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ABSTRACT trained efficiently on GPUs using spliced sentence bunch in previ-
ous research [15]. A training speedup of 27 times was obtained over
In recent years recurrent neural network language modelg|zss based RNNLMs trained on CPUSs.
(RNNLMs) have been successfully applied to a range of tasks in- e key factor that limits the scalability of RNNLMs is the com-
cluding speech recognition. However, an important issue that limityation of the normalization term in the output layer. This has a
the quantity of data used, and their possible application areas, is t@‘?gnificant impact on both training and testing, especially when a
computational cost in training. A significant part of this cost is assO1arge output vocabulary is used, in particular, in full output based
ciated with the softmax function at the output layer, as this requires gNNLMs. One technique that can be used to improve the testing
normalization term to be explicitly calculated. This impacts both thegpeeq s introducing the variance of the normalization term into the
training and testing speed, especially when alarge output vocabulagyyyentional cross entropy based objective function. This has been
!s used. To a_lddress this pr_ot_)lem, noise contrastive es_timation (NC%)pplied to training of feedforward NNLMs, class based [13, 10, 14]
is explored in RNNLM training. NCE does not require the abovegng fyll output RNNLMs [16]. By minimizing the variance of the
normalization plurlng both training and testing. Itis ms_ensmve to the, ormalization term during training, the normalization term at the
output layer size. On a large vocabulary conversational telephong it layer can be ignored during testing time thus gaining signif-
speec_h recognition tgsk, a d_oubllng in tralnlng speed on a GPU_ andant improvements in speed. However, the explicit computation of
a 56 times speed up in test time evaluation on a CPU were obtaineglis normalization term is still required in training and it does not

Index Terms— language model, recurrent neural network, improve training speed.

GPU, noise contrastive estimation, speech recognition In order to handle this problem, techniques that alleviate the
need for explicit normalization at both training and testing time can
be used to significantly improve the efficiency of RNNLMs. In

1. INTRODUCTION this paper, noise contrastive estimation (NCE) [17] is explored for

o ] ) this purpose. NCE performs a nonlinear logistic regression to dis-
Statistical language models (LMs) are crucial components in manyiminate between the observed data and some artificially generated
speech and language processing systems designed for tasks SWgfse data. During NCE based training of NNLMs, only the con-
as speech recognition, spoken language understanding and machi& tions associated with a few words in the output layer need to
translation. Recently, recurrent neural network language modelse considered, instead of computing the normalization over the full
(RNNLMs) have been shown consistent performance improvements,iout vocabulary. Besides, NCE is able to constrain the variance
across arange of these tasks [1, 2, 3, 4,5, 6, 7, 8, 9, 10]. OneimpQyf normalization term implicitly to be very small during training,
tant practical issue associated with RNNLMs is the computationafyhich make it feasible to use “unnormalized” probabilities during
cost incurred in model training. This limits the quantity of data a”dtesting. NCE was previously used to improve the training and eval-
their poss_ible application areas, and therefore has drawn increasiQ@tion efficiency of log-bilinear language models [18] and feedfor-
research interest in recent years [2, 11, 12, 5, 13, 10, 14, 15]. ward NNLMs [19]. A modified NCE algorithm using negative sam-

A major part of the computation load is incurred at the out-pling was also adopted to deriving a distributed representation of
put layer. One standard approach to handle this problem is to Usgords and phrases [20]. In this paper, NCE is used to improve the
ClaSS-based OUtpUtS. ThIS |ImItS the Size of the Output |ayer to bﬁ'aining and testing speed of RNNLMs for speech recognition.
computed, thus allowing systems to be trained on CPUs. However, The rest of this paper is organized as follows. RNNLMs are re-
this approach is sensitive to the underlying word to class assignmefewed in section 2. Noise contrastive estimation is presented in sec-
scheme used at the output layer, and additionally complicates thy, 3. its detailed implementation is presented in section 4. Exper-
implementation of bunch mode training parallelization [5]. To ad-jment results on a large vocabulary conversational telephone speech
dress these issues, RNNLMs with a full output layer were used anglanscription task and Google’s One Billion Words corpus are re-
ported in section 5. Section 6 draws conclusions.
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uous vectomw;_o for the remaining context. For an empty history, is the probability of wordwv; given historyh;. 0; is the weight vector
this is initialized, for example, to a vector of all ones. The topologyassociated with wordat the output layer;_; is the hidden history

