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Abstract

Neural network language models (NNLM) have become an
increasingly popular choice for large vocabulary continuous
speech recognition (LVCSR) tasks, due to their inherent gener-
alisation and discriminative power. This paper present two tech-
niques to improve performance of standard NNLMs. First, the
form of NNLM is modelled by introduction an additional out-
put layer node to model the probability mass ofout-of-shortlist
(OOS) words. An associated probability normalisation scheme
is explicitly derived. Second, a novel NNLM adaptation method
using a cascaded network is proposed. Consistent WER reduc-
tions were obtained on a state-of-the-art Arabic LVCSR task
over conventional NNLMs. Further performance gains were also
observed after NNLM adaptation.
Index Terms: Neural Network Language Model, Language
Model Adaptation

1. Introduction
Statistical language models (LM) play an important role in
state-of-the-art large vocabulary continuous speech recognition
(LVCSR) systems. Back-offn-gram and class-based LMs [1, 2]
are the dominant language models used in LVCSR systems.
However, when only limited amounts of text data is available in
training and adaptation, the generalization ability of these dis-
crete, non-parametric models remain limited. To handle this
data sparsity problem, a range of language modelling tech-
niques based on a continuous vector space representation of
word sequences have been proposed [3, 4, 5]. Among these
one of the most successful schemes is the neural network LM
(NNLM) [6, 7]. Due to their inherently strong generalisation and
discriminative power, they have become an increasingly popular
choice for LVCSR tasks [8, 9].

To reduce computational cost, existing forms of NNLMs
only model the probabilities of a small and more frequent sub-
set of the whole vocabulary, commonly referred to as theshort-
list. The associated network’s output layer contains only nodes
for in-shortlist words. Two issues arise when adopting this con-
ventional form of NNLM architecture. First, NNLM parame-
ters are trained only using the statistics of in-shortlist words thus
introduces an undue bias to them. This may poorly represent
the properties of complete word sequences found in the train-
ing data as then-gram sequences have “gaps” in them. Sec-
ondly, as there is no explicit modelling of probabilities ofout-
of-shortlist (OOS) words in the output layer, statistics associated
with them will also be discarded in network optimisation. In or-
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der to address these issues, a modified form of NNLM architec-
ture with an additional OOS node in the output layer is proposed
in this paper. In addition to in-shortlist words, this NNLM mod-
els the probability mass of OOS words following arbitrary con-
texts. It ensures that the LM probabilities of in-shortlist words
are smoothed by the OOS probability mass in training. As all
training data is used and there is only a minimum increase of
weight parameters associated with the additional output node, a
more robust NNLM parameter estimation may be also obtained.
An appropriate scheme to redistribute the OOS probability mass
is also required for this modified NNLM.

In order to improve robustness to varying styles or tasks,
unsupervised language model adaptation to a particular broad-
cast show or conversation, for example, may be used. Due to
the previously mentioned data sparsity issue, directly adapting
n-gram probabilities is impractical on limited amounts of data.
To cope with this problem, an alternative and more general ap-
proach based on weighted finite state transducers (WFSTs) was
investigated for LM combination and adaptation [15]. Contin-
uous space language modelling techniques may be considered
for their stronger generalisation ability [10, 11]. In this paper an
NNLM adaptation scheme by cascading an additional layer be-
tween the projection and hidden layer is proposed. This scheme
provides a direct adaptation of NNLMs via a non-linear, discrim-
inative transformation to a new domain.

The rest of the paper is organized as follows. The conven-
tional form of NNLMs is reviewed in section 2. An improved
NNLM architecture with an additional OOS output node is also
presented, together with probability normalization schemes for
both forms of models given in section 2.2. A cascaded network
based NNLM adaptation scheme is proposed in section 3. In sec-
tion 4 various NNLMs are evaluated on a state-of-the-art Arabic
broadcast transcription task.

2. Neural Network Language Model
The standard NNLM projects a set of contextsht =
wt−1. . .wt−n+1 onto a continuous vector space, then calculates
the LM probability for each word given a history,P (wt = i|ht).
It is possible to represent a full context span probability distribu-
tion for all words following any history ofn − 1 words without
back-off to lower order distributions as inn-gram LMs.

