible dynamics can
both escape a local minima and exit from the basin of the attraction of a local minimum
faster. Our results quantify the improvement that can be obtained in performance.
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Third, we show that non-reversible Langevin dynamics in discrete time can exit the
basin of attraction of a local minimum to find the global minimum faster when the ob-
jective has two local minima separated by a saddle point. We also discuss the amount of
improvement.

By breaking the reversibility in the Langevin dynamics, our results quantify the im-
provement in performance and fill a gap between the theory and practice of non-reversible
Langevin algorithms.
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process: General moment estimates and L1-convergence rate for discrete time
approximatnions. Bernoulli, 23(3):1631–1662, 2017.
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[LNP13] T. Lelièvre, F. Nier, and G. A. Pavliotis. Optimal non-reversible linear drift
for the convergence to equilibrium of a diffusion. Journal of Statistical Physics,
152(2):237–274, Jul 2013.
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bility. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet, editors,
Proceedings of the 31st Conference On Learning Theory, volume 75 of Proceed-
ings of Machine Learning Research, pages 857–875. PMLR, 06–09 Jul 2018.

[Vil09] Cédric Villani. Optimal Transport: Old and New. Springer, Berlin, 2009.

[WHC14] Sheng-Jhih Wu Wu, Chii-Ruey Hwang, and Moody T. Chu. Attaining the opti-
mal Gaussian diffusion acceleration. Journal of Statistical Physics, 155(3):571–
590, 2014.

[ZLC17] Yuchen Zhang, Percy Liang, and Moses Charikar. A Hitting Time Analysis
of Stochastic Gradient Langevin Dynamics. arXiv preprint arXiv:1702.05575,
February 2017.

34



A Proof of results in Section 3

Proof of Lemma 1. Let H be a symmetric positive definite matrix with eigenvalue decom-
position

H = QDQT ,

where D is diagonal consisting of the eigenvalues in increasing order

λ1 ≤ λ2 ≤ · · · ≤ λd

of the matrix H. Recall
m := λ1 ≤M := λd ,

are the lower and upper bounds on the eigenvalues. Recall that

Hγ =

[
γI H
−I 0

]
.

Note that

Hγ =

[
Q 0
0 Q

]
Gγ

[
QT 0
0 QT

]
, Gγ :=

[
γI D
−I 0

]
.

Therefore Hγ and Gγ have the same eigenvalues. Due to the structure of Gγ , it can be
seen that there exists a permutation matrix P such that

Tγ := PGγP
T =


T1(γ) 0 0 0

0 T2(γ) 0 0
... · · · . . .

...
0 0 0 Td(γ)

 , (A.1)

where

Ti(γ) =

[
γ λi
−1 0

]
, i = 1, 2, . . . , d ,

are 2× 2 block matrices with the eigenvalues:

µi,± :=
γ ±

√
γ2 − 4λi
2

. i = 1, 2, . . . , d .

We observe that Tγ and Gγ (and therefore Hγ) have the same eigenvalues and the eigen-
values of Tγ are determined by the eigenvalues of the 2× 2 block matrices Ti(γ).

Since Hγ is unitarily equivalent to the matrix Tγ , i.e. there exists a unitary matrix U
such that Hγ = UTγU

∗, we have

R(t) :=
∥∥e−tHγ∥∥ =

∥∥Ue−tTγU∗∥∥ =
∥∥e−tTγ∥∥ .
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Since Tγ is a block diagonal matrix with 2× 2 blocks Ti(γ) we have∥∥e−tTγ∥∥ = max
1≤i≤d

∥∥∥e−tTi(γ)
∥∥∥ .

Assume that γ2 − 4λ1 = γ2 − 4m ≤ 0 so that the eigenvalues of Ti(γ)

µi,± :=
γ ±

√
γ2 − 4λi
2

, 1 ≤ i ≤ d,

are real when γ = 2
√
m and complex when λ < 2

√
m. Indeed, let us define

T̃i(γ) := Ti(γ)− γ

2
I, 1 ≤ i ≤ d.

Note that ∥∥∥e−tTi(γ)
∥∥∥ = e−tγ/2

∥∥∥e−tT̃i(γ)
∥∥∥ , (A.2)

We consider γ ∈ (0, 2
√
m]. Depending on the value of λi and γ, there are two cases:

(i) If γ < 2
√
m or (λi > m and γ = 2

√
m), then T̃i(γ) has purely imaginary eigenvalues

that are complex conjugates which we denote by

µ̃i,± = ±i
√

4λi − γ2

2
, 1 ≤ i ≤ d.

We will show that the last term in (A.2) stays bounded due to the imaginariness
of the eigenvalues of T̃i(γ). It is easy to check that 2 × 2 matrix T̃i(γ) have the
eigenvectors vi,± = [µi,±,−1]T . If we set

Gi =
[
vi,+ vi,−

]
∈ C2×2,

the eigenvalue decomposition of T̃i(γ) is given by

T̃i(γ) = Gi

[
µ̃i,+ 0

0 µ̃i,−

]
G−1
i , where G−1

i =
1

detGi

[
−1 −µi,−
1 µi,+

]
,

and
detGi = i

√
4λi − γ2.

We can compute that

e−tT̃i(γ) = Gi

[
e−it
√

4λi−γ2/2 0

0 eit
√

4λi−γ2/2

]
G−1
i

=
1

detGi

[
µi,+ µi,−
−1 −1

][
−e−it

√
4λi−γ2/2 −µi,−e−it

√
4λi−γ2/2

eit
√

4λi−γ2/2 µi,+e
it
√

4λi−γ2/2

]

=
1

i
√

4λi − γ2

2Imag
(
µi,−e

it
√

4λi−γ2/2
)

2i|µi,+|2 sin
(
t
√

4λi − γ2/2
)

−2i sin
(
t
√

4λi − γ2/2
)

2Imag
(
µi,+e

it
√

4λi−γ2/2
)  ,
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where Imag(a + ib) := ib denotes the imaginary part of a complex number. As a
consequence, by taking componentwise absolute values∥∥∥e−tT̃i(γ)

∥∥∥ ≤ 1√
4λi − γ2

∥∥∥∥[2|µi,−| 2|µi,+|2
2 2|µi,+|

]∥∥∥∥
=

1√
4λi − γ2

∥∥∥∥[2√λi 2λi
2 2

√
λi

]∥∥∥∥
=

1√
4λi − γ2

∥∥∥∥[2√λi2

] [
1
√
λi
]∥∥∥∥

=
1√

4λi − γ2

∥∥∥∥[2√λi2

]∥∥∥∥ ∥∥[1 √
λi
]∥∥

=
2(1 + λi)√

4λi − γ2
, (A.3)

where in the second from last inequality we used the fact that the 2-norm of a rank-
one matrix is equal to its Frobenius norm. 16 Then, it follows from (A.2) that∥∥∥e−tTi(γ)

∥∥∥ = e−tγ/2
∥∥∥e−tT̃i(γ)

∥∥∥ ≤ 2(1 + λi)√
4λi − γ2

e−tγ/2 ,

which implies

∥∥e−tHγ∥∥ =
∥∥e−tTγ∥∥ ≤ max

1≤i≤d

∥∥∥e−tTi(γ)
∥∥∥ ≤ 2(1 +M)√

4m− γ2
e−tγ/2 ,

provided that γ2 − 4m < 0. In particular, if we choose ε̂ = 1 − γ
2
√
m

for any ε̂ > 0,

we obtain ∥∥e−tHγ∥∥ ≤ 1 +M√
m(1− (1− ε̂)2)

e−
√
m(1−ε̂)t.

The proof for (i) is complete.

(ii) If γ = 2
√
m and λi = m, then T̃i(γ) has double eigenvalues at zero and is not

diagonalizable. It admits the Jordan decomposition

T̃i(γ) = Gi

[
0 1
0 0

]
G−1
i with Gi =

[√
m 1
−1 0

]
and G−1

i =

[
0 −1
1
√
m

]
.

16The 2-norm of a rank-one matrix R = uv∗ should be exactly equal to σ = ‖u‖‖v‖. This follows from
the fact that we can write R = σũṽT where ũ and ṽ have unit norm. This would be a singular value
decomposition of R, showing that all the singular values are zero except a singular value at σ. Because the
2-norm is equal to the largest singular value, the 2-norm of R is equal to σ.
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By a direct computation, we obtain

e−tT̃i(γ) = Gi

[
1 −t
0 1

]
G−1
i =

[
1− t

√
m −tm

t 1 + t
√
m

]
.

A simple computation reveals∥∥∥e−tT̃i(γ)
∥∥∥ ≤√Tr

(
e−tT̃i(γ)e−tT̃i(γ)T

)
=
√

2 + (m+ 1)2t2. (A.4)

To finish the proof of part (ii), let γ = 2
√
m. We compute

max
1≤i≤d

∥∥∥e−tT̃i(γ)
∥∥∥ = max

{
max
i:λi=m

∥∥∥e−tT̃i(γ)
∥∥∥ , max

i:λi>m

∥∥∥e−tT̃i(γ)
∥∥∥}

≤ max

{√
2 + (m+ 1)2t2, max

i:λi>m

(1 + λi)√
λi −m

}
,

where we used (A.3) and (A.4) in the last inequality. We conclude from (A.2) for part (ii).

Proof of Theorem 3. Consider a coupling (V (t), X(t)) and (Ṽ (t), X̃(t)) starting at (V (0), X(0))
and (V (0), X̃(0)) respectively in the same probability space with the same Brownian motion
Bt. This implies that

d

[
X(t)− X̃(t)

V (t)− Ṽ (t)

]
= −Hγ

[
X(t)− X̃(t)

V (t)− Ṽ (t)

]
dt.

It follows that [
X(t)− X̃(t)

V (t)− Ṽ (t)

]
= e−Hγt

[
X(0)− X̃(0)

0

]
,

and thus

‖X(t)− X̃(t)‖ ≤
∥∥∥∥[ X(t)− X̃(t)

V (t)− Ṽ (t)

]∥∥∥∥ ≤ ‖X(0)− X̃(0)‖ ·
∥∥e−Hγt∥∥ .

Assume that X̃ is stationary and follows π, and recall that X(0) is deterministic. Then,
we get

W2(πt,γ , π) ≤
∥∥e−Hγt∥∥(∫

Rd
‖X(0)− x‖2π(dx)

)1/2

.

Taking an infimum of the left-hand side over all couplings leads to

W2(πt,γ , π) ≤
∥∥e−Hγt∥∥W2(π0,γ , π),
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which using Lemma 1, proves parts (i) and (ii). To prove part (iii), we estimate

W2(π0,γ , π) ≤
(

2‖X(0)‖2 + 2

∫
Rd
‖x‖2π(dx)

)1/2

,

and moreover with ∇F (x) = Hx− b1, we get

〈x,∇F (x)〉 = 〈x,Hx〉 − 〈x, b1〉 ≥ m‖x‖2 − ‖b1‖‖x‖ ≥
m

2
‖x‖2 − ‖b1‖

2

2m
,

and thus F is (m/2, ‖b1‖2/(2m))-dissipative, and by (3.19) in [RRT17], we get∫
Rd
‖x‖2π(dx) ≤ 2

m

(
‖b1‖2

2m
+
d

β

)
.

By Lemma 1, the conclusion follows.

Proof of Theorem 8. Consider a coupling X(t) and X̃(t) starting at X(0) and X̃(0) re-
spectively in the same probability space with the same Brownian motion Bt. This implies
that

d(X(t)− X̃(t)) = −AJH(X(t)− X̃(t))dt.

It follows that
X(t)− X̃(t) = (X(0)− X̃(0))e−AJHt,

and thus
‖X(t)− X̃(t)‖ ≤ ‖X(0)− X̃(0)‖ ·

∥∥e−AJHt∥∥ .
Assume that X̃ is stationary and follows π, and X(0) is deterministic. Following the same
argument as in the proof of Theorem 3, we get

W2(πt,J , π) ≤ W2(π0,J , π) ·
∥∥e−AJHt∥∥ ≤ W2(π0,J , π) ·

(
2‖X(0)‖2 +

4

m

(
‖b1‖2

2m
+
d

β

))1/2

.

By Lemma 6, the conclusion follows.

