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ABSTRACT

In recent years recurrent neural network language models
(RNNLMs) have been successfully applied to a range of tasks in-
cluding speech recognition. However, an important issue that limits
the quantity of data used, and their possible application areas, is the
computational cost in training. A significant part of this cost is asso-
ciated with the softmax function at the output layer, as this requires a
normalization term to be explicitly calculated. This impacts both the
training and testing speed, especially when a large output vocabulary
is used. To address this problem, noise contrastive estimation (NCE)
is explored in RNNLM training. NCE does not require the above
normalization during both training and testing. It is insensitive to the
output layer size. On a large vocabulary conversational telephone
speech recognition task, a doubling in training speed on a GPU and
a 56 times speed up in test time evaluation on a CPU were obtained.

Index Terms— language model, recurrent neural network,
GPU, noise contrastive estimation, speech recognition

1. INTRODUCTION

Statistical language models (LMs) are crucial components in many
speech and language processing systems designed for tasks such
as speech recognition, spoken language understanding and machine
translation. Recently, recurrent neural network language models
(RNNLMs) have been shown consistent performance improvements
across a range of these tasks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. One impor-
tant practical issue associated with RNNLMs is the computational
cost incurred in model training. This limits the quantity of data and
their possible application areas, and therefore has drawn increasing
research interest in recent years [2, 11, 12, 5, 13, 10, 14, 15].

A major part of the computation load is incurred at the out-
put layer. One standard approach to handle this problem is to use
class-based outputs. This limits the size of the output layer to be
computed, thus allowing systems to be trained on CPUs. However,
this approach is sensitive to the underlying word to class assignment
scheme used at the output layer, and additionally complicates the
implementation of bunch mode training parallelization [5]. To ad-
dress these issues, RNNLMs with a full output layer were used and
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trained efficiently on GPUs using spliced sentence bunch in previ-
ous research [15]. A training speedup of 27 times was obtained over
class based RNNLMs trained on CPUs.

One key factor that limits the scalability of RNNLMs is the com-
putation of the normalization term in the output layer. This has a
significant impact on both training and testing, especially when a
large output vocabulary is used, in particular, in full output based
RNNLMs. One technique that can be used to improve the testing
speed is introducing the variance of the normalization term into the
conventional cross entropy based objective function. This has been
applied to training of feedforward NNLMs, class based [13, 10, 14]
and full output RNNLMs [16]. By minimizing the variance of the
normalization term during training, the normalization term at the
output layer can be ignored during testing time thus gaining signif-
icant improvements in speed. However, the explicit computation of
this normalization term is still required in training and it does not
improve training speed.

In order to handle this problem, techniques that alleviate the
need for explicit normalization at both training and testing time can
be used to significantly improve the efficiency of RNNLMs. In
this paper, noise contrastive estimation (NCE) [17] is explored for
this purpose. NCE performs a nonlinear logistic regression to dis-
criminate between the observed data and some artificially generated
noise data. During NCE based training of NNLMs, only the con-
nections associated with a few words in the output layer need to
be considered, instead of computing the normalization over the full
output vocabulary. Besides, NCE is able to constrain the variance
of normalization term implicitly to be very small during training,
which make it feasible to use “unnormalized” probabilities during
testing. NCE was previously used to improve the training and eval-
uation efficiency of log-bilinear language models [18] and feedfor-
ward NNLMs [19]. A modified NCE algorithm using negative sam-
pling was also adopted to deriving a distributed representation of
words and phrases [20]. In this paper, NCE is used to improve the
training and testing speed of RNNLMs for speech recognition.

The rest of this paper is organized as follows. RNNLMs are re-
viewed in section 2. Noise contrastive estimation is presented in sec-
tion 3. Its detailed implementation is presented in section 4. Exper-
iment results on a large vocabulary conversational telephone speech
transcription task and Google’s One Billion Words corpus are re-
ported in section 5. Section 6 draws conclusions.