2.1. Architecture of network with OOS node

The architecture of conventional NNLMs is based on a fully-
connected multi-layer perceptron (MLP) structure. The inputs
to the network are the indices of then − 1 history words in the
input vocabularyVin. Between input and output layers, there are
two hidden layers for projection and achieving non-linear prob-
ability estimation. For aN word input vocabulary,Vin, andP
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Figure 1:Architecture of NNLM with OOS output node.

dimensional continuous projection space, the input to the neural
network are coded as the 1-of-k coding. This simplifies the pro-
jection layer calculation as one only needs to copy theith row of
theN ×P dimensional projection matrix. The projection matrix
is shared for different word positions in the history context. The
outputs of an NNLM are the posterior probabilities of all words
in the output shortlist vocabulary,Vsl, following a given history.

As discussed in section 1, in conventional NNLMs the out-
put layer contains only nodes for in-shortlist words. This form of
architecture has undesirable impacts on the training of NNLMs.
In order to handle these issues, an improved form of NNLM ar-
chitecture with an additional OOS node in the output layer is
proposed. This is shown in figure 1. In addition to in-shortlist
words, this form of NNLM also explicit models the probabil-
ity mass of OOS words following arbitrary contexts, This en-
sures the probabilities of in-shortlist words can be automatically
smoothed by the OOS probability mass during neural network
training. As no training data is discarded, a more robust NNLM
weight normalisation can also be obtained.

Both types of NNLMs, without or with an OOS output layer
node, can be trained using an error back-propagation method
to minimise the training data perplexity (PP) until convergence.
The error criterion used is cross-entropy with a weight decay
regularisation in order to reduce over-fitting. To further speed-up
the training procedure, stochastic back-propagation with a bunch
mode weights update can be used [12], A modified version of the
ICSI QuickNet1 software suite for network training was used.

2.2. Use of NNLM probabilities

In state-of-the-art LVCSR systems, NNLMs are often linearly
interpolated withn-gram LMs to obtain both a good coverage of
contexts and strong generalisation ability [8, 9], as considered in
this paper. LetP (wt|ht) denote the interpolated LM probability
for wordwt following historyht. This is given by

P (wt|ht) = λPNG(wt|ht) + (1 − λ)P̃NN(wt|ht) (1)

whereλ is the interpolation weight assigned ton-gram distri-
bution PNG(·). As discussed, conventional forms of NNLMs
without an OOS output node only model probabilities of more
frequent, in-shortlist wordsw ∈ Vsl. As zero probability mass

1http://www.icsi.berkeley.edu/Speech/qn.html

is reserved for other OOS words in the complete vocabulary, a
direct interpolation between NNLMs and full vocabulary based
n-gram LMs will also retain such an undue bias to in-shortlist
words. To handle this issue, NNLM probabilitiesPNN(·) for in-
shortlist words can be normalised usingn-gram LM statistics as

P̃NN(wt|ht) =



PNN(wt|ht)αS(ht) wt ∈ Vsl

PNG(wt|ht) otherwise
(2)

αS(ht) =
X

w̃t∈Vsl

PNG(w̃t|ht) (3)

so that the same amount of probability mass is assigned to OOS
words asn-gram LMs [7, 9].

For LVCSR systems using very large sizedn-gram LMs
containing, for example, billions ofn-gram entries [8], the above
full normalisation scheme can be very expensive in decoding
time. A more efficient alternative is to use the biased NNLM
probabilities directly [9], so-calledznorm. This is given by

P̃NN(wt|ht) =



PNN(wt|ht) wt ∈ Vsl

0 otherwise
(4)

Both the full normalization in Eq.(2) and theznorm scheme guar-
antee a sum-to-one constraint for NNLM probabilities. They
were also found to give equivalent error rate performance [9].