B Proof of results in Section 4.1

B.1 Proof of Theorem 10

The main result we use to prove Theorem 10 is the following proposition. The proof of the
following result will be presented later in Section B.1.2.
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Proposition 21. Assume γ = 2
√
m. Fix any r > 0 and

0 < ε < min
{
εU1 , ε

U
2 , ε

U
3

}
,

where

εU1 :=

√
CH + 2 + (m+ 1)2

(CH + 2)m+ (m+ 1)2
r, (B.1)

εU2 := 2
√

2
(
CH + 2 + (m+ 1)2

)1/4 e−1/2r

m1/4
, (B.2)

εU3 :=

√
m

4L

(√
CH + 2 + m+1√

m
+

√
(CH+2)m+(m+1)

8
√
CH+2+(m+1)2

) . (B.3)

Consider the stopping time:

τ := inf
{
t ≥ 0 : ‖X(t)− x∗‖ ≥ ε+ re−

√
mt
}
.

For any initial point X(0) = x with ‖x− x∗‖ ≤ r, and

β ≥ 256(2CHm+ 4m+ (m+ 1)2)

mε2

(
d log(2) + log

(
2‖H2

√
m‖T + 1

δ

))
,

we have
Px
(
τ ∈ [T Urec, T Uesc]

)
≤ δ.

We are now ready to complete the proof of Theorem 10.

B.1.1 Completing the proof of Theorem 10

Assume that γ = 2
√
m. Let us compare the discrete dynamics (1.10)-(1.11) and the

continuous dynamics (1.7)-(1.8). Define:

Ṽ (t) = V0 −
∫ t

0
γṼ (bs/ηcη) ds−

∫ t

0
∇F

(
X̃ (bs/ηcη)

)
ds+

√
2γβ−1

∫ t

0
dBs, (B.4)

X̃(t) = X0 +

∫ t

0
Ṽ (bs/ηcη) ds. (B.5)

The process (Ṽ , X̃) defined in (B.4) and (B.5) is the continuous-time interpolation of the
iterates {(Vk, Xk)}. In particular, the joint distribution of {(Vk, Xk) : k = 1, 2, . . . ,K} is
the same as {(Ṽ (t), X̃(t)) : t = η, 2η, . . . ,Kη} for any positive integer K.
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It is derived in [GGZ18] that the relative entropy D(·‖·) between the law P̃Kη of
((Ṽ (t), X̃(t)) : t ≤ Kη) and the law PKη of ((V (t), X(t)) : t ≤ Kη) is upper bounded
as follows:

D
(
P̃Kη

∥∥∥PKη) ≤ βM2

2γ
CdvKη

2,

provided that η ≤ min
{

γ
K2

(d/β +A/β), γλ
2K1

}
, where Cdv is defined in Lemma 24. Using

Pinsker’s inequality, we obtain an upper bound on the total variation ‖ · ‖TV :∥∥∥P̃Kη − PKη
∥∥∥2

TV
≤ βM2

4γ
CdvKη

2.

Using a result about an optimal coupling (Theorem 5.2., [Lin92]), that is, given any two
random elements X ,Y of a common standard Borel space, there exists a coupling P of X
and Y such that

P(X 6= Y) ≤ ‖L(X )− L(Y)‖TV .

Hence, given any β > 0 and Kη ≤ T Uesc, we can choose

η ≤ 4γδ2

βM2CdvT Uesc

, (B.6)

so that there is a coupling of {(V (kη), X(kη)) : k = 1, 2, . . . ,K} and {(Vk, Xk) : k = 1, 2, . . . ,K}
such that

P(((V (η), X(η)), . . . , (V (Kη), X(Kη))) 6= ((V1, X1), . . . , (VK , XK)) ≤ δ. (B.7)

It follows that

P(((V1, X1), . . . , (VK , XK)) ∈ ·) ≤ P(((V (η), X(η)), . . . , (V (Kη), X(Kη))) ∈ ·) + δ.

Let us now complete the proof of Theorem 10. We need to show that

P ((X1, . . . , XK) ∈ A) ≤ δ,

where K = bη−1T Uescc and A := A1 ∩ A2, where

A1 :=

{
(x1, . . . , xK) ∈ (Rd)K : max

k≤η−1T Urec

‖xk − x∗‖
ε+ re−

√
mkη
≤ 1

2

}
,

A2 :=

{
(x1, . . . , xK) ∈ (Rd)K : max

η−1T Urec≤k≤K

‖xk − x∗‖
ε+ re−

√
mkη
≥ 1

}
.

We can choose β sufficiently large so that with probability at least 1 − δ/3, we have
either ‖X(t) − x∗‖ ≥ ε + re−

√
mt for some t ≤ T Urec or ‖X(t) − x∗‖ ≤ ε + re−

√
mt for all

t ≤ T Uesc. Moreover, for any K, η and β satisfying the conditions of the theorem, there
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exists a coupling of (X(η), . . . , X(Kη)) and (X1, . . . , XK) so that with probability 1− δ/3,
Xk = X(kη) for all k ∈ [K]. Then, by (B.6) and (B.7), we get

P((X1, . . . , XK) ∈ A) ≤ P((X(η), . . . , X(Kη)) ∈ A) +
δ

3
, (B.8)

provided that

η ≤ ηU3 :=
4γδ2

9βM2CdvT Uesc

. (B.9)

It remains to estimate the probability of P((X(η), . . . , X(Kη)) ∈ A1 ∩ A2) for the under-
damped Langevin diffusion. Partition the interval [0, T Urec] using the points 0 = t1 < t1 <
· · · < tdη−1T Urece = T Urec with tk = kη for k = 0, 1, . . . , dη−1T Urece − 1, and consider the event:

B :=

{
max

0≤k≤dη−1T Urece−1
max

t∈[tk,tk+1]
‖X(t)−X(tk+1)‖ ≤ ε

2

}
.

On the event {(X(η), . . . , X(Kη)) ∈ A1} ∩ B,

sup
t∈[0,T Urec]

‖X(t)− x∗‖
ε+ re−

√
mt

= max
0≤k≤dη−1T Urece−1

sup
t∈[tk,tk+1]

‖X(t)− x∗‖
ε+ re−

√
mt

≤ 1

2
+ max

0≤k≤dη−1T Urece−1
max

t∈[tk,tk+1]

1

ε
‖X(t)−X(tk+1)‖ < 1,

and thus

P((X(η), · · · , X(Kη)) ∈ A) ≤ P({(X(η), · · · , X(Kη)) ∈ A} ∩ B) + P(Bc)

≤ P(τ ∈ [T Urec, T Uesc]) + P(Bc)

≤ δ

3
+ P(Bc) , (B.10)

provided that (by applying Proposition 21 and Lemma 41) (with γ = 2
√
m):

β ≥ βU
1

:=
256(2CHm+ 4m+ (m+ 1)2)

mε2

(
d log(2) + log

(
6
√

4m+M2 + 1T + 3

δ

))
.

(B.11)
To complete the proof, we need to show that P(Bc) ≤ δ

3 in view of (B.8) and (B.10).
For any t ∈ [tk, tk+1], where tk+1 − tk = η, we have

‖X(t)−X(tk+1)‖ ≤
∫ tk+1

t
‖V (s)‖ds ≤ η‖V (tk+1)‖+

∫ tk+1

t
‖V (s)− V (tk+1)‖ds, (B.12)
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and

‖V (t)− V (tk+1)‖

≤ γ
∫ tk+1

t
‖V (s)‖ds+

∫ tk+1

t
‖∇F (X(s))‖ds+

√
2γβ−1‖Bt −Btk+1

‖

≤ γη‖V (tk+1)‖+ γ

∫ tk+1

t
‖V (s)− V (tk+1)‖ds

+M

∫ tk+1

t
‖X(s)−X(tk+1)‖ds+ η‖∇F (X(tk+1))‖+

√
2γβ−1‖Bt −Btk+1

‖

≤ γη‖V (tk+1)‖+ γ

∫ tk+1

t
‖V (s)− V (tk+1)‖ds

+M

∫ tk+1

t
‖X(s)−X(tk+1)‖ds+Mη‖X(tk+1)‖+Bη +

√
2γβ−1‖Bt −Btk+1

‖ ,

(B.13)

where the second inequality above used M -Lipschitz property of ∇F and the last inequality
above used Lemma 43. By adding the above two inequalities (B.12) and (B.13) together,
we get

‖X(t)−X(tk+1)‖+ ‖V (t)− V (tk+1)‖

≤ (1 + γ)η‖V (tk+1)‖+ (1 + γ)

∫ tk+1

t
‖V (s)− V (tk+1)‖ds

+M

∫ tk+1

t
‖X(s)−X(tk+1)‖ds+Mη‖X(tk+1)‖+Bη +

√
2γβ−1‖Bt −Btk+1

‖

≤ (1 + γ +M)

∫ tk+1

t
(‖V (s)− V (tk+1)‖+ ‖X(s)−X(tk+1)‖) ds

+ (1 + γ)η‖V (tk+1)‖+Mη‖X(tk+1)‖+Bη +
√

2γβ−1 sup
t∈[tk,tk+1]

‖Bt −Btk+1
‖.

By applying Gronwall’s inequality, we get

sup
t∈[tk,tk+1]

[‖X(t)−X(tk+1)‖+ ‖V (t)− V (tk+1)‖]

≤ e(1+γ+M)η

[
(1 + γ)η‖V (tk+1)‖+Mη‖X(tk+1)‖+Bη +

√
2γβ−1 sup

t∈[tk,tk+1]
‖Bt −Btk+1

‖

]
.

(B.14)

We have from Lemma 24 that for any u > 0,

P(‖V (tk+1)‖ ≥ u) ≤ supt>0 E‖V (t)‖2

u2
≤ Ccv
u2
, (B.15)
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and

P(‖X(tk+1)‖ ≥ u) ≤ supt>0 E‖X(t)‖2

u2
≤ Ccx
u2
, (B.16)

where Ccv, C
c
x are defined in Lemma 24. By Lemma 42, we have

P

(
sup

t∈[tk,tk+1]
‖Bt −Btk+1

‖ ≥ u

)
≤ 21/4e1/4e

− u2

4dη .

Therefore, we can infer from (B.14) that with K0 := dη−1T Urece,

P (Bc)

≤
K0−1∑
k=0

P

(
‖X(tk+1)‖ ≥ εe−(1+γ+M)η

8Mη

)
+

K0−1∑
k=0

P

(
‖V (tk+1)‖ ≥ εe−(1+γ+M)η

8(1 + γ)η

)

+

K0−1∑
k=0

P

(
B ≥ εe−(1+γ+M)η

8η

)
+

K0−1∑
k=0

P

(
sup

t∈[tk,tk+1]
‖Bt −Btk+1

‖ ≥ εe−(1+γ+M)η
√
β

8
√

2γ

)

≤ 64K0

ε2

(
M2Ccx + (1 + γ)2Ccv

)
· η2e2(1+γ+M)η (B.17)

+ 21/4e1/4K0 · exp

(
− 1

4dη

ε2e−2(1+γ+M)ηβ

128γ

)
(B.18)

+K0P

(
B ≥ εe−(1+γ+M)η

8η

)
, (B.19)

where the last inequality follows from (B.15), (B.16) and Lemma 42. We can choose η ≤ 1
so that

η ≤ ηU2 :=
δε2e−2(1+γ+M)

384(M2Ccx + (1 + γ)2Ccv)T Urec

, (B.20)

so that the term in (B.17) is less than δ/6, where Ccv, C
c
x are defined in Lemma 24, and

then we choose β so that

β ≥ βU
2

:=
512dηγ log(21/4e1/46δ−1T Urec/η)

ε2e−2(1+γ+M)η
, (B.21)

so that the term in (B.18) is also less than δ/6, and we can choose η so that η ≤ 1 and

η ≤ ηU1 :=
εe−(1+γ+M)

8B
, (B.22)

so that the term in (B.19) is zero.
To complete the proof, let us work on the leading orders of the constants. For the sake

of convenience, we hide the dependence on M and L and assume that M,L = O(1). We
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also assume that CH = O(1). Recall that 0 < ε ≤ min{εU1 , εU2 , εU3 }, where it is easy to
check that It is easy to check that

εU1 =

√
CH + 2 + (m+ 1)2

(CH + 2)m+ (m+ 1)2
r ≥ Ω

(
C

1/2
H r

C
1/2
H m1/2 +m+ 1

)
≥ Ω(r),

where we used m ≤M = O(1) and

εU2 = 2
√

2(CH + 2 + (m+ 1)2)1/4 e
−1/2r

m1/4
≥ Ω

(
(1 + C

1/4
H )r

m1/4

)
≥ Ω

( r

m1/4

)
,

and

εU3 =

√
m

4L

(√
CH + 2 + m+1√

m
+

√
(CH+2)m+(m+1)

8
√
CH+2+(m+1)2

) ≥ Ω

 √
m

L
(

1 + m+1√
m

+
√
m

m+1

)
 ≥ Ω(m),

where we used the fact that m+ 1 ≥ 2
√
m. Hence, we can take

ε ≤ min
{
O (r) ,O

( r

m1/4

)
,O(m)

}
.

