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Abstract

Language models (LMs) are often constructed by building multiple individual component models that are combined using context
independent interpolation weights. By tuning these weights, using either perplexity or discriminative approaches, it is possible to
adapt LMs to a particular task. This paper investigates the use of context dependent weighting in both interpolation and test-time
adaptation of language models. Depending on the previous word contexts, a discrete history weighting function is used to adjust
the contribution from each component model. As this dramatically increases the number of parameters to estimate, robust weight
estimation schemes are required. Several approaches are described in this paper. The first approach is based on MAP estimation
where interpolation weights of lower order contexts are used as smoothing priors. The second approach uses training data to ensure
robust estimation of LM interpolation weights. This can also serve as a smoothing prior for MAP adaptation. A normalized perplexity
metric is proposed to handle the bias of the standard perplexity criterion to corpus size. A range of schemes to combine weight
information obtained from training data and test data hypotheses are also proposed to improve robustness during context dependent
LM adaptation. In addition, a minimum Bayes’ risk (MBR) based discriminative training scheme is also proposed. An efficient
weighted finite state transducer (WFST) decoding algorithm for context dependent interpolation is also presented. The proposed
technique was evaluated using a state-of-the-art Mandarin Chinese broadcast speech transcription task. Character error rate (CER)
reductions up to 7.3% relative were obtained as well as consistent perplexity improvements.
© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A crucial component in automatic speech recognition (ASR) systems is the language model. Back-off n-gram
models remain the dominant language modelling approach for state-of-art ASR systems (Katz, 1987). In these systems
language models are often constructed by combining component n-gram models trained on a diverse collection of text
sources prior to probability interpolation. Individual data sources will be more appropriate depending on the task, for
example, broadcast news or conversational telephone speech. To reduce the mismatch between the interpolated model
and the target domain of interest, interpolation weights may be tuned by minimizing the perplexity on some held-out
data similar to the target domain (Jelinek and Mercer, 1980; Kneser and Steinbiss, 1993; Iyer et al., 1994; Bahl et al.,
1995; Rosenfeld, 1996, 2000; Jelinek, 1997; Clarkson and Robinson, 1997; Kneser and Peters, 1997; Seymore and
Rosenfeld, 1997; Iyer and Ostendorf, 1999). These weights indicate the “usefulness” of each source for a particular task.
To further improve robustness to varying styles or tasks, unsupervised test-set adaptation, for example, to a particular
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broadcast show, may be used (Della Pietra et al., 1992; Bulyko et al., 2012, 2007; Federico, 1999, 2003; Gildea and
Hofmann, 1999; Chen et al., 2001; Mrva and Woodland, 2004, 2006; Chien et al., 2005; Tam and Schultz, 2005; Liu
et al., 2007, 2008, 2009, 2010). As directly adapting n-gram word probabilities is impractical on limited amounts of
data, standard adaptation schemes only involve updating one single, context independent interpolation weight for the
component models (Iyer et al., 1994; Rosenfeld, 1996; Clarkson and Robinson, 1997; Seymore and Rosenfeld, 1997;
Iyer and Ostendorf, 1999; Mrva and Woodland, 2006).

There are two major issues with this standard adaptation scheme. First, the diversity among data sources manifests
itself in a wide range of factors, including source of collection, epoch, genre, modelling resolution and robustness,
topic coverage and style. The precise nature of each source is jointly determined by a combination of these factors.
Some of these factors are adequately modelled on a higher level using global, context independent weights, based
on, for example, source of collection, epoch or genre. However, others factors, such as n-gram modelling resolution
and generalization, topic coverage and style, can also affect the contribution of sources on a local, context dependent
basis. Thus the usefulness of a particular source for a domain may vary depending on the word context for both model
interpolation and adaptation. Using global weights takes no account of this local variability. Hence, it is preferable to
increase the modelling resolution of weight parameters by adding context information (Bulyko et al., 2012; Hsu, 2007;
Liu et al., 2008). In previous research, context dependent interpolation weights were tuned on a development set (Bulyko
et al., 2012). Little attempt was made to further adapt the language model to a finer domain, for example, a particular
broadcast show or conversation. Due to data sparsity, only a small number of parameters can be estimated. Hence, the
performance improvement from additional context information in model interpolation is often limited. For example,
in Bulyko et al. (2012) LM interpolation weights were shared among class-based n-gram histories derived from part-
of-speech (PoS) information. Small error rate improvements of 0.1–0.4% absolute were reported on a conversational
telephone speech task where the baseline system gave an error rate above 38%. In order to robustly estimate a large
number of interpolation weights that generalize well to a wide range of tasks, it would be preferable to use empirically
available training data.

Second, the correlation between perplexity and error rate is well known to be fairly weak for current ASR systems.
Hence, it may be useful to use discriminative training techniques (Och and Ney, 2012; Bulyko et al., 2007; Liu et al.,
2007) to estimate interpolation weight parameters. These schemes do not rely on incorrect modelling assumptions and
explicitly aim at reducing the underlying error cost function. In particular the minimum Bayes’ risk (MBR) criterion
provides a flexible framework that can generalize to a wide range of error cost functions (Kaiser et al., 2012; Povey
and Woodland, 2002; Doumpiotis and Byrne, 2005).