2. RECURRENT NEURAL NETWORK LMS

In contrast to feedforward NNLMs, recurrent NNLMs [1] represent
the full, non-truncated historyhi =< wi−1, . . ., w1 > for word
wi using the 1-of-k encoding of previous wordwi−1 and a contin-



uous vectorvi−2 for the remaining context. For an empty history,
this is initialized, for example, to a vector of all ones. The topology
of the recurrent neural network used to compute LM probabilities
PRNN(wi|wi−1, vi−2) consists of three layers. The full history vec-
tor, obtained by concatenatingwi−1 andvi−2, is fed into the input
layer. The hidden layer compresses the information from these two
inputs and computes a new representationvi−1 using a sigmoid ac-
tivation to achieve non-linearity. This is then passed to the output
layer to produce normalized RNNLM probabilities using a softmax
activation, as well as recursively fed back into the input layer as the
“future” remaining history to compute the LM probability for the
following word PRNN(wi+1|wi, vi−1). As RNNLMs use a vector
representation of full histories, they are mostly used for N-best list
rescoring. For more efficient lattice rescoring using RNNLMs, ap-
propriate approximation schemes, for example, based on clustering
among complete histories [21] can be used.
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Hidden layer

OOV input node

sigmoid

...

OOS output node

softmaxwi−1

vi−2

vi−1

vi−1 PRNN(wi|wi−1, vi−2)

Fig. 1. An example RNNLM with OOS nodes.

An RNNLM architecture with an unclustered, full output layer
is shown in Figure 1. RNNLMs can be trained using an extended
form of the standard back propagation algorithm, back propagation
through time (BPTT) [22], where the error is propagated through
recurrent connections back for a specific number of time steps, for
example, 4 or 5 [2]. This allows RNNLMs to keep information for
several time steps in the hidden layer. To reduce the computational
cost, a shortlist [23, 24] based output layer vocabulary limited to the
most frequent words can be used. To reduce the bias to in-shortlist
words during RNNLM training and improve robustness, an addi-
tional node is added at the output layer to model the probability mass
of out-of-shortlist (OOS) words [25, 26, 21].

Conventional RNNLM training aims to maximise the log-
likelihood, or equivalently minimize the cross entropy (CE) measure
of the training data sequence containing a total ofNw words. The
objective function is given by
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is the probability of wordwi given historyhi. θi is the weight vector
associated with wordi at the output layer.vi−1 is the hidden history
vector computed at the hidden layer, and|V | is the size of output
layer vocabulary. The gradient used in the conventional CE based
training for RNNLMs is
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The denominator term in equation (2) requires normalization over
the full output layer. As discussed in section 1, this operation is com-
putationally highly expensive when computing the RNNLM proba-
bilities during both test time and CE based training when the gradient
information of equation (3) is calculated.

In state-of-the-art ASR systems, NNLMs are often linearly in-
terpolated withn-gram LMs to obtain both a good context coverage
and strong generalisation [1, 5, 23, 24, 25, 26]. The interpolated LM
probability is given by

P (wi|hi) = λPNG(wi|hi) + (1− λ)PRNN(wi|hi) (4)

whereλ is the weight of then-gram LMPNG(·), and kept fixed as
0.5 in all experiments of this paper. In the above interpolation, the
probability mass of OOS words assigned by the RNNLM component
is re-distributed with equal probabilities among all OOS words.