Moreover, m ≤M = O(1). Hence, we can take

ε ≤ min {O(r),O(m)} .

Next, we recall the recurrence time:

T Urec = − 1√
m
W−1

(
−ε2√m

8r2
√
CH + 2 + (m+ 1)2

)
,

and since W−1(−x) ∼ log(1/x) for x→ 0+, and we assume CH = O(1), we get

T Urec = O
(

1√
m

log
( r

εm

))
≤ O

(
| log(m)|√

m
log
(r
ε

))
.

Next, we recall that stepsize η satisfies η ≤ min{1, ηU1 , ηU2 , ηU3 , ηU4 } and it is easy to
check that

ηU1 =
εe−(1+2

√
m+M)

8B
≥ Ω

(
εe−(2m1/2+M)

)
≥ Ω(ε),

and

ηU2 =
δε2e−2(1+2

√
m+M)

384(M2Ccx + (1 + 2
√
m)2Ccv)T Urec

≥ Ω

(
δε2e−(4m1/2+2M)

(M2Ccx + (1 +m)Ccv)T Urec

)
.
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Moreover, we have (note that R =
√
b/m in the definition of Ccx, C

c
v)

Ccx ≤ O

(
1 + 1

m + d
β

m

)
, Ccv ≤ O

(
1 +

1

m
+
d

β

)
,

together with m ≤M = O(1) implies that

ηU2 =
δε2e−2(1+2

√
m+M)

384(M2Ccx + (1 + 2
√
m)2Ccv)T Urec

≥ Ω

(
m2βδε2

(md+ β)T Urec

)
.

Moreover,

ηU3 =
8
√
mδ2

9βM2CdvT Uesc

≥ Ω

(
m3/2δ2

(md+ β)T Uesc

)
,

and

ηU4 = min

{
2
√
m

K2

d+A

β
,

√
mλ

K1

}
≥ min

{
Ω

(
m1/2β

d+ β

)
,Ω(m1/2β)

}

and the minimum between m1/2β
d+β and m1/2β is m1/2β

d+β . Hence, we can take

η ≤ min

{
O(ε),O

(
m2βδε2

(md+ β)T Urec

)
,O

(
m3/2δ2

(md+ β)T Uesc

)
,O

(
m1/2β

d+ β

)}

Finally, β satisfies β ≥ max{βU
1
, βU

2
}, and We have

βU
1

=
256(2CHm+ 4m+ (m+ 1)2)

mε2

(
d log(2) + log

(
6(4m+M2 + 1)1/2T + 3

δ

))

≤ O
(
d+ log((T + 1)/δ)

mε2

)
,

and

βU
2

=
1024dη

√
m log(21/4e1/46δ−1T Urec/η)

ε2e−2(1+2
√
m+M)η

≤ O

(
dηm1/2 log(δ−1T Urec/η)

ε2

)
,

where we used e2(1+2
√
m+M)η = eO(ε) = O(1).

Hence, we can take

β ≥ max

{
Ω

(
d+ log((T + 1)/δ)

mε2

)
,Ω

(
dηm1/2 log(δ−1T Urec/η)

ε2

)}
.

The proof is now complete.
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B.1.2 Proof of Proposition 21

In this section, we focus on the proof of Proposition 21. We adopt some ideas from
[BG03, TLR18]. We recall x∗ is a local minimum of F and H is the Hessian matrix:
H = ∇2F (x∗), and we write

X(t) = Y (t) + x∗.

Thus, we have the decomposition

∇F (X(t)) = HY (t)− ρ(Y (t)),

where ‖ρ(Y (t))‖ ≤ 1
2L‖Y (t)‖2 since the Hessian of F is L-Lipschitz (Lemma 1.2.4. [Nes13]).

Then, we have

dV (t) = −γV (t)dt− (H(Y (t))− ρ(Y (t)))dt+
√

2γβ−1dBt,

dY (t) = V (t)dt.

We can write it in terms of matrix form as:

d

[
V (t)
Y (t)

]
=

[
−γI −H
I 0

] [
V (t)
Y (t)

]
dt+

√
2γβ−1

[
I 0
0 0

]
dB

(2)
t +

[
ρ(V (t))

0

]
dt,

where B
(2)
t is a 2d-dimensional standard Brownian motion. Therefore, we have[

V (t)
Y (t)

]
= e−tHγ

[
V (0)
Y (0)

]
+
√

2γβ−1

∫ t

0
e(s−t)HγI(2)dB(2)

s +

∫ t

0
e(s−t)Hγ

[
ρ(V (s))

0

]
ds,

where

Hγ =

[
γI H
−I 0

]
, I(2) =

[
I 0
0 0

]
. (B.23)

Given 0 ≤ t0 ≤ t1, we define the matrix flow

Qt0(t) := e(t0−t)Hγ (B.24)

and we also define

Z(t) := e(t−t0)Hγ

[
V (t)
Y (t)

]
= Z0

t + Z1
t ,

where

Z0
t = e−t0Hγ

[
V (0)
Y (0)

]
+
√

2γβ−1

∫ t

0
e(s−t0)HγI(2)dB(2)

s , (B.25)

Z1
t =

∫ t

0
e(s−t0)Hγ

[
ρ(V (s))

0

]
ds. (B.26)
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Note that

Qt0(t1)Z0
t = e−t1Hγ

[
V (0)
Y (0)

]
+
√

2γβ−1

∫ t

0
e(s−t1)HγI(2)dB(2)

s

is a martingale. Before we proceed to the proof of Proposition 21, we state the following
lemma, which will be used in the proof of Proposition 21.

Lemma 22. Assume γ = 2
√
m. Define:

µt := e−tHγ (V (0), Y (0))T , (B.27)

Σt := 2γβ−1

∫ t

0
e(s−t)HγI(2)e(s−t)HT

γ ds. (B.28)

For any θ ∈
(

0, 2m
√
m

γ(2CHm+4m+(m+1)2)

)
, and h > 0 and any (V (0), Y (0)),

P
(

sup
t0≤t≤t1

‖Qt0(t1)Z0
t ‖ ≥ h

)
≤
(

1− θγ(2CHm+ 4m+ (m+ 1)2)

2m
√
m

)−d
e−

βθ
2

[h2−〈µt1 ,(I−βθΣt1 )−1µt1 〉].

Notice that Z0
t process is exactly the Ornstein-Uhlenbeck process (3.3) that we have

studied in Section 3. There, the emphasis is the convergence speed of this Ornstein-
Uhlenbeck process as time t goes to infinity, and the above Lemma 22 is about the tail
estimate on a finite time interval.

Finally, let us complete the proof of Proposition 21.

Proof of Proposition 21. Since ‖Y (0)‖ = ‖X(0)− x∗‖ ≤ r, we know that τ > 0. Fix some
T Urec ≤ t0 ≤ t1, such that t1 − t0 ≤ 1

2‖Hγ‖ . Then, for every t ∈ [t0, t1],

‖Y (t)‖ ≤
∥∥∥e(t1−t)HγQt0(t1)Zt

∥∥∥ ≤ e 1
2 ‖Qt0(t1)Zt‖ .

It follows that (with e−1/2 ≥ 1/2)

P(τ ∈ [t0, t1])

= P
(

sup
t0≤t≤t1∧τ

‖Y (t)‖
ε+ re−

√
mt
≥ 1, τ ≥ t0

)
≤ P

(
sup

t0≤t≤t1∧τ

‖Qt0(t1)Zt‖
ε+ re−

√
mt
≥ 1

2
, τ ≥ t0

)
≤ P

(
sup

t0≤t≤t1∧τ

‖Qt0(t1)Z0
t ‖

ε+ re−
√
mt
≥ c0, τ ≥ t0

)
+ P

(
sup

t0≤t≤t1∧τ

‖Qt0(t1)Z1
t ‖

ε+ re−
√
mt
≥ c1, τ ≥ t0

)
,

(B.29)
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where c0 + c1 = 1
2 and c0, c1 > 0. We will first bound the second term in (B.29) which will

turn out to be zero, and then use Lemma 22 to bound the first term in (B.29).
First, notice that Z1

t ≡ 0 in the quadratic case (Sec. 3) and the second term in (B.29) is
automatically zero. In the more general case, we will show that the second term in (B.29)
is also zero. On the event τ ∈ [t0, t1], for any 0 ≤ s ≤ t1 ∧ τ , we have

‖ρ(Y (s))‖ ≤ L

2
‖Y (s)‖2 ≤ L

2

(
ε+ re−

√
ms
)2
.

Therefore, for any t ∈ [t0, t1 ∧ τ ], by Lemma 1, we get∥∥Qt0(t1)Z1
t

∥∥
≤
∫ t

0

∥∥∥e(s−t1)Hγ
∥∥∥ · ‖ρ(Y (s))‖ds

≤ L

2

∫ t

0

√
CH + 2 + (m+ 1)2(t1 − s)2e(s−t1)

√
m
(
ε+ re−

√
ms
)2
ds

≤ L
∫ t

0

(√
CH + 2 + (m+ 1)(t1 − s)

)
e(s−t1)

√
m
(
ε2 + r2e−2

√
ms
)
ds

≤ L
∫ t1

0

(√
CH + 2 + (m+ 1)(t1 − s)

)
e(s−t1)

√
m
(
ε2 + r2e−2

√
ms
)
ds

≤ L√
m

((√
CH + 2 +

m+ 1√
m

)
ε2 +

√
CH + 2r2e−

√
mt1

)
+ L(m+ 1)r2

∫ t1

0
(t1 − s)e(s−t1)

√
me−2

√
msds

≤ L√
m

((√
CH + 2 +

m+ 1√
m

)
ε2 +

√
CH + 2r2e−

√
mt1 + (m+ 1)r2t1e

−t1
√
m

)
≤ L√

m

((√
CH + 2 +

m+ 1√
m

)
ε2 +

(√
(CH + 2)m+ (m+ 1)

)
r2t1e

−t1
√
m

)
≤ L√

m

(√
CH + 2 +

m+ 1√
m

+

√
(CH + 2)m+ (m+ 1)

8
√
CH + 2 + (m+ 1)2

)
ε2

where we used t1 ≥ t ≥ t0 ≥ T Urec ≥ 1√
m

, and t1e
−t1
√
m ≤ T Urece

−T Urec
√
m and the definition of

T Urec: √
CH + 2 + (m+ 1)2T Urece

−
√
mT Urec =

ε2

8r2
.

Consequently, if we take c1 = L√
m

(√
CH + 2 + m+1√

m
+

√
(CH+2)m+(m+1)

8
√
CH+2+(m+1)2

)
ε, then,

sup
t0≤t≤t1∧τ

‖Qt0(t1)Zt‖
ε+ re−

√
mt
≤ 1

ε
sup

t0≤t≤t1∧τ
‖Qt0(t1)Zt‖ ≤ c1,
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which implies that

P
(

sup
t0≤t≤t1∧τ

‖Qt0(t1)Z1
t ‖

ε+ re−
√
mt
≥ c1, τ ≥ t0

)
= 0.

Moreover, c0 = 1
2 − c1 = 1

2 −
L√
m

(√
CH + 2 + m+1√

m
+

√
(CH+2)m+(m+1)

8
√
CH+2+(m+1)2

)
ε > 1

4 since it is

assumed that ε <
√
m

4L

(
√
CH+2+m+1√

m
+

√
(CH+2)m+(m+1)

8
√
CH+2+(m+1)2

) .

