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ABSTRACT
One important issue in designing state-of-the-art LVCSR systems is
the choice of acoustic units. Context dependent (CD) phones re-
main the dominant form of acoustic units. They can capture the
co-articulatory effect in speech via explicit modelling. However, for
other more complicated phonological processes, they rely on the im-
plicit modelling ability of the underlying statistical models. Alterna-
tively, it is possible to construct acoustic models based on higher
level linguistic units, for example, syllables, to explicitly capture
these complex patterns. When sufficient training data is available,
this approach may show an advantage over implicit acoustic mod-
elling. In this paper a wide range of acoustic units are investigated
to improve LVCSR system performance. Significant error rate gains
up to 7.1% relative (0.8% abs.) were obtained on a state-of-the-art
Mandarin Chinese broadcast audio recognition task using word and
syllable position dependent triphone and quinphone models.

1. INTRODUCTION

One important issue in designing state-of-the-art LVCSR systems
is the choice of acoustic units. Due to their well-defined and com-
pact nature, context dependent (CD) phones have been the dominant
form of acoustic units for well over a decade [4]. They provide a
simple mapping between words and modelling units and good gen-
eralization to unseen words. Parameter tying techniques are used to
further ensure robust estimation when only limited training data is
available [2, 18]. CD phones capture co-articulatory effect in speech
via explicit modelling. However, for many other more complicated
phonological processes, they rely on the implicit modelling ability
of the underlying acoustic models. This is often represented by the
mixture models of tied HMM states. Alternatively, it is also possible
to construct acoustic models based on higher level linguistic units,
for example, syllables, to explicitly capture these complex patterns.
Since large amounts of training data have become available, often
in thousands of hours, this approach may show its advantage over
implicit acoustic modelling, and thus has drawn increasing research
interest in recent years [3, 7].

In this paper Mandarin Chinese is studied as an example to eval-
uate the performance of a wide range of acoustic units. Mandarin is a
tonal language with syllabic structures represented by characters. It
also shares several prominent phonological features with other lan-
guages. First, tone sandhi alters pronunciations of individual tonal
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syllables when they are adjoined to construct words [1]. A typical
example is when there are two third tones occurring in immediate se-
quence, in which case the first tone changes to be very close to a ris-
ing, second tone. When there are more than three syllables in a word,
the sandhi rules become more complex. Speaking style, dialect and
accent can introduce further variability in the sandhi process. Sec-
ond, glottal stops and the closely related entering tone, articulated at
syllable end with a complete closure of the vocal tract [6], can also
be found, particularly in accented speech. Finally, stress patterns act
as alternations between syllables [5]. Sentential stress may diminish
lexical level stress.

In order to capture the above phonological variability, three cat-
egories of acoustic units are investigated in this paper. The first uses
longer context span phones to introduce stronger contextual con-
straints. The second employs word or syllable position dependent
phones models; The third category uses explicit modelling of syl-
lables. More complicated forms of acoustic units derived using a
combination of them are also investigated. The rest of the paper is
organized as follows. Phonetic decision tree based CD phone model
clustering is reviewed in section 2. Position dependent phone mod-
els are presented in section 3. Syllable level acoustic models are
proposed in section 4. Two issues when using these acoustic models
are discussed in section 5. Experimental results on a state-of-the-art
broadcast speech transcription task are presented in section 6. Sec-
tion 7 gives the conclusion and suggests possible future work.

2. PHONETIC DECISION TREE CLUSTERING

Due to co-articulatory effects, the acoustic realization of the same
phone can vary substantially depending on the surrounding pho-
netic contexts. To model such variation, CD phones are often used
rather than monophones. One common form of CD phones is the tri-
phone [2], which considers both the preceding and following phones.
In order to incorporate more context information, it is possible to use
CD phones with wider context span, for example, the quinphone or
pentaphone [13]. A severe data sparsity issue arises when training
CD phone models on limited amounts of training data. To handle this
issue, parameter tying can be used to robustly estimate CD phone
model parameters [18]. It may be flexibly performed at phone, state
or Gaussian mixture component level, while state level tying is more
commonly used in current LVCSR systems.