of the recurrent neural network used to compute LM probabilitiesrector computed at the hidden layer, aid is the size of output
Prun (wi|ws—1,v;—2) consists of three layers. The full history vec- layer vocabulary. The gradient used in the conventional CE based
tor, obtained by concatenating,_; andwv;_», is fed into the input  training for RNNLMs is

layer. The hidden layer compresses the information from these two

inputs and computes a new representation using a sigmoid ac- 8JE(0) 1 Nu /9 (0?171'71)

tivation to achieve non-linearity. This is then passed to the output 8 - N ( 90

layer to produce normalized RNNLM probabilities using a softmax Woi=1

activation, as well as recursively fed back into the input layer as the N 9 (6] vi_1)

“future" remaining history to compute the LM probability for the _ Z PRNN(IUjVZi)JiZ (3)
following word Pryn (wi+1|wi, vi—1). As RNNLMs use a vector = 06

representation of full histories, they are mostly used for N-best list

rescoring. For more efficient lattice rescoring using RNNLMS, ap-The denominator term in equation (2) requires normalization over
propriate approximation schemes, for example, based on clusterifge full output layer. As discussed in section 1, this operation is com-

among complete histories [21] can be used. putationally highly expensive when computing the RNNLM proba-
_ bilities during both test time and CE based training when the gradient
Input layer  Hidden layer ~Output layer information of equation (3) is calculated.

In state-of-the-art ASR systems, NNLMs are often linearly in-
terpolated withn-gram LMs to obtain both a good context coverage
and strong generalisation [1, 5, 23, 24, 25, 26]. The interpolated LM

Wi—1 softmax probability is given by

...)

o P(wilhi) = APne(wilhi) + (1 — X) Prnn(wil hi) 4)

A
where )\ is the weight of the:-gram LM Pyc(+), and kept fixed as

0.5 in all experiments of this paper. In the above interpolation, the
probability mass of OOS words assigned by the RNNLM component
is re-distributed with equal probabilities among all OOS words.

- | —— Prun (wi|wi—1,vi—2)

Vi—2 \ L4
7/ vole
I ) @ 3. EFFICIENT RNNLM TRAINING AND DECODING
\ Vi1 ! N USING NOISE CONTRASTIVE ESTIMATION
\ /l 0O0S output node
A ~ -, As discussed in section 1, the explicit computation of the the out-
S-=-7 put layer normalization term significantly impacts both the training

. . and testing speed of RNNLMs. A general solution to this problem
Fig. 1. An example RNNLM with OOS nodes. is to use techniques that can remove the need to compute such nor-
An RNNLM architecture with an unclustered, full output layer malization term in both training and testing. One such technique
is shown in Figure 1. RNNLMs can be trained using an extendednvestigated in this paper is based on noise contrastive estimation
form of the standard back propagation algorithm, back propagatiotNCE) [17]. NCE provides an alternative solution to estimate nor-
through time (BPTT) [22], where the error is propagated throughmalized statistical models when the exact computation of the re-
recurrent connections back for a specific number of time steps, fajuired normalization term is either computationally impossible or
example, 4 or 5 [2]. This allows RNNLMs to keep information for highly expensive to perform, for example, in feedforward andrecu
several time steps in the hidden layer. To reduce the computationggnt NNLMs, when a large output layer vocabulary is used. The cen-
cost, a shortlist [23, 24] based output layer vocabulary limited to theral idea of NCE is to perform a nonlinear logistic regression to dis-
most frequent words can be used. To reduce the bias to in-shortlistiminate between the observed data and some artificially generated
words during RNNLM training and improve robustness, an addi-noise data. The variance of normalization term is minimized implic-
tional node is added at the output layer to model the probability masigly during training. Hence, it allows normalized statistical models,
of out-of-shortlist (OOS) words [25, 26, 21]. for example, NNLMs, to use “unnormalized” probabilities without
Conventional RNNLM training aims to maximise the log- explicitly computing the normalization term during both training and
likelihood, or equivalently minimize the cross entropy (CE) measurelecoding. In common with the use of a class based output layer, the
of the training data sequence containing a totaNaf words. The  NCE algorithm presents a dual purpose solution to improve both the
objective function is given by training and evaluation efficiency for RNNLMs.
For NCE based training of RNNLMs, it is assumed that for a

