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Abstract
In recent years, neural network based acoustic-to-articulatory
inversion approaches have achieved the state-of-the-art perfor-
mance. One major issue associated with these approaches is
the lack of phone sequence information during inversion. In
order to address this issue, this paper proposes an improved ar-
chitecture hierarchically concatenating phone classification and
articulatory inversion component DNNs to improve articulatory
movement generation. On a Mandarin Chinese speech inver-
sion task, the proposed technique consistently outperformed a
range of baseline DNN and RNN inversion systems constructed
using no phone sequence information, a mixture density param-
eter output layer, additional phone features at the input layer, or
multi-task learning with additional monophone output layer tar-
get labels, measured in terms of electromagnetic articulography
(EMA) root mean square error (RMSE) and correlation. Fur-
ther improvements were obtained using the bottleneck features
extracted from the proposed hierarchical articulatory inversion
systems as auxiliary features in generalized variable parameter
HMMs (GVP-HMMs) based inversion systems.
Index Terms: acoustic-to-articulatory inversion, deep neural
network, bottleneck feature, phone sequence

1. Introduction
During human speech production, movements of articulators [1,
2, 3, 4] provide an important visual alternative to the acous-
tic representation of speech. Precise articulatory movements of
both internal and external articulators are commonly recorded
via electromagnetic articulography (EMA) [1]. As it is expen-
sive to record large amounts of high quality articulatory move-
ments, statistical inversion approaches are often used to predict
articulatory movements from the acoustic data. Current articu-
latory inversion methods can be classified to two major types.

The first category of techniques are generative model based
inversion approaches, which generally utilize hidden Markov
models (HMMs) [5, 6] to jointly model the acoustic and articu-
latory data streams. Along this line, further improvements can
be obtained by appropriately modelling the correlation between
these two streams using, for example, multiple regression HM-
M (MR-HMM) [7, 8] and generalized variable parameter HMM
(GVP-HMM) [9] based inversion approaches. One issue associ-
ated with these techniques is that during inversion the phone se-
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quence information of utterances being processed are required.
In general this can be non-trivial to obtain when the ground truth
reference transcripts are not available, and the use of automatic
speech recognition systems can introduce errors and significant-
ly degrade inversion performance.

The second category is broadly based non-linear regression
techniques [3, 10, 11, 12] represented by techniques based on
artificial neural networks (ANNs). Early research work focus-
es on using conventional multi-layer perceptrons (MLPs) with
a shallow hidden layer architecture [3, 10, 11]. These models
were initially used to either directly map the acoustic features
to articulatory movements, and later on to generate articulato-
ry trajectory density distribution parameters using mixture den-
sity networks (MDNs) [13, 14, 15] and deep recurrent neural
networks (RNNs) [16]. These techniques exploit the inherently
strong generalization performance and sequence modeling pow-
er of neural networks. No phone or viseme information is used
in the training stage. Instead, they are implicitly learned via the
hidden layer presentations over time in an unsupervised fash-
ion. Hence, the discrimination between adjacent acoustic or
articulatory frames belonging to different phoneme or viseme
units cannot be fully learned. This was found to produce noisy
articulatory movement trajectories during inversion [9].

In order to address the above issue, stacked [17], hierarchi-
cal DNN and RNN based inversion approaches are proposed in
this paper. A bottom level phone classification DNN or RN-
N taking acoustic feature inputs is used to produce bottleneck
features [18]. These are in turn augmented to the convention-
al acoustic front-ends and fed in a top level articulatory inver-
sion DNN or RNN network. On a Mandarin Chinese speech
inversion task, the proposed technique outperformed a range of
baseline deep neural network based inversion systems by statis-
tically significant margin in terms of electromagnetic articulog-
raphy (EMA) root mean square error (RMSE) and correlation.
These include baseline inversion DNNs and RNNs constructed
either using no phone sequence information, using additional
phone features at the input layer, or multi-task learning with
phone target labels also modeled at the output layer [19]. Fur-
ther improvements were obtained using the bottleneck features
extracted from the proposed hierarchical articulatory inversion
systems as auxiliary features in generalized variable parameter
HMMs (GVP-HMMs) based inversion system [9].

The rest of this paper is organized as follows. Section 2
reviews neural network based acoustic to articulatory inversion
approaches. The proposed hierarchical inversion approach and
their combination with GVP-HMMs are presented in sections 3



and 4. Experiments on EMA feature generation for a Mandarin
speech corpus are presented in section 5. Section 6 draws the
conclusions and discusses possible future work.