A range of clustering schemes have been proposed for state ty-
ing. The most widely adopted approach is to use a phonetic decision
tree based clustering [18]. A phonetic decision tree is a binary tree
with a set of ”yes” or ”no” questions at each node related to the con-
text surrounding each base phone. Initially all states are clustered



at the root node. Splitting is performed by selecting the questions
that locally maximize the likelihood of the training data. The change
in log-likelihood when splitting a particular node p into D children
nodes is approximated by [18]

∆ log p(O) = − 1

2

D∑

d=1

γd log |Σd|+ 1

2
γp log |Σp| (1)

where O is the training data observation sequence, Σp and γp the co-
variance matrix and posterior occupancy of node p. Each tied state
is also enforced to have a minimum amount of observed data. This
ensures that rarely seen or unseen contexts are robustly handled. Fi-
nally, to generate a more compact tree, nodes are merged if the like-
lihood loss is below a threshold, until no such nodes are found.

Phonetic decision tree clustering provides a general and extensi-
ble framework for implicit modelling of phonological variability in
speech. Richer linguistic constraints can be flexibly incorporated as
additional questions to be considered during tree splitting [3, 7]. For
example, for tonal languages like Mandarin, tonal questions can be
asked during clustering to implicitly model different tonal variants
of the same base phone [16].

3. POSITION DEPENDENT ACOUSTIC MODELS

As discussed in section 1, the occurrence of both tone sandhi and
glottal stops bear a strong correlation with the precise position of
particular phone or syllable within a whole word. One method to
implicitly capture these patterns is to use position dependent (PD)
phone models [4, 12, 15]. This involves splitting each tonal mono-
phone into word or syllable initial, middle and final PD variants. The
coupling of word and syllable positions can generate a maximum to-
tal of nine PD variants during decision tree clustering for each tonal
base phone. As expected, some variants are invalid under the lexical
constraint. Take the CU GALE Mandarin LVCSR system for exam-
ple. Its baseline phone set consists of 46 toneless (124 tonal) phones
derived by splitting some diphthongs in the original LDC phone set
of 60 toneless phones. After incorporating word level position infor-
mation, the the number of tonal phones is increased to 293. This is
further enlarged to 487 by adding syllable level position information.

Right Front Stop *+* b, *+* p
Right u2 *+* u2
Left M u2 *M u2-*
Left fM u2 fM u2-*
... ... ... ...

Table 1. Section of position dependent question set.

Similar to the use of tonal information discussed in section 2, ad-
ditional word level PD questions can be asked during decision tree
clustering. This allows both word boundaries and phone positions to
be explicitly modelled. It is also possible to further use each phone’s
position within a syllable, as an indirect way to model syllable struc-
tures. For example, /fM u2/ represents a tonal base phone /u2/ that
occurs in the middle and final positions of the whole word and sylla-
ble respectively. As only two post-vocalic consonants, /n/ and /ng/,
are normally allowed in Mandarin, syllable level position is more
useful for vowels that may occur in any of three positions. An ex-
ample section of PD question set is shown in table 1.

In order to increase the modelling power of PD phones, it is also
possible to train PD models with wider context span. In this paper,
both PD triphone and quinphone systems are investigated. A stan-
dard position independent (PI) triphone system, or a well trained PD
system, may be used for initialization when clustering PD models.
In practice, these two forms of initialization gave equivalent perfor-
mance. In this work left-to-right HMMs with three emitting states
and GMM densities are used for both PI and PD phone models.