To address the first issue, this paper investigates the use of context dependent interpolation in both training and
test-time unsupervised adaptation of language models. Depending on the previous word contexts, a discrete history
weighting function is used to dynamically adjust the contribution from each component model. As this dramatically
increases the number of parameters to estimate, robust weight estimation schemes are required. Several approaches are
described in this paper. The first is based on maximum a posteriori (MAP) estimation where interpolation weights of
lower order contexts are used as smoothing priors. The second approach uses training data to ensure robust estimation
for a general form of context dependent LM interpolation. This can also serve as a MAP smoothing prior with higher
context resolution. An important issue with this method is to handle the bias to corpus size. An inverse corpus size
weighted form of perplexity, normalized perplexity, is proposed to address this issue. The third approach combines
weights estimated from the training data and test data hypotheses to improve robustness in context dependent LM
adaptation. For unseen contexts a weight back-off scheme is used.

In order to reduce the error cost function mismatch between model estimation and performance evaluation, MBR
based discriminative training schemes are also proposed to improve context dependent LM adaptation. In order to
flexibly support a wide range of LM interpolation and adaptation configurations, an efficient weighted finite state
transducer (WFST) based on-the-fly decoding algorithm is also presented. Performance is evaluated on a state-of-the-
art large vocabulary Mandarin Chinese broadcast transcription task. Consistent perplexity and error rate improvements
were obtained over baseline systems using global, context independent weights.

2. Language model interpolation and adaptation

A common approach for LM adaptation is to adjust the context independent, linear interpolation weights for a
mixture model (Rosenfeld, 1996; Clarkson and Robinson, 1997; Seymore and Rosenfeld, 1997; Iyer and Ostendorf,



Author's personal copy

X. Liu et al. / Computer Speech and Language 27 (2013) 301–321 303

1999; Mrva and Woodland, 2006). For word based n-gram models, the log probability of the L word sequence W =
〈w1, w2, ..., wi, ..., wL〉, is given by

ln P(W) =
L∑

i=1

ln P(wi|hn−1
i ) (1)

where wi denote the ith word of W, and hn−1
i represents its n-gram history of a maximum length of n − 1 words,

〈wi−1, wi−2, ..., wi−n+1〉. For language modeling in current ASR systems, two basic forms of probability interpolation
are available: a linear or log-linear interpolation of component models (Jelinek and Mercer, 1980; Rosenfeld, 1996,
2000; Jelinek, 1997; Darroch and Ratcliff, 1972; Rosenfeld et al., 2001; Och and Ney, 2012). These in turn are instances
of mixtures of experts (MoE) and products of experts (PoE) in machine learning literature (Hinton, 2002).

2.1. Linear and log-linear interpolation

The linearly interpolated word probability is computed as,

P(wi|hn−1
i ) =

∑
m

λmPm(wi|hn−1
i ) (2)

where λm is the global weight for the mth component model. As a union of all the individual experts, linear interpolation
tends to give a broader distribution than individual components alone. Hence, this form of model combination may
help overcome the sparsity issue when training individual component models and thus improve generalization.

In contrast, a log-linear interpolation provides an intersection of individual experts. It yields a high likelihood only
when all component models agree. Using the same example as above, this is given by,

P(wi|hn−1
i ) = 1

Z
hn−1

i

exp(
∑
m

λm ln Pm(wi|hn−1
i )) (3)

where Z
hn−1

i
is a normalization term to ensure that the interpolated probability to be a valid probability distribution.

However, the exact computation of the normalization term for general forms of log-linear models is non-trivial, and
analytical solutions are available only for certain forms of probability functions. The normalization term may be
ignored when interpolation is performed at the complete word sequence level under a discriminative framework such
as maximum entropy models and logistic regression (Darroch and Ratcliff, 1972; Rosenfeld et al., 2001; Och and Ney,
2012).

2.2. Multi-level LM interpolation

The precise nature of the component language models determines which of the above two combination schemes is
more appropriate during model interpolation. For example, when building word level LMs, in order to improve context
coverage and generalization, a linear interpolation between component LMs trained over a diverse set of text sources
can be used. It was also found in previous research that when introducing additional sub-word level linguistic constraints
to increase discrimination, word and syllable level LMs can be combined in a log-linear fashion (Hieronymus et al.,
2009; Liu et al., 2010). In order to obtain a good balance between generalization and discrimination, it is also possible
to leverage from both linear and log-linear forms of model combination. A multi-level LM interpolation represented
by a product between a mixture of experts, or equivalently a log-linear combination of linearly interpolated language
models, may be considered.
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2.3. Maximum likelihood estimation of interpolation weights

Assuming a “sufficient” amount of training data is available, and a strong correlation between perplexity and
error rate exists, a perplexity based, or equivalently maximum likelihood (ML), estimation scheme is often used for
optimizing global interpolation weights. The objective is given by,

FPP(λ) = exp

{
− ln P(W)

L

}
= exp

{
− 1

L

L∑
i=1

ln

(
M∑

m=1

λmPm(wi|hn−1
i )

)}
(4)

which is equivalent to maximizing the log-likelihood of the entire word sequence, ln P(W). Here W is the held-out
data for interpolation tuning, or supervision in case of model adaptation. The optimal linear interpolation weight for
the mth component model can be derived by,

λ̂
ML = argmax

λ

{
L∑

i=1

ln

(
M∑

m=1

λmPm(wi|hn−1
i )

)}
(5)

Under a constraint such that 0 < λm < 1 and
∑

mλm = 1, the weight parameters may be iteratively re-estimated as,

λ̂ML
m = CML

m (null)∑
mCML

m (null)
(6)

where the ML context independent statistics, CML
m (null) are defined as,

CML
m (null) = λ̃m

∂ ln P(W)

∂λm

∣∣∣∣
λ=λ̃

(7)

λ̃ represents the current weight estimates, and the derivative term is computed as,

∂ ln P(W)

∂λm

=
L∑

i=1

Pm(wi|hn−1
i )∑

mλmPm(wi|hn−1
i )

(8)

Note that the above notation for sufficient weight statistics CML
m ( · ) is not normally used for standard language model

interpolation with context independent weights. In this paper it provides additional flexibility to restrict the statistics
to be accumulated for, for example, a particular word history context. This form of notation for interpolation weight
statistics will be extensively used in the rest of the paper.