2. ANN based articulatory inversion

There has been a long term research interest to exploit the inher-
ently strong generalization and discriminative power of artificial
neural networks (ANNs) for sequence modelling tasks such as
articulatory inversion. Early inversion techniques explored the
use of multi-layer perceptrons (MLPs) with a shallow hidden
layer architecture along two related lines of research. They were
used to either directly map the acoustic features to articulatory
movements in the form of a conventional articulatory inversion
MLPs [3, 10, 11], or used later on to model the articulatory tra-
jectory density distribution parameters under the mixture den-
sity networks (MDNs) framework [13, 14]. With the rapid ad-
vance of deep learning techniques [20, 21] in recent years, these
two related research lines have also developed into their more
advanced forms. Significant inversion performance improve-
ments have been obtained using deep neural networks (DNNs)
or recurrent neural networks (RNNs) [16] based approaches, as
well as the comparative deep MDNs [15, 22] based methods.
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Figure 1: Examples of an articulatory inversion DNN (left) and
a deep mixture density network (MDN) (right).

Examples of an articulatory inversion DNN and a deep MD-
N are shown in figure 1. The inputs fed into both models consist
of a context window of acoustic features constructed at each
time instance. The hidden layers of networks can be feedfor-
ward layers, or recurrent layers [16]. In MLP and DNN based
acoustic-to-articulatory inversion neural networks, Sigmoid or
linear activation functions are used at the output layer. The
static articulatory features were used as supervised labels for
training. In contrast, a specially designed output layer predict-
ing GMM based articulatory trajectory parameters are used in
MDNs and deep MDNs [13, 14, 15, 22]. In common with the
HMM-based methods, a single Gaussian component is usually
used in the GMM layer [15]. During inversion, the maximum
likelihood parameter generation (MLPG) [23] algorithm can be
applied to generate static articulatory features after computing
Gaussian component parameters for every frame.

3. Improved ANN based articulatory
inversion using phone sequence information

Several improved forms of articulatory inversion DNNs incor-
porating phone information are presented in this section.

3.1. Using input phone features

In this inversion architecture the standard acoustic features are
augmented with binary monophone label input features before
being fed into an inversion DNN or RNN as joint inputs. An
example of such inversion DNN is shown in the left half of fig-
ure 2. Using this architecture, phone sequences of utterances
are required in both training and testing stages.
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Figure 2: Examples of two articulatory inversion DNNs using
phone input features (left) or multi-task learning with additional
phone output targets labels (right).

3.2. Multi-task learning based inversion

Alternatively, phone sequence information can be modeled con-
currently with the articulatory features using a multi-task learn-
ing (MTL) [24] trained inversion DNNs [19, 17]. In these sys-
tems, the primary task is the same as conventional articulatory
inversion DNNs, while the secondary task is monophone classi-
fication using supervised labels. An example of such inversion
DNN is shown in the right half of figure 2.

3.3. Hierarchical NN based articulatory inversion

The third form of improved NN inversion technique incorporat-
ing phone sequence information is based on a stacked [17], hier-
archical ANN architecture. It consists of a bottom level classifi-
cation sub-network and a top level inversion sub-network. The
bottom level phone classification DNN or RNN sub-network
taking acoustic feature as its inputs and monophone labels at
its outputs is used to produce bottleneck features. The result-
ing bottleneck features representing the underlying phone se-
quence information are then augmented to the conventional a-
coustic features before being fed into the top level articulatory
inversion DNN or RNN sub-network. An example of such hier-
archical inversion DNN architecture is shown in figure 3.

The construction of a hierarchical inversion NN system in-
volves two stages. In the first stage, the bottom level mono-
phone classification subnetwork with a bottleneck layer is
trained using the conventional cross entropy criterion. In the
second stage, the bottleneck features produced by the mono-
phone classification subnetwork are augmented to the acoustic
features, and form context windows of tandem features to train
the top level inversion subnetwork. Two implementation issues
need to be appropriately addressed in this stage.

First, in order to ensure a fast and stable convergence during
training, the top level inversion sub-network is initialized using
a conventional inversion DNN or RNN trained with acoustic
features as inputs only, while the newly introduced input lay-
er weight submatrices associated with the phone classification
bottleneck features are randomly initialized. Second, as only
the input layer weight submatrices associated with the bottle-
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Figure 3: Example of a hierarchical inversion DNN consisting
of from left to right a bottom level classification sub-network
and a top level inversion sub-network

neck features require a full update while the remaining of the
top level inversion sub-network only require further fine tuning,
different learning rate settings are preferred for training these
two parts of the top level sub-network. For implementation, in
order to allow the top level inversion sub-network to more effi-
ciently incorporate the additional information presented in the
augmented bottleneck features, the actual input layer weights
connecting bottleneck features are further scaled by a factor of
α = 2. This leads to an effectively larger learning rate for the
the input layer weight submatrices associated with the augment-
ed bottleneck features.