4. SYLLABLE LEVEL ACOUSTIC MODELS

Syllables provide both a wider context span and stronger linguistic
constraint than phones [10]. Explicit modelling of the three phono-
logical features discussed in section 1 requires syllable structures to
preserved. As discussed in section 3, the number of allowed post-
vocalic consonants is small for Mandarin. Hence, it has a relatively
compact set of base syllables. However, explicit modelling of all of
them can still be problematic.

Base syllable #Base #Tonal #CD units #CD units
cut-off (k) units units seen (M) total (M)

- 46 124 0.11 1.9

0 442 1487 1.32 3281
1 335 1226 1.31 1838
5 221 818 1.17 545
10 159 601 0.92 216
15 121 449 0.67 89.9
20 88 301 0.41 27.0
25 73 241 0.29 13.8
30 66 209 0.23 9.0

Table 2. Base syllable frequency cut-off, number of base/tonal units
retained, CD hybrid units observed and the total of all possible units
for a randomly selected 200 hour GALE Mandarin training set.

In the CU Mandarin system which uses a baseline 46 phone set
(124 tonal), a cross word triphone context expansion gives 1.9 mil-
lion distinct triphones, among which 0.11 million, approximately
6%, are observed in a 200 hour randomly selected GALE Mandarin
training set. This is shown in the first line of table 2. In contrast, a
phone to syllable level expansion of the lexicon gives a total of 442
toneless and 1487 tonal syllables, as is shown in the second line of ta-
ble 2. A further tri-syllable context expansion leads to a colossal 3.3
billion distinct tri-syllables, among which only 0.4%, 1.32 million,
are seen in the same data. For many rarely occurred base syllables,
insufficient amounts of training data can result in poor modelling of
surrounding contexts during decision tree based clustering. Hence,
explicit modelling of all syllables is impossible.

To handle this issue, the most frequently occurred syllables
found in the above 200 hour training set were merged with baseline
phone set to give a combined set of hybrid phone-syllable units. As
is shown in the second section of table 2, a range of base toneless
syllable frequency cut-offs, from 30k to 1k were applied. Based on
the performance of ML trained models after tying, the cut-off value
at 25k was used, which retains a total of 27 toneless, and 117 tonal
syllables. Combining them with the baseline phone set results in a
73 toneless and 241 tonal hybrid units, as is shown in the second line
from bottom in table 2. During decision tree clustering, both phone
and syllable context questions are asked to find the optimal splitting.
For example, u2-* and bˆu2-* represent all CD phone-syllable hy-



brid units that have either tonal base phone /u2/, or syllable /bˆu2/,
as the left context respectively. A more relaxed form, *ˆu2-* allows
any syllable ended with tonal base phone /u2/ to occur as the left
context. An example section of the question set is shown in table 3.

Right Front Stop *+b, *+bˆ*, *+p, *+pˆ*
Left u2 *ˆu2-*, u2-*
Left bˆu2 bˆu2-*
... ... ... ...

Table 3. Section of phonetic and syllabic hybrid question set.

Another issue in building syllable acoustic models is the appro-
priate model topology to use. In this work left-to-right HMMs with
Gaussian mixture output distribution based state densities are used.
The number of emitting states of each CD syllable is determined by
three times the number of phones that the central syllable contains.
For example, tri-syllable unit bˆu2-rˆe4ˆn+wˆei2 will have a total
of 9 emitting states. The advantage of this model topology is to al-
low initial alignment statistics used in decision tree clustering to be
generated by a well trained tied triphone system, represented by tri-
phone sequence u2-r+e4 r-e4+n e4-n+w. Finally, in order to fully
capture the tone sandhi effect discussed in section 1, it is also possi-
ble to cluster and train word position dependent syllable models, in
a similar fashion to the PD phones discussed in section 3.