3. Discriminative language model interpolation and adaptation

As discussed in Section 1, for current speech recognition systems the correlation between perplexity and error rate is
fairly weak. Hence, it would be preferable to employ discriminative training techniques that explicitly aim at reducing
the underlying error rate cost function, such as the MBR criterion (Kaiser et al., 2012; Povey and Woodland, 2002;
Doumpiotis and Byrne, 2005) to estimate context dependent interpolation weights. The MBR criterion is expressed as
the expected recognition error of an ASR system on a sequence of speech observations,O. It is computed by summing
over the cost function contribution from all possible hypotheses {W}, weighted by their posterior probabilities, P(W|O).
Taking the global, context independent interpolation weight parameters as an example, they are optimized by,

λ̂
MBR = argmin

λ
{FMBR(O; λ)} = argmin

λ

{∑
W

P(W|O)L(W,Wref)

}

= argmin
λ

⎧⎨⎩∑W
P(O|W)

∏
i

(∑
mλmPm(wi|hn−1

i )
)

∑
WP(O|W)

∏
i

(∑
mλmPm(wi|hn−1

i )
)L(W,Wref)

⎫⎬⎭ (9)

whereL(W,Wref) denotes the defined recognition error rate measure of hypothesisW against the reference hypothesis
Wref. A variety of forms of cost function, such as word or sub-word level error rates, may be used depending on the



Author's personal copy

X. Liu et al. / Computer Speech and Language 27 (2013) 301–321 305

underlying evaluation metric being considered. This provides more flexibility, compared with other discriminative
criteria, such as maximum mutual information (MMI) (Normandin, 1991), as the loss function can be task dependent
and not necessarily restricted to one particular form. By definition ifWref is the correct transcription MBR adaptation
will be performed in supervised mode.

The Extended Baum-Welch (EBW) algorithm may be used to optimize the MBR criterion. It provides an efficient
iterative optimization scheme for a family of rational objective functions, including MBR (Gopalakrishnan et al., 1991).
For global linear interpolation weights under a sum-to-one constraint, the re-estimation formula is given by,

λ̂MBR
m = CMBR

m (null)∑
mCMBR

m (null)
(10)

where the discriminative context independent statistics, CMBR
m (null), are computed as

CMBR
m (null) = λ̃m

∂FMBR(O; λ)

∂λm

∣∣∣∣
λ=λ̃

+ D (11)

λ̃ is the current weight estimate, and D a tunable regularization constant controlling the convergence speed. Following
the MBR criterion defined as above, the partial derivative in the above may be re-expressed as Liu et al. (2007),

∂FMBR(O)

∂λm

=
∑
W

∂P(W|O)L(W,Wref)

∂ ln p(O,W)

∂ ln p(O,W)

∂λm

(12)

where the first term can be derived as the following,

∂P(W|O)L(W,Wref)

∂ ln p(O,W)
= P(W|O) [1 − P(W|O)]L(W,Wref) (13)

The second term in Eq. (12) is independent of the acoustic model distribution p(O|W), hence one may write

∂ ln p(O,W)

∂λm

= ∂ ln P(W)

∂λm

=
L∑

i=1

Pm(wi|hn−1
i )∑

mλmPm(wi|hn−1
i )

(14)

which is effectively identical to the sufficient statistics required by the perplexity based optimization given in Eq. (8).
When using the MBR criterion to train context dependent interpolation weights, the MAP estimation schemes given

in Eqs. (17) and (18), together with the weight set combination schemes proposed in Section 5.3 can also be used
for comparable MBR statistics, CMBR

m ( · ). One exception is the discriminative estimation of interpolation weights on
the training data. This would require all data sources to have confusable word sequences explicitly generated. It is a
non-trivial problem for training sources other than audio transcriptions. In this paper, MBR estimation is only used
for test-time LM self-adaptation. The use of training data for general model interpolation is only considered using
normalized perplexity or ML.

4. Context dependent interpolation and adaptation

As discussed above, when global weights are assigned to component n-gram language models, no account is taken
of the surrounding contexts. In order to incorporate context information, a more general form is to use a context
dependent history weighting function, φ(h). Using an n-gram context history, the interpolated word probability in Eq.
(2) becomes (Liu et al., 2008, 2009),

P(wi|hn−1
i ) =

∑
m

φm(hn−1
i )Pm(wi|hn−1

i ) (15)

where φm(hn−1
i ) is the mth component weight vector for n-gram history hn−1

i . The Markov chain assumption used in
the component n-gram models is made such that the interpolation weights for word wi only depend on the preceding
n − 1 words. These context dependent weights are also constrained to be positive and sum-to-one. A history weighting
function could have either a discrete or a continuous form. In this paper only discrete forms of history weighting
function are considered.
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...... ......

...... ...... ...... ......

φ(null)

φ(w1) φ(wi) φ(wN)

φ(w1w1) φ(w1wi) φ(wjwi) φ(wNwi) φ(wNwN)

Fig. 1. Hierarchy of context dependent interpolation weights for back-off tri-gram language models with a history of two words maximum.