Second, we will apply Lemma 22 to bound the first term in (B.29). By using V (0) = 0
and ‖Y (0)‖ ≤ r and the definition of µt1 and Σt1 in (B.27) and (B.28), we get〈

µt1 , (I − βθΣt1)−1µt1
〉

=
〈
e−t1Hγ (V (0), Y (0))T , (I − βθΣt1)−1e−t1Hγ (V (0), Y (0))T

〉
≤
(

1− θγ(2CHm+ 4m+ (m+ 1)2)

2m
√
m

)−1 (
CH + 2 + (m+ 1)2t21

)
e−2
√
mt1r2

≤ 2
(
(CH + 2)m+ (m+ 1)2

)
t21e
−2
√
mt1r2

≤ 1

32

(CH + 2)m+ (m+ 1)2

CH + 2 + (m+ 1)2

ε4

r2
≤ 1

32
ε2,

by choosing θ = m
√
m

γ(2CHm+4m+(m+1)2)
and t1 ≥ T Urec ≥ 1√

m
, and t1e

−t1
√
m ≤ T Urece

−T Urec ,

and using the definition
√
CH + 2 + (m+ 1)2T Urece

−
√
mT Urec = ε2

8r2
, and we also used ε ≤√

CH+2+(m+1)2

(CH+2)m+(m+1)2
r.

Then with the choice of h = (ε + re−
√
mt1)c0 and θ = m

√
m

γ(2CHm+4m+(m+1)2)
in Lemma

22, and using the fact that h = (ε+ re−
√
mt1)c0 ≥ εc0, we get

P
(

sup
t0≤t≤t1∧τ

‖Qt0(t1)Z0
t ‖

ε+ re−
√
mt
≥ c0, τ ≥ t0

)
≤ P

(
sup

t0≤t≤t1
‖Qt0(t1)Z0

t ‖ ≥
(
ε+ re−

√
mt1
)
c0

)

≤
(

1− θγ(2CHm+ 4m+ (m+ 1)2)

2m
√
m

)− 2d
2

· exp

(
−βθ

2

[
h2 − 〈µt1 , (I − βθΣt1)−1µt1〉

])
≤ 2d · exp

(
− βγ−1m

√
mε2

2(2CH + 4m+ (m+ 1)2)

(
c2

0 −
1

32

))
≤ 2d · exp

(
− βγ−1m

√
mε2

128(2CH + 4m+ (m+ 1)2)

)
.
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Thus for any t0 ≥ T Urec and t0 ≤ t1 ≤ t0 + 1
2‖Hγ‖ ,

P(τ ∈ [t0, t1]) ≤ 2d · exp

(
− βγ−1m

√
mε2

128(2CHm+ 4m+ (m+ 1)2)

)
.

Fix any T > 0 and recall the definition of the escape time T Uesc = T + T Urec. Partition
the interval [T Urec, T Uesc] using the points T Urec = t0 < t1 < · · · < td2‖Hγ‖T e = T Uesc with
tj = j/(2‖Hγ‖), then we have

P
(
τ ∈

[
T Urec, T Uesc

])
=

d2‖Hγ‖T e∑
j=0

P(τ ∈ [tj , tj+1])

≤ (2‖Hγ‖T + 1) · 2d · exp

(
− βγ−1m

√
mε2

128(2CHm+ 4m+ (m+ 1)2)

)
≤ δ,

provided that

β ≥ 128(2CHm+ 4m+ (m+ 1)2)γ

m
√
mε2

(
d log(2) + log

(
2‖Hγ‖T + 1

δ

))
.

Finally, plugging γ = 2
√
m into the above formulas and applying the bound on ‖Hγ from

Lemma 41, the conclusion follows.

B.1.3 Uniform L2 bounds

In this section, we state the uniform L2 bounds for the continuous time underdamped
Langevin dynamics ((1.7) and (1.8)) and the discrete time iterates ((1.10) and (1.11)) in
Lemma 24, which is a modification of Lemma 8 in [GGZ18]. The uniform L2 bound for
the discrete dynamics (1.10)-(1.11) is used to derive the relative entropy to compare the
laws of the continuous time dynamics and the discrete time dynamics, and the uniform L2

bound for the continuous dynamics (1.7)-(1.8) is used to control the tail of the continuous
dynamics in Section B.1.1.

Before we proceed, let us first introduce the following Lyapunov function (from the
paper [EGZ17]) which will be used in the proof the uniform L2 boundedness results for both
the continuous and discrete underdamped Langevin dynamics. We define the Lyapunov
function V as:

V(x, v) := βF (x) +
β

4
γ2(‖x+ γ−1v‖2 + ‖γ−1v‖2 − λ‖x‖2) , (B.30)

and λ is a positive constant less than 1/4 according to [EGZ17].
We will first show in the following lemma that we can find explicit constants λ ∈

(0,min(1/4,m/(M + γ2/2))) and A ∈ (0,∞) so that the drift condition (B.33) is satisfied.
The drift condition is needed in [EGZ17], which is applied to obtain the uniform L2 bounds
in [GGZ18] (Lemma 8) that implies the uniform L2 bounds in our current setting (the
following Lemma 24).

51



Lemma 23. Let us define:

λ =
1

2
min(1/4,m/(M + γ2/2)), (B.31)

A =
β

2

m

M + 1
2γ

2

(
B2

2M + γ2
+

b

m

(
M +

1

2
γ2

)
+A

)
, (B.32)

then the following drift condition holds:

x · ∇F (x) ≥ 2λ(F (x) + γ2‖x‖2/4)− 2A/β . (B.33)

The following lemma provides uniform L2 bounds for the continuous-time underdamped
Langevin diffusion process (X(t), V (t)) defined in (1.7)-(1.8) and discrete-time under-
damped Langevin dynamics (Xk, Vk) defined in (1.10)-(1.11).

Lemma 24 (Uniform L2 bounds). Suppose parts (i), (ii), (iii), (iv) of Assumption 9 and
the drift condition (B.33) hold. γ > 0 is arbitrary and λ, A are defined in (B.31) and
(B.32).

(i) It holds that

sup
t≥0

E‖X(t)‖2 ≤ Ccx :=

(
βM

2 + βγ2(2−λ)
4

)
R2 + βBR+ βA+ 3

4β‖V (0)‖2 + d+A
λ

1
8(1− 2λ)βγ2

,

(B.34)

sup
t≥0

E‖V (t)‖2 ≤ Ccv :=

(
βM

2 + βγ2(2−λ)
4

)
R2 + βBR+ βA+ 3

4β‖V (0)‖2 + d+A
λ

β
4 (1− 2λ)

,

(B.35)

(ii) For any stepsize η satisfying:

0 < η ≤ ηU4 := min

{
γ

K2
(d/β +A/β),

γλ

2K1

}
, (B.36)

where

K1 := max

{
32M2

(
1
2 + γ

)
(1− 2λ)βγ2

,
8
(

1
2M + 1

4γ
2 − 1

4γ
2λ+ γ

)
β(1− 2λ)

}
, (B.37)

K2 := 2B2

(
1

2
+ γ

)
, (B.38)
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and we have

sup
j≥0

E‖Xj‖2 ≤ Cdx :=

(
βM

2 + βγ2(2−λ)
4

)
R2 + βBR+ βA+ 3

4β‖V (0)‖2 + 4(d+A)
λ

1
8(1− 2λ)βγ2

,

(B.39)

sup
j≥0

E‖Vj‖2 ≤ Cdv :=

(
βM

2 + βγ2(2−λ)
4

)
R2 + βBR+ βA+ 3

4β‖V (0)‖2 + 4(d+A)
λ

β
4 (1− 2λ)

.

(B.40)

B.1.4 Proofs of auxiliary results

Proof of Lemma 22. Note that Qt0(t1)Z0
t is a 2d-dimensional martingale and by Doob’s

martingale inequality, for any h > 0,

P
(

sup
t0≤t≤t1

‖Qt0(t1)Z0
t ‖ ≥ h

)
≤ e−βθh2/2E

[
e(βθ/2)‖Qt0 (t1)Z0

t1
‖2
]

= e−βθh
2/2 1√

det(I − βθΣt1)
e
βθ
2
〈µt1 ,(I−βθΣt1 )−1µt1 〉, (B.41)

where the last line above uses the fact that Qt0(t1)Zt1 is a Gaussian random vector with
mean

µt1 = e−t1Hγ (V (0), Y (0))T ,

and covariance matrix

Σt1 = 2γβ−1

∫ t1

0

(
e(s−t1)HγI(2)

)(
e(s−t1)HγI(2)

)T
ds

= 2γβ−1

∫ t1

0
e−sHγI(2)e−sH

T
γ ds.

We next estimate det(I−βθΣt1) fron (B.41). Let us recall from Lemma 1 that if γ = 2
√
m,

then we recall from Lemma 1 that,∥∥e−tHγ∥∥ ≤√CH + 2 + (m+ 1)2t2 · e−
√
mt,

and thus, we have

‖Σt1‖ ≤ 2γβ−1

∫ t1

0

(
CH + 2 + (m+ 1)2t2

)
e−2
√
mtdt ≤ γβ−1 2CHm+ 4m+ (m+ 1)2

2m
√
m

.

Therefore we infer that the eigenvalues of I−βθΣ are bounded below by 1−θ γ(2CHm+4m+(m+1)2)
2m
√
m

.

The conclusion then follows from (B.41).
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Proof of Lemma 23. By Assumption 9 (iii), x ·∇F (x) ≥ m‖x‖2− b. Thus in order to show
the drift condition (B.33), it suffices to show that

m‖x‖2 − b− 2λ(F (x) + γ2‖x‖2/4) ≥ −2A/β. (B.42)

Given the definition of λ in (B.31), by Lemma 43, we get

m‖x‖2 − b− 2λ(F (x) + γ2‖x‖2/4)

≥ m‖x‖2 − b− m

M + 1
2γ

2
(F (x) + γ2‖x‖2/4)

≥
mM + 1

4mγ
2

M + 1
2γ

2
‖x‖2 − b− m

M + 1
2γ

2

(
M

2
‖x‖2 +B‖x‖+A

)
=

m

M + 1
2γ

2

(
1

2
M‖x‖2 +

1

4
γ2‖x‖2 −B‖x‖ − b

m

(
M +

1

2
γ2

)
−A

)
≥ m

M + 1
2γ

2

(
− B2

2M + γ2
− b

m

(
M +

1

2
γ2

)
−A

)
= −2A/β,

by the definition of A in (B.32). Hence, (B.42) holds and the proof is complete.

Proof of Lemma 24. According to Lemma 8 in [GGZ18],

sup
t≥0

E‖X(t)‖2 ≤
∫
R2d V(x, v)dµ0(x, v) + d+A

λ
1
8(1− 2λ)βγ2

,

sup
t≥0

E‖V (t)‖2 ≤
∫
R2d V(x, v)dµ0(x, v) + d+A

λ
β
4 (1− 2λ)

,

where V is the Lyapunov function defined in (B.30) and µ0 is the initial distribution of
(X(0), V (0)) and in our case, µ0 = δ(X(0),V (0)) and ‖X(0)‖ ≤ R and V (0) ∈ Rd, and for

any 0 < η ≤ min
{

γ
K2

(d/β +A/β), γλ
2K1

}
with K1 and K2 given in (B.37) and (B.38), 17

and according to Lemma 8 in [GGZ18], we also have

sup
j≥0

E‖Xj‖2 ≤
∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
1
8(1− 2λ)βγ2

,

sup
j≥0

E‖Vj‖2 ≤
∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
β
4 (1− 2λ)

.

17Note that in the definition of K1,K2 in [GGZ18], there is a constant δ, which is simply zero, in the
context of the current paper.
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We recall from (B.30) that V(x, v) = βF (x) + β
4γ

2(‖x + γ−1v‖2 + ‖γ−1v‖2 − λ‖x‖2), and
‖X(0)‖ ≤ R and V (0) ∈ Rd. By Lemma 43, we get

V(x, v) ≤ βM

2
‖x‖2 + βB‖x‖+ βA+

β

4
γ2(‖x+ γ−1v‖2 + ‖γ−1v‖2 − λ‖x‖2) ,

so that

V(X(0), V (0))

=
βM

2
‖X(0)‖2 + βB‖X(0)‖+ βA+

β

4
γ2(2‖X(0)‖2 + 3γ−2‖V (0)‖2 − λ‖X(0)‖2)

≤
(
βM

2
+
βγ2(2− λ)

4

)
R2 + βBR+ βA+

3

4
β‖V (0)‖2.

Hence, the conclusion follows.

C Proofs of results in Section 4.2

C.1 Proof of Theorem 15

The proof of Theorem 15 is similar to the proof of Theorem 10. For brevity, we omit some
of the details, and only outline the key steps and the propositions and lemmas used for the
proof of Theorem 15.

