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Abstract

Acoustic-to-articulatory inversion is useful for a range of
related research areas including language learning, speech pro-
duction, speech coding, speech recognition and speech syn-
thesis. HMM-based generative modelling methods and DNN-
based approaches have become dominant approaches in recent
years. In this paper, a novel acoustic-to-articulatory inver-
sion technique based on generalized variable parameter HMMs
(GVP-HMMs) is proposed. It leverages the strengths of both
generative and neural network based modelling frameworks.
On a Mandarin speech inversion task, a tandem GVP-HMM
system using DNN bottleneck features as auxiliary inputs sig-
nificantly outperformed the baseline HMM, multiple regression
HMM (MR-HMM), DNN and deep mixture density network
(MDN) systems by 0.20mm, 0.16mm, 0.12mm and 0.10mm re-
spectively in terms of electromagnetic articulography (EMA)
root mean square error (RMSE).

Index Terms: acoustic-to-articulatory inversion, generalized
variable parameter HMM, deep neural network, bottleneck fea-
tures

1. Introduction

Movements of articulators provide an alternative to acoustic
representation of human speech. Articulatory movements gen-
eration is an important audio-visual technology. Acoustic-to-
articulatory inversion predicts the articulatory movements for
given speech. The precise articulatory movements used in mod-
el training and evaluation are normally recorded via electro-
magnetic articulography (EMA) [1]. The underlying inver-
sion methods have been significantly improved amid the rapid
progress of speech recognition and synthesis techniques in re-
cent years. Current acoustic-to-articulatory inversion methods
can be categorized into two major types.

In generative models based approaches, acoustic-to-
articulatory inversion was explored using Gaussian mixture
models (GMMs) in [2]. HMM-based methods jointly modelling
the acoustic and articulatory data streams have also been widely
used. Earlier works along this line modelled the acoustic and ar-
ticulatory data streams independently [3, 4, 5]. Improved mod-
elling of the correlation between the two via piece wise linear
transformations was obtained using multiple regression HMMs
(MR-HMMs) [6, 4] based models developed for articulatory
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speech synthesis [7]. The other category of techniques based on
neural networks (NNs) directly generates the articulatory move-
ments from the acoustic features. These include mixture density
network (MDN) [8, 9, 10], and more recently deep neural net-
works (DNN) based techniques. In recent years, these methods
have achieved state-of-the-art inversion performance [10].

An important task in acoustic-to-articulatory inversion, and
machine learning in general, is to learn the optimal model struc-
ture and complexity [11, 12, 13, 14] for the underlying statisti-
cal models. For the speech inversion task, these represent the
complex effects from the hidden influencing factors encod-
ed in articulatory features on the surface acoustic realization.
For generative models, a range of complexity control tech-
niques [11, 15] have been successfully applied in related fields
such as speech recognition [12, 13, 14, 16, 17, 18]. In contrast,
for non-generative models such as neural networks, model se-
lection in general remains a non-trivial problem to date.

In order to address the above issue, a novel acoustic-to-
articulatory inversion technique based on generalized variable
parameter HMMs (GVP-HMMs) [19, 20, 21, 22, 17, 23, 18] is
proposed in this paper. It leverages the strengths of both gen-
erative and neural network based modelling frameworks. Bot-
tleneck features [24] derived from an acoustic-to-articulatory
inversion DNN [10] are used as influence factors to directly
introduce controllability to the underlying GVP-HMM based
generative models. The continuous EMA features space HMM
parameter trajectory against these bottleneck features are mod-
elled using polynomial functions. The optimal model struc-
ture is automatically learnt by locally optimized polynomial
parameters and degrees, thus providing additional flexibility
and stronger generalization than MR-HMMs. On a Mandarin
speech inversion task, the proposed GVP-HMM based inversion
approach significantly outperformed the baseline HMM, MR-
HMM, DNN and MDN systems by 0.20mm, 0.16mm, 0.12mm
and 0.10mm respectively measured in terms of EMA root mean
square error (RMSE).