N,
CE _ 1 - i given full history context.;, data samples are generated from a mix-
IO = Ny len Prwn (wilhe) 1) ture of two distributions: the NCE estimated RNNLM distribution
= PYSE(-|hs), and some noise distributiaf, (-| ;) that satisfies a de-
where sired sum-to-one constraint. Assuming the noise sampléstares
oT oT more frequent than true RNNLM data samples, the distribution of
Pro (wilhi) = exp (0/vi-1)  exp (0] vio1) (2)  data could be described 857 PRNN (i) + 25 Pa(-|hs). The

Z\J_‘;\l exp (9]~Tv¢71) B Z(hi) posterior probabilities of some word sampleis generated from



the RNNLM, or noise distribution are distribution. It is worth noting that the noise sample could be the
predicted word and same noise sample may appear more than once.

P(CBNN =1|@,hi) = P,L“ﬁ,&(w\hi) Finally, NCE training also requires a constant normalization t&rm
v o PNCE(@|h;) + kP (w]h;) in equation (8) to be set. In previous research on NCE training of
PC \ kP (]hs) c log-bilinear LMs [18] and feedforward NNLMs [19], the constant
5 = 1]w, h; = - Z i i = i
(Ci = 1w, hi) PICE (1) + kP (0]0) (5)  normalization term was set &sZ = 0. In this paper for RNNLMs

an empirically adjusted setting bf Z = 9, close to the mean of the
where CRVN and C are the binary labels indicating which of the log scale normalization term computed using a randomly initialized
two distributions that generated word The following objective ~ RNNLM. This setting was found to give a good balance between

function is minimized during NCE based training, convergence speed and performance and _us_,ed in_ all exper_iments.
The main advantages of RNNLMs training with NCE is sum-
1 Y marized below. First, the computation on output layer is reduced
JVE@G) = N > (ln P(CEMN = 1|w;, hi) dramatically as it only needs to considemoise samples and tar-
woi=1 get word, instead of the whole output layer. Compared with the

k
+ Z In P(Cf},” = 1|?I)2‘,j, hz)

> CE based training gradient given in equation (3), the computation of
j=1

(6) NCE gradient in equation (7) gives a total speed ué@ times at

the output layer. Second, the train speed is insensitive to output layer
size. This allows RNNLMs with a large vocabulary to be trained. Fi-
nally, the variance of normalization term is constrained to be a small
value during NCE training. This can avoid the re-computation of
normalization term for different histories, therefore allows the un-
normalized RNNLM probabilities to used during decoding.

where a total ofc noise samplegw; ;} are drawn from the noise
distribution P, (-|h;) for the current training word sample; and its
history context:;. The gradient of the above NCE objective function
in equation (6) is then computed as

asNE@) 1 kP, (w;|hy) ) NCE
0 - N NCE 5 I Frun (wilhs)
N 2\ PESE (wilh) + kPa(wil ) 5. EXPERIMENTS
zk: Paoi (101,511:) O 1w PNE(wi;1h) | ) 5.1. Experiments on conversational telephone speech
— — In Wi, 4| N4 L.
= PR (15 i) + kP (i 5 hy) 08 T P P P

In this section, RNNLMs are evaluated on the CU-HTK LVCSR
where the NCE trained RNNLM distribution is given by system for conversational telephone speech (CTS) used in the 2004
- DARPA EARS evaluation. The acoustic models were trained on ap-
exp (0] vi-1) 8) proximately 2000 hours of Fisher conversational speech released by
Z the LDC. A 59k recognition word list was used in decoding. The
ystem used a multi-pass recognition framework. A detailed descrip-
tion of the baseline system can be found in [27]. The 3 htmw04

PR (wilhi) =

and constrained during NCE training to learn a constant, history co

text independent normalization terf in contrast to the standard d hich includes 72 Fish . d
CE training based RNNLM distribution given in equation'(2Jhis ata, which includes Isher conversations, was used as a test set.