Proposition 25. Fix any r > 0 and 0 < ε < min{εJ1 , εJ2 }, where

εJ1 :=
mJ(ε̃)

4CJ(ε̃)(1 + ‖J‖)L(1 + 1
64CJ (ε̃)2

)
, εJ2 := 8rCJ(ε̃). (C.1)

Consider the stopping time:

τ := inf
{
t ≥ 0 : ‖X(t)− x∗‖ ≥ ε+ re−mJ (ε̃)t

}
.

For any initial point X(0) = x with ‖x− x∗‖ ≤ r, and

β ≥ 128CJ(ε̃)2

mJ(ε̃)ε2

(
d

2
log(2) + log

(
2(1 + ‖J‖)MT + 1

δ

))
,

we have
Px
(
τ ∈ [T Jrec, T Jesc]

)
≤ δ.
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C.1.1 Completing the proof of Theorem 15

We first compare the discrete dynamics (1.13) and the continuous dynamics (1.12). Define:

X̃(t) = X0 −
∫ t

0
AJ

(
∇F (X̃(bs/ηcη))

)
ds+

√
2γβ−1

∫ t

0
dBs. (C.2)

The process X̃ defined in (C.2) is the continuous-time interpolation of the iterates {Xk}.
In particular, the joint distribution of {Xk : k = 1, 2, . . . ,K} is the same as {X̃(t) : t =
η, 2η, . . . ,Kη} for any positive integer K.

By following Lemma 7 in [RRT17] and apply the uniform L2 bounds for Xk in Corollary
31 provided that the stepsize η is sufficiently small (we apply the bound ‖AJ‖ ≤ 1 + ‖J‖
to Corollary 31)

η ≤ ηJ4 :=
1

M(1 + ‖J‖)2
, (C.3)

we will obtain an upper bound on the relative entropy D(·‖·) between the law P̃Kη of
(X̃(t) : t ≤ Kη) and the law PKη of (X(t) : t ≤ Kη), and by Pinsker’s inequality an upper
bound on the total variation ‖ · ‖TV as well. More precisely, we have∥∥∥P̃Kη − PKη

∥∥∥2

TV
≤ 1

2
D
(
P̃Kη

∥∥∥PKη) ≤ 1

2
C1Kη

2, (C.4)

where (we use the bound ‖AJ‖ ≤ 1 + ‖J‖)

C1 := 6(β((1 + ‖J‖)2M2Cd +B2) + d)(1 + ‖J‖)2M2, (C.5)

where Cd is defined in (C.19).
Let us now complete the proof of Theorem 15. We need to show that

P ((X1, . . . , XK) ∈ A) ≤ δ,

where K = bη−1T Jescc and A := A1 ∩ A2:

A1 :=

{
(x1, . . . , xK) ∈ (Rd)K : max

k≤η−1T Jrec

‖xk − x∗‖
ε+ re−mJ (ε̃)kη

≤ 1

2

}
,

A2 :=

{
(x1, . . . , xK) ∈ (Rd)K : max

η−1T Jrec≤k≤K

‖xk − x∗‖
ε+ re−mJ (ε̃)kη

≥ 1

}
.

Similar to the proof in Section B.1.1 and by (C.4), we get

P((X1, . . . , XK) ∈ A) ≤ P((X(η), . . . , X(Kη)) ∈ A) +
δ

3
, (C.6)

provided that

η ≤ ηJ3 :=
2δ2

9C1T Jesc

. (C.7)
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It remains to estimate the probability of P((X(η), . . . , X(Kη)) ∈ A1 ∩ A2) for the non-
reversible Langevin diffusion. Partition the interval [0, T Jrec] using the points 0 = t1 < t1 <
· · · < tdη−1T Jrece = T Jrec with tk = kη for k = 0, 1, . . . , dη−1T Jrece − 1, and consider the event:

B :=

{
max

0≤k≤dη−1T Jrece−1
max

t∈[tk,tk+1]
‖X(t)−X(tk+1)‖ ≤ ε

2

}
.

Similar to the proof in Section B.1.1, we get

P((X(η), · · · , X(Kη)) ∈ A) ≤ δ

3
+ P(Bc) , (C.8)

provided that (by applying Proposition 25):

β ≥ βJ
1

:=
128CJ(ε̃)2

mJ(ε̃)ε2

(
d

2
log(2) + log

(
6(1 + ‖J‖)MT + 3

δ

))
. (C.9)

To complete the proof, we need to show that P(Bc) ≤ δ
3 in view of (C.6) and (C.8).

For any t ∈ [tk, tk+1], where tk+1 − tk = η, we have

‖X(t)−X(tk+1)‖

≤
∫ tk+1

t
‖AJ∇F (X(s))‖ds+

√
2β−1‖Bt −Btk+1

‖

≤ ‖AJ‖M
∫ tk+1

t
‖X(s)−X(tk+1)‖ds+ η‖AJ∇F (X(tk+1))‖+

√
2β−1‖Bt −Btk+1

‖

≤ ‖AJ‖M
∫ tk+1

t
‖X(s)−X(tk+1)‖ds

+ η‖AJ‖ · (M‖X(tk+1)‖+B) +
√

2β−1‖Bt −Btk+1
‖ .

By Gronwall’s inequality, we get the key estimate:

sup
t∈[tk,tk+1]

‖X(t)−X(tk+1)‖

≤ eη‖AJ‖M
[
η‖AJ‖ · (M‖X(tk+1)‖+B) +

√
2β−1 sup

t∈[tk,tk+1]
‖Bt −Btk+1

‖

]
.

Then, by following the same argument as in Section B.1.1 and also apply ‖AJ‖ ≤ 1 + ‖J‖,
we can show that P(Bc) ≤ δ

3 provided that η ≤ 1 and

η ≤ ηJ1 :=
εe−(1+‖J‖)M

8(1 + ‖J‖)B
, (C.10)
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and

η ≤ ηJ2 :=
δε2e−2(1+‖J‖)M

384(1 + ‖J‖)2M2CcT Jrec

, (C.11)

where Cc is defined in (C.18) and

β ≥ βJ
2

:=
512dη log(21/4e1/46δ−1T Jrec/η)

ε2e−2(1+‖J‖)Mη
. (C.12)

To complete the proof, we need work on the leading orders of the constants. We treat
‖J‖, M , L as constant. The argument is similar to the argument in the proof of Theorem
10 and is thus omitted here. The proof is now complete.

C.1.2 Proof of Proposition 25

Before we proceed to the proof of Proposition 25, let us first state the following two lemmas
that will be used in the proof of Proposition 25.

Lemma 26. For any θ ∈ (0,
λJ1−ε̃

(CJ (ε̃))2
), h > 0 and y0 ∈ Rd,

P
(

sup
t0≤t≤t1

∥∥Qt0(t1)Z0
t

∥∥ ≥ h) ≤ (1− θ (CJ(ε̃))2

λJ1 − ε̃

)−d/2
e−

βθ
2

[h2−〈µt1 ,(I−βθΣt1 )−1µt1 〉],

where Qt0(t1) is defined in (C.14), Z0
t is defined in (C.15), and

µt := e−tAJHy0, Σt := 2β−1

∫ t

0
e−s(AJH)e−s(AJH)T ds. (C.13)

Lemma 27. Given t0 ≤ t ≤ (t1 ∧ τ), where τ is the stopping time defined in Proposition
25, we have

∥∥Qt0(t1)Z1
t

∥∥ ≤ CJ(ε̃)‖AJ‖L
2

∫ t

0
e(s−t1)mJ (ε̃)

(
ε+ re−mJ (ε̃)s

)2
ds,

where Qt0(t1) is defined in (C.14), and Z1
t is defined in (C.16).

Proof of Proposition 25. We recall x∗ is a local minimum of F and H is the Hessian matrix:
H = ∇2F (x∗), and we write

X(t) = Y (t) + x∗.

Thus, we have the decomposition

∇F (X(t)) = HY (t)− ρ(Y (t)),
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where ‖ρ(Y (t))‖ ≤ 1
2L‖Y (t)‖2 since the Hessian of F is L-Lipschitz (Lemma 1.2.4. [Nes13]).

This implies that

dY (t) = −AJHY (t)dt+AJρ(Y (t))dt+
√

2β−1dBt.

Thus, we get

Y (t) = e−tAJHY (0) +
√

2β−1

∫ t

0
e(s−t)AJHdBs +

∫ t

0
e(s−t)AJHAJρ(Y (s))ds.

Given 0 ≤ t0 ≤ t1, we define the matrix flow

Qt0(t) := e(t0−t)AJH , (C.14)

and Zt := e(t−t0)AJHYt so that

Zt = e−t0AJHY (0) +
√

2β−1

∫ t

0
e(s−t0)AJHdBs +

∫ t

0
e(s−t0)AJHAJρ(Y (s))ds.

We define the decomposition Zt = Z0
t + Z1

t , where

Z0
t = e−t0AJHY (0) +

√
2β−1

∫ t

0
e(s−t0)AJHdBs, (C.15)

Z1
t =

∫ t

0
e(s−t0)AJHAJρ(Y (s))ds. (C.16)

It follows that for any t0 ≤ t ≤ t1,

Qt0(t1)Z1
t =

∫ t

0
e(s−t1)AJHAJρ(Y (s))ds,

Qt0(t1)Z0
t = e−t1AJHY (0) +

√
2β−1

∫ t

0
e(s−t1)AJHdBs.

The rest of the proof is similar to the proof of Proposition 21. We apply Lemma 27 to
bound the term Qt0(t1)Z1

t and apply Lemma 26 to bound the term Qt0(t1)Z0
t . By letting

γ = 1 in Proposition 21 and replacing d by d/2 due to Lemma 26, and ‖Hγ‖ by ‖AJH‖
and using the bounds ‖AJ‖ ≤ (1 + ‖J‖) and ‖AJH‖ ≤ (1 + ‖J‖)M , we obtain the desired
result in Proposition 25.

C.1.3 Uniform L2 bounds

In this section we establish uniform L2 bounds for both the continuous time dynamics
(1.12) and discrete time dynamics (1.13). The main idea of the proof is to use Lyapunov
functions. Our local analysis result relies on the approximation of the continuous time
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dynamics (1.12) by the discrete time dynamics (1.13). The uniform L2 bound for the
discrete dynamics (1.13) is used to derive the relative entropy to compare the laws of the
continuous time dynamics and the discrete time dynamics, and the uniform L2 bound for
the continuous dynamics (1.12) is used to control the tail of the continuous dynamics in
Section C.1.1. We first recall the continuous-time dynamics from (1.12):

dX(t) = −AJ(∇F (X(t)))dt+
√

2β−1dBt, AJ = I + J,

where J is a d× d anti-symmetric matrix, i.e. JT = −J . The generator of this continuous
time process is given by

L = −AJ∇F · ∇+ β−1∆ (C.17)

Lemma 28. Given X(0) = x ∈ Rd,

E[F (X(t))] ≤ F (x) +
B

2
+A+

b(M +B)

m
+

2Mβ−1d(M +B)

m2
.

Since F has at most the quadratic growth (due to Lemma 43), we immediately have
the following corollary.

Corollary 29. Given ‖X(0)‖ ≤ R =
√
b/m,

E[‖X(t)‖2] ≤ Cc :=
MR2 + 2BR+B + 4A

m
+

2b(M +B)

m2
+

4Mβ−1d(M +B)

m3
+

b

m
log 3.

(C.18)

We next show uniform L2 bounds for the discrete iterates Xk, where we recall from
(1.13) that the non-reversible Langevin dynamics is given by:

Xk+1 = Xk − ηAJ(∇F (Xk)) +
√

2ηβ−1ξk.

Lemma 30. Given that η ≤ 1
M‖AJ‖2 , we have

Ex[F (Xk)] ≤ F (x) +
B

2
+A+

4(M +B)Mβ−1d

m2
+

(M +B)b

m
.

Since F has at most the quadratic growth (due to Lemma 43), we immediately have
the following corollary.

Corollary 31. Given that η ≤ 1
M‖AJ‖2 and ‖X(0)‖ ≤ R =

√
b/m, we have

E[‖Xk‖2] ≤ Cd :=
MR2 + 2BR+B + 4A

m
+

8(M +B)Mβ−1d

m3
+

2(M +B)b

m2
+

b

m
log 3.

