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Abstract
Recently a new approach to incorporate deep neural net-

works (DNN) bottleneck features into HMM based acoustic
models using generalized variable parameter HMMs (GVP-
HMMs) was proposed. As Gaussian component level polyno-
mial interpolation is performed for each high dimensional DNN
bottleneck feature vector at a frame level, conventional GVP-
HMMs are computationally expensive to use in recognition
time. To handle this problem, several approaches were exploit-
ed in this paper to efficiently use DNN bottleneck features in
GVP-HMMs, including model selection techniques to optimal-
ly reduce the polynomial degrees; an efficient GMM based bot-
tleneck feature clustering scheme; more compact GVP-HMM
trajectory modelling for model space tied linear transformation-
s. These improvements gave a total of 16 time speed up in de-
coding time over conventional GVP-HMMs using a uniformly
assigned polynomial degree. Significant error rate reductions
of 15.6% relative were obtained over the baseline tandem HM-
M system on the secondary microphone channel condition of
Aurora 4 task. Consistent improvements were also obtained on
other subsets.
Index Terms: generalized variable parameter HMM, deep neu-
ral network, bottleneck features, robust speech recognition

1. Introduction
Recently deep neural networks (DNNs) have become increas-
ingly popular for acoustic modelling in automatic speech recog-
nition (ASR) systems [1, 2, 3, 4, 5]. In order to incorporate
DNNs, or multi-layer perceptrons (MLPs) in general, into H-
MM based generative acoustic models, two approaches can be
used. In a hybrid architecture HMM state emission probabil-
ities are estimated using DNNs [6]. In tandem systems, an
MLP or DNN is used as a feature extractor and trained to pro-
duce phoneme posterior probabilities. The resulting probabilis-
tic features [7], or bottleneck features [8] are used to train the
back-end GMM-HMMs. As these features capture additional
information complementary to standard front-ends, they are of-
ten concatenated in tandem systems.

In order to better capture the complex relationship between
standard acoustic and bottleneck features, a new approach to
incorporate DNN bottleneck features into HMM based acous-
tic models using generalized variable parameter HMMs (GVP-
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HMMs) [9, 10, 11, 12, 13, 14] was recently proposed [15].
Motivated by speech production, this technique can fully ex-
ploit the hidden variability and contextual factors encoded in the
DNN bottleneck features. These features are used as influenc-
ing factors to directly introduce controllability to the underlying
GVP-HMM based generative acoustic models.

One important practical issue associated with the GVP-
HMM based tandem approach is the computational cost in-
curred during recognition time. As Gaussian component pa-
rameter polynomial interpolation is performed dimension wise
for each high dimensional DNN bottleneck feature vector at
a frame level, conventional GVP-HMMs are computationally
very expensive to use in practice. In order to address this issue,
several approaches were exploited in this paper to improve the
efficiency of using DNN bottleneck features in GVP-HMMs.
These include a model selection technique that automatically
determined the optimal polynomial degrees in GVP-HMMs,
which reduced the number of polynomial interpolation opera-
tions performed by over 90%; an efficient GMM based bottle-
neck feature clustering scheme that gave a further 45% reduc-
tion in decoding time; a more compact GVP-HMM trajectory
modelling for model space tied linear transforms was also used.
The combination of these approaches allow experiments to be
conducted efficiently on the Aurora 4 task. A total of 16 time
speed up in decoding time over conventional GVP-HMMs us-
ing a uniformly assigned polynomial degree was obtained. Sig-
nificant error rate reductions of 15.6% relative were obtained
over the baseline tandem HMM system on the secondary mi-
crophone channel condition.

The rest of this paper is organized as follows. GVP-HMMs
are reviewed in section 2. Three techniques to improve the ef-
ficiency of using DNN bottleneck features in GVP-HMMs are
proposed in section 3. A range of tandem GVP-HMM configu-
rations are described in section 4. In section 5 the performance
of various tandem GVP-HMM systems efficiently using DNN
bottleneck features are evaluated on Aurora 4. Section 6 is the
conclusion and future research.