5. ISSUES IN USING PD AND SYLLABLE MODELS

MPE error cost function: State-of-the-art LVCSR systems often
use discriminative training techniques, for example, minimum phone
error (MPE) training [14], as considered in this paper. An appro-
priate error cost function is required in MPE training. Using word
and syllable position information, together with tones, significantly
increase the number of phone classes when computing error costs.
One important issue is thus the appropriate type of phone error to
use for MPE. Three forms of error costs are evaluated in this pa-
per, including using base toneless phones, tonal phones, or tonal PD
phones. Using tonal phone labels only, but not position dependent
information, was found to give the best character error rate (CER)
for PD phone systems, as is shown in table 4. This was used in all
experiments.

MPE Cost bn06 bc05 d07 d08
phn 11.4 23.3 16.5 15.0
phn+tone 11.3 23.2 16.4 14.7
phn+tone+pos 11.4 23.4 16.5 14.8

Table 4. 3-gram LM unadapted MPE CER(%) using different error
costs on a randomly selected 200 hour GALE Mandarin set.

Efficient use of contexts: As discussed in sections 3 and 4, the use
of PD phones and syllables dramatically increases the number of CD
acoustic units to consider during decoding. As not all of them are al-
lowed by the lexicon, it is possible to consider using only the valid
subset. One method to achieve this is to use a weighted finite state
transducer (WFST) [11] composition operation, C ◦L, between the
CD transducer C, which converts CD phone sequences to CI ones,
and the lexicon transducer L, which maps CI phone sequences to
words. The input symbol set of the resulting transducer contains all

possible CD units allowed by the lexicon. This approach was used
for all triphone and tri-syllable systems. It significantly reduced the
number of CD units used at decoding time, for example, by 79% for
the baseline triphone system, 98% for word and syllable PD triphone
sysetms, and a less dramatic 60% for tri-syllable systems due to the
increased connectivity of the syllable lexicon. These are shown in
table 5. For quinphone systems a dynamic on-the-fly context expan-
sion algorithm was used in decoding [13].

#Context #Context
Context Position total (M) active (M)

tphn - 1.9 0.4
tphn wd+sy 115 1.7
tsyl - 13.8 5.5

Table 5. Number of context dependent phone or syllable units before
and after intersection between CD and lexicon transducers.

6. EXPERIMENTS AND RESULTS

The CU Mandarin LVCSR system was used to evaluate the perfor-
mance of various acoustic units. The full system was trained on 1960
hours of broadcast speech data. A total of 3.7 billion words from 28
text sources were used in LM training. A 63k word list was used.
Five GALE Chinese speech test sets of mixed broadcast news (BN)
and conversation (BC) genre: 2.6 hour d07, 1 hour d08, 3 hour d09s,
2.6 hour p2ns and 1.5 hour p3ns were used. The system uses a multi-
pass recognition and system combination framework. It consists of
an initial lattice generation stage using adapted baseline PI triphone
MPE models and a multi-level LM followed by “P3” acoustic model
re-adaptation and lattice rescoring stage before CNC combination.
A more detailed system description can be found in [8].

Sys Cntx Position d07 d08 d09s p2ns p3ns
a tphn

-
12.4 10.6 12.6 11.8 16.1

b qphn 12.1 10.6 12.6 11.6 15.9
c tsyl 11.9 10.4 12.2 11.1 15.3

d tphn word 11.7 10.2 11.9 11.1 15.4
e qphn word 11.8 9.9 12.0 11.1 15.4
f tsyl word 11.8 10.1 12.2 11.3 15.2
g tphn wd+sy 11.7 10.2 11.8 11.3 15.4

a+b 11.6 10.2 12.2 11.3 15.3
a+c 11.7 10.1 11.0 11.0 15.0
a+b+c 11.4 9.9 11.7 10.7 14.9
d+e 11.4 9.6 11.7 10.6 14.8
d+f 11.4 9.9 11.7 10.8 14.8
e+g 11.4 9.6 11.6 10.7 14.9
d+e+g 11.1 9.7 11.4 10.5 14.7
d+e+f 11.0 9.4 11.3 10.6 14.4

Table 6. P3 and combination performance of baseline PI, PD phone
and syllable based acoustic models trained on a 202 hour subset.