The rest of this paper is organized as follows. Sections 2
and 3 reviews generative models and neural network based
acoustic-to-articulatory inversion methods. GVP-HMM based
inversion using DNN bottleneck features is presented in sec-
tions 4 and 5. Experiments on EMA feature generation for
Mandarin speech are presented in section 6. Section 7 draws
the conclusions and discusses future work.



2. Generative model based inversion

Acoustic-to-articulatory inversion generates articulatory move-
ments from a given acoustic representation of speech. A sig-
nificant part of previous research has been focused on using
generative statistical models based inversion. Among the ear-
ly works, a GMM based approach models the joint distribution
of acoustic and articulatory features [2]. Two-stream HMMs or
their improved variants coupling the acoustic and articulatory
features, have also been widely used for inversion. These two
streams can be treated as independent in conventional HMMs
[3, 51, or linearly correlated in MR-HMMs [6, 4], where the a-
coustic stream is conditioned on the articulatory features. One
single Gaussian state distribution is normally used [4].

In conventional HMMs where the two streams are treated as
independent, the state observation probability density function
(PDF) b, for state g at time ¢ can be written as

bg(or,at) = be(0+)bg(ar)
— N(Ot,IJv(O> 2(0))N(a “(0«) E(G)) (1)

where N denotes a Gaussian, o; and a; are the acoustic and
articulatory observations respectively.

In MR-HMMs [7] based inversion models, the acoustic
stream is assumed to depend on the articulatory stream in
the form of linear transforms, or equivalently 1st order poly-
nomials functions. These models were originally designed to
serve as generative models for speech synthesis using articu-
latory features. It can also be used for acoustic-to-articulatory
inversion [4]. The state observation PDF is computed as

bg(0r, ar) = by(oi]ai)be(ar) =
N(ot, (p,q + Agay), Efzo))N(at uq) 2(“>) 2)

where A, is the transform matrix representing the dependency
for state g. MR-HMMs have been shown to outperform con-
ventional HMMs based inversion. The simple linear correlation
modelled between the acoustic and articulatory features is un-
able to fully capture the complex relationship between the two.
During training, both the acoustic and articulatory obser-
vation features including their differentials up to the 2nd or-
der [25] are used to construct context-dependent HMM or MR-
HMM phone models. In the articulatory movement generation
stage, the maximum likelihood parameter generation (MLPG)
algorithm [26] is used to produce static articulatory features.

3. Neural network based inversion

Current neural network based approaches often use deep neu-
ral networks (DNNs) [27, 28] based architectures. In [8] con-
ventional DNNs used a sigmoid activation function at the out-
put layer. The static articulatory features were used as super-
vised labels for training. In [8, 9, 10], deep MDN, which us-
es an additional GMM layer on the top of a DNN, was al-
so proposed as a state-of-the-art DNN-based inversion tech-
nique. For the n'* data point, deep MDN divides the in-
puts to the output layer into three parts: (), y*) and
y(”). These correspond to the Gaussian component weight,
mean and standard deviation trajectories respectively. By us-
ing the static plus deltas and delta-deltas articulatory features
t, as supervised labels, the deep MDN is trained to mini-

mize £ = =3, log >, 8;(y' )NV (tmyj(“) exp (yj(”))),
where S(-) denotes the softmax function, j is the Gaussian

component index, and A (-) is a Gaussian distribution with a
uniform variance for each dimension.

In common with the HMM-based methods, single Gaussian
component is usually used in the GMM layer [10]. During in-
version, the MLPG algorithm can be applied to generate static
articulatory features as in section 2 after computing Gaussian
component parameters for every frame.

