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Abstract

Recently deep neural networks (DNNs) have become increas-
ingly popular for acoustic modelling in automatic speech recog-
nition (ASR) systems. As the bottleneck features they produce
are inherently discriminative and contain rich hidden factors
that influence the surface acoustic realization, the standard ap-
proach is to augment the conventional acoustic features with
the bottleneck features in a tandem framework. In this pa-
per, an alternative approach to incorporate bottleneck features
is investigated. The complex relationship between acoustic fea-
tures and DNN bottleneck features is modelled using general-
ized variable parameter HMMs (GVP-HMMs). The optimal
GVP-HMM structural configuration and model parameters are
automatically learnt. Significant error rate reductions of 48%
and 8% relative were obtained over the baseline multi-style H-
MM and tandem HMM systems respectively on Aurora 2.

Index Terms: generalized variable parameter HMM, deep neu-
ral network, bottleneck features, robust speech recognition

1. Introduction

Recently deep neural networks (DNNs) have become increas-
ingly popular for acoustic modelling in automatic speech recog-
nition (ASR) systems [1, 2, 3, 4, 5, 6, 7, 8]. In order to in-
corporate DNNs, or multi-layer perceptrons (MLPs) in gener-
al, into HMM based acoustic models, two approaches can be
used. The first uses a hybrid architecture that estimates the H-
MM state emission probabilities using DNNs [9]. The second
approach uses an MLP or DNN as a feature extractor, trained to
produce phoneme posterior probabilities. The resulting prob-
abilistic features [10], or bottleneck features [11] are used to
train standard GMM-HMMs in a tandem fashion. As these fea-
tures capture additional information complementary to standard
front-ends, they are often combined in tandem systems.

One important issue associated with the tandem HMM ap-
proach is the appropriate method used to combine the conven-
tional and bottleneck features. The precise nature of the rela-
tionship between the two is highly complex. Compared with the
standard front-ends, bottleneck features provide a different view
of the same speech signals. Certain correlation can therefore
exist between the two. At the same time, complementary infor-
mation characterizing the underlying hidden factors influencing
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the surface acoustic realization are also implicitly learnt by bot-
tleneck features. They are propagated into HMMs as additional
cues and constraints to improve discrimination. The standard
approach augments the conventional front-ends with bottleneck
features in a concatenated form. More advanced approaches
that explicitly approximate the correlation between them using
linear, affine transformations have also been proposed [12, 13].

In order to better capture the complex relationship between
standard acoustic and bottleneck features, techniques motivat-
ed by speech production that can fully exploit the hidden vari-
ability in the bottleneck features may be used. Along this line,
an alternative method to incorporate bottleneck features into a
tandem system is proposed in this paper. DNN bottleneck fea-
tures are used as influence factors to directly introduce con-
trollability to the underlying generative acoustic models that
are based on generalized variable parameter HMMs (GVP-
HMMs) [14, 15, 16, 17, 18]. The continuous trajectories of op-
timal HMM parameters against the time-varying hidden factors
in the bottleneck features are modelled using polynomial func-
tions. Their effects on the acoustic parameters are automatically
learnt by locally optimized polynomial parameters and degrees.
Using the proposed GVP-HMM tandem approach, significan-
t error rate reductions of 48% and 8% relative were obtained
over the multi-style baseline HMM and tandem HMM systems
respectively on Aurora 2.

The rest of this paper is organized as follows. Generalized
variable parameter HMMs and an associated efficient complex-
ity control technique are introduced in section 2. Deep neural
networks and bottleneck features are reviewed in section 3. A
range of GVP-HMM systems using various modelling config-
urations are described in section 4. In section 5 various GVP-
HMM systems using DNN bottleneck features are evaluated on
Aurora 2. Section 6 is the conclusion and future research.

2. Generalized Variable Parameter HMMs

Generalized variable parameter HMMs (GVP-HMMs) [14, 15,
16, 17] explicitly model the parameter trajectories of optimal
Gaussian components, or more compact tied linear transforma-
tions, that vary with respect to some influence factors. In this
paper, trajectories of Gaussian means and variances are used.