When using the modified NNLM architecture with an OOS
output node presented in section 2.1, an alternative probability
normalisation scheme is required. As the underlying NNLM
now models all words in the complete vocabulary, the probabil-
ity mass computed from the additional OOS output layer node
must be re-distributed among all OOS words. Again this can be
achieved usingn-gram LM statisticsPNG(·) as,

P̃NN(wt|ht) =



PNN(wt|ht) wt ∈ Vsl

βS(wt|ht)PNN(woos|ht) otherwise
(5)

βS(wt|ht) =
PNG(wt|ht)

P

w̃t /∈Vsl
PNG(w̃t|ht)

(6)

so that an informative NNLM distribution for OOS words can be
used during interpolation withn-gram LMs, rather than back-off
to n-gram probabilities as the standard NNLMs of equation (2).

Similar to the full normalization for standard NNLMs in
equation (2), the above normalization can also be very expensive
for LVCSR tasks. To improve efficiency, it may be assumed that
the OOS probability mass assigned by the NNLM andn-gram
LM are equal, Thus an approximated normalization is

P̃NN(wt|ht) =



PNN(wt|ht) wt ∈ Vsl

PNG(wt|ht) otherwise
(7)

The above no longer guarantees a sum-to-one constraint for
the NNLM probabilities. However, it is hoped that the unbiased,
more robust NNLM probability estimation for in-shortlist words
can still improve recognition performance. Hence, in this paper
the full normalisation in equations (5)-(6) are only used for per-
plexity calculation. The approximated normalization is used in
all decoding experiments for error rate evaluation.

3. Neural Network LM Adaptation
In order to improve robustness to varying styles or tasks, unsu-
pervised LM adaptation to a particular domain or task may be
used. As discussed in section 2, the use of continuous space



��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

Input layer

... ...
...

...

Shared
weights

Shared
weights

Input node for ‘unknown’ words

...
...

...

...

...

... ...

Projection layer Adaptation layer

...
...

softmaxtanh

Hidden layer

Output layer

...
...

Output node for OOS words

linear

...

PNN(wt|ht)

wt−n+1

wt−2

wt−1

Figure 2:Architecture of NNLM with adaptation layer.

representation of words in NNLMs lead to an stronger gener-
alisation ability. This distinct advantage can also be exploited
when adapting NNLMs to a given target domain using limited
amounts of supervision data.

The NNLM adaptation method considered in this paper in-
volves cascading an additional network layer which is called
adaptation layer to an unadapted NNLM. The architecture of
an adapted NNLM is illustrated in figure 2. This configuration
is conceptually very similar to the Linear Input Network (LIN)
based MLP acoustic feature adaptation described in [13].

The precise location to introduce the adaptation layer is de-
termined by two factors. First, as very limited amounts of data,
for example, only a few hundred words per audio snippet, are
available, a compact structure of the adaptation layer should be
used. As discussed in section 2, the number of input and output
layer nodes are often very large, for example, tens of thousands
of words, for the Arabic speech recognition task considered in
this paper. In contrast, much fewer nodes, in the range of a few
hundreds, are often used for projection and hidden layers [7, 9].
Second, non-linear activation functions are used in hidden and
output layers of standard NNLMs. It is also preferable to retain
the same discriminative power and non-linearity during NNLM
adaptation. Due to these reasons, the proposed adaptation layer
is cascaded between projection and hidden layers. It acts as a
linear input transformation to the hidden layer of a task inde-
pendent NNLM. Using this form of network architecture NNLM
probabilities can be adapted to the target domain via a non-linear
and discriminative mapping function. During adaptation, only
the part of network connecting the adaptation layer and projec-
tion layer are updated (shown as dashed lines in Figure 2), while
other parameters (shown as solid lines in Figure 2) are fixed.

Another issue with NNLM adaptation is the choice of super-
vision. The 1-best outputs generated by an unadapted baseline
NNLM may be used. In order to improve robustness in adapta-
tion, it is also possible to use confidence measure based soft-
target supervision, for example, outputs generated using con-
fusion network (CN) decoding. However, in practice this was
found to have minimal impact on performance for the adapta-
tion scheme considered in this paper. Hence, 1-best hypothe-
ses of unadapted baseline NNLMs are used as supervision in all
NNLM adaptation experiments of the following section.