2. Generalized Variable Parameter HMMs
Generalized variable parameter HMMs (GVP-HMMs) [9, 10,
11, 12] explicitly model the trajectory of acoustic parameter-
s, or more compact tied linear transformations, that vary with
respect to the underlying influence factors, such as environ-
ment noise condition represented by the signal-to-noise ratio
(SNR) [9, 10, 11, 12, 13, 14, 16, 17], articulatory features for
speech synthesis [18], and more recently DNN bottleneck fea-



tures [15].
For aD dimensional observation ot emitted from Gaussian

mixture component m, assuming P th order polynomials mod-
elling a total of N regression variables are used, the form of
GVP-HMMs considered in this paper is given by

o(t) ∼ p
(
o(t);µ(m)(vt),Σ

(m)(vt)
)
. (1)

v>t is a (P ×N + 1) dimensional Vandermonde vector [19],

v>t =
[
1, f̃t,1, ..., f̃t,p, ..., f̃t,P

]>
. (2)

Its N dimensional pth order subvector is defined as f̃t,p =
[vpt,1, ..., v

p
t,j , ..., v

p
t,N ]>, where vt,j is the jth element of anN

dimensional factor vector Gaussian parameters are conditioned
on at frame t, for example, the DNN bottleneck features,

~ft = [vt,1, ..., vt,j , ..., vt,N ]>. (3)

µ(m)(·) and Σ(m)(·) are the P th order mean and covariance
trajectory polynomials of component m respectively. When di-
agonal covariances are used, the trajectories of the ith dimen-
sion of the mean and variance parameters are computed as

µ
(m)
i (vt) = vt · c(µ

(m)
i )

σ
(m)
i,i (vt) = σ̌

(m)
i,i vt · c(σ

(m)
i,i ) (4)

where c(·) is a (P ×N+1) dimensional polynomial coefficient
vector and σ̌(m)

i,i is the conventional HMM variance estimate.
For the form of GVP-HMMs of equation (1) the associated

ML auxiliary function is given by [9, 10, 20],

QGVP
ml (θ, θ̃) =

∑
m,t

γm(t) log p
(
o(t);µ(m)(vt),Σ

(m)(vt)
)

(5)

where γm(t) is the posterior probability of frame ot being emit-
ted from component m at a time instance t.

It can be shown that the corresponding parts of the auxil-
iary function associated with the Gaussian mean and variance
trajectories can be derived as [9, 10, 11, 12, 13, 14, 15],

Q(µ
(m)
i )

ml (θ, θ̃) = −1

2
c(µ

(m)
i )>U(µ
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i )c(µ
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i )
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i ) + const
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2
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i )c(σ
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+k(σ
(m)
i )c(σ

(m)
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where the constant terms independent of the coefficient vec-
tors c(·) can be ignored. Setting the above gradients against the
respective polynomial coefficient vectors to zero, the following
ML solutions of the coefficient vectors can then be derived

ĉ(µ
(m)
i ) = U(µ

(m)
i )−1k(µ

(m)
i )

ĉ(σ
(m)
i,i ) = U(σ

(m)
i,i )−1k(σ

(m)
i,i ) (7)

and the sufficient statistics are
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∑
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3. Efficient Use of DNN
Bottleneck Features in GVP-HMMs

In this section three approaches improving the efficiency of us-
ing DNN bottleneck features in GVP-HMMs are presented.

3.1. Automatic Model Complexity Control for GVP-HMMs

An important issue associated with GVP-HMMs is the appro-
priate polynomial degree to use. The use of higher degree poly-
nomials significantly increases the number of coefficient param-
eters in GVP-HMMs. This not only leads to severe over-fitting,
but also significantly increases the computation time incurred
in interpolation. One solution to this problem is to automati-
cally learn the optimal model structure for GVP-HMMs. The
optimal polynomial degrees of parameter trajectories of, for ex-
ample, Gaussian means and variances, are to be automatically
determined at local level [13, 14] by maximizing the Bayesian
evidence,

p(O|W,M) =

∫
p(O|θ,W,M)p(θ|M)dθ (9)

where θ is a parameterization of M, O = {o1, ...,oT } is a
training data set of T frames andW the reference transcription.

As it is computationally intractable to directly compute the
evidence in equation (9) for GVP-HMMs, an efficient approxi-
mation using the BIC style first order asymptotic expansion [21]
of a lower lower bound [13, 22, 23, 24] of the evidence integral
can be used. The optimal model complexity is determined by

M̂ = arg max
M

{
Q(M)

ml (θ̂, θ̃)− ρ · k
2

log T
}
. (10)

where the ML auxiliary functions associated with Gaussian
mean and variance trajectory parameters in equation (6) are e-
valuated at the optimal model parameters θ̂ using the statistics
given in equations (7) and (8). k is the number of free parame-
ters inM and ρ is a tunable penalty term [25].