2.1. Model Definition

For a D dimensional observation o; emitted from Gaussian
mixture component m, assuming Pth order polynomials mod-
elling a total of N regression variables are used, the form of



GVP-HMMs considered in this paper is given by
o® ~p (Om; 1™ (vy), 2<m>(Vt)) . (1
v isa (P x N + 1) dimensional Vandermonde vector [19],
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dimensional factor vector Gaussian parameters are conditioned
on at frame ¢, for example, the DNN bottleneck features,
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™ () and ™ (.) are the P*" order mean and covariance
trajectory polynomials of component m respectively. When di-
agonal covariances are used, the trajectories of the ‘" dimen-
sion of the mean and variance parameters are computed as
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where ¢ is a (P x N +1) dimensional polynomial coefficient

vector and O'(m) is the conventional HMM variance estimate.

As a natural form of generative model inspired by speech
production, a range of factors influencing the acoustic realiza-
tion of speech have been investigated in previous research us-
ing GVP-HMMs, or their precursors based on more restrict-
ed forms of parameter trajectories, such as multiple regres-
sion HMMs (MR-HMM) [20] and variable parameter HMMs
(VP-HMM) [21, 22]. These acoustic factors include prosodic
features [20], environment noise condition represented by the
signal-to-noise ratio (SNR) [14, 15, 16, 17, 18, 21, 22], and
more recently articulatory features for speech synthesis [23].

GVP-HMMs share the same instantaneous adaptation pow-
er and good controllability as MR-HMMs and VP-HMMs. For
any variability indicated by the factor vector, e.g. the bottle-
neck features, or SNR level, present or unseen in the training
data, GVP-HMMs can instantly produce the matching HMM
model parameters by-design without requiring any multi-pass
decoding and adaptation process.

2.2. Parameter Estimation for GVP-HMMs

For the form of GVP-HMMs of equation (1) the associated ML
auxiliary function is given by [14, 15, 24],
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where v, () is the posterior probability of frame o; being emit-
ted from component m at a time instance ¢.

Combining the above with equations (1) and (4), the corre-
sponding parts of the above auxiliary function associated with
the polynomial coefficient vectors of the Gaussian mean and
variance trajectories respectively can be re-arranged into con-
vex quadratic forms,
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where the constant terms independent of the coefficient vectors
¢ can be ignored. Setting the above gradients against the re-
spective polynomial coefficient vectors to zero, the following
ML solutions of the coefficient vectors can then be derived
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2.3. Model Complexity Control for GVP-HMMs

An important issue associated with GVP-HMMs is the appro-
priate polynomial degree to use. The use of higher degree poly-
nomials can result in severe over-fitting and oscillation [25]. In
addition, the precise form of individual parameter trajectories
should be in line with the nature of the distinct effects imposed
on them by the influencing factors. In order to more flexibly
capture these complex, potentially locally varying effects and
improve robustness, the optimal polynomial degrees of Gaus-
sian mean and variance trajectories can be automatically deter-
mined at local level using complexity control techniques [18].
In Bayesian learning, when no prior knowledge over mod-
el structures { M} is available, the optimal model structure or
complexity, is determined by maximizing the evidence,

pOW, M) = / p(O16, W, Myp(Bl M)A (9)

where 6 is a parameterization of M, O = {o1,...,07} is a
training data set of 7 frames and WV the reference transcription.

For standard HMMs and GVP-HMMs, it is computational-
ly intractable to directly compute the evidence in equation (9).
To handle this problem, an efficient approximation using the
BIC style first order asymptotic expansion [26] of a lower low-
er bound [18, 27, 28, 29] of the evidence integral can be used.
The optimal model complexity is determined by

M = arg max {Qr(njlw)(é, 0)—p- glogT} . (10

where the ML auxiliary functions associated with Gaussian
mean and variance trajectory parameters given in equation (6)
evaluated at the optimal model parameters 6 using the statistics
given in equations (7) and (8). k denotes the number of free
parameters in M and p is a tunable penalty term [30].

When determining the optimal order for a particular poly-
nomial associated with the ¢th dimension of the mth Gaussian
component in the system, ,ugm)(v), for example, the above s-
tatistics in equation (8) are accumulated for the highest order
Prax being considered. The corresponding statistics for any

(m) . .
other order 0 < P®i ") < Pn. can be derived by taking the
associated submatrices or subvectors from the full matrix statis-
tics accumulated for Pmax. Using these statistics and the ML



solutions in equation (7), the ML auxiliary function associated
with p§m> (+) in equation (6), can be efficiently evaluated at the
optimum for each candidate polynomial degree. The number of

free parameters (polynomial coefficients) in the BIC metric of

equation (10) is k = P(* R +1. The number of frame samples
for the current Gaussian is computed as the component level oc-
cupancy counts 7 (™) = > i.m Ym(t). The same approach can
also be used to determine the optimal degree of Gaussian vari-
ance polynomials by evaluating the respective auxiliary func-
tions with their respective sufficient statistics to compute the
metric in equation (10).