(C.19)
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C.1.4 Proofs of auxiliary results

Proof of Lemma 26. By following the proof of Lemma 22. We get

P
(

sup
t0≤t≤t1

∥∥Qt0(t1)Z0
t

∥∥ ≥ h) ≤ 1√
det(I − βθΣt1)

e−
βθ
2

[h2−〈µt1 ,(I−βθΣt1 )−1µt1 〉],

Recall from Lemma 6 that for any ε̃ > 0, there exists some CJ(ε̃) such that for every t ≥ 0,∥∥e−tAJH∥∥ ≤ CJ(ε̃)e−(λJ1−ε̃)t,

Hence, by the definition of Σt from (C.13), we get

‖Σt‖ ≤ 2β−1

∫ ∞
0

(CJ(ε̃))2e−2(λJ1−ε̃)tdt =
β−1(CJ(ε̃))2

λJ1 − ε̃
.

The rest of the proof follows similarly as in the proof of Lemma 22.

Proof of Lemma 27. Note that

∥∥Qt0(t1)Z1
t

∥∥ ≤ ∫ t

0

∥∥∥e(s−t1)AJH
∥∥∥ ‖AJ‖ ‖ρ(Y (s))‖ ds,

and by applying ‖ρ(Y (t))‖ ≤ 1
2L‖Y (t)‖2 and Lemma 6, and t0 ≤ t ≤ (t1 ∧ τ) and the

definition of the stopping time τ in Proposition 25, we get the desired result.

Proof of Lemma 28. Note that if we can show that F (x) is a Lyapunov function for X(t):

LF (x) ≤ −ε1F (x) + b1, (C.20)

for some ε1, b1 > 0, then

E[F (X(t))] ≤ F (x) +
b1
ε1
.

Let us first prove this. Applying Ito formula to eε1tF (X(t)), we obtain from Dynkin formula
and the drift condition (C.20) that for tK := min{t, τK} with τK be the exit time of X(t)
from a ball centered at 0 with radius K with X(0) = x,

E[eε1tKF (X(tK))] ≤ F (x) + E
[∫ tK

0
b1e

ε1sds

]
≤ F (x) +

∫ t

0
b1e

ε1sds ≤ F (x) +
b1
ε1
· eε1t.

Let K →∞, then we can infer from Fatou’s lemma that for any t:

E
[
eε1tF (X(t))

]
≤ F (x) +

b1
ε1
· eε1t.
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Hence, we have

E[F (X(t))] ≤ F (x) +
b1
ε1
.

Next, let us prove (C.20). By the definition of L in (C.17), we can compute that

LF (x) = −AJ∇F (x) · ∇F (x) + β−1∆F (x)

= −‖∇F (x)‖2 + β−1∆F (x),

since J is anti-symmetric so that 〈∇F (x), J∇Fx〉 = 0. Moreover,

‖x‖ · ‖∇F (x)‖ ≥ 〈x,∇F (x)〉 ≥ m‖x‖2 − b, (C.21)

implies that

‖∇F (x)‖ ≥ m‖x‖ − b

‖x‖
≥ 1

2
m‖x‖, (C.22)

provided that ‖x‖ ≥
√

2b/m, and thus

LF (x) ≤ −m
2

4
‖x‖2 + β−1∆F (x) ≤ −m

2

4
‖x‖2 +

mb

2
+ β−1∆F (x), (C.23)

for any ‖x‖ ≥
√

2b/m. On the other hand, for any ‖x‖ ≤
√

2b/m, we have

LF (x) ≤ β−1∆F (x) ≤ −m
2

4
‖x‖2 +

mb

2
+ β−1∆F (x). (C.24)

Hence, for any x ∈ Rd,

LF (x) ≤ −m
2

4
‖x‖2 +

mb

2
+ β−1∆F (x). (C.25)

Next, recall that F is M -smooth, and thus

∆F (x) ≤Md.

Finally, by Lemma 43,

F (x) ≤ M

2
‖x‖2 +B‖x‖+A ≤ M +B

2
‖x‖2 +

B

2
+A.

Therefore, we have

LF (x) ≤ − m2

2(M +B)
F (x) +

m2(B2 +A)

2(M +B)
+
mb

2
+Mβ−1d.

Hence, the proof is complete.
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Proof of Corollary 29. Recall from Lemma 43 that

F (x) ≥ m

2
‖x‖2 − b

2
log 3,

which implies that

‖x‖2 ≤ 2

m
F (x) +

b

m
log 3.

It then follows from Lemma 28 that

E[‖X(t)‖2] ≤ 2

m
F (x) +

B

m
+

2A

m
+

2b(M +B)

m2
+

4Mβ−1d(M +B)

m3
+

b

m
log 3.

Recall that ‖X(0)‖ = ‖x‖ ≤ R and by Lemma 43 we get F (x) ≤ M
2 ‖x‖

2 +B‖x‖+A, and
thus

E[‖X(t)‖2] ≤ Cc =
MR2 + 2BR+B + 4A

m
+

2b(M +B)

m2
+

4Mβ−1d(M +B)

m3
+

b

m
log 3.

Proof of Lemma 30. Suppose we have

Ex[F (X1)]− F (x)

η
≤ −ε2F (x) + b2, (C.26)

uniformly for small η, where ε2, b2 are postive constants that are independent of η, then
we will first show below that

Ex[F (Xk)] ≤ F (x) +
b2
ε2
.

We will use the discrete Dynkin’s formula (see, e.g. [MT92, Section 4.2]). Let Fi denote
the filtration generated by X0, . . . , Xi. Note {Xk : k ≥ 0} is a time-homogeneous Markov
process, so the drift condition (C.26) implies that

E[F (Xi)|Fi−1] ≤ (1− ηε2)F (Xi−1) + b2.

Then by letting r = 1/(1− ηε2), we obtain

E [rF (Xi)|Fi−1] ≤ F (Xi−1) + rb2.

Then we can compute that

E
[
riF (Xi)|Fi−1

]
− ri−1F (Xi−1) = ri−1 · [E[rF (Xi)|Fi−1]− F (Xi−1)] ≤ rib2. (C.27)
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Define the stopping time τk,K = min{k, inf{i : |Xi| ≥ K}}, where K is a positive integer,
so that Xi is essentially bounded for i ≤ τk,K . Applying the discrete Dynkin’s formula
(see, e.g. [MT92, Section 4.2]), we have

Ex
[
rτk,KF (Xτk,K )

]
= Ex [F (X0)] + E

[τk,K∑
i=1

(
E[riF (Xi)|Fi−1]− ri−1F (Xi−1)

)]
.

Then it follows from (C.27) that

Ex
[
rτk,KF (Xτk,K )

]
≤ F (x) + b2η

k∑
i=1

ri.

As τk,K → k almost surely as K →∞, we infer from Fatou’s Lemma that

Ex
[
rkF (Xk)

]
≤ F (x) + b2η

k∑
i=1

ri,

which implies that for all k,

Ex [F (Xk)] ≤ F (x) +
b2η

r − 1
= F (x) +

b2(1− η2ε2)

ε2
≤ F (x) +

b2
ε2
,

as r = 1/(1− η2ε2). Hence we have

Ex [F (Xk)] ≤ F (x) +
b2
ε2
.

It remains to prove (C.26). Note that as ∇F is Lipschitz continuous with constant M
so that:

F (y) ≤ F (x) +∇F (x)(y − x) +
M

2
‖y − x‖2.

Therefore,

Ex[F (X1)]− F (x)

η
=

1

η

(
Ex
[
F (x− ηAJ(∇F (x)) +

√
2ηβ−1ξ0)

]
− F (x)

)
≤ −∇F (x)AJ∇F (x) +

M

2η
Ex
[∥∥∥−ηAJ(∇F (x)) +

√
2ηβ−1ξ0

∥∥∥2
]

= −‖∇F (x)‖2 +
M

2
η‖AJ∇F (x)‖2 +Mβ−1d

≤ −1

2
‖∇F (x)‖2 +Mβ−1d ,
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provided that M
2 ‖AJ‖

2η ≤ 1
2 . Similar to the arguments in (C.21)-(C.25), we get

Ex[F (X1)]− F (x)

η
≤ −m

2

8
‖x‖2 +Mβ−1d+

mb

4
.

Finally, by Lemma 43,

F (x) ≤ M

2
‖x‖2 +B‖x‖+A ≤ M +B

2
‖x‖2 +

B

2
+A.

Therefore, we have

Ex[F (X1)]− F (x)

η
≤ − m2

4(M +B)
F (x) +

m2(B2 +A)

4(M +B)
+Mβ−1d+

mb

4
.

Hence, the proof is complete.

Proof of Corollary 31. The proof is similar to the proof of Corollary 29 and is thus omitted.

D Proofs of results in Section 5

Proof of Proposition 19. Write u as the corresponding eigenvector of AJLσ for the eigen-
value −µ∗J < 0, so we have

AJLσu = −µ∗Ju. (D.1)

Then it follows that

(−µ∗J)u∗Lσu = u∗Lσ(−µ∗Ju) = u∗LσAJLσu = u∗(Lσ)TAJLσu = |Lσu|2 + u∗(Lσ)TJLσu,

where u∗ denotes the conjugate transpose of u, (Lσ)T denotes the transpose of Lσ, and
(Lσ)T = Lσ as Lσ is a real symmetric matrix. It is easy to see that u∗Lσu is a real number as
(u∗Lσu)∗ = u∗Lσu. In addition, u∗(Lσ)TJLσu is pure imaginary, since (u∗(Lσ)TJLσu)∗ =
u∗(Lσ)TJTLσu = −u∗(Lσ)TJLσu by the fact that J is an anti-symmetric real matrix.
Hence, we deduce that

u∗(Lσ)TJLσu = 0,

and it implies that
(−µ∗J)u∗Lσu = |Lσu|2. (D.2)

Note u∗Lσu 6= 0 as otherwise 0 becomes an eigenvalue of Lσ from (D.2), which is a contra-
diction. In fact, we obtain from (D.2) that −u∗Lσu > 0 as µ∗J > 0 and |Lσu|2 > 0.

Then together with the decomposition Lσ = STDS from (5.10) we obtain

µ∗J =
|Lσu|2

−u∗Lσu
=

u∗S∗D2Su

−u∗S∗DSu
=

∑d
i=1 µ

2
i |(Su)i|2∑d

i=1−µi|(Su)i|2
, (D.3)
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where (Su)i denotes the i-th component of the vector Su. Since µ1 < 0 < µ2 < . . . <
µd, we then have (Su)1 6= 0 as otherwise −u∗Lσu =

∑n
i=1−µi|(Su)i|2 ≤ 0, which is a

contradiction. Therefore, we conclude from (D.3) that

µ∗J ≥ |µ1| = µ∗(σ). (D.4)

The equality µ∗J = |µ1| = µ∗(σ) is attained if and only if (Su)i = 0 for i = 2, . . . , n.
Or equivalently if and only if the vector Su = ae1 where a is a non-zero constant and
e1 = [1 0 . . . 0]T is the first basis vector. Since S−1 = ST , this is also equivalent to u = av
where v = ST e1 is an eigenvector of Lσ corresponding to the eigenvalue µ1. Since u and
v are related up to a constant, this is the same as saying v is an eigenvector of AJLσ
satisfying (D.1). Since v is also an eigenvalue of Lσ and J being anti-symmetric, has only
purely imaginary eigenvalues except a zero eigenvalue, this is if and only if Jv = 0. In
other words, the equality µ∗J = |µ1| = µ∗(σ) is attained if and only if the eigenvector of Lσ
corresponding to the negative eigenvalue µ1 is an eigenvector of J for the eigenvalue 0.

We note finally that Equation (5.11) then readily follows from (5.8) and (D.4).

Proof of Proposition 20. Write τβ,na1→a2 for the first time that the continuous-time dynamics
{X(t)} starting from a1 to exit the region Dn. Then by monotone convergence theorem,
we have

lim
R→∞

E
[
τβ,na1→a2

]
= E

[
τβa1→a2

]
.

