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Abstract 2. Word-boundary context modelling

In MSA, the short vowelsfétha /a/, kasra /i/, anddamma /u/) as

This paper describes recent improvements to the CambridgeVell as the corresponding word-final nunatiorfiatffatan /an/,
Arabic Large Vocabulary Continuous Speech Recognition kasratan /in/, and dammatan /un/) are not marked in written
(LVCSR) Speech-to-Text (STT) system. It is shown that word- t€xt. For phonetlc systems, this compllcatc_es the desigmef t
boundary context markers provide a powerful method to ertan  dictionary since the short vowels present in the spoker-utte
graphemic systems by implicit phonetic information, impng ance need to bg |nferr§d. In the work discussed herg, vaeklis
the modelling capability of graphemic systems. In additian forms are_obtalned using the Buckwalter Morphological Anal
robust technique for full covariance Gaussian modellinghin ~ YSer (version 2.0; henceforth Buckwaltet’)However, a mor-
Minimum Phone Error (MPE) training framework is introduced ~Phological analyser such as Buckwalter cannot produceyanal
This reduces the full covariance training to a diagonal dawee ~ S€S for all the words in the ASR dictionary. For instance, for
training problem, thereby solving related robustness lprob. @ 350k word dictionary, Buckwalter provided only 260k vow-
The full system results show that the combined use of these an €lised word forms [4]. A further problem is caused by the ftesu
other techniques within a multi-branch combination framgy 1N dictionary size: although Buckwalter cannot produce/vo

reduces the Word Error Rate (WER) of the complete system byelised word forms for every entry, it typically generate3 vow-
up to 5.9% relative. elised word forms per graphemic word form [4], and this @eat

] . . a significant processing overhead during decoding andintiscr
Index Terms: Arabic, STT, Context, Covariances inative training. Graphemic systems overcome these ditiésu
since they rely on a one-to-one mapping between grapherdes an
1. Introduction phonemes, thereby simplifying the dictionary generatiaskt
The drawback is that acoustic models used in graphemic sys-
In recent years, Arabic-based Automatic Speech Recognitio tems only model the short vowellsplicitly. Modelling a short
(ASR) systems have improved considerably [1, 2, 3]. The Ara- vowel together with its associated consonants resultsmpee-
bic language is a member of the Semitic language family and itcise acoustic units [4].
poses many problems for ASR systems since it is morphologi- Consequently, graphemic models are faster in decoding and
cally complex and its dialects differ significantly. In atidn, more robust to changes in the acoustic environment and speak
Modern Standard Arabic (MSA) is usually written without sho  styles, but they are outperformed by phonetic models [4in&o
vowels. Consequently, graphemic and phonetic Arabic SET sy of the shortcomings of graphemic models can be overcome by
tems are widely used: the former use unvowelised trangmnigt using word-boundary context information [5]. This infortas

while the later use vowelised transcriptions. The compleary is added to the system by marking the phonetic units of a word
phonetic and graphemic output is combined in a system combi-in the dictionary as word-initial,_, word-medial M_, and word-
nation framework [2]. final, F_. For the wordkt Ab?, the transcription changes as fol-

This paper describes recent improvements to the CambridgdOWs:
Arabic STT systems. The techniques discussed improve both kt Ab Ikl 1t] IA /Dbl
the individual branches and the gains obtained by system com - /1 kl /IMt] IMA [Fb
bination. Section 2 describes the use of word-boundary con-
text models. Such models distinguish between phonemeswhic
appear at different positions in a word (i.e., word-initiaiord-
medial, word-final). The emphasis falls primarily on grapiie
systems, since word-boundary information can help to izitev
the modelling limitations caused by the absence of shortelow
information. In section 3, the use of full covariance matsic
for acoustic modelling is discussed. The complementafith®
full covariance models compared to other acoustic modedz-is
plored, as is their use in a system combination framework. An
effective implementation of full covariance models is sed
and its advantages for discriminative acoustic modelimgiare
highlighted. Section 4 describes the experimental setiyiew lavailable from the Linguistc Data Consortium (LDC),
section 5 gives detailed results and analysis for the Calgéri  http://www.Idc.upenn.edu.
Arabic STT systems. 2Buckwalter transliteration.