3. DNN Bottleneck Features

Bottleneck features are normally generated from a narrow hid-
den layer of an MLP that is trained to predict phonemes or
phoneme states. Compared with the size of other layers, this
hidden layer has a significantly smaller number of hidden unit-
s [11]. This narrow layer introduces a constriction in the net-
work while retaining the information useful to classification in
the resulting low dimensional features extracted via a non-linear
and discriminative transformation.

In this paper the bottleneck features used for tandem HMM
systems are extracted from deep neural network (DNN) multi-
layer perceptrons (MLP) [1, 2, 3, 4]. DNNs are MLPs with
many hidden layers. The inputs are formed from a stacked set
of adjacent frames of the acoustic feature for each time instance.
Within each hidden layer, the input to each unit is computed as
a linearly weighted sum of the outputs from the previous layer.
Each hidden node transforms its input with a sigmoid activation
to achieve non-linearity. An softmax output activation function
is used at the output layer to compute the posterior probability
of phonemes or phoneme state targets. In all the experiments of
this paper, a pretrained DNN consisting of six hidden layers is
used. The first five layers have a total of 512 hidden nodes while
the last bottleneck layer has 26 units. The network is trained on
inputs formed by splicing 11 frames of 39 dimensional MFCC
features together. The layer-by-layer RBM based pre-training
implemented in the Kaldi toolkit [31] was used.

Following DNN training 26 dimensional bottleneck fea-
tures are extracted and decorrelated using PCA. For the baseline
tandem HMM systems, they are appended to standard MFCC
features to form the tandem feature vector. Prior to recognition,
tandem GMM-HMMs are then trained based on the new con-
catenated tandem features. For GVP-HMM systems, these are
used as the input factor vectors at each frame to estimate con-
tinuous trajectories of Gaussian mean and variance parameters.
An extended version of the HTK toolkit [32] was used to train
various GVP-HMM systems.

4. Using DNN Bottleneck Features In
GVP-HMMs and Tandem GVP-HMMs

In order to adjust the trade-off between modelling resolution,
robustness and computational efficiency, a range of GVP-HMM
configurations may be considered to incorporate DNN bottle-
neck features. Description of these GVP-HMM variant system-
s’ configurations and the number of parameters used for the s-
tandard Aurora 2 task are shown in table 1. 39 dimensional
standard MFCC features including the first and second order
differentials were used. All the baseline GVP-HMMs with no
complexity control used 2nd degree polynomials for all parame-
ter trajectories, as suggested in [21, 22]. The penalty term in the

complexity control metric of equation (10) was fixed as p = 1
in all experiments. For all parameter polynomials the range of
candidate degree to consider is [0, 5].

Baseline HMM and tandem HMM systems: In the first
3 lines of table 1, the number of parameters for the multi-
style [33] trained baseline HMM system and two tandem H-
MM systems are shown. The second tandem HMM system,
“tandemt”, used 18 Gaussians per state thus has a model com-
plexity comparable to the other complexity controlled GVP-
HMM systems in the table. The Gaussian parameters of these
baseline HMM or tandem HMM systems were trained on stan-
dard MFCC or tandem features while no parameter trajectory
modelling was used.

Parm Poly Com
Model Type || System mean | var Ctrl #Parm
mcond 79K
HMM tandem - - - 132K
tandemf 396k
mean J % X 2.15M
GVP-HMM \></ 572271;[
m Vol vl | ek
mean Vv X x 2.2M
tandem 4 298K
GVP-HMM X 2.32M
mv Vol Vol || a0ek

Table 1: Description of the baseline multi-style HMM, tandem
HMM systems, GVP-HMM and tandem GVP-HMM systems
on Aurora 2 in terms of model configurations and the number
of parameters. Following the setting of previous works [21, 17,
18], all systems used 6 Gaussians per state except the “tandemt”
baseline system used 18 Gaussians per state.