Discrete history weighting functions are effectively look-up tables of n-gram context dependent weights. In contrast
to the traditional context independent, global weighting of component models given in Eq. (2), each distinct history
can have its own interpolation weight vector. Such tying of interpolation weights at history context level may be
viewed as an alternative to directly re-estimating the n-gram probabilities for LM adaptation. Compared to other
LM adaptation methods such as latent semantic analysis (LSA) (Bellegarda, 2000; Brants, 2005) and latent dirichlet
allocation (LDA) (Blei et al., 2003), which do not explicitly consider the exact word order in the history context,
or minimum discrimination information (MDI) (Federico, 1999, 2003), which only adjusts unigram probabilities to
match the adaptation data, the above form of context dependent weighting can more precisely model the change in
word history during LM adaptation. However, the number of parameters to estimate will dramatically increase as the
length of history context grows. For contexts observed in the training or adaptation data, a tree structured hierarchy of
history dependent interpolation weights can be used. An example is shown in Fig. 1 for a back-off tri-gram LM. For
history contexts that are not seen in the training or adaptation data, this tree structure of contexts allows an efficient
back-off strategy to be used in the same way as standard n-gram language models. This hierarchy will be extensively
used in the rest of this paper.

φbo(hn−1
i ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ(hn−1

i ) if ∃ φ(hn−1
i )

φ(hn−2
i ) else if ∃ φ(hn−2

i )

· · · · · ·
φ(null) otherwise

(16)

where φbo(hn−1
i ) represents the back-off estimate of the mth component weight vector for n-gram history hn−1

i . The
above back-off recursion will simplify to the global, context independent interpolation weight, φ(null), if the preceding
word, wi−1, is not observed in the data. These discrete weight parameters can be ML trained using the re-estimation
algorithm discussed in Section 2. The difference between the two approaches is that the context dependent form of
statistics {Cm(hn−1

i )} are now required in the update formulae of Eq. (6). Because the re-estimated weight parameters
are constrained to be positive and sum-to-one, no normalization term is required for the back-off process. This is
simpler than standard word or class-based n-gram models, in which case context dependent back-off weights need
to be explicitly computed to satisfy the sum-to-one constraint. Since the number of weight parameters increases
exponentially with context length, robust weight estimation schemes are required when only a limited amount of
training data is available.

5. Robust estimation of context dependent weights

As discussed in Section 4, when the history length grows, the number of context dependent interpolation weights
that need to be estimated increases exponentially. During model tuning or test time adaptation, often only a limited
amount of data is available. This data sparsity issue is particularly important and must be addressed. In this section,
several types of techniques are proposed to handle this issue. The first approach is based on MAP estimation where
interpolation weights of lower order contexts are used as smoothing priors. The second approach uses training data
to ensure robust estimation for context dependent LM interpolation. These interpolation weights can also be used as
MAP smoothing priors for test-time LM adaptation. The third approach uses an appropriate combination between the
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weights estimated from the training data and test data hypotheses to improve robustness in context dependent LM
adaptation. Both MAP and log-linear composition based combination methods are presented.

5.1. MAP estimation

One common approach to address the robustness issue is to use maximum a-posteriori (MAP) estimation. This is
a general approach and can be applied to improve robustness for both the ML and discriminative weight estimation
schemes discussed in Sections 2.3 and 3. Taking the perplexity or ML based adaptation is as an example, this is given
by

φ̂
MAP
m (hn−1

i ) = CML
m (hn−1

i ) + τφPr
m (hn−1

i )∑
mCML

m (hn−1
i ) + τ

(17)

where CML
m (hn−1

i ) is context dependent ML statistics for history context hn−1
i given in Eq. (7), and τ controls the

contribution from weight prior, φPr
m (hn−1

i ).
One key issue with MAP estimation is the choice of smoothing prior. The global, context independent weights,

φ(null), may be used (Liu et al., 2008). In order to introduce more context information, rather than completely backing
off to the context independent weights, hierarchical smoothing using weights of lower order contexts may also be
considered, as inspired by interpolated Kneser–Ney smoothing of n-gram models (Chen and Goodman, 1999). Hier-
archical smoothing priors can be used to improve robustness for both the above mentioned ML and discriminative
weight estimation schemes discussed in Sections 2.3 and 3. Taking the perplexity based estimation as an example, this
is given by

φ̂
hier
m (hn−1

i ) = CML
m (hn−1

i ) + τφ̂
hier
m (hn−2

i )∑
mCML

m (hn−1
i ) + τ

(18)

When adapting LMs using context dependent interpolation, the above form of hierarchical smoothing provides a
dynamic, in-domain prior estimated on the test data hypotheses. However, such a prior may be less informative due to
reduced context resolution. It can also be sensitive to errors in the supervision hypotheses. Alternatively, a different
type of prior with finer context dependent modelling may be obtained from the training data.

5.2. Model interpolation using training data

Large amounts of text data, for example, billions of words, are often used to train component n-gram models for
state-of-the-art large vocabulary speech recognition systems (Liu et al., 2007). These can be used to ensure robust
weight estimation for a more informative weight prior with a longer context span. Because the prior is estimated over
a wide range of data types found in the training data, this weight prior itself may also be used for building a domain
neutral interpolated language model.