4. Experiments
The CU-HTK Arabic LVCSR system was used to evaluate per-
formance of various NNLMs and the adaptation scheme pre-
sented in this paper. It was trained on on 1500 hours of broad-
cast speech data. A total of 1.2G words from 22 text sources
were used in LM training. A 350k word list was used. The
system uses a multi-pass recognition and system combination
framework described in [14]. In the initial “P2” lattice genera-
tion stage, an interpolated 4-gram graphemic baseline LM and
adapted gender dependent cross-word triphone MPE acoustic
models with HLDA projected PLP features were used in decod-
ing. The resulting lattices were then used in a “P3” acoustic
re-adaptation and lattice rescoring stage, where two PLP feature
based and two PLP+MLP frontend based acoustic models were
used [13], before a final CNC combination. All NNLMs were
trained using the 15M words of acoustic transcriptions only. The
size of NNLM input and output vocabularies are 100k and 20k
words respectively. OOS rates are 11.1% for training tokens and
10.6% for development sets. A weight of 0.5 was tuned for a
linear interpolation betweenn-gram and NNLMs and fixed in
all experiments. Three GALE Arabic speech development sets:
3 hourdev08, 3 houreval07, and 3 hourdev09 were used.

4.1. Perplexity results

Perplexity performance of a standardn-gram LM (NG) and
several NNLMs: without OOS output node (NN), without
OOS output node withznorm (NN.znorm), with OOS out-
put node (NN.OOS) and adapted with OOS configurations
(NN.OOS.adapt) are shown in the first section of table 1. PP
reductions of 22 to 61 points (5.4%-10.3% rel.) were obtained
over then-gram baseline using the conventional NNLM archi-
tecture without an OOS output layer node. The unnormalized
“NNLM.znorm” model gave slightly lower PP scores than the
fully normalised NNLM, due to its bias to in-shortlist words.
Further PP reductions of 18 to 32 points were obtained con-
sistently across all three sets, when using the proposed NNLM
architecture by explicitly adding an OOS node to the output
layer. As discussed in section 2, these PP gains are expected
because the use of OOS output layer node more closely repre-
sents the nature of complete word sequences found in the train-
ing data. It ensures all words were used in NNLM training for
more robust weight parameter estimation, compared with dis-
carding all contexts predicting OOS words as in conventional
NNLMs. This improved NNLM architecture can also provide
an informative distribution for OOS words after appropriately
redistributing their probability mass usingn-gram statistics as
described in section 2.2. Adapted PP performance of this NNLM
in both unsupervised and supervised mode are shown in the last
two lines table 1. Additional PP reduction of 18 to 21 points
were obtained over the unadapted baseline using the proposed
network cascading scheme presented in section 3. The adapted
PP performance in supervised mode are also shown in the bot-
tom line of the table with a† to serve as a PP lower bound. As
expected, some further, but not large, PP reductions between 11
and 21 points were obtained over unsupervised adaptation.

4.2. System evaluation

Now it’s interesting to examine whether the PP improvements
in table 1 can be transformed into error rate reductions. A first
set of experiments were conducted using the P2 lattice rescoring
setup with various NNLMs linearly interpolated with the base-
line 4-gram LM. A weighted finite state transducer based on-the-



Perplexity
LM eval07 dev08 dev09

NG 495 404 591
NG + NN 467 382 530
NG + NN.znorm 461 377 521
NG + NN.OOS 435 364 479
NG + NN.OOS.adapt 411 346 452
NG + NN.OOS.adapt† 394 325 441

Table 1:PP performance of NNLMs.(† for supervised adaptation)

WER,%
LM eval07 dev08 dev09

NG 15.1 15.6 19.4
NG + NN.znorm 14.7 15.4 18.6
NG + NN.OOS 14.5 15.2 18.5
NG + NN.OOS.adapt 14.5 15.1 18.5
NG + NN.OOS.adapt† 14.1 14.8 18.1

Table 2:P2 WER performance of NNLMs.(† for supervised adaptation)

fly lattice expansion algorithm [15] was used in lattice rescoring.
As discussed in section 2.2, the expected impact on error rate is
small and high computational cost required, the NNLM proba-
bility normalisation schemes given in equations (2) and (5) were
not used in these experiments. Otherznorm and approximated
NNLM probabilities of equation (4) and (7) were used.