GVP-HMM systems: In the second section of table 1, a to-
tal of four GVP-HMM modelling configurations, denoted as
“mean” and “mv” respectively, which use trajectory modelling
for Gaussian component means using the DNN bottleneck fea-
tures as the factor input in equations from (1) to (3), with the
further options of using variance trajectories conditioned on the
SNR variable, and with or without applying the model selec-
tion technique presented in section 2.3, are shown from the 4th
to 7th line in table 1. As expected, using the standard GVP-
HMMs with no complexity control on the 26 dimensional bot-
tleneck features results in a massive increase in model parame-
ters. Determining the optimal degrees for parameter trajectory
polynomials using the model selection method of section 2.3
significantly reduced the model complexity by over to 80%.
Tandem GVP-HMM systems: In the last section of table 1,
four comparable tandem variants of the above four GVP-HMM
systems are shown. In these tandem GVP-HMM systems, the
DNN bottleneck features are not only used as the input factor
vectors to estimate the continuous trajectories of Gaussian pa-
rameters in the acoustic feature subspace, but also used as nor-
mal features to train the standard mean and variance parameters
in the bottleneck feature subspace. For example, the final mean
vector of component m at time instance ¢ is thus computed as

= (m) (m)

i = (Vi) e’ (1
where the ué@,(v?“) is the mean subvector trajectory taking

a Vandermonde vector input vEN constructed using the 26 di-
mensional DNN bottleneck features, as described in section 2.1.



,ug,(f) is the remaining static mean subvector estimated using the

bottleneck features. These tandem GVP-HMMs are expected
to draw strength from both the conventional tandem and GVP-
HMM based approaches to fully exploit the complementary in-
formation in the DNN bottleneck features.

5. Experiments and Results

In this section, the performance of various GVP-HMM systems
using DNN bottleneck features are evaluated the Aurora 2 task.
The Aurora 2 database contains different noisy conditions. Dur-
ing the experiments, 420 utterances from each of four differen-
t SNR conditions (-5dB, 5dB, 15dB, 25dB) of noise environ-
ments of subway, babble, car and exhibition were used to train
all the systems, while 1000 utterances selected from each noise
environment at 0dB, 5dB, 10dB, 15dB and 20dB SNR respec-
tively were used for word error rate (WER) evaluation.

Noise Com
‘ Type H System‘ Ctrl H 0dB ‘ 5dB ‘ lOdB‘ 15dB‘ 20dB‘ Ave
mcond | - || 21.25] 7.55 | 3.8 | 2.36 | 2.27 | 744
, % [ 1508] 559 | 301 | 212 | 1.23 | 541
subway || "M |/ || 1428 461 | 215 | 147 | 126 | 475
X |[2094] 878 | 491 | 3.72 | 3.62 | 8.39
m Vv || 1259| 451 | 2.00 | 144 | 1.01| 431
mcond | - || 3047] 12.09] 6.53 | 459 | 4.08 | 11.55
x| 32.16] 10.10] 3.99 | 2.33 | 1.72 | 10.06
babble || ™™ |/ || 2696 8.04 | 2.63 | 1.90 | 1.15 | 8.14
. x || 3842] 1433| 638 | 435 | 3.51 | 13.40
Vv |l 2370] 738 | 257 | 166 | 115 | 7.29
mcond | - || 22.88| 942 | 429 | 358 | 2.73 | 8.95
e | X |[1772] 970 [ 408 [ 249 [ 199 | 7.20
car Vv || 1563] 655 | 282 | 2.10 | 1.90 | 5.80
x| 2601] 1436] 6.03 | 4.10 | 3.26 | 10.75
mv Vv || 1390] 637 | 2.85 | 222 | 1.87 | 5.44
meond | - || 2346 1027] 491 | 3.09 | 2.72 | 889
cean | X |[1460| 586 [ 299 | 154 [ 123 | 5.24
exhibition v |l 1522] 629 | 305 | 213 | 1.88 | 5.71
. x [ 1620] 660 | 3.15 | 1.54 | 1.05 | 5.71
Vv || 1568] 626 | 278 | 145 | 096 | 543

Table 2: WER performance of GVP-HMM systems using DNN
bottleneck features on Aurora 2 test set A of four noise types.
All systems used the same naming conventions as in table 1.

The WER performance of the multi-style HMM baseline,
“mcond”, and various GVP-HMM systems shown from the 4th
to 7th line of table 1 are given in table 2. The following trend-
s can be found in the table. First, the use of DNN bottleneck
features gave significant WER reductions for all GVP-HMM
modelling configurations across various noise types over the
“moncon” HMM baseline. Second, as expected, using the mod-
el selection technique of section 2.3, in addition to the model
size compression shown previously in table 1, an average WER
reduction of 2.41% absolute (29% relative) was obtained over
various standard GVP-HMM systems with no complexity con-
trol. Third, combined with model complexity control, the use of
variance trajectory polynomials gave further improvements over
using mean trajectory modelling only. Using the best GVP-
HMM systems highlighted in bold in table 2, an average WER
reduction of 3.64% absolute (40% relative) over the multi-style
MFCC feature trained baseline “mcond” HMM system was ob-
tained. However, all of these four GVP-HMM systems were
outperformed by the baseline tandem HMM system shown in
the 1st line of each noise specific section in table 3.