crucial feature not only allows the resulting RNNLM to learn the The baseline 4-gram LM was trained using a total of 545 million

desired sum-to-one constraint of standard CE estimated RNNI_M§/ords from 2 text sources: the LDC Fisher acoustic transcriptions,

-~ ; e . Fisher, of 20 million words (weight 0.75), and the University Wash-
but also to be efficiently computed during both training and test tim IS . L
without the computation of the output layer normalization term. I(r\)\?etiog%tcc())ngg)rs%lt'llqoigatljz\:ls%tl)ir?:tﬁl\[/lzgggyaelz;ecii)lsgx?tyl(lgggvgégfe of
51.8 and word error rate (WER) of 16.68% dev04
4. RNNLM TRAINING WITH NCE The 20M wordFisher data, was used to train RNNLMs in a
. - . sentence independent mode on a GPU. An Nvidia GeForce GTX Tl-
In .th's Paper, NCE waining of RNNLMs is |mplement_ed on GPU TAN GPU was used. A 32k vocabulary was used in the input layer
using a spliced sentence bunch mod_e [15]. A bunch slz€ of 12_8 Wehd a 20k shortlist at the output layer. The size of hidden layer was
used in all experiments. CUBLAS is used for matrix operations.15 The number of BPTT steps was set as 5. The bunch size was
The NCE objective function shown in equation (7) is optimized ONset to 128. A more detailed description of the baseline GPU based

the training set. The cross entropy measure on the validation set §inch mode RNNLM training configuration is in [15]. The learning
used to control the learning rate. rate was 0.0117 per sample for NCE training and 0.0156 per sample

. During NCI.E tralnlng,_ a nL_lml_)er _pare_lmeters_ nee_d to be approg, o training. In order to ensure NCE training to be stable, set-
priately set. First, a noise distribution is required in NCE train-

! h . - . ing the number of noise samplésabove 10 was found necessary.
ing to provide a valid sum-to-ong consftralnt for the NCE es““_“ate n this paper, a 10 noise samples were generated from a unigram
RNNLM to Iea_rn. As suggeste_d in earlier _res_ear(_:h p_resented N [1§.\ distribution for each predicted word. RNNLM weight param-
19], a context independent unigram LM distribution is used to draw,

h ) les during NCE training in thi S d heters were randomly initialized between -0.1 and 0.1. The result-
the noise samples during training in this paper. Second, t ﬁ\g RNNLMs were interpolated with the baseline 4-gram LM using

s Y e - %qual weighting. 100-best rescoring was used to evaluate the perfor-
distribution and balances the trade-off between training efficiency, - o ot various RNNLMs on Intel Xeon E5-2670 2.6GHz CPUs

Zni pﬁ;forr_nance. Ir; this paper, ff)rde_ac(:jh dati;lj satl?zpfla tot?rll of _with 16 physical cores.
- noise samples are sampied independently from the noiS€  A¢ giscussed in sections 1 and 3, an important attribute of NCE
1A more general case of NCE training also allows the normatizagrm ~ 0ased RNNLM training is that the variance of the RNNLM output
to vary across different histories, thus incurring the sab®t as in conven-  layer normalization tern¥ of equation (8) can be implicitly con-
tional CE based training [17]. strained to be minimum during parameter estimation. This effect is




illustrated in figure 2 on log scale over a total of 12 epochs on th&kRNNLM training when a very large output vocabulary is used. This

validation data set. At the first epoch, the variance of the normalizahighly useful feature is clearly shown in table 3, where CE training

tion term is slightly increased from 0.035 to 0.06 before graduallyspeed is reduced rapidly when the output layer size increases. In

reduced again to 0.043 at the last epoch. contrast, the NCE training speed remains constant against different
output layer vocabulary sizes.