4. Hierarchical inversion bottleneck
features for tandem GVP-HMM based

inversion
When the phone sequences of testing utterances are known, hi-
erarchical inversion NN systems can also be used as an auxil-
iary feature extractor for generalized variable parameter HMM-
s (GVP-HMMs) [9] based inversion systems to obtain further
performance improvements. This requires an additional bottle-
neck layer to be added into the top level inversion sub-network
before training, for example, as shown in figure 4. Given an
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Figure 4: Example of using a hierarchical articulatory inversion
DNN generated bottleneck features for training tandem GVP-
HMM based inversion systems.

N dimensional bottleneck feature vector for frame t denot-
ed by fBNt = [vt,1, ..., vt,j , ..., vt,N ]> and polynomi-
al order P , a (P × N + 1) dimensional Vandermonde vec-
tor [25] is constructed as v>t = [1, f̃t,1, ..., f̃t,p, ..., f̃t,P ]>,
where its N dimensional pth order subvector is defined as
f̃t,p = [vpt,1, ..., v

p
t,j , ..., v

p
t,N ]>, and vt,j is the jth dimension

of a bottleneck feature vector fBNt .
This Vandermonde vector is then used to train tandem

GVP-HMMs [26] that model the joint state probability density
functions over both the articulatory and acoustic streams. For a
given state q at tth frame, this is given by
bq(at,ot) = N

(
at;µ

(a)
q (vt),Σ

(a)
q (vt)

)
N (ot;µ

(o)
q ,Σ

(o)
q )

where at and ot denote the articulatory and acoustic features
respectively.

GVP-HMMs provide a flexible modelling of the complex
relationship between articulatory and acoustic data streams.
The trajectory functions of Gaussian means µ(a)

q (·) and vari-
ances Σ

(a)
q (·) of articulatory observation at can be represented

by P order polynomials of the given auxiliary features. When
diagonal covariances are used, the trajectories of the ith dimen-
sion of the mean and variance are

µ
(a)
q,i (vt) = vt · c(µ

(a)
q,i )

σ
(a)
q,i,i(vt) = σ̌

(a)
q,i,ivt · c

(σ
(a)
q,i,i),

where c(·) is a (P ×N+1) dimensional polynomial coefficien-
t vector and σ̌(a)

q,i,i is the conventional HMM variance estimate.
The coefficient vectors can be estimated by maximum likeli-
hood update scheme [27, 28, 26]. The underlying GVP-HMM
model structure represented by the polynomial orders P for dif-
ferent parameters can be optimized using an efficient Bayesian
model complexity control technique [29, 26, 30]. Given the
GVP-HMM state parameter trajectories, the final articulatory
movements can be generated using the MLPG algorithm.

5. Experiments
5.1. EMA data and experiment setup

Mandarin Chinese speech and associated EMA data [9, 31]
were concurrently recorded by a Carstens AG-501 EMA device.
After ignoring features with small movements, a 13 dimension-
al static EMA feature vector for each frame was chosen in or-
der by the x- and y- coordinates of upper lip, lower lip, tongue
back, tongue dorsum, tongue tip and lower jaw, and the z- coor-
dinates of right (symmetric with the left) corner of the mouth,
and further normalized by setting the average static position to
zero. 39 dimensional MFCC acoustic features were extracted
from the speech waveforms. The average root mean square er-
ror (RMSE) and correlation metrics were utilized to evaluate
the predicted EMA data. The training, validation and evalua-
tion sets contain 2950, 50 and 50 utterances respectively, with
about 2.9 hours in total.

When constructing various hierarchical inversion ANNs,
component DNN or deep RNN sub-networks were trained for
monophone classification and articulatory inversion respective-
ly. The articulatory inversion DNNs consisted of 5 feedfor-
ward hidden layers with 512 neurons. The comparable inver-
sion RNNs consisted of 3 feed-forward hidden layers with 512
neurons each and 2 LSTM layers with 128 cells and recurrent
projection layers for dimensionality reduction [32]. A context
window of 11-frame MFCCs selecting only every other frame
was used as their input, and the 13 static EMA features were
used as the targets. The classification DNN and RNNs with
a bottleneck layer were trained using the same input acoustic
features while taking the 118 tonal monophone labels as the
output targets. These were then used to produce 39 dimension-
al bottleneck features that were concatenated with the acoustic
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Figure 5: An example of EMA trajectory on y-axis of lower jaw predicted by inversion systems in table 1 and 2 for a Mandarin Chinese
speech segment with the phoneme sequence: j iā n j ué f ǎ n d uı̀ f ǔ b ài.

features to train the top level inversion DNN or RNN subnet-
works. Phone input feature based and multi-task learning inver-
sion ANNs described in sections 3.1 and 3.2 as well as MDN
based inversion systems were also trained for comparison. Fi-
nally, a bottleneck version of the best performing hierarchical
inversion system was used to produce auxiliary features for a
tandem GVP-HMM inversion system to achieve further perfor-
mance improvements. A modified version of the Kaldi toolk-
it [33] and HTK tools [34] were used to train all the neural net-
works and GVP-HMMs respectively in the experiments. For
all results presented in this paper, paired t-test based statistical
significance tests were performed on the RMSE reduction.