3. EFFICIENT RNNLM TRAINING AND DECODING
USING NOISE CONTRASTIVE ESTIMATION

As discussed in section 1, the explicit computation of the the out-
put layer normalization term significantly impacts both the training
and testing speed of RNNLMs. A general solution to this problem
is to use techniques that can remove the need to compute such nor-
malization term in both training and testing. One such technique
investigated in this paper is based on noise contrastive estimation
(NCE) [17]. NCE provides an alternative solution to estimate nor-
malized statistical models when the exact computation of the re-
quired normalization term is either computationally impossible or
highly expensive to perform, for example, in feedforward and recur-
rent NNLMs, when a large output layer vocabulary is used. The cen-
tral idea of NCE is to perform a nonlinear logistic regression to dis-
criminate between the observed data and some artificially generated
noise data. The variance of normalization term is minimized implic-
itly during training. Hence, it allows normalized statistical models,
for example, NNLMs, to use “unnormalized” probabilities without
explicitly computing the normalization term during both training and
decoding. In common with the use of a class based output layer, the
NCE algorithm presents a dual purpose solution to improve both the
training and evaluation efficiency for RNNLMs.

For NCE based training of RNNLMs, it is assumed that for a
given full history contexthi, data samples are generated from a mix-
ture of two distributions: the NCE estimated RNNLM distribution
PNCE

RNN(·|hi), and some noise distributionPn(·|hi) that satisfies a de-
sired sum-to-one constraint. Assuming the noise samples arek times
more frequent than true RNNLM data samples, the distribution of
data could be described as1

k+1
PNCE

RNN(·|hi) +
k

k+1
Pn(·|hi). The

posterior probabilities of some word samplẽw is generated from



the RNNLM, or noise distribution are
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whereCRNN

w̃ andCn
w̃ are the binary labels indicating which of the

two distributions that generated word̃w. The following objective
function is minimized during NCE based training,
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where a total ofk noise samples{w̌i,j} are drawn from the noise
distributionPn(·|hi) for the current training word samplewi and its
history contexthi. The gradient of the above NCE objective function
in equation (6) is then computed as

∂J
NCE(θ)

∂θ
= −

1

Nw

Nw
∑

i=1

(

kPn(wi|hi)

PNCE

RNN
(wi|hi) + kPn(wi|hi)

∂

∂θ
lnP

NCE

RNN
(wi|hi)

−

k
∑

j=1

P
NCE

RNN
(w̌i,j |hi)

PNCE

RNN
(w̌i,j |hi) + kPn(w̌i,j |hi)

∂

∂θ
lnP

NCE

RNN
(w̌i,j |hi)



(7)

where the NCE trained RNNLM distribution is given by
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and constrained during NCE training to learn a constant, history con-
text independent normalization termZ, in contrast to the standard
CE training based RNNLM distribution given in equation (2)1. This
crucial feature not only allows the resulting RNNLM to learn the
desired sum-to-one constraint of standard CE estimated RNNLMs,
but also to be efficiently computed during both training and test time
without the computation of the output layer normalization term.

4. RNNLM TRAINING WITH NCE

In this paper, NCE training of RNNLMs is implemented on GPU
using a spliced sentence bunch mode [15]. A bunch size of 128 was
used in all experiments. CUBLAS is used for matrix operations.
The NCE objective function shown in equation (7) is optimized on
the training set. The cross entropy measure on the validation set is
used to control the learning rate.

During NCE training, a number parameters need to be appro-
priately set. First, a noise distribution is required in NCE train-
ing to provide a valid sum-to-one constraint for the NCE estimated
RNNLM to learn. As suggested in earlier research presented in [18,
19], a context independent unigram LM distribution is used to draw
the noise samples during NCE training in this paper. Second, the
setting ofk controls the bias towards the characteristics of the noise
distribution and balances the trade-off between training efficiency
and performance. In this paper, for each data samplew, a total of
k = 10 noise samples are sampled independently from the noise

1A more general case of NCE training also allows the normalization term
to vary across different histories, thus incurring the same cost as in conven-
tional CE based training [17].

distribution. It is worth noting that the noise sample could be the
predicted word and same noise sample may appear more than once.
Finally, NCE training also requires a constant normalization termZ

in equation (8) to be set. In previous research on NCE training of
log-bilinear LMs [18] and feedforward NNLMs [19], the constant
normalization term was set aslnZ = 0. In this paper for RNNLMs
an empirically adjusted setting oflnZ = 9, close to the mean of the
log scale normalization term computed using a randomly initialized
RNNLM. This setting was found to give a good balance between
convergence speed and performance and used in all experiments.