4. GVP-HMM based inversion

As an alternative form of generative model based inversion
method, GVP-HMMs [23] use the acoustic observation o; as
auxiliary features to generate articulatory movements directly.
It assumes articulatory stream depends on acoustic stream. E-
quation (1) is thus re-written as

bq(at, 0r) = be(at|ot)be(or) =
N (a2 (0,40 () N0y 357) @)

where the trajectory functions of Gaussian means and vari-
ances of articulatory observation a; can be represented by P
order polynomials of some time auxiliary features. Therefore,
it provides more flexibility than MR-HMMs in modelling the
complex relationship between the articulatory and acoustic da-
ta streams. v, is a (P x N + 1) dimensional Vandermonde
vector [29],

vi = [1, for, B, ...,ﬁ,pr. &)

and its N dimensional pth order subvector is defined as f; , =
D D p 1T s ;

[Vf 15 ~5 V) 5 ¥y y] > Where vy j is the jth element of an

N dimensional factor vector Gaussian parameters are condi-

tioned on at frame ¢, for example, the acoustic feature vector,

oy, thus 0,5 = vy 4, or a bottleneck feature vector derived from

an acoustic-to-articulatory inversion DNN,

£BN T
ft = [Utyl, ceey Ut gy eeey Ut,N] . (5)

pi®(-) and 3 (-) are the articulatory domain P** order
mean and covariance trajectory polynomials of component g re-
spectively. When diagonal covariances are used, the trajectories

of the #*" dimension of the mean and variance parameters are
“ (a)
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where ¢ is a (P x N + 1) dimensional polynomial coefficient
vector and a ; 1 the conventional HMM variance estimate.

It can be shown that the ML update solutions of the coeffi-
cient vectors can be derived as [19, 20, 23],

™) g1 i)
(a) (a) (a)
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and the sufficient statistics are
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K = S, (a“ Mflal)(vt))ij (8)
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where ~y4(t) is the posterior probability of frame [a, 0¢] being
emitted from state ¢ at time instance .

In the above equations, the polynomial orders are assumed
to be fixed at P. In order to optimize the polynomial orders, an
efficient Bayesian model complexity control technique can be
used [17, 23, 18]. The optimal model complexity is determined
by

M = arg max {Qr(njlw)(é, 0)—p- glogT} )

where the ML auxiliary functions Qm’l) associated with Gaus-
sian mean and variance trajectory parameters are evaluated at
the optimal model parameters 0 using the statistics given in e-
quations (7) and (8). 7 is the number of frames, k denotes the
number of free parameters in model structure M, and p is a
tunable penalty term.

5. Articulatory inversion DNN
bottleneck features for GVP-HMMs

In order to draw strengths from both generative and neural net-
work based inversion approaches, bottleneck features [24] de-
rived from an acoustic-to-articulatory inversion DNN [10] are
used as influence factors in this paper to directly introduce con-
trollability to the underlying GVP-HMM based generative mod-
els. This requires an acoustic-to-articulatory inversion DNN in-
cluding an additional narrow bottleneck layer between the last
hidden layer and the final output layer with a significantly smal-
ler number of neurons to be constructed. This narrow layer
introduces a constriction in dimensionality while retaining the
useful information learned by the earlier hidden layers inside an
acoustic-to-articulatory inversion DNN. An example acoustic-
to-articulatory inversion DNN with a bottleneck layer used in
this paper is shown in figure 1.
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Figure 1: DNN bottleneck features for GVP-HMM:s.

The resulting low dimensional DNN bottleneck features ex-
tracted from this layer are then used as auxiliary features to train
GVP-HMM models of section 4. For simplicity, GVP-HMMs
trained using these DNN bottleneck features are referred to as
“BN GVP-HMMs” in the rest of this paper.

6. Experiments
6.1. EMA data and experiment setup

EMA [1] data can be considered to represent the articulato-
ry movements. A data set consisting of EMA data recorded
concurrently with the corresponding acoustic waveforms was
used in the experiments. 3050 phonetically balanced continu-
ous Mandarin utterances with 118 monophones were collected

from a female Mandarin Chinese speaker using the same equip-
ments and methods as the previous work in [30]. After ignoring
features with small movements, a 13 dimensional static artic-
ulatory feature vector for each time instant was formed by the
X-, y- and z- coordinates of seven sensors (upper and lower lip,
tongue tip, tongue back, tongue dorsum, lower jaw, and right
corner of the mouth (symmetric with the left)). 39 dimensional
MEFCC plus deltas and delta-deltas features were used as acous-
tic features with time shift of 0.004s, which was consistent with
the sampling rate of EMA data. For the experiments, 3000 ut-
terances with 2.8 hours of speech were used for training, and
average root mean square error (RMSE) was utilized to evalu-
ate the predicted EMA features of the remaining 50 utterances.