When using training data from multiple text sources, for both context independent and dependent LM interpolation
given by Eqs. (2) and (15), the sufficient statistics in Eq. (8) for re-estimation will be accumulated over every word
within each sentence of each individual text source. The statistics will be dominated by large sized, potentially non-
useful corpora, and thus introduce a bias. This is a fundamental issue that can affect the performance of the interpolated
model and its use as a smoothing prior for MAP adaptation. Hence, such a bias to the corpus size must be addressed.
The approach proposed in this paper is to use a corpus length normalization scheme, which ensures that the word count
contribution from each corpus is the same. The training data log-probability given in Eq. (15) is modified as,

ln Pnorm(W) =
∑
m

L

Lm

Lm∑
i=1

ln P(wi|hn−1
i ) (19)
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where Lm is the total number of words in the mth corpus, and the total number of words in all corpora is defined as
L =
∑

mLm. The normalized perplexity (nPP) measure is computed using the above as

FnPP = exp

{
− ln Pnorm(W)∑

mL

}
(20)

Using the nPP criterion, weights are determined by the average word log-probability from each data corpus. As the
dependency upon word counts is removed, the bias to larger sized corpora can thus be handled.

As discussed in Section 1, the variability among data sources and their contribution are jointly determined by a
combination of multiple attributes. Some factors, for example, epoch and genre, may be sufficiently modelled using
global, context independent weights. These context independent weights measure the contribution of data sources on
a higher level. Other factors such as modelling resolution, topic coverage and style, require local, context dependent
weighting. These weights indicate that for each context some sources are more appropriate than others. Using the nPP
criterion, the interpolation weights at both levels can be estimated.

In practice the global level contribution among sources is often further increased by taking conscious decisions
when building component models. If certain sources such as the acoustic transcriptions, are known to be useful for
the domain of interest, a bias to these components of the same genre may be introduced during LM construction.
When lower cut-offs1 are used for these sources, the associated component models will have high probabilities on their
training data compared to others built with higher cut-off settings. Similarly if robust discounting schemes are used
then these models will also generalize well on other data.

In order to improve robustness for rare contexts, the hierarchical smoothing based MAP estimation given in Eq.
(18) can also be used for nPP statistics. This is given by,

φ̂
nPP
m (hn−1

i ) = CnPP
m (hn−1

i ) + τφ̂
nPP
m (hn−2

i )∑
mCnPP

m (hn−1
i ) + τ

(21)

As the statistics are obtained from a wide range of tasks found in the training data, the estimated weights can be used
to build a domain neutral interpolated LM. Furthermore, they can be also employed as smoothing priors for test-time
adaptation of context dependent interpolation weights using Eq. (17).

5.3. Weight set combination

As discussed previously in Sections 5.1 and 5.2, when adapting LMs using context dependent interpolation, two sets
of weights are available. These are obtained from the training data nPP estimation and test adaptation. They provide
either domain neutral, longer context based weights, or in-domain, shorter context based ones:

• Training: data nPP weights estimated using the hierarchical smoothing given in Eq. (21). They provide richer context
information and finer modelling resolution, but potentially a larger mismatch with the target domain during LM
adaptation.

• Test: data adapted weights using Eq. (18) with a hierarchical smoothing. These provide a closer match to the target
domain of interest. However, as the supervision may contain errors and not all contexts in the reference can have
their own weights, a back-off to a lower order context based weights using Eq. (16) is necessary. This will result in
reduced modelling resolution.

Given the different nature of these two sources of information, it is preferable to appropriately combine them for
context dependent LM adaptation. In this section four weight combination schemes are proposed to incorporate both
training and test set information. They can be categorized into two broad types of technique: MAP estimation and
log-linear weight combination. Within each category, it is also possible to further supplement the adapted weights
of contexts obtained from the training data with those of contexts newly observed in the test data hypotheses used
for adaptation supervision. These additional contexts may carry additional information from the target domain for

1 Cut-offs determine the count threshold for an n-gram to be retained in a model. Hence a small cut-off value will retain a large number of n-gram
entries.
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adaptation. Hence, it is also interesting to estimate distinct interpolation weights for them, instead of relying on weight
back-off through the training data context hierarchy using Eq. (16). Note that the hierarchical smoothing of Eq. (18)
effectively is based on a lower order context based weight prior. This was also used for robust nPP estimation of Eq.
(21). For clarity in the rest of this paper the term “prior” is reserved and exclusively refers to nPP weights estimated
from the training data. The combination schemes proposed in this section can be applied to improve robustness for
both the ML and discriminative weight estimation schemes discussed in Sections 2.3 and 3. For simplicity, perplexity
or ML based adaptation is taken as an example here.

5.3.1. MAP estimation
Initially nPP based LM interpolation is performed. Contexts are extracted from the training data. To improve

robustness for rare contexts, their weights are MAP estimated using hierarchical smoothing as in Eq. (21). During
test-time LM adaptation, these nPP estimated context dependent weights are used as a smoothing prior. The final
adapted mth component weight of history context hn−1

i is thus given by

φ̂
comb
m (hn−1

i ) = φ̂
MAP
m (hn−1

i ) = CML
m (hn−1

i ) + τφ̂
nPP
m (hn−1

i )∑
mCML

m (hn−1
i ) + τ

(22)

5.3.2. MAP estimation and union
In option A all contexts are exclusively obtained from the training data. As previously discussed, new contexts

uniquely observed in the test set adaptation supervision may carry additional useful information from the target
domain of interest. Hence, it is interesting to also estimate their associated weights. There is a choice of the smoothing
prior for these newly acquired contexts from the supervision hypothesis. Two forms of weight prior may be used. The
first one is a back-off estimate of the static nPP prior obtained using Eq. (16). The second uses a hierarchical dynamic
smoothing prior based on “parental” contexts as in Eq. (18). Both have a reduced modelling resolution due to the
back-off to a lower order context. Between the two, the dynamic prior contains more direct information of the target
domain for LM adaptation. Hence, it is used for new contexts found in the supervision. Thus the MAP re-estimation
formulae given in Eq. (22) is extended to