5.2. Experiments results

The inversion performance of various baseline and hierarchi-
cal DNN or RNN based inversion systems measured in term of
the predicted EMA features’ RMSE and correlation scores are
shown in table 1, where p-value column shows only the RMSE
reduction significance compared with the corresponding “Phn”
NN baseline. A general trend can be found for both the DNN

Inversion NN Monophone RMSE Corre- p-
Classifi. NN (mm) lation value

1. DNN

-

2.711 0.684

-2. deep MDN 2.688 0.743
3. Phn DNN 2.633 0.700
4. MTL DNN 2.717 0.676
5. Hier DNN* DNN 2.689 0.702 -
6. RNN 2.623 0.727 0.108
7. Hier DNN DNN 2.669 0.692 -
8. RNN 2.588 0.724 0.000
9. RNN

-

2.493 0.752

-10. recur. MDN 2.460 0.765
11. Phn RNN 2.449 0.759
12. MTL RNN 2.492 0.751
13. Hier RNN* RNN 2.437 0.760 0.083
14. Hier RNN RNN 2.411 0.768 0.000

Table 1: Inversion performance of various baseline and hier-
archical DNN and RNN based inversion systems measured in
term of predicted EMA features’ RMSE and correlation scores
(* Without conventional NN for top level sub-network initialization).

and RNN based inversion systems. Their respective hierarchical
inversion systems (line 8 and 14 in table 1) statistically signif-
icantly outperformed the baseline inversion DNNs (line 1 to 4
in table 1), and RNNs (line 9 to 12 in table 1), constructed ei-
ther using no phone sequence information, a Gaussian mixture
density parameter based output layer, additional phone features
at the input layer, or multi-task learning with phone target la-
bels also modeled at the output layer. As expected, the RN-

N based bottom level phone classification sub-network is able
to retain longer temporal information from the input phone se-
quence than a DNN based phone classifier. This advantage is al-
so shown in their respective inversion performance after produc-
ing bottleneck features for the top level inversion DNN (line 7,
8 in table 1). Using RNNs as both the bottom level phone clas-
sification sub-network and the top level inversion sub-network
(line 14 in table 1) gave the best inversion performance among
all systems in table 1. This hierarchical RNN inversion system
gave an RMSE score of 2.411 and a correlation score of 0.768.

The inversion performance of tandem GVP-HMM inver-
sion systems trained using bottleneck features produced by
baseline DNN and RNN inversion systems (line 1 and 9 in ta-
ble 1) and their respective comparable hierarchical systems (line
8 and 14 in table 1) constructed with an additional bottleneck
layer. As expected, further small but consistent improvements
in the RMSE and correlation scores were obtained using tandem
GVP-HMM based inversion systems trained on the bottleneck
features produced by these systems.

Inversion BN NN RMSE (mm) Correlation p-value
1. DNN 2.594 0.753 -
2. Hier DNN 2.553 0.763 0.000
3. RNN 2.422 0.760 -
4. Hier RNN 2.378 0.768 0.004

Table 2: Inversion performance of tandem GVP-HMM systems
trained using bottleneck features produced by baseline and hi-
erarchical DNN and RNN inversion systems in table 1 with an
additional bottleneck layer.

Figure 5 shows an example EMA trajectory predicted by
conventional and hierarchical inversion RNN systems in table 1
and their corresponding tandem GVP-HMM systems in table 2
respectively for a Mandarin Chinese speech segment.

6. Conclusion
A hierarchical neural network based articulatory inversion ar-
chitecture is proposed in the paper. On a Mandarin Chinese
speech inversion task, the proposed technique was found to gen-
erate consistently more precise articulatory movements than the
baseline DNN or RNN based inversion systems constructed us-
ing no phone sequence information, a mixture density parame-
ter based output layer, additional phone features at the input lay-
er, or multi-task learning with phone target labels also modeled
at the output layer. Experimental results suggests the proposed
technique may be useful for articulatory inversion and articula-
tory speech synthesis. Future work will focus on improving its
generalization and adaptation to mismatched speakers.
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