Initially a range of acoustic modelling units were evaluated on
systems with 6k tied states, 16 Gaussians per state and MPE trained
on a randomly selected 200 hours of data. Table 6 shows their CER
performance. Using syllable units gave 0.2%-0.8% CER gains over
the PI triphone system, but not the PD triphone baseline. For both



triphone and quinphone word level PD systems, consistent CER re-
ductions of 0.3%-0.8% over the comparable PI baseline triphone or
quinphone models were obtained. The CNC combination between
triphone and quinphone models were also improved by 0.2%-0.7%
absolute using word level PD models “d+e” over the baseline 2-way
PI triphone and quinphone combination “a+b”. The use of both
word and syllable level position information (system “g”) gave no
improvement over using word level position only (system “d”) for
triphone systems, consistent with the results in [9], though it was
found be useful in system combination with more diversity. The best
combination performance were obtained using a 3-way combination
“d+e+f” between word level PD triphone and quinphone systems,
and a word level PD tri-syllable system, as is shown in the bottom
line of table 6. Using this system, the overall CER gains over the
baseline 2-way PI triphone and quinphone combination “a+b” are
0.6% (5.2% rel.) on d07, 0.8% ( 7.8% rel.) on d08, 0.9% (5.9%-
7.4% rel.) on d09s and p3ns, and 0.7% (6.2% rel.) on p2ns. The
genre specific absolute CER gains are 0.2%-0.6% for BN and 0.9%-
1.4% for BC respectively.

Sys Cntx Position d07 d08 d09s p2ns p3ns
a* tphn

-
8.8 8.2 9.5 8.7 11.9

a tphn 8.8 8.0 9.4 8.6 11.9
b qphn 8.8 7.9 9.3 8.6 11.7

d* tphn
word

8.6 7.9 9.0 8.3 11.3
d tphn 8.5 7.8 8.9 8.2 11.3
e qphn 8.4 7.8 9.0 8.1 11.2

a+b 8.5 7.7 8.9 8.3 11.4
d+b 8.5 7.6 8.8 8.2 11.2
a+e 8.4 7.6 8.8 8.2 11.2
d+e 8.4 7.7 8.7 8.0 11.1

Table 7. P3 and combination performance of baseline PI and PD
phone acoustic models on the 1960 hour full training set.

Several word level PD triphone and quinphone systems were
then trained on the 1960 hour full training set with 36 Gaussians
per state. These are shown in table 7. First, a PD triphone sys-
tem “d*” with 9k tied states was evaluated against its comparable
9k state PI baseline “a*”. Compared with the 200 hour subset re-
sults in table 6, slightly reduced CER gains of 0.2%-0.6% absolute
were obtained across all five test sets. The performance gains on
BC genre were 0.2%-0.8%, and on BN genre 0.1%-0.3% absolute.
The same performance improvements were also observed on a larger
12k tied state PD triphone system “d” against its comparable 12k PI
baseline “a”. These trends suggest position information can not be
implicitly learned by standard PI phone models through having more
clustered states. Similar CER gains of 0.1%-0.5% absolute were also
obtained using a 12k tied state PD quinphone system “e” against its
comparable PI quinphone baseline “b”. Consistent but smaller gains
up to 0.3% absolute were obtained in 2-way PD triphone and quin-
phone CNC combination “d+e” over the baseline PI triphone and
quinphone combination configuration “a+b”.

7. CONCLUSION

In this paper position dependent and syllable based acoustic units
were investigated to model several prominent phonological features
of Mandarin Chinese, and to improve LVCSR system performance.
Experimental results on a state-of-the-art speech recognition task

suggest word level position information may be useful to capture
additional phonological variability in speech. Future research will
focus on using additional prosodic information, such as stress con-
dition, to improve syllable based acoustic modelling.
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