φ̂
comb
m (hn−1

i ) = CML
m (hn−1

i ) + τφ̂
nPP
m (hn−1

i ) + τhφ̂
hier
m (hn−2

i )∑
mCML

m (hn−1
i ) + τ + τh

(23)

where τh controls the contribution from dynamic hierarchical weight prior. For contexts obtained from the training
data, τh is set as uninformative and only the nPP prior is used, thus τ > 0 and τh = 0. For new contexts found in the
supervision hypotheses, the nPP prior becomes uninformative while only the dynamic hierarchical prior is used, thus
τ = 0 and τh > 0. The aim of alternating between the two priors is to achieve a good balance between the nPP prior’s
modelling resolution for observed longer span contexts and the dynamic prior’s domain relevance. This approach can
be viewed as an extension to option A. The context tree of Fig. 1 is effectively expanded by adding more nodes that
represent the newly observed histories in the supervision.

5.3.3. Log-linear composition
MAP estimation may be viewed as a weighted linear interpolation between, for example, an ML estimate and

its smoothing prior. For context dependent LM adaptation, there are two issues with this approach. First, training
data extracted contexts that are unavailable in the supervision will back-off to a domain neutral nPP prior containing
minimum information about the test data. Second, due to the nature of linear interpolation, test set weights that are
MAP adapted to incorrect supervision can retain certain mis-ranking of component LMs. To address these issues,
an alternative is to use a log-linear combination between the training and test data estimated weight sets. After a
normalization to satisfy the sum-to-one constraint, the final combined weights are,
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comb
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i ) =
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i ) + ln φ̂
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m (hn−1
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} (24)
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where α is a tunable log-linear scaling factor that controls the contribution from the nPP prior. In option C it is un-tuned
and set as α = 1.0. In common with A, new contexts found in the test set supervision are discarded for this option.

Using a log-linear combination, all contexts extracted from the training data to estimate the nPP prior will be
adapted. Rather than being left unadapted in MAP estimation as in Eq. (22), weights of unseen contexts will be also
adapted using a back-off estimate obtained from the test data using Eq. (16). Furthermore, a log-linear combination
can also reject the component LM weighting obtained from erroneous supervision hypotheses that are very different
from the training set nPP prior. Therefore it can improve the robustness of weight combination.

5.3.4. Log-linear composition and union
This is a modified form of option C. For any context extracted from the training data, if it has no matching context of

any length in the test data supervision and therefore completely backs off to the context independent, global weights,
Eq. (24) (α = 1.0) is still used to obtained the combined weights. Otherwise, the test data supervision adapted weights
for the longest matching context will be used. This is effectively achieved by setting α = 0 in Eq. (24). In common with
B, weights of contexts uniquely observed in the test set supervision are also added. Again the goal is to leverage both
the nPP prior’s high modelling resolution for longer span contexts and the dynamic prior’s domain relevance for LM
adaptation. Compared with C, this approach is leaning more to the estimates from the test set supervision whenever
context dependent weights are available. Hence, it is closer to the target domain for LM adaptation. Note that it is
also possible to perform a “full” composition for all contexts observed both in training and testing by fixing α = 1.0.
However, in practice this setting was found to lead to a slight performance degradation.

6. Interpolated LMs and weighted finite state transducers

As discussed in Section 1, in current ASR systems language models are often constructed by training n-gram
components models on data from a set of diverse sources. Interpolated LMs with context independent interpolation
weights are normally built using special purpose tools, for example, the SRILM or HTK toolkit (Stolcke, 2002; Young
et al., 2009). In order to capture local variations in modelling resolution, generalization, topic coverage and style among
component LMs, the history context dependent form of LM interpolation and adaptation introduced in Section 4 can
be used. To incorporate more linguistic constraints, it is also possible to train and combine LMs that model different
types of unit sequences, for example, syllables and words (Hieronymus et al., 2009). These techniques often require
extensive software changes.

An alternative, and more general, approach proposed here is to interpolate component language models using
weighted finite state transducers (WFSTs) (Mohri, 1997; Mohri and Riley, 1998; Mohri et al., 1998, 2000; Liu et al.,
2010). As this approach is entirely based on well-defined WFST operations, only a minimal change to decoding tools is
required. It is highly flexible and can be used for a wide range of LM combination configurations. It not only supports the
use of global, context independent weights in LM combination, but also the more general case when context dependent
weights are employed. Thus context dependent LM interpolation and adaptation can be conveniently implemented.
Unless otherwise stated, tropical semi-ring based WFSTs (Mohri, 1997; Mohri and Riley, 1998; Mohri et al., 1998,
2000) are considered in this paper.