Hence, for fixed ε > 0, one can choose a sufficiently large n such that∣∣∣E [τβ,na1→a2

]
− E

[
τβa1→a2

]∣∣∣ < ε. (D.5)

We next control the expected difference between the exit times τ̂β,na1→a2 of the discrete
dynamics, and τβ,na1→a2 of the continuous dynamics, from the bounded domain Dn. For
fixed ε and large n, we can infer from [GM05, Theorem 4.2] that18, for sufficiently small
stepsize η ≤ η̄(ε, n, β), ∣∣∣E [τ̂β,na1→a2

]
− E

[
τβ,na1→a2

]∣∣∣ < ε. (D.6)

Together with (D.5), we obtain for η sufficiently small,∣∣∣E [τ̂β,na1→a2

]
− E

[
τβa1→a2

]∣∣∣ < 2ε.

The proof is therefore complete.

18The Assumption (H2’) in Theorem 4.2 of [GM05] can be readily verified in our setting: for both
reversible and non-reversible SDE, the drift and diffusion coefficients are clearly Lipschitz; the diffusion
matrix is uniformly elliptic; and the domain Dn is bounded and it satisfies the exterior cone condition.
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E Recurrence and escape times for underdamped Langevin
dynamics with small friction

In this section, we investigate the local analysis results for the underdamped Langevin
dynamics (1.10)-(1.11) when the friction coefficient γ is small, and in particular, we assume
that 0 < γ < 2

√
m.

E.1 Main results

Theorem 32. Fix γ < 2
√
m, δ ∈ (0, 1) and r > 0. Assume

0 < ε < εU := min


√
m(1− ε̂)

4Cε̂L(1 + 1
64C2

ε̂
)
, 8rCε̂

 = min

{
O (m) ,O

(
r√
m

)}
,

where ε̂ and Cε̂ are defined in (3.8), and we assumed that ε̂ = Ω(1) and thus Cε̂ is of order
m−1/2. Define the recurrence time

T Urec :=
2√

m(1− ε̂)
log

(
8rCε̂
ε

)
= O

(
1√
m

log
( r

εm

))
, (E.1)

and we also define the escape time

T Uesc := T Urec + T ,

for any arbitrary T > 0.
Consider an arbitrary initial point x for the underdamped Langevin dynamics and a

local minimum x∗ at a distance at most r. Assume that the stepsize η satisfies

η ≤ ηU = min

{
O(ε),O

(
m2βδε2

(md+ β)T Urec

)
,O

(
m3/2δ2

(md+ β)T Uesc

)
,O

(
m1/2β

d+ β

)}
,

where ηU is more formally defined in Table 1 and β satisfies

β ≥ βU = max

{
Ω

(
(d+ log((T + 1)/δ))C2

ε̂√
m(1− ε̂)ε2

)
,Ω

(
dηm1/2 log(δ−1T Urec/η)

ε2

)}
,

where more formally βU = max
{
βU

3
, βU

2

}
and βU

2
is defined in Table 1 and

βU
3

:=
128γC2

ε̂√
m(1− ε̂)ε2

(
d log(2) + log

(
6(γ2 +M2 + 1)1/2T + 3

δ

))
,

for any realization of Z, with probability at least 1 − δ w.r.t. the Gaussian noise, at least
one of the following events will occur:
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1. ‖Xk − x∗‖ ≥ 1
2

(
ε+ re−

√
m(1−ε̂)kη

)
for some k ≤ η−1T Urec.

2. ‖Xk − x∗‖ ≤ ε+ re−
√
m(1−ε̂)kη for every η−1T Urec ≤ k ≤ η−1T Uesc.

Remark 33. Notice that in Theorem 32, the definition of η and β are coupled since ηU

depends on β and βU depends on η. A closer look reveals that when η is sufficiently small,

the first term in the definition of βU dominates the second term and βU is independent of
η. So to satisfy the constraints in Theorem 32, it suffices to first choose β to be larger than
the first term in βU and then choose η to be sufficiently small.

Remark 34. We can apply Theorem 32 to obtain Theorem 39 for the population risk in
Section F, similar to Theorem 3 in [TLR18].

Remark 35. In [TLR18], the overdamped Langevin algorithm is used and the recurrence

time Trec = O
(

1
m log( rε)

)
, and thus our recurrence time T Urec = O

(
1√
m

log
(
r
εm

))
for the

underdamped Langevin algorithm with the choice of γ < 2
√
m, which has a square root

factor improvement ignoring the logarithmic factor. This recurrence time is worse than

T Urec = O
(

1√
m

log
(
r
ε

))
for the underdamped Langevin algorithm with the choice of γ = 2

√
m

by a logarithmic factor assuming CH = O(1).

Remark 36. Let us compare the case γ = 2
√
m with the case γ < 2

√
m (to be discussed in

Section E). When γ = 2
√
m, since W−1(−x) ∼ log(1/x) for x→ 0+, assuming r, ε, CH =

O(1), we have

T Urec ∼
1

2
√
m

log(1/m), as m→ 0+.

When γ < 2
√
m, we have T Urec = 2√

m(1−ε̂) log(8rCε̂/ε), where Cε̂ = 1+M√
m(1−(1−ε̂)2)

, and

ε̂ = 1− γ
2
√
m
∈ (0, 1). For example, if γ = mχ, where χ ∈ (0, 1/2) and m→ 0+, then T Urec ∼

2
mχ log(m), as m → 0+, and if γ = γ0

√
m, where γ0 ∈ (0, 2), then T Urec ∼ 2

γ0
√
m

log(m), as

m → 0+. To summarize, with all the parameters fixed, as m → 0+, the choice γ = 2
√
m

is more optimal than the choice γ < 2
√
m. On the other hand, when the second smallest

eigenvalue is close to the smallest eigenvalue m, such that CH = maxi:λi>m
(1+λi)

2

λi−m is large,

it is more desirable to use the underdamped Langevin algorithm with γ < 2
√
m instead.

E.2 Proof of Theorem 32

The proof of Theorem 32 is similar to the proof of Theorem 10 and the following proposition,
and the similar arguments in Section B.1.1.

Proposition 37. Assume γ < 2
√
m. Fix any r > 0 and

ε < min


√
m(1− ε̂)

4Cε̂L(1 + 1
64C2

ε̂
)
, 8rCε̂

 .

68



Consider the stopping time:

τ := inf
{
t ≥ 0 : ‖X(t)− x∗‖ ≥ ε+ re−

√
m(1−ε̂)t

}
.

For any initial point X(0) = x with ‖x− x∗‖ ≤ r, and

β ≥
128γC2

ε̂√
m(1− ε̂)ε2

(
d log(2) + log

(
2‖Hγ‖T + 1

δ

))
,

we have
Px
(
τ ∈

[
T Urec, T Uesc

])
≤ δ.

The term ‖Hγ‖ in Proposiiton 37 can be bounded using Lemma 41. Based on Propo-
sition 37, the proof of Theorem 32 is similar to the proof of Theorem 10. So in the rest of
the section, we will only focus on the proof of Proposition 37.

E.2.1 Proof of Proposition 37

In this section, we focus on the proof of Proposition 37. We recall some definitions from
Section B.1.2. We recall the matrices Hγ and I(2) from (B.23), the matrix flow Qt0(t)
from (B.24) and the processes Z0

t and Z1
t from (B.25)-(B.26), and also µt and Σt from

(B.27)-(B.28).

Lemma 38. Assume γ < 2
√
m. For any θ ∈

(
0,
√
m(1−ε̂)
γC2

ε̂

)
, and h > 0 and any (V (0), Y (0)),

P
(

sup
t0≤t≤t1

‖Qt0(t1)Z0
t ‖ ≥ h

)
≤
(

1−
θγC2

ε̂√
m(1− ε̂)

)−d
e−

βθ
2

[h2−〈µt1 ,(I−βθΣt1 )−1µt1 〉].

Proof of Lemma 38. The proof is similar to the proof of Lemma 22. Let us recall from
Lemma 1 that if γ < 2

√
m, then∥∥e−tHγ∥∥ ≤ Cε̂e−√m(1−ε̂)t ,

where Cε̂ and ε̂ are defined in (3.8). Therefore, we have

‖Σt1‖ ≤ 2γβ−1

∫ t1

0
C2
ε̂ e
−2
√
m(1−ε̂)tdt ≤

γβ−1C2
ε̂√

m(1− ε̂)
.

Therefore we infer that the eigenvalues of I − βθΣ are bounded below by 1 − θ γC2
ε̂√

m(1−ε̂) .

The conclusion then follows from (B.41).
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Proof of Proposition 37. Since ‖Y (0)‖ ≤ r, we know that τ > 0. Fix some T Urec ≤ t0 ≤ t1,
such that t1 − t0 ≤ 1

2‖Hγ‖ . Then, for every t ∈ [t0, t1],

‖Y (t)‖ ≤
∥∥∥e(t1−t)HγQt0(t1)Zt

∥∥∥ ≤ e 1
2 ‖Qt0(t1)Zt‖ .

Recall that γ < 2
√
m. Similar to the derivations in (B.29), we get

P(τ ∈ [t0, t1]) ≤ P
(

sup
t0≤t≤t1∧τ

‖Qt0(t1)Z0
t ‖

ε+ re−
√
m(1−ε̂)t ≥ c0, τ ≥ t0

)
+ P

(
sup

t0≤t≤t1∧τ

‖Qt0(t1)Z1
t ‖

ε+ re−
√
m(1−ε̂)t ≥ c1, τ ≥ t0

)
, (E.2)

where c0 + c1 = 1
2 and c0, c1 > 0.

First, we show that the second term in (E.2) is zero. On the event τ ∈ [t0, t1], for any
0 ≤ s ≤ t1 ∧ τ , we have

‖ρ(Y (s))‖ ≤ L

2
‖Y (s)‖2 ≤ L

2

(
ε+ re−

√
m(1−ε̂)s

)2
.

Therefore, for any t ∈ [t0, t1 ∧ τ ], since γ < 2
√
m, by Lemma 1, we get

∥∥Qt0(t1)Z1
t

∥∥ ≤ ∫ t

0

∥∥∥e(s−t1)Hγ
∥∥∥ · ‖ρ(Y (s))‖ds

≤ Cε̂L

2

∫ t

0
e(s−t1)

√
m(1−ε̂)

(
ε+ re−

√
m(1−ε̂)s

)2
ds

≤ Cε̂L
∫ t

0
e(s−t)

√
m(1−ε̂)

(
ε2 + r2e−2

√
m(1−ε̂)s

)
ds

≤ Cε̂L√
m(1− ε̂)

(
ε2 + r2e−

√
m(1−ε̂)t

)
≤ Cε̂L√

m(1− ε̂)
ε2

(
1 +

1

64C2
ε̂

)
,

since t ≥ t0 ≥ T Urec = 2√
m(1−ε̂) log

(
8rCε̂
ε

)
. Consequently, if we take c1 = Cε̂L√

m(1−ε̂)ε(1+ 1
64C2

ε̂
),

then,

sup
t0≤t≤t1∧τ

‖Qt0(t1)Zt‖
ε+ re−

√
m(1−ε̂)t ≤

1

ε
sup

t0≤t≤t1∧τ
‖Qt0(t1)Zt‖ ≤ c1,

which implies that

P
(

sup
t0≤t≤t1∧τ

‖Qt0(t1)Z1
t ‖

ε+ re−
√
m(1−ε̂)t ≥ c1, τ ≥ t0

)
= 0.
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Moreover, c0 = 1
2 − c1 = 1

2 −
Cε̂L√
m(1−ε̂)(1 + 1

64C2
ε̂
)ε > 1

4 since it is assumed ε <
√
m(1−ε̂)

4Cε̂L(1+ 1

64C2
ε̂

)
.

Second, we apply Lemma 38 to bound the first term in (E.2). By using V (0) = 0 and
‖Y (0)‖ ≤ r and the definition of µt1 and Σt1 in (B.27) and (B.28), we get〈

µt1 , (I − βθΣt1)−1µt1
〉

=
〈
e−t1Hγ (V (0), Y (0))T , (I − βθΣt1)−1e−t1Hγ (V (0), Y (0))T

〉
≤ 1

1− θγC2
ε̂√

m(1−ε̂)

C2
ε̂ e
−2
√
m(1−ε̂)t1r2 ≤ 2C2

ε̂ e
−2
√
m(1−ε̂)t1r2,

by choosing θ = 1
2γ
−1C−2

ε̂

√
m(1− ε̂), Finally, since

t1 ≥ T Urec =
2√

m(1− ε̂)
log (8rCε̂/ε) ≥

1√
m(1− ε̂)

log (8rCε̂/ε) ,

so that 2C2
ε̂ e
−2
√
m(1−ε̂)t1r2 ≤ 1

32ε
2, and thus〈

µt1 , (I − βθt1Σt1)−1µt1
〉
≤ 1

32
ε2.