The main advantages of RNNLMs training with NCE is sum-
marized below. First, the computation on output layer is reduced
dramatically as it only needs to considerk noise samples and tar-
get word, instead of the whole output layer. Compared with the
CE based training gradient given in equation (3), the computation of
NCE gradient in equation (7) gives a total speed up of|V |

k+1
times at

the output layer. Second, the train speed is insensitive to output layer
size. This allows RNNLMs with a large vocabulary to be trained. Fi-
nally, the variance of normalization term is constrained to be a small
value during NCE training. This can avoid the re-computation of
normalization term for different histories, therefore allows the un-
normalized RNNLM probabilities to used during decoding.

5. EXPERIMENTS

5.1. Experiments on conversational telephone speech

In this section, RNNLMs are evaluated on the CU-HTK LVCSR
system for conversational telephone speech (CTS) used in the 2004
DARPA EARS evaluation. The acoustic models were trained on ap-
proximately 2000 hours of Fisher conversational speech released by
the LDC. A 59k recognition word list was used in decoding. The
system used a multi-pass recognition framework. A detailed descrip-
tion of the baseline system can be found in [27]. The 3 hourdev04
data, which includes 72 Fisher conversations, was used as a test set.
The baseline 4-gram LM was trained using a total of 545 million
words from 2 text sources: the LDC Fisher acoustic transcriptions,
Fisher, of 20 million words (weight 0.75), and the University Wash-
ington conversational web data [28],UWWeb, of 525 million words
(weight 0.25). This baseline LM gave a perplexity (PPL) score of
51.8 and word error rate (WER) of 16.68% ondev04.

The 20M wordFisher data, was used to train RNNLMs in a
sentence independent mode on a GPU. An Nvidia GeForce GTX TI-
TAN GPU was used. A 32k vocabulary was used in the input layer
and a 20k shortlist at the output layer. The size of hidden layer was
512. The number of BPTT steps was set as 5. The bunch size was
set to 128. A more detailed description of the baseline GPU based
bunch mode RNNLM training configuration is in [15]. The learning
rate was 0.0117 per sample for NCE training and 0.0156 per sample
for CE training. In order to ensure NCE training to be stable, set-
ting the number of noise samplesk above 10 was found necessary.
In this paper, a 10 noise samples were generated from a unigram
LM distribution for each predicted word. RNNLM weight param-
eters were randomly initialized between -0.1 and 0.1. The result-
ing RNNLMs were interpolated with the baseline 4-gram LM using
equal weighting. 100-best rescoring was used to evaluate the perfor-
mance of various RNNLMs on Intel Xeon E5-2670 2.6GHz CPUs
with 16 physical cores.

As discussed in sections 1 and 3, an important attribute of NCE
based RNNLM training is that the variance of the RNNLM output
layer normalization termZ of equation (8) can be implicitly con-
strained to be minimum during parameter estimation. This effect is



illustrated in figure 2 on log scale over a total of 12 epochs on the
validation data set. At the first epoch, the variance of the normaliza-
tion term is slightly increased from 0.035 to 0.06 before gradually
reduced again to 0.043 at the last epoch.
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Fig. 2. Variance of the output layer log-normalization term on vali-
dation data at different epochs during NCE based RNNLM training

The WER and PPL performance of an NCE trained RNNLM
are shown in table 1. 12 epochs were required for both the conven-
tional CE and NCE based training to converge. As discussed in sec-
tion 4, the log-normalization termlnZ in Equation (8) was fixed as
9. The perplexity scores in table 1 were obtained by explicitly com-
puting the output layer normalization term. During N-best rescor-
ing, normalized RNNLM probabilities were used for the CE trained
RNNLM baseline, while unnormalized probabilities were used for
the NCE trained RNNLM. As expected, when unnormalized prob-
abilities were used by the CE trained RNNLM, a large degradation
in performance was found. As is shown in table 1, the NCE trained
RNNLM gave comparable performance to the CE trained baseline.
At the same time, the training speech was doubled. This is expected
as the time consumed on output layer is approximately half of the
total training time required for conventional CE training.