A WFST is a finite state machine that carries weights such as log-probabilities that accumulate linearly along
paths within a directed graph to each pair of input and output symbol sequences. A set of classic finite automata
operations to combine, optimize and compact WFSTs during search are available. Many types of modelling information
used in speech recognition systems, such as the HMM topology, lexicon, n-gram models and the context dependent
weight models considered here, involve a stochastic finite-state mapping between symbol sequences. WFSTs provide a
generic and well-defined framework to represent them. More precisely, n-gram language models and context dependent
interpolation weights can be represented by weighted finite state acceptors (WFSA). These are special cases of WFSTs
when the input and output symbol sequences are identical. As discussed in Section 2.1, component LMs can be
combined using both linear and log-linear forms of model interpolation, or a combination of the two as in multi-level
LM interpolation. Using a WFST based representation, these combination schemes may be efficiently implemented
using the union, composition or intersection operations, or a combination of them.
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6.1. Linear model combination

For both context independent and dependent linear language model combination, the WFST representation of the
final interpolated LM may be derived using a component level composition between the n-gram and interpolation
weight transducers prior to a final log semi-ring based union operation performed locally at the n-gram level. This is
given by,

L = (L(1)
G ◦ L(1)

φ ) ∪ ... ∪ (L(m)
G ◦ L(m)

φ ) ∪ ... ∪ (L(M)
G ◦ L(M)

φ ) (25)

where L(m)
G is the n-gram model transducer and L(m)

φ the interpolation weight transducer for the mth component. Note
that the standard WFST union operation is performed at the complete sequence level, and is thus inappropriate for the
n-gram level LM interpolation considered in Eqs. (2) and (15). Instead, a partial symbol sequence based, n-gram level
union operation is required.

6.2. Log-linear model combination

Assuming compatible symbols are used for all transducers, a log-linear model combination may be efficiently
implemented using a sequence of WFST composition operations between component n-gram model transducers after
scaling of arc costs by their respective log-linear weights. This is given by

L = (L(1)
G × λ1) ◦ ...(L(m)

G × λ2) ◦ ...(L(M)
G × λM) (26)

6.3. Multi-level model combination

As discussed in Section 2.2, in order to incorporate richer linguistic constraints, it is possible to train and combine
LMs that model different linguistic unit sequences, for example, syllables and words (Liu et al., 2010). Linearly
interpolated LMs built at the word and syllable level are intersected to yield a final combined multi-level LM. This LM
leverages from both linear and log-linear forms of model combination and aims to achieve a good balance between
generalization and discrimination. Using a WFST based representation, this form of hierarchical LM interpolation
can be implemented by expanding a word level interpolated LM scored lattices into sub-word, e.g. the syllable level,
via a composition with the inverse of the lexicon transducer which provides word to sub-word sequence mapping,
before a final composition with a sub-word level interpolated LM. This effectively combines the linear and log-linear
interpolation schemes given in Eqs. (25) and (26).

6.4. Interpolation weight set combination

As discussed in Section 5.3, when adapting LMs using context dependent interpolation, two sets of weights are
available. These are estimated on the training data nPP estimation and test data recognition hypotheses respectively.
The combination of these two sources of information can leverage the strength of both to improve LM adaptation. The
associated combination schemes presented in Section 5.3 can also be efficiently implemented using WFSTs.

For the “MAP estimation and union” method, the final combined weight transducer for the mth component may be
derived using

Lcomb
φm

= LMAP
φm

∪ Lhier
φm

(27)

where LMAP
φm

is the transducer of the nPP weights MAP adapted to the test set supervision using Eq. (22), and Lhier
φm

the weight transducer of contexts only observed in the adaptation supervision and estimated using the hierarchical
smoothing of Eq. (18).

The “log-linear composition” scheme can be easily implemented via the WFST composition operation between the
two interpolation weight transducers. This is given by,

Lcomb
φm

= LnPP
φm

◦ Lhier
φm

(28)
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whereLnPP
φm

andLhier
φm

are the two transducers that represent the nPP prior estimated on the training data and the context
dependent weights adapted to the test data hypotheses.

Finally, when using the “log-linear composition and union” based combination, the final combined weight set is
derived as

Lcomb
φm

=
(
LnPP

φm
◦ Lhier

φm

)
∪ Lhier

φm
(29)

where LnPP
φm

is the weight transducer representing contexts that are only observed in the training data but not those in
the adaptation supervision.

6.5. Decoding with context dependent LM interpolation

When using context dependent interpolation weights in decoding, there is a flexible choice between a static, off-line
application, and dynamic, on-the-fly application of the weights. The static application is based on the WFST operations
defined in Eq. (25) as previously discussed in Section 6. When interpolated language models using the nPP criterion
are used, the interpolation weights are fixed. Hence, an off-line interpolation over all the n-grams in the component
models may be performed. In order to compress the final network for efficiency, it is possible to use the conventional
WFST determinization and minimization operations.

In contrast, during test-time LM adaptation, every broadcast show or snippet, for example, may have its own set
of LM interpolation weights. When modelling a large number of contexts with distinct interpolation weights, the
composition between component n-gram models and their weight transducers can lead to a significant expansion of
the interpolated LM network. Many paths with unique LM scores will need to be kept distinct. Because the standard
WFST network compression operations can only be performed statically in stages, a very large increase in the memory
requirement during composition will occur. Hence, it is more efficient to dynamically perform the composition, union
and compression operations in one single step on-the-fly. Component n-gram probabilities and interpolation weights
will be applied for each context on request during decoding. Similar approaches have been previously shown to be
effective for the composition between one single back-off n-gram LM and a lexicon transducer (Caseiro and Trancoso,
2006; Cheng et al., 2007; McDonough et al., 2007; Oonishi et al., 2009).

For the form of context dependent LM interpolation considered in this paper, the basic idea to only create a new
path during search, if and only if it carries history context information that is different from others. The LM state
associated with context history is jointly determined by component n-gram models and interpolation weights in the
form of a context pair. Using this on-the-fly expansion algorithm, there are two major advantages. First, under the
lattice constraint, no dead-end states (Caseiro and Trancoso, 2006), which have no path to the terminal state, will
be created during expansion. Secondly, redundant paths representing unused lower order back-off distributions will
be automatically filtered. The corresponding pseudo-code algorithm for an on-the-fly lattice expansion using context
dependent LM interpolation is given below.