Word-boundary markers distinguish phonemic pronunaiatio
variants due to word position. They also provide indireébin
mation about short vowels and nunation. As mentioned above,
nunations may appear at the end of a noun or an adjectivedut ar
commonly not marked in written texts. Marking a given word-
final acoustic unit by-_ indicates a possible nunation which dis-
tinguishes it from a word-medial version of the same unithia
way, word-boundary markers provide graphemic systems with
more finely granulated information. For phonetic systerhs, t
modelling advantages are smaller since the short vowelsxare
plicitly marked in the dictionary.




The setup described in section 4.1 was used for all tests diswhereas the occupation counts for the off-diagonal elesneiret
cussed in this section. Traditionally, one decision trdmii#t for kept unchanged. In this work a value of= 100 resulted in a
each phonetic base unit and state position. However, thmest  stable reestimation procedure.
more base units are needed when word-boundaries are marked,

which leads to an over fragmentation of the states spacaeThe System Testset
fore, the word-initial, word-medial, and word-final phonariv Cov | #Comp || d0O7 | dos | d09sub
ants of a given phoneme were clustered within one decisén tr diag 36 5131 2481 271
for this phoneme. Consequently, ‘central phone questimaese diag 72 201 | 233 | 25.7
introduced, in addition to questions asking for one of theeh diag 144 195| 222 248
possible word-boundary context variants. Polythetic tjoas fail Z 733 9611 288
asking for a particular phoneme in one of the three possitie ¢ full 8 209 | 2411 263
texts were also usetiTable 1 contrasts the use of word-boundary full 16 19.6 22'7 25'5
information for a graphemic (‘Gra’) and a phonetic (‘Phoss full 36 18:5 21:6 23:9
tem. The subscriptontes+ indicates the use of word-boundary
markers.
Table 2: Contrast of diagonal versus full-covariance miaugl
System Testset for different number of Gaussian components. ML trained
do7 | dos | do9sub acoustic models, 9k tied states, unadapted decoding sesult
Gra 21.2 | 245 27.0 WER in%.
Gracontezt 185 216 242
Pho 16.3| 19.2 | 23.0 Table 2 compares three ML-trained systems with diagonal
PhOcontest 159 19.0| 22.2 covariance modelling with four corresponding full covade

systems. In the diagonal and the full covariance casesytera
performance is increased when the number of Gaussian compo-
Table 1: Contrast of graphemic and phonetic models with andnents is incremented. However, the decrements in WER tend to
without word-boundary information. ML trained acousticdro  be larger in the full covariance case and the best systerrperf
els, 12k tied states, unadapted decoding results, WER in%. mance is obtained for the full covariance system with 36 com-
ponents per state. This confirms the potential of the prapose
In the phonetic case, reductions in WER of 1.0-3.5% relatiee ~ SMoothing procedure. Though the number of model parameters
observed. This confirms the hypothesis that position-dégen " the 36 component full covariance case is mcrease_d by more
pronunciation variations for acoustic units can be captung tha_n a factor of 2.5 compared_to the 144 component dlag(_)nal co
word-boundary markers. In the graphemic case, the WER reduc Varance case, the full covariance system copes well with da
tions of 10.4-12.7% relative are much larger than in the ption ~ SParsity. It outperforms the best diagonal covarianceesysty
case. This confirms the hypothesis that short vowel informa- 0-6-1.0% WER absolute. »
tion is at least partly recovered by the word-boundary natke It is well known that, in the case of MPE training, the data
A similar pattern of an approximate reduction in WER of 10% SParsity issue is even more critical than in the ML case. To

relative was also found in case of a MADA morpheme based COP€ With this problem, I-smoothing was introduced in [6]. |
graphemic system. smoothing can be regarded as the use of a prior over the parame