For the HMM-based methods, a 5-emitting-state left-to-
right topology was adopted to train the two-stream triphone
HMMs share-clustering to 2539 senones. The baseline two-
stream independent HMMs, MR-HMMs and GVP-HMMs were
trained by modified versions of HTK tools [31]. Furthermore,
the state sequences for each HMM system were re-aligned one
time by using the corresponding HMM system after initially
generating the articulatory features. Four DNN systems were
built for inversion. These include one Sigmoid DNN and one
deep MDN. Both consist of 5 hidden layers, each of which had
512 neurons. In addition, two comparable bottleneck versions
of these two were also built with the same configurations except
for having one extra 39-node bottleneck layer before the out-
put layer. The input of the DNNs was a context window of 11
frames 39 dimensional MFCC features selecting only every oth-
er frame. All the Sigmoid DNNs and deep MDNs were trained
using a modified version of Kaldi toolkit [32]. In order to facil-
itate a fair comparison, all HMMs and MDNs had 1 Gaussian
component, and all the GVP-HMM variance polynomial orders
are fixed to 0, thus remains static.

6.2. Comparing different HMM systems for inversion

In this experiment, different two-stream HMM systems were
investigated for acoustic-to-articulatory inversion. They includ-
ed the MR-HMM methods with full or three-block cross-stream
transform matrices [4] for each senone, and GVP-HMMs with
various mean polynomial orders P and model complexity con-
trol factor p. The comparison of different HMM systems is

Sys | Model Mean Order P | CmCtrl (p) | Coef/State (%)

Y p.
(1) | Baseline HMM - - 39 (100%)
2) | MR-HMM 1 1560 (100%)
(3) | MR-HMM (3-block) 1 546 (35%)
“) 1 1560 (100%)
(5) 2 - 3081 (100%)
(6) GVP-HMM 2 0.3 1017 (33%)
€2} 2 0.5 661 (21%)

Table 1: Configuration of different HMM systems trained using
acoustic and articulatory features only.

presented in table 1 and figure 2, where the “Coef/State” de-
notes the Gaussian mean polynomial coefficients per state, and
the blue bars and yellow bars indicate average RMSEs of EMA
features from initial generation and from one time re-alignment
generation respectively.

By comparing the MR-HMMs (Sys (2)) and GVP-HMMs
(Sys (4)) with mean order P = 1, it is clear that the average
RMSE of EMA features predicted by GVP-HMM system was
significantly lower than the MR-HMM systems. It indicates that
the direct acoustic-to-articulatory inversion is more appropriate
than inversion based on speech synthesis.
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Figure 2: Performance comparison of systems in table 1 mea-
sured in EMA feature RMSE before and after re-alignment.

The GVP-HMMs (Sys (5)) with mean polynomial order
P = 2 achieved the best performance, which was significantly
lower than the baseline system (Sys (1)) by near 0.13mm EMA
RMSE on both the initial and re-alignment generation respec-
tively. Moreover, the GVP-HMMs (Sys (7)) with mean polyno-
mial order P = 2 and complexity control factor p = 0.5 ob-
tained significantly lower EMA RMSE than MR-HMMs (Sys
(3)) with three-block matrices by about 0.08mm with similar
model coefficients number.

6.3. Bottleneck features for GVP-HMM based inversion

In this set of experiments, acoustic-to-articulatory inversion
DNN bottleneck features were used by GVP-HMM systems for
EMA features generation. The performance of the four baseline
DNN-based inversion methods are displayed in table 2. The use
of an additional bottleneck layer led to small degradation on the
resulting DNN’s inversion performance. It is also worth noting
that the best re-alignment GVP-HMMs trained using acoustic
and articulatory features only, for example, the GVP-HMM sys-
tem (5) shown in 1 and figure 2, gave a lower EMA RMSE than
the best deep MDN by 0.03mm.