3.2. Clustering of DNN Bottleneck Features

As discussed in section 1, polynomial interpolation is per-
formed for each high dimensional bottleneck feature vector at
a frame level in conventional GVP-HMMs. The associated in-
terpolation cost is very expensive in both training and test time.
In addition, the large dynamic range of DNN bottleneck fea-
tures can also introduce numerical issues when accumulating
and inverting the sufficient statistics in equation (8). In order
to handle these issues, a GMM-based bottleneck feature clus-
tering approach is also considered. The training data bottleneck
features are used to estimate the parameters of a GMM first.
During both GVP-HMM training and decoding, a given DNN



bottleneck feature vector ~ft is quantized as the mean vector of
the component Gaussian that assigns the highest posterior prob-
ability to ~ft. As adjacent frames of bottleneck features emitted
from the same HMM state can be strongly correlated, a con-
tinuous block of DNN features can be quantized into the same
vector representation. This allows the interpolated Gaussian pa-
rameters in equation (4) to be computed once only for a contin-
uous block of bottleneck features and then efficiently cached.

3.3. Modelling Tied Linear Transformation Trajectories

GVP-HMMs can also use a more compact trajectory mod-
elling for model space tied linear transformations. Considering
(D + 1)×D dimensional mean transform W (rm)(·) in equa-
tion (1) assigned to component m, the element wise transform
trajectory in row i and column j is computed as

w
(rm)
i,j (vt) = vt · c(w

(rm)
i,j ) (11)

By definition, the mean transform polynomials are modelled on
top of the component mean trajectories, thus the final updated
mean vector of component m at time instance t is

µ̃(m)(vt) = W (rm)(vt)ζ
(m)
t (12)

where the (D+1) dimensional extended mean vector trajectory
ζ
(m)
t = [µ(m)(vt), 1]>.

The ML auxiliary function associated with the transform
polynomial coefficients can also be expressed as

Q(w
(rm)
i )

ml (θ, θ̃) = −1

2
c(w

(rm)
i )>U(w

(rm)
i )c(w

(rm)
i )

+k(w
(rm)
i )c(w

(rm)
i ) + const′′ (13)

where c(w
(rm)
i ) is the (D+1)×(P ×N+1) dimensional meta

polynomial coefficient vector spanning across all elements of
row i of transform W (rm) [9, 10]. Ignoring the constant term
and maximizing the above gives a close form solution,

ĉ(w
(rm)
i ) = U(w

(rm)
i )−1k(w

(rm)
i ) (14)

where the exact form of the sufficient statistics U(w
(rm)
i ) and

k(w
(rm)
i ) can be found in [9, 10].

4. Tandem GVP-HMM Systems
A range of tandem GVP-HMM configurations are used in this
paper to incorporate DNN bottleneck features. Among these,
three configurations allow trajectory modelling of Gaussian
component means, or variances, and optionally both, are shown
in the first section (line 1 to 3) of table 1, as “mean”, “var” and
“mv” respectively. In the 2nd section (line 4 to 5) of table 1,
two more compact systems modelling the polynomial trajecto-
ries of 128 or 256 mean transforms are shown as “trans128” and
“trans256”. In all experiments, only the BIC based complexity
controlled tandem GVP-HMM systems were considered. The
penalty term in the complexity control metric of equation (10)
was fixed as ρ = 2 in all experiments. For all parameter poly-
nomials the range of candidate degree to consider is [0,5].

In these tandem GVP-HMM systems, the DNN bottleneck
features are not only used as the input features to estimate the
continuous trajectories of Gaussian component and mean trans-
form parameters in the acoustic feature subspace, but also used

System mean var trans
mean

√
× ×

var ×
√

×
mv

√ √
×

trans128 × ×
√

trans256 × ×
√

Table 1: Description of tandem GVP-HMM configurations.

as normal features to train the standard static mean and vari-
ance parameters in the bottleneck feature subspace. For exam-
ple, the final mean vector of component m at time instance t
using Gaussian mean trajectory modelling is

~µ
(m)
t = [µ

(m)
GVP(vBN

t ), µ
(m)
BN ]>. (15)

where the µ(m)
GVP(vBN

t ) is the mean subvector trajectory taking a
Vandermonde vector input vBN

t constructed using the 26 dimen-
sional continuous or clustered DNN bottleneck features. µ(m)

BN

is the remaining static mean subvector estimated using the bot-
tleneck features.