ters of a Gaussian, with the prior being based on the sttisfi

. . a more robust estimation procedure. For the CUED MPE train-
3. Full Covariance MOde"mg ing, I-smoothing is a two stage process where the MPE statist
For reasons of efficiency and robustness, STT systems ysuall are I-smoothed by MMI statistics which are again I-smootined
use diagonal covariances for the individual Gaussian cempo corresponding ML statistics. In the full covariance cabis, pro-
nents. Spectral (intra-frame) correlations are taken actmunt cedure has the disadvantage that, in addition to the MPE-stat
by applying a mixture of Gaussians for each state. This mod-tics, full covariance MMI and ML statistics also need to b#-es
elling approach has the virtue of being efficient in terms efima mated and stored. This requires considerable CPU time, hs we
ory and CPU consumption, but it lacks the modelling capabil- as disc space to store the intermediate statistics. In dafsd o
ity of applying full covariance matrices. A well-known prien covariance models and a large amounts of acoustic trairitey d
with full covariance models is the large number of paranseter this procedure is impractical.
which needs to be estimated. For a 39-dimensional feature ve To overcome these problems, MPE training in transformed
tor (as used for this work), the number of model parameters re feature spaces can be implemented. With the full covariaree
quired compared to the diagonal case is increased by a factotrix 3;,,, an observatior is modelled at the component level
of 10 when keeping the number of Gaussian components fixedby a Gaussian a8 ~ N(p;,,, ;). When introducing the
For model training, the related data sparsity problem isra ce decorrelating feature transform
tral issue. Thus, for Maximum Likelihood (ML) training, the ,
covariances are smoothed by the diagonal elements. When cal o = Aijo 2
culating the diagonal elements of the covariance matritess,
component occupation counis,, (for the;*" state and then'"
component) are increased by a prior cotio

which diagonalises the covariance matix.,, to

Z;m = Afm2j7rzAjm (3)

= 1 g
Yim = Yjm T (1) the transformed feature space observatiois modelled by

3For Chinese ASR systems, polythetic questions give slighfop- , , ,
mance gains. 0 ~N(Wjm>Zjm) 4)



Whereu;m = AJTmujm is the transformed mean. Principle ration was chosen. For the graphemic systems, a two-pass de-
Component Analysis (PCA) is used for feature decorrelation coding setup was used which involves lattice-generatiati wi

The elements of the diagonal covariance maffx,, in the @ bi-gram Language Model (LM) followed by lattice rescoring
transformed space are therefore the eigenvalues of thmarig  With a tri-gram LM. All LMs and associated dictionaries were
covariance matrix2;,. Parameter reestimation, including I- based on a 350k wordlist and 1.2G tokens LM training material
smoothing, is then performed in the transformed, decdréla For the phonetic systems, acoustic rescoring was usedrfesco
domain. Consequently, MPE training involves a few addalon ing the lattices of the graphemic system which were not apply
steps. The starting point is an ML-trained full covariancedel ~ ing word-boundary markers. For phonetic dictionary genera
where for each of its Gaussian component PCA is applied and th tion, Buckwalter provided 310k vowelised pronunciationsthe
transformations4 ;,, are calculated. Next, the transformations 350k words. For the remaining words, pronunciations based o
are applied to the model and the observationand MPE train-  the G2P-method described in [7] were used. On the average thi
ing is carried out in the decorrelated parameter spacellfitie gave 6.7 pronunciations per word. The system performanse wa
reestimated model parameters are transformed back toithe or €valuated on three development test sets: d07 (2.58 hald8),
inal parameter space which gives the resulting full coveméa  (3.04 hours), and d09sub (2.93 hours) for which the OOV rates
model. The proposed method of implementing an MPE-trained Were in the range 1-2%.

full covariance system solves two problems. In terms of mem-

ory and CPU demand, it is comparable to the training of a stan-4.2. Evaluation Systems

dard diagonal covariance model. In gddition, .the data. H9arS  Tpe final assessment of the word-boundary context markers an
problem is solved as standard |-soothing techniques atedpp the proposed full covariance modelling was performed uieg

These advantages come with the drawback that only a fragtion CUED ASR system developed for the GALE phase 5 system
all model parameters are trained discriminatively. evaluatior?, This system consists of five branches providing five