DNN [ EMA RMSE (mm) \

| Without Bottleneck Layer | With Bottleneck Layer ||
[ Sigmoid DNN || 27101 | 2741
[ Deep MDN || 2.689 | 2.693 ||

Table 2: Performance of baseline DNN-based inversion.

The above DNNs with a bottleneck layer were then utilized
to extract bottleneck features for building BN GVP-HMM sys-
tems. According to the results of section 6.2, the BN GVP-
HMM mean polynomial orders were fixed to 2. The results of
different BN GVP-HMM systems can be found in table 3 and
figure 3. It is clear that all the BN GVP-HMM systems consis-
tently and significantly outperformed the baseline HMM, MR-
HMM, Sigmoid DNN, deep MDN systems, as well as those
GVP-HMM systems previously shown in table 1 trained on
standard acoustic features. Furthermore, although the Sigmoid
DNN performed worse than the deep MDN according to table 2,
the resulting DNN BN GVP-HMM systems using its derived
bottleneck features achieved a lower EMA RMSE than the com-
parable MDN BN GVP-HMM systems.

In addition, the re-alignment of the DNN BN GVP-HMM
system (Sys (4)) achieved an EMA RMSE score of 2.590mm.
This is significantly lower than the best re-alignment baseline
HMM, MR-HMM, Sigmoid DNN, deep MDN systems by near
0.20mm, 0.16mm, 0.12mm, 0.10mm respectively. Additionally,
the complexity control of BN GVP-HMM system significantly
reduced the number of coefficients by up to 79% (line 3 in ta-
ble 3), thus producing more compact model structures for BN
GVP-HMMs.

A complete comparison of the above best baseline HMM,

[ Sys | Model [[ DNN [ CmCul (p) | Coef/State (%) |

() - 3081 (100%)
@) | GVP-HMM - 03 1017 (33%)
(€) 05 661 (21%)
@ | NN BN Sigmoid - 3081 (100%)
O) | Gyp-HMM || DNN 0.3 1131 (37%)
(©) 05 764 (25%)
() | MDN BN Deep - 3081 (100%)
® | Gvp-HMM || MDN 03 1099 (36%)
©) 05 735 (24%)

Table 3: Different bottleneck features for GVP-HMM systems.

275 W EMA RMSE (mm)
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Figure 3: Comparison of systems in table 3.

MR-HMM, Sigmoid DNN, deep MDN, GVP-HMM and DNN
BN GVP-HMM systems are summarized in table 4. An exam-
ple of EMA trajectory on x-axis of upper lip predicted by the
systems in table 4 is also shown in figure 4.

System EMA RMSE (mm)

Initial Generation [ +Re-alignment
Baseline HMM 2.814 2.789
MR-HMM 2.766 2.746
Sigmoid DNN 2711 -
Deep MDN 2.689 -
GVP-HMM 2.685 2.659
DNN BN GVP-HMM 2.659 2.590

Table 4: Complete comparison of the best systems

«=TRUE

—Baseline =TRUE
( —MR-HMM  (mm) —GVP-HMM
==BN GVP-HMM

Sigmoid DNN
/\ Deep MDN
¥ /\,
4

Figure 4: EMA trajectory on x-axis of upper lip. Phone se-
quence: sud you gong chan dang yudn.

[NTENCYENNTRYINT g
DR oRN WAL

7. Conclusions

An improved acoustic-to-articulatory inversion technique based
on GVP-HMMs is proposed in this paper. This method exploits
the useful information from the bottleneck features derived
from acoustic-to-articulatory inversion DNNSs, thus can gener-
ate more precise articulatory movements. The best BN GVP-
HMM system in the experiments significantly outperformed the
baseline HMM, MR-HMM, Sigmoid DNN and deep MDN sys-
tems by near 0.20mm, 0.16mm, 0.12mm and 0.10mm of av-
erage EMA RMSE respectively. Future work will focus on
improving the GVP-HMM based modelling architecture for
speech inversion.
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