Then with the choice of h = (ε+ re−
√
m(1−ε̂)t1)c0 and θ = 1

2γ
−1C−2

ε̂

√
m(1− ε̂) in Lemma

22, and notice that h = (ε+ re−
√
m(1−ε̂)t1)c0 ≥ εc0 we get

P
(

sup
t0≤t≤t1∧τ

‖Qt0(t1)Z0
t ‖

ε+ re−
√
m(1−ε̂)t ≥ c0, τ ≥ t0

)
≤ P

(
sup

t0≤t≤t1
‖Qt0(t1)Z0

t ‖ ≥ (ε+ re−
√
m(1−ε̂)t1)c0

)
≤ 2d · exp

(
−
βγ−1C−2

ε̂

√
m(1− ε̂)

4
[h2 − 〈µt1 , (I − βθΣt1)−1µt1〉]

)

≤ 2d · exp

(
−
βγ−1C−2

ε̂

√
m(1− ε̂)ε2

4

(
c2

0 −
1

32

))
≤ 2d · exp

(
−
βγ−1C−2

ε̂

√
m(1− ε̂)ε2

128

)
.

Thus for any t0 ≥ T Urec and t0 ≤ t1 ≤ t0 + 1
2‖Hγ‖ ,

P(τ ∈ [t0, t1]) ≤ 2d · exp

(
−
βγ−1C−2

ε̂

√
m(1− ε̂)ε2

128

)
.

Fix any T > 0 and recall the definition of the escape time T Uesc = T + T Urec. Partition
the interval [T Urec, T Uesc] using the points T Urec = t0 < t1 < · · · < td2‖Hγ‖T e = T Uesc with
tj = j/(2‖Hγ‖), then we have

P
(
τ ∈

[
T Urec, T Uesc

])
=

d2‖Hγ‖T e∑
j=0

P(τ ∈ [tj , tj+1]) ≤ (2‖Hγ‖T + 1) · 2d · exp

(
−
βγ−1C−2

ε̂

√
m(1− ε̂)ε2

128

)
≤ δ,
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provided that

β ≥
128γC2

ε̂√
m(1− ε̂)ε2

(
d log(2) + log

(
2‖Hγ‖T + 1

δ

))
.

The proof is complete.

F Generalization to population risk

In this section, we apply Theorem 10, Theorem 32 and Theorem 15 to study the population
risk. We recall that the population risk is denoted by F , and the empirical risk is denoted
by F . First, we need the assumption that the population risk F is (2ε0, 2m)-strongly Morse
(see e.g. [MBM18]), that is,

∥∥∇F (x)
∥∥ ≤ 2ε0 implies minj∈[d]

∣∣λj(∇2F (x))
∣∣ ≥ 2m.

F.1 Underdamped Langevin dynamics

Theorem 39. Suppose the assumptions in Theorem 10 holds for γ = 2
√
m case and the

assumptions in Theorem 32 holds for γ < 2
√
m case. Assume that n

logn ≥
cσ2

0d
(ε0∧m)2

and

ε ≤ 3m

(1+
√
m

8
√

(CH+2)m+(m+1)2
)L

for the case γ = 2
√
m and ε ≤ 3m

(1+ 1
8Cε̂

)L
for the case γ < 2

√
m.

With probability at least 1− δ, w.r.t. both the training data z and the Gaussian noise, for
any local minimum xz∗ of F 19, either ‖Xk − xz∗‖ ≥ ε/2 for some k ≤ dη−1T Uesce or

F (xz∗) ≤ min
η−1T Urec≤k≤η−1T Uesc

F (Xk) + σ0

√
cd log n

n
,

where

c := c0(1 ∨ log((M ∨ L ∨ (B +MR))Rσ0/δ)), (F.1)

σ0 := (A+ (B +MR)R) ∨ (B +MR) ∨ (C + LR). (F.2)

Proof. Let us first assume that γ = 2
√
m. Let xz∗ be a local minimum of the empirical

risk F . By Lemma 45, all eigenvalues of of the Hessian H = ∇2F (xz∗) are at least m and
therefore the norm ‖ · ‖H = ‖H1/2 · ‖ is well defined and ‖ · ‖H ≥

√
m‖ · ‖.

We can decompose (letting K0 = dη−1T Urece and K = dη−1T Uesce)

F (xz∗)− min
K0≤k≤K

F (Xk) =
(
F (xz∗)− F (xz∗)

)
+

(
F (xz∗)− min

K0≤k≤K
F (Xk)

)
.

From Lemma 44, we know with probability at least 1− δ,

F (xz∗)− F (xz∗) ≤ σ0

√
(cd/n) log n.

19With the notation xz∗ emphasizing the dependence on the training data z
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In addition, we can infer from (4.1) that for any x,∣∣∣∣F (x)− F (xz∗)−
1

2
‖x− xz∗‖2H

∣∣∣∣ ≤ L

6
‖x− xz∗‖3,

Hence, we obtain

F (xz∗)− min
K0≤k≤K

F (Xk) = max
K0≤k≤K

(F (xz∗)− F (Xk))

≤ max
K0≤k≤K

(
L

6
‖Xk − xz∗‖3 −

1

2
‖Xk − xz∗‖2H

)
≤ max

K0≤k≤K

(
L

6
‖Xk − xz∗‖3 −

m

2
‖Xk − xz∗‖2

)
.

By Theorem 10, with probability 1− δ, either ‖Xk − xz∗‖ ≥ ε/2 for some k ≤ dη−1T Urece or

‖Xk − xz∗‖ ≤ ε+ re−
√
mT Urec = ε+

ε2

T Urec8r
√
CH + 2 + (m+ 1)2

≤ ε+
ε
√
m

8
√

(CH + 2)m+ (m+ 1)2
, (F.3)

for all K0 ≤ k ≤ K, where we used the definition of T Urec for the case γ = 2
√
m in (4.3), and

the assumption ε <
√

CH+2+(m+1)2

(CH+2)m+(m+1)2
r and the property T Urec >

1√
m

. If the latter occurs,

then by (F.3), we have

F (xz∗)− min
K0≤k≤K

F (Xk)

≤ max
K0≤k≤K

(
L

6
‖Xk − xz∗‖3 −

m

2
‖Xk − xz∗‖2

)
≤ max

K0≤k≤K
‖Xk − xz∗‖2

(
L

6
·

(
1 +

√
m

8
√

(CH + 2)m+ (m+ 1)2

)
ε− m

2

)
≤ 0 ,

for ε ≤ 3m

(1+
√
m

8
√

(CH+2)m+(m+1)2
)L

. The proof for the case γ = 2
√
m is therefore complete.

The proof for the case γ < 2
√
m is similar. The only difference is that we replace (F.3)

by the following estimate

‖Xk − xz∗‖ ≤ ε+ re−
√
m(1−ε̂)T Urec ≤ ε+ re−

1
2

√
m(1−ε̂)T Urec = ε+

ε

8Cε̂
,

for all K0 ≤ k ≤ K, where we used the definition of T Urec for the γ < 2
√
m case in (E.1).
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F.2 Non-reversible Langevin dynamics

Theorem 40. Suppose the assumptions in Theorem 15 holds. Assume that n
logn ≥

cσ2
0d

(ε0∧m)2

and ε ≤ 3m
(1+ 1

8CJ (ε̃)
)L

. With probability at least 1 − δ, w.r.t. both the training data Z and

the Gaussian noise, for any local minimum xz∗ of F , either ‖Xk − xz∗‖ ≥ ε/2 for some
k ≤ η−1T Jrec or

F (xz∗) ≤ min
η−1T Jrec≤k≤η−1T Jesc

F (Xk) + σ0

√
cd log n

n
,

where c and σ0 are defined in (F.1) and (F.2).

Proof. The proof is similar to Theorem 39 and Theorem 3 in [TLR18]. The only difference
is that we replace (F.3) by the following estimate

‖Xk − xz∗‖ ≤ ε+ re−mJ (ε̃)T Jrec ≤ ε+ re−
1
2
mJ (ε̃)T Jrec = ε+

ε

8CJ(ε̃)
,

for all dη−1T Jrece ≤ k ≤ dη−1T Jesce, where we used the definition of T Jrec in (4.4).

G Supporting technical lemmas

Lemma 41. Consider the square matrix Hγ defined by (3.2). We have

‖Hγ‖ ≤
√
γ2 +M2 + 1.

Proof. It follows from (A.1) that

‖Hγ‖ = ‖Tγ‖ = max
i
‖Ti(γ)‖. (G.1)

We also compute

‖Ti(γ)‖2 = λmax

(
Ti(γ)Ti(γ)T

)
= λmax

([
γ2 + λ2

i −γ
−γ 1

])
,

where λmax denotes the largest real part of the eigenvalues. This leads to

‖Ti(γ)‖2 =
γ2 + λ2

i + 1 +
√

(γ2 + λ2
i + 1)2 − 4λ2

i

2
≤ γ2 + λ2

i + 1.

Since m ≤ λi ≤M for every i, we obtain

max
i
‖Ti(γ)‖2 ≤ max

i

(
γ2 + λ2

i + 1
)

= γ2 +M2 + 1.

We conclude from (G.1).
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Lemma 42. Let Bt be a standard d-dimensional Brownian motion. For any u > 0 and
any t1 > t0 ≥ 0 with t1 − t0 = η > 0, we have

P

(
sup

t∈[t0,t1]
‖Bt −Bt1‖ ≥ u

)
≤ 21/4e1/4e

− u2

4dη .

Proof. Also, by the time reversibility, stationarity of time increments of Brownian motion
and Doob’s martingale inequality, for any θ > 0 so that 2θη < 1, we have

P

(
sup

t∈[t0,t1]
‖Bt −Bt1‖ ≥ u

)
= P

(
sup
t∈[0,η]

‖Bt −B0‖ ≥ u

)
≤ e−θu2E

[
eθ‖Bη−B0‖2

]
= e−θu

2
(1− 2θη)−d/2.

By choosing θ = 1/(4dη), we get

P

(
sup

t∈[t0,t1]
‖Bt −Bt1‖ ≥ u

)
≤
(

1− 1

2d

)− d
2

e
− u2

4dη .

Note that for any x > 0, (1 + 1
x)x < e. Let us define x > 0 via

1− 1

2d
=

1

1 + x
.

Then, we get d = 1+x
2x and x = 1

1− 1
2d

− 1 ≤ 1, and

(
1− 1

2d

)− d
2

=

(
1

1 + x

)− 1+x
4x

= (1 + x)
1
4 (1 + x)

1
4x ≤ 21/4e1/4.

Hence,

P

(
sup

t∈[t0,t1]
‖Bt −Bt1‖ ≥ u

)
≤ 21/4e1/4e

− u2

4dη .

Lemma 43 (See [RRT17, Lemma 2]). If parts (i) and (ii) of Assumption 9 hold, then for
all x ∈ Rd and z ∈ Z,

‖∇f(x, z)‖ ≤M‖x‖+B,

and
m

3
‖x‖2 − b

2
log 3 ≤ f(x, z) ≤ M

2
‖x‖2 +B‖x‖+A.
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Lemma 44 (Lemma 6 in [TLR18], Uniform Deviation Guarantees). Under (i) and (ii) of
Assumption 9, there exists an absolute constant c0 such that for:

c := c0(1 ∨ log((M ∨ L ∨ (B +MR))Rσ0/δ)),

σ0 := (A+ (B +MR)R) ∨ (B +MR) ∨ (C + LR),

we have, if n ≥ cd log d, then with probability at least 1− δ:

sup
x∈Rd

∣∣F (x)− F (x)
∣∣ ≤ σ0

√
cd log n

n
,

sup
x∈Rd

∥∥∇F (x)−∇F (x)
∥∥ ≤ σ0

√
cd log n

n
,

sup
x∈Rd

∥∥∇2F (x)−∇2F (x)
∥∥ ≤ σ0

√
cd log n

n
.

Lemma 45 (Proposition 7 in [TLR18]). If the population risk F (x) is (2ε0, 2m)-strongly

Morse, then provided that n ≥ cd log d and n
d logn ≥

cσ2
0

(ε0∧m)2
, the empirical risk F (x) is

(ε0,m)-strongly Morse with probability at least 1− δ.
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