Table 3 compares three MPE-trained diagonal 9ovariancehypothesises which are combined by ROVER [8]. All branches
systems with a MPE-trained 36-component full covarianee sy use the same multi-pass adaptation framework as described i

tem. Increasing the numper of components for the diagonal €0 2], but apply branch specific front-ends, LMs, and acoustic
variance systems resulits in conS|§tent performgnce gams:- models. For the front-ends, PLP features and TANDEM con-
paring the best 144-component diagonal covariance sysigm w nected [9] PLP-MLP (Multi-Layer Perceptron), features][ate

Fhe 36-component full covariance system, similar perforcga g0 The MLP applies phonetic targets providing implibirs

IS obser\_/ed. However, in the fuI_I covariance case, the numibe vowel information to graphemic systems [11]. In addition to
MPE-trained parameters constitutes only a fourth of the MPE g, garg word-based systems, MADA morpheme-based systems
trained parameters in the diagonal covariance case. This co [12] are also used. To further increase the diversity betvise
firms the potential of the proposed approach for full covisea system branches, this is combined with graphemic and plwonet

modelling. modelling, and MPE and boosted MMI (BMMI) [13] training.
The three-stage decoding process consists of a Pl-stage
System Testset which is a fast decoding run with gender-independent (GIP PL
Cov | #Comp || d07 | dO8 | dO9sub graphemic models. The P2-stage uses speaker-adapted-gende
diag 36 15.7] 18.3| 21.6 dependent (GD) graphemic models based on the P1 supetvision
diag 72 154 17.8| 21.2 It generates trigram lattices which are expanded using g
diag 144 15.0| 17.5| 20.6 LM. This is followed by LM rescoring applying a class-based
full 36 15.1| 174 | 204 LM and a Neural Network LM (NN-LM) which were both inter-

polated with the 4-gram [2]. The training material, wortlisand
build procedure used for the n-gram LMs and class-based LMs
Table 3: Contrast of diagonal versus full covariance maugll (1000 classes) are equivalent to the ones described insecfi.
for different number of Gaussian components. MPE-trained The NN-LMs follow the build procedure described in [12].
acoustic models, unadapted decoding results, WER in%. The P3-stage serves for acoustic rescoring and applies dif-
ferent GD models which were adapted using 1-best CMLLR and
lattice-MLLR as discussed in [14]. Confusion network deéngd

4. System description was then performed on this output and ROVER [8] was used for
system combination. For PLP-system adaptation, full CMLLR
4.1. Development Systems and lattice-MLLR transforms were used. For the PLP+MLP-

systems, block diagonal transforms were deployed, onekbloc
for the PLP features, and one for the MLP features. To reduce
the computational cost for the full covariance modellirgg és-
timation of the linear transformations was based on theitead
diagonal of the covariance statistics.

For the P1+P2 stage, three different acoustic models were
used. The ‘G1’ graphemic word-based model, and the two ‘G2’
and ‘G3’ graphemic morpheme-based models. G2 and G3 differ
used in the former systems account for the increased logfigl 1" the MADA version used. G2 uses MADA version 2.3, while
space (by a factor o = 27) due to 3 times more phonetic base G3 uses MADA version 1.8. All three models feature 9k tied
units in the. case qf the Word-boundar.y context models. It was 4407, do8, do9sub. as well as d10c, and d10d denote the dev07,
found that increasing the number of tied states from 9k to 12k gey08, devogsub, devi0c, and devi0d, respectively, daveint test-
typically reduced the absolute WER by 0.5%. sets used for system development within the GALE project.

For development purposes, an unadapted decoding configu- 5See: http://projects.ldc.upenn.edu/gale/

For system development, ML- and MPE-trained acoustic nsodel
were built. All systems applied PLP-based front-ends wi®a
dimensional feature vector after a HLDA transform. Crosselv
decision-tree state-clustered triphones were built uajproxi-
mately 1850 hours of acoustic training data. All systemerrefi

to in section 2 ‘word-boundary context modelling’ used 1izkit
states, while the systems refered to in section 3 ‘full ciavere
modelling’ use 9k tied states. The larger number of tiedestat