LM Train train train time PPL WER
Type Crit speed(w/s) (hours)

NG4 - 51.8 16.68
+RNNLM CE 10.1k 7.4 46.3 15.22

NCE 19.7k 3.8 46.8 15.37

Table 1. Performance and training speed of NCE trained RNNLMs

Similarly a large testing time speed up of 56 times over the CE
trained RNNLM on CPUs was also obtained, as is shown in ta-
ble 5.12. As the computation of the normalization term is no longer
necessary for NCE trained RNNLMs, the computational cost in-
curred at the output layer can be significantly reduced.

Train Crit Eval speed

CE 0.14k
NCE 7.9k

Table 2. Testing speed of NCE trained RNNLMs on CPUs

For the same reason above, the NCE training speed is largely in-
variant to the size of the output layer, thus improves the scalability of

2As expected, this improvement is comparable to the speed up obtained
using variance regularisation based RNNLM training [14, 16].

RNNLM training when a very large output vocabulary is used. This
highly useful feature is clearly shown in table 3, where CE training
speed is reduced rapidly when the output layer size increases. In
contrast, the NCE training speed remains constant against different
output layer vocabulary sizes.

#output train speed (w/s)
layer CE NCE

20k 10.1k 19.7k
25k 9.1k 19.7k
30k 8.0k 19.7k

Table 3. Training speed against the size of RNNLM output layer

5.2. Experiments on Google’s one billion word benchmark

A new benchmark corpus was released by Google for measuring per-
formance of statistical language models [29]. Two categories of text
normalization are provided. One is for machine translation (StatMT)
and the other is for ASR (by Cantab Research)3. The later was to fur-
ther evaluation the performance of NCE trained RNNLMs in this pa-
per. A total of 800 million words were used in LM training. A test set
of 160k words (obtained from the first split from held-out data) was
used for perplexity evaluation. A modified KN smoothed 5-gram
LM was trained using the SRILM toolkit [30] with zero cut-offs and
no pruning. In order to reduce the computational cost in training, an
input layer vocabulary of 60k most frequent words and a 20k word
output layer shortlist were used. RNNLMs with 1000 hidden layer
nodes were either CE or NCE trained on a GPU using a bunch size
of 128. The other training configurations were the same as the exper-
iments presented in section 5.1. A total of 10 epochs were required
to reach convergence for both CE and NCE based training. The per-
plexity performance of these two RNNLMs are shown in table 5.2.
Consistent with the trend found in table 1, the CE and NCE trained
RNNLMs gave comparable perplexity when interpolated with the
5-gram LM. A large perplexity reduction of 21% relative over the
5-gram LM was obtained.

LMs Train Crit PPL

NG5 - 83.7

+RNNLM
CE 65.8

NCE 66.0

Table 4. Perplexity of RNNLMs on Google’s 1 billion word data

6. CONCLUSION

Noise contrastive estimation (NCE) training was investigated for
RNNLMs in this paper. Experimental results on a large vocabu-
lary conversational telephone speech recognition system and the
Google 1 billion word data suggest that the proposed technique
can effectively alleviate the need for an explicit normalization term
computation at the output layer in both training and testing time. A
doubling in training speed and 56 times speed up in test time evalu-
ation were both obtained. Future research will focus on improving
the scalability of NCE training on larger data sets.

3All sources are available in https://code.google.com/p/1-billion-word-
language-modeling-benchmark/. The machine translation normalized ver-
sion of this data was previously used in [29] for RNNLM training.
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