The WER performance of the two baseline multi-style

Noise Com
‘ Type H System ‘ Ctrl H 0dB ‘ 5dB ‘ lOdB‘ lSdB‘ 20dB‘ Ave
tandem - 11.85| 4.24 | 233 | 1.50 | 1.01 | 4.19
tandem}| - 10.62| 3.93 | 227 | 1.41 | 098 | 3.84
subway mean X 11.05] 3.96 | 239 | 1.60 | 1.47 | 4.09
4 11.08| 3.99 | 2.15 | 1.41 | 0.86 | 3.90
my X 10.99| 4.05 | 270 | 2.18 | 2.24 | 4.43
Vv 10.22| 3.87 | 2.03 | 1.57 | 0.89 | 3.72
tandem - 20.77| 7.10 | 3.14 | 1.69 | 1.12 | 6.76
tandemf| - 20.65| 6.77 | 278 | 1.51 | 1.03 | 6.55
babble mean X 21.13] 7.50 | 330 | 1.66 | 1.33 | 6.98
Vv 20.31| 6.83 | 2.78 | 1.51 | 1.03 | 6.49
v X 20.86| 7.62 | 354 | 2.09 | 1.93 ] 7.21
4 20.19| 6.80 | 2.81 145 | 1.12 | 6.47
tandem - 10.86| 4.81 | 3.12 | 2.16 | 1.60 | 4.51
tandem}| - 11.40| 4.66 | 3.09 | 2.13 | 1.54 | 4.56
car mean X 10.26| 4.93 | 2.73 | 2.31 | 1.81 | 441
4 10.38| 4.69 | 279 | 198 | 1.75 | 4.32
my X 11.22] 5.11 | 3.09 | 234 | 1.93 | 474
Vv 9.99 | 463 | 2.82 | 1.97 | 1.66 | 4.21
tandem - 1429 6.51 | 3.12 | 1.85 | 145 | 544
tandemf| - 1435| 6.05 | 2.84 | 1.94 | 1.45| 533
exhibition!| mean X 13.67] 595 | 284 | 1.76 | 1.36 | 5.12
v 13.61| 620 | 272 | 1.70 | 1.27 | 5.10
my X 15.03] 5.55 | 3.05 | 2.19 | 191 | 5.55
4 12.96| 599 | 253 | 1.73 | 1.27 | 490

Table 3: WER performance of tandem GVP-HMM systems us-
ing DNN bottleneck features on Aurora 2 test set A. All systems
used the same naming conventions as in table 1.

trained tandem HMM systems, “tandem” and “tandemf”, and
various tandem GVP-HMM systems shown from the 8th to 11th
line in the bottom section of table 1 are given in table 3. Con-
sistent with the trends found in table 2, every complexity con-
trolled tandem GVP-HMM system in table 3 outperformed its
comparable baseline using no complexity control. The use of
variance trajectory modelling also gave further small reduction-
s in WER. Using the best complexity controlled tandem GVP-
HMM “mv” system highlighted in bold in table 3, an average
WER reduction of 4.38% absolute (48% relative), and 0.4%
absolute (8% relative) over the multi-style baseline “mcond”
system of table 2, and the baseline “tandem” HMM system
of table 3 respectively were obtained. Similar consistent im-
provements were also obtained over the more complex baseline
“tandemt” system with a comparable number of parameters as
shown in table 1, and a third baseline tandem HMM system
using the bottleneck features extracted from a DNN trained on
concatenated MFCC and SNR features.

6. Conclusion

An alternative approach to incorporate bottleneck features into
a tandem system using generalized variable parameter HMMs
is investigated in this paper. The complementary information
characterizing the hidden factors influencing the surface acous-
tic realization implicitly learnt by bottleneck features are ex-
ploited to improve controllability and robustness. The proposed
technique significantly reduced the error rate by 48% and 8%
relative over the baseline multi-style HMM and tandem HMM
systems respectively on Aurora 2. Future research will focus
on using bottleneck features to model the trajectories of more
efficient feature space transforms [17].
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