When mean transform trajectory is also modelled, the final
mean vector of component m at time t is computed as

~µ
(m)
t = [W

(rm)
GVP (vBN

t )ζ
(m)
t,BN, µ

(m)
BN ]>. (16)

W
(rm)
GVP (vBN

t ) is the transform trajectory, and ζ(m)
t,BN is the ex-

tended mean subvector trajectory ζ(m)
t,BN = [µ

(m)
GVP(vBN

t ), 1]>.

5. Experiments and Results
The performance of the various improved tandem GVP-HMMs
were evaluated on the Aurora 4 multi-style training setup. The
training set consists of 7138 utterances. One half of the utter-
ances were recorded by the primary Sennheiser microphone and
the remaining half were recorded with a secondary microphone.
Both halves include clean speech and speech corrupted by one
of 6 different noises (street traffic, train station, car, babble,
restaurant, airport) under SNR conditions between 10 and 20
dB. A total of 14 subsets was used for Word Error Rate (WER)
evaluation. Two of these (330 utterances in each subset) were
clean speech data recorded by the primary or secondary micro-
phone. The remaining 12 subsets were obtained by randomly
adding the same 6 noise types used in training set at 5-15 dB
SNR for each of microphone conditions. A standard bi-gram
language model provided for Aurora 4 was used in decoding.

Two baseline HMM systems were multi-style trained [26]
using 1206 or 3202 tied states, with 16 Gaussian components
per state for for both systems. DNNs with a bottleneck layer are
trained on 72 dimensional log mel filter-bank features. The in-
put layer was formed by splicing a context window of 11 frames
thus creating a 792 dimensional input vector. Five hidden lay-
ers with 2048 nodes each were used between the input layer
and the bottleneck layer with 26 nodes. The layer-by-layer RB-
M based pre-training implemented in the Kaldi toolkit [27] was
used in training. After 26 dimensional DNN bottleneck features
extracted, they are utterance-level mean normalized and decor-
related using PCA. An extended version of the HTK toolkit [28]
was used to train various tandem GVP-HMM systems. As dis-
cussed in section 1, directly using higher degree polynomial-
s dramatically increases the number of coefficient parameters
in GVP-HMMs. Hence, the model selection technique of sec-
tion 3.1 was applied to all GVP-HMM systems modelling mean
and/or variance parameter trajectories in the experiments.



System num. of clean noise channel both Ave
GMMs

tandem - 5.92 10.05 11.75 22.80 15.34
- 5.36 9.71 10.09 21.78 14.61

1024 5.31 9.74 10.27 21.62 14.51
mean 2048 5.31 9.77 10.09 21.53 14.51

4096 5.27 9.73 10.24 21.65 14.55
2048 6.33 10.18 11.34 22.42 15.23

var 4096 6.03 10.23 11.06 22.32 15.17
2048 6.31 10.17 11.23 22.41 15.22

mv 4096 5.49 10.21 10.20 22.10 14.97
trans128 - 5.42 9.64 9.92 21.53 14.45

Table 2: Performance of tandem HMM baseline and tandem
GVP-HMM systems with 1206 states on Aurora 4.

The performance of various tandem GVP-HMM system-
s built using a smaller 1206 tied state configuration are first
shown in table 2. First, small but consistent performance
improvements were obtained when applying the GMM based
DNN bottleneck feature clustering of section 3.2. For example,
using a 2048 component GMM in quantization (line 4 in ta-
ble 2), gave a marginal WER reduction of 0.07% absolute over
the comparable GVP-HMM “mean” using non-quantized, con-
tinuous DNN Bottleneck features (line 2 in table 2).

Using the more compact mean transform trajectory based
GVP-HMM system, “trans128” (last line in table 2), gave the
lowest error rate among all systems in table 2. It outperformed
the tandem baseline by 0.89% absolute (5.8% relative) in WER.
In particular, on the secondary microphone channel condition,
significant WER reductions of 1.83% absolute (15.6% relative)
were obtained over the baseline tandem HMM system.

System mean trans128
#GMMs - 1024 2048 4096 -
ComCtrl. ×

√ √ √ √ √

#Parm 41.74M 3.74M 2.55M 2.61M 2.63M 2.65M
Time(%) - 100 54.8 60 65.3 69

Table 3: Model parameters and computational cost of tandem
GVP-HMM “mean” and “trans128” systems in table 2. The
cost of complexity controlled tandem GVP-HMM “mean” sys-
tem with no bottleneck feature clustering taken as reference.