0.07 -
0.065 /E\ A J #output || train speed (w/s)
g 0.065 / \/ \ /m layer CE | NCE
2 006 % 20k || 10.1k | 19.7K
3 0.055 / —er 25k 9.1k | 19.7k
5 /{ 30k 8.0k | 19.7k
8 0.05
& 0.045 Table 3. Training speed against the size of RNNLM output layer
§ .045 A
0.04
0.0351 5.2. Experiments on Google’s one billion word benchmark
"0 5 10 15 20 25 30 35 40 45

A new benchmark corpus was released by Google for measuring per-
formance of statistical language models [29]. Two categories of text
dation data at different epochs during NCE based RNNLM training  and the other is for ASR (by Cantab Reseatciihe later was to fur-

The WER and PPL performance of an NCE trained RNNLM ther evaluation the performance of NCE trained RNNLMs in this pa-

are shown in table 1. 12 epochs were required for both the convemer- A total of 800 million words were used in LM training. A test set

tional CE and NCE based training to converge. As discussed in se&)-f 160k words (obtained from the first split from held-out data) was

; - : . : d for perplexity evaluation. A modified KN smoothed 5-gram
tion 4, the log-normalization terim Z in Equation (8) was fixed as use - ! . .
9. The perplexity scores in table 1 were obtained by explicitly com-LM was trained using the SRILM toolkit [30] with zero cut-offs and

puting the output layer normalization term. During N-best rescor° pruning. In order to reduce the computational cost in training, an

ing, normalized RNNLM probabilities were used for the CE trained P layer vocabulary of 60k most frequent words and a 20k word

RNNLM baseline, while unnormalized probabilities were used foroutput layer s_hortlist were used. RNNLMs with 1000 hidden Iaye_r
P nodes were either CE or NCE trained on a GPU using a bunch size

the NCE trained RNNLM. As expected, when unnormalized prob- £128. The oth . fi : h h
abilities were used by the CE trained RNNLM, a large degradatior? - The ot ert_ralnlng_ configurations were the same as the Exper-
ents presented in section 5.1. A total of 10 epochs were required

in performance was found. As is shown in table 1, the NCE trained! .
RNNLM gave comparable performance to the CE trained baselind® reach convergence for both CE and NCE based training. The per-

At the same time, the training speech was doubled. This is expectgexny performance of these two RNNLMs are shown in table 5.2.

Train words (M)

as the time consumed on output layer is approximately half of th onsistent with the trend found in taple L the. CE and NCE ;ralned
total training time required for conventional CE training. NNLMs gave comparable perplexity when interpolated with the
5-gram LM. A large perplexity reduction of 21% relative over the

5-gram LM was obtained.

LM Train train traintime || PPL | WER
Type Crit | speed(w/s)| (hours) _ _
NGA - E1o 1 1668 [ LMs [ TrainCrit [ PPL |
+RNNLM || CE 10.1K 7.4 46.3 | 15.22 NG5 o 22-;
NCE | 19.7k 3.8 46.8 | 15.37 :
FRNNLM 1 Nce | 660

Table 1. Performance and training speed of NCE trained RNNLMs ) o
Table 4. Perplexity of RNNLMs on Google's 1 billion word data
Similarly a large testing time speed up of 56 times over the CE
trained RNNLM on CPUs was also obtained, as is shown in ta-
ble 5.#. As the computation of the normalization term is no longer
necessary for NCE trained RNNLMs, the computational cost in-

curred at the output layer can be significantly reduced. Noise contrastive estimation (NCE) training was investigated for
RNNLMs in this paper. Experimental results on a large vocabu-
lary conversational telephone speech recognition system and the
Google 1 billion word data suggest that the proposed technique
can effectively alleviate the need for an explicit normalization term
computation at the output layer in both training and testing time. A
doubling in training speed and 56 times speed up in test time evalu-
ation were both obtained. Future research will focus on improving
For the same reason above, the NCE training speed is largely inkhe scalability of NCE training on larger data sets.
variant to the size of the output layer, thus improves the scalability of

6. CONCLUSION

[ Train Crit [| Eval speed|

CE 0.14k
NCE 7.9k

Table 2. Testing speed of NCE trained RNNLMs on CPUs

3All sources are available in https://code.google.combpllion-word-
language-modeling-benchmark/. The machine translation ri@edaver-
sion of this data was previously used in [29] for RNNLM traigi

2As expected, this improvement is comparable to the speed unetta
using variance regularisation based RNNLM training [14, 16
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