states, MPE acoustic training, diagonal covariances, RiaP f ‘ SYStem‘\ S L T N | I EC—
tures and a dictionary without word-boundary context merke il | ;X | u | v | T/a | Vi H 141[; | 13; | 25.0 |
For the P3 stage, two more morpheme-based models and two v2 - - v v v 154 | 145 258
more word-based models were used. The ‘V1' phonetic model | G1 v - v - - 155 | 146 259
(‘v for vowelised) uses MADA version 2.3, the PLP+MLP fron- \ész Y v . 1673:‘31 ig:; %:g
tend, 12k states, word-boundary context markers and BMMI ROVER GALE phase 5 (VIiV20G30G20VA) | 13.7 | 128 | 238 |
acoustic training. The ‘V2’is similar to V1 though using MAD | ROVER GALE phase 4 | 143 | 136 | 247 |

version 1.8, 9k states, and no word-boundary markers. The V2

model is the best acoustic model developed for the GALE phase

4 evaluation. The remaining models are word-based and MPE-Table 4: Individual branch results and ROVER results from
trained. The graphemic G1 model applies the PLP+MLP fron- the GALE phase 5 and phase 4 system evaluation, WER in %.
tend, 12k states and word-boundary markers, whereas the phoNomenclature: ‘Ctx'— use of word boundary markers and 12k

netic V3 model is based upon the standard PLP front-end. Mode states; ‘Full'— use of full covariances; ‘MLP— use of TAN-

V3 features 9k states without word-boundary markers arnfkis t
only model with full covariance matrices.

DEM PLP+MLP features; ‘Mada~ use of MADA morpholog-
ical decomposition; ‘BMMI'— use of BMMI trained models. If

For the evaluation systems, the development test sets d10§10 ‘tick’ is present, the standard configuration applieswoed-
(6.38 hours), and d10d (18.46 hours) were used along withboundary markers, 9k states, diagonal covariances, Pitiésa
d09sub. d10c is comparable to d09sub in complexity. By con- word based tokens and MPE trained models.

trast, d10d features acoustic data which is more challgngin
This is indicated by the ‘d’ extension which stands faifficult’.

Finally, the proposed techniques were investigated wilstate-

of-the-art 5-way LVCSR system. The combined use of these

5. Experiments and Results

Table 4 shows the individual branch results and the ROVER out
come for the systems. When comparing the best individuagha

5 and phase 4 systems (i.e. V1 versus V2) improvements of [1]
0.4-0.8% in absolute WER are observed. Most gains are due
to the word-boundary context modelling incorporated irte t
phase 5 model. The graphemic word-based G1 system performs[2]
nearly as well as the phonetic morpheme-based V2 systema. Thi
emphasises the importance of word-boundary context nindell

and the use of MLP features with phonetic targets in grahemic (3l

model. Both techniques help to overcome the graphemic sys-

tem’s implicit modelling of short vowels. 4]
Comparing the V1 and V2 branch with the V3 branch, it

is clear that the full covariance modelling can not comptnsa

for the lack of TANDEM PLP+MLP features, morphological |5

decomposition, or the use of MPE instead of BMMI for model
training. However, even a simple full covariance model sagh
V3is more complementary in system combination than anyrothe [6]
word-based phonetic system.

Finally, comparing the ROVER result for the GALE phase
5 evaluation with the GALE phase 4 evaluation, a reduction of
0.6-0.9% WER absolute is observed. These improvements are
mainly due to the improved acoustic modelling which comes 8
from word-boundary markers and the full covariance modelli
in the V3 system. However, other factors include the in@das

[7]

state space for the word-boundary context models, dedickte (]

tionaries and LMs developed for the phase 5 evaluation, pad a

proximately 300 hours of additional acoustic training data [10]
6. Conclusion

This paper has described recent improvements to the Cagebrid -

Arabic STT systems. It has been shown that word-boundary

context markers provide an efficient way to incorporate ghion  [12]

information into graphemic systems. This results in graple

systems which are closer in performance to phonetic systams

which feature the reduced complexity associated with grapb [13]

system. Further, a novel approach for full covariance MRE#r

ing was introduced. It was shown that it solves the robustnes

problem of discriminative full covariance modelling. Siari [14]

performance to a diagonal covariance system with four times
more discriminatively trained model parameters was obthin

techniques give WER reductions of 3.6-5.9% relative.
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