A detailed comparison of total number of parameters (poly-
nomial coefficients and optionally GMM parameters for feature
clustering) and computational cost (decoding time and option-
ally interpolation cost) is shown in table 3 for the tandem GVP-
HMM “mean” and “trans128” systems previously shown in ta-
ble 2, Using the model selection method described in section 3.1
to remove redundant polynomial parameters, the GVP-HMM
“mean” system size is significantly reduced by over 90% (line
3, form column 1 to 2 in table 3). Using a 1024 componen-
t GMM based bottleneck feature clustering, the decoding time
of the GVP-HMM “mean” system is further reduced by 45.2%
relative (last line, from column 2 to 3 in table 3). Compared
with the conventional GVP-HMM “mean” system using a uni-
formly assigned polynomial degree, the combination of these
two approaches gave an overall decoding time speed up of over
16 time in total.

In order to further investigate the performance of tandem
GVP-HMM systems on the test data associated with unseen
noise conditions, a low and high SNR based results breakdown
for the “noise” and “both” subsets are shown in table 4. In the
both test subsets, tandem GVP-HMM systems with BIC com-
plexity controlled method achieved better WER reduction over
the tandem baseline on the unseen data (from 5 dB to 10 d-

System num. of noise noise both both
GMMs (5-10dB) (>10dB) (5-10dB) (>10dB)

tandem - 10.89 9.04 27.06 17.77
- 10.37 8.97 25.65 17.19

1024 10.33 9.04 25.28 17.14
mean 2048 10.43 9.00 25.29 17.17

4096 10.33 9.01 25.40 17.20
2048 10.84 9.40 26.31 17.82

var 4096 10.97 9.34 26.14 17.82
2048 10.89 9.30 26.32 17.79

mv 4096 10.97 9.31 25.88 17.63
trans128 - 10.20 8.97 25.26 17.11

Table 4: Breakdown Results for tandem HMM baseline and tan-
dem GVP-HMM systems with 1206 states on Aurora 4.

B) compared with the seen data (>10 dB). For example, under
unseen “noise” SNR condition from 5 dB to 10 dB, using the
GVP-HMM “trans128” system highlighted in bold in table 4,
a WER reduction of 0.69% absolute (6.34% relative) over the
baseline tandem HMM system. Similar error rate reductions of
6.65% were also obtained on the unseen noise conditions (5dB-
10dB) of the “both” set.

System num. of clean noise channel both Ave
GMMs

tandem - 5.01 8.85 9.36 20.69 13.69
4096 4.41 8.85 8.50 20.70 13.59

mean 8192 4.46 8.80 8.78 20.75 13.61
4096 4.93 8.64 9.28 20.05 13.31

var 8192 4.32 8.75 8.59 20.45 13.48
4096 4.45 8.74 8.63 20.04 13.27

mv 8192 4.58 8.89 8.99 20.17 13.42
trans256 - 4.50 8.77 8.61 20.41 13.44

Table 5: Performance of tandem HMM baseline and tandem
GVP-HMM systems with 3202 states on Aurora 4.

The scalability of tandem GVP-HMM approach was further
evaluated on a more competitive tandem HMM baseline with
3202 tied states. A set of experiments comparable to those in ta-
ble 2 were conducted. The WER performance of this 3202 state
tandem baseline system and comparable tandem GVP-HMM
systems are shown in table 5. A consistent reduction in WER
over the tandem HMM baseline was obtained. Using the best
tandem GVP-HMM system highlighted in bold in the 6th line
of table 5, modelling both Gaussian mean and variance trajec-
tories, a WER reduction of 0.42% absolute (3.1% relative) over
the tandem HMM system was obtained. Consistent with the
results shown in table 2, on the secondary microphone channel
condition, significant WER reductions of 0.86% absolute (9.2%
relative) were obtained over the baseline tandem system.

6. Conclusion
In this paper, several approaches were proposed to improve the
efficiency of using DNN bottleneck features in GVP-HMMs. A
model selection techniques to optimally reduce the polynomial
degrees. An efficient GMM based bottleneck feature clustering
method was used to further reduce the interpolation cost. More
compact model transform trajectory modelling was also used.
A total of 16 time speed up in decoding time over conventional
GVP-HMMs was obtained. Significant error rate reductions of
15.6% relative were obtained over the baseline multi-style tan-
dem HMM system on the secondary microphone channel condi-
tion of Aurora 4 data. Future research will focus on using more
efficient feature space transform based GVP-HMMs to incorpo-
rate DNN bottleneck features [12].
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