The first three lines of table 2 show WER performance of
the baseline 4-gram back-off LM and two unadapted NNLMs.
Consistent with the trends of perplexity reduction observed in
table 1, the use of additional OOS output node outperformed the
conventional NNLM architecture on all three test sets by 0.1%-
0.2% in WER. These results confirm that the modified NNLM
architecture gave a better probability estimation for in-shortlist
words, as both forms used the normalised in-shortlist NNLM
scores of equation (4) and (7) during decoding. The total error
rate gains using the NNLM with OOS over the baseline 4-gram
LM were 0.4%-0.9% absolute (2.5%–4.6% rel.) across three test
sets, all being statistically significant. NNLM adaptation gave a
small WER reduction of 0.1% ondev08 anddev09. The perfor-
mance of supervised NNLM adaptation is also shown in the last
line of the table. This system serves as an upper bound for WER
gains using the NNLM adaptation method of this paper. It out-
performed unsupervised NNLM adaptation by only 0.3%-0.4%
absolute. This gap is much smaller than directly retraining the
n-gram LM using the test data reference. This confirms NNLMs
are less sensitive to the supervision quality thann-gram LMs.

Table 2 shows the performance of the improved and adapted
NNLMs at the P2 stage. It’s interesting to examine whether the
WER gains can be maintained at the P3 stage where 4 re-adapted
acoustic models (graphemic/phonetic PLP models G3p/V3p,
and graphemic/phonetic PLP+MLP models G3m/V3m) are used
to rescoring P2 lattices generated by various LMs of table 2.
These WER results are shown in table 3, together with the CNC
combined performance in the bottom section of the table. WER
gains with the OOS NNLM architecture are maintained for all
4 different branches overn-gram LM baseline. For example,
on the best single branch using the “V3m” system, consistent
WER reductions of 0.1%-0.6% absolute were obtained over the
n-gram LM baseline. Further improvements of 0.1%-0.2% were
observed oneval07 anddev09 after NNLM adaptation. Similar
trends can also be found in the CNC combined performance. The
final gains in CNC combination from the NNLM were 0.2%-
0.4% over then-gram baseline, and further increased to 0.3%-
0.6% after NNLM adaptation. These final error reductions to the
standardn-gram baseline are significant at the 95% confidence
level using the NIST MAPSSWE test.

WER,%
System LM eval07 dev08 dev09

G3p
NG 14.4 15.0 18.9
NG + NN.OOS 13.7 14.5 18.4
NG + NN.OOS.adapt 13.7 14.6 18.2

G3m
NG 13.2 14.4 17.4
NG + NN.OOS 12.9 13.8 16.8
NG + NN.OOS.adapt 12.7 13.7 16.7

V3p
NG 13.0 13.9 17.5
NG + NN.OOS 12.6 13.4 16.9
NG + NN.OOS.adapt 12.6 13.4 16.7

V3m
NG 12.4 13.5 17.0
NG + NN.OOS 12.3 13.1 16.4
NG + NN.OOS.adapt 12.2 13.1 16.2

CNC
NG 11.6 12.5 15.7
NG + NN.OOS 11.4 12.2 15.3
NG + NN.OOS.adapt 11.3 12.2 15.1

Table 3:P3 lattice rescoring performance of NNLMs.

5. Conclusion
This paper investigated an improved NNLM architecture and a
NNLM adaptation method using a cascaded network. Consistent
WER reductions obtained on a state-of-the-art LVCSR task sug-
gest the improved network architecture and proposed adaptation
scheme are useful. Future research will focus on more complex
forms of modelling of OOS words in NNLMs and improving
robustness for NNLM adaptation.
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