1: for every node ni in the network do
2: initialize its expanded node list N ′

i = {};
3: initialize its expanded outbound arc list A′

i = {};
4: initialize its LM state Si = (null, null);
5: end for
6:
7: add n0 to its expanded node list, N ′

0 = {n0};
8: add all of n0’s outbound arcs to its expanded arc list, A′

0 = A0;
9:
10: Start depth first network traversal from the initial node n0;
11:
12: for every node ni being visited do
13: for every expanded node n′

j ∈ N ′
i of node ni do

14: for every outbound arc ak from ni do
15: find the destination node nk of arc ak ;
16: find the LM state S′

j of expanded node n′
j ;

17: compute the interpolated LM probability P(nk|S′
j);

18: find longest context hG in component LMs matching (S′
j, nk);
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19: find longest context hφ in weight model matching (S′
j, nk);

20: make context pair (hG, hφ) as a new LM state;
21: if ∃ node n′

l
∈ N ′

k
representing LM state (hG, hφ) then

22: return the found node n′
l
;

23: else
24: add a new node n′

l
to N ′

k
to represent LM state (hG, hφ);

25: end if
26: create a new arc a′

l
from n′

i to n′
l
;

27: assign LM score ln P(nk|S′
j) to a′

l
;

28: copy other modeling info from ak to a′
l
;

29: add arc a′
l

to the expanded outbound arc list A′
i for node ni.

30: end for
31: end for
32: end for
33:
34: Re-build new network with all expanded nodes and outbound arcs lists.

The above on-the-fly lattice expansion algorithm was implemented as an extension to the CU-HTK lattice processing
tools. In practice, context dependent LM interpolation was found to only lead to a modest network size increase of
between 20% and 120% compared to using standard context independent LM interpolation.

7. Experiments and results

In this section experimental results on a Mandarin Chinese broadcast speech transcription task are presented. First,
two baseline LVCSR systems are described. Then the performance of various language models using the context
dependent interpolation and adaptation schemes are evaluated. This is followed by experimental results on using the
weight set combination methods proposed in Section 5.3. Finally, experimental results for the adaptation of a multi-
level LM modelling both syllable and word sequences using context dependent interpolation are presented. These
experiments were designed to investigate the following major topics:

• performance of the normalized perplexity metric based context dependent LM interpolation using the training data
as presented in Section 5.2;

• performance of the context dependent LM adaptation techniques proposed in Section 5.1 using various forms of
weight smoothing priors presented in Sections 5.1 and 5.3;

• performance of the MBR based discriminative LM adaptation scheme presented in Section 3.

7.1. Baseline system description

The 2006 CU-HTK Mandarin Chinese LVCSR system developed for the DARPA GALE phase I evaluation was
initially used to evaluate LMs employing the various interpolation and adaptation techniques proposed in Section 5.
The overall structure of the system was similar to that described in Sinha et al. (2006). It comprises an initial lattice
generation stage using a 58k word list, interpolated 4-gram word based back-off LM, and adapted MPE (Povey and
Woodland, 2002) acoustic models trained on HLDA (Kumar, 1997; Liu et al., 2003) projected PLP (Hermansky, 1990;
Woodland et al., 1996) features augmented with pitch parameters. A total of 942 h of audio data containing mixed
broadcast news (BN) and broadcast conversation (BC) speech genre were used for acoustic model training. A total
of 1.0G words from 10 text sources were used in baseline LM training. Information on corpus size, cut-off settings
and smoothing schemes for component LMs are given in Table 1. For data sources that are closer in genre to the
test data, the lowest cut-offs and modified KN smoothing were used. These include the two acoustic transcriptions
sources, bcm and bnm, and additional data collected from major TV channels or media such as CCTV, VOA and
Phoenix TV. For example, a cut-off of “111” were used for the bnm and bcm sources, as are shown in the 3rd column
of the first two lines in Table 1. This setting implies that there has to be at least one occurrence of any bigram,
trigram or fourgram if any of them were to be retained. For the two largest corpora of newswire genre, giga-xin
and giga-cna, more aggressive cut-offs and Good Turing (GT) discounting were used. As discussed in Section 5.2,
these conscious decisions are often made in state-of-the-art LVCSR systems when certain text sources are known to
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Table 1
Text source, 2/3/4-gram cut-off settings, smoothing scheme used in training, model size and global ML weights tuned using test set PP (bn06 + bc05),
training data PP and nPP scores for component language models of the 2006 CU-HTK Mandarin Chinese LVCSR system.

Comp LM Text (M) Train config Model size (M) Global weight tuning

2g 3g 4g Base PP nPP

bcm 4.83 111,kn 1.19 3.06 3.78 0.233 0.005 0.143
bnm 3.78 111,kn 1.07 2.45 2.91 0.133 0.007 0.173
giga-xin 277.6 123,gt 19.3 26.1 10.4 0.139 0.243 0.108
giga-cna 496.7 123,gt 24.9 37.1 12.2 0.173 0.458 0.082
phoenix 76.89 112,kn 11.5 40.1 8.34 0.103 0.113 0.123
voarfabbc 30.28 112,kn 2.99 9.24 1.97 0.103 0.027 0.073
cctvcnr 26.81 112,kn 5.16 15.2 2.74 0.040 0.039 0.084
tdt4 1.76 112,kn 0.71 1.35 0.09 0.025 0.006 0.072
papersjing 83.73 122,kn 9.43 10.2 11.3 0.029 0.092 0.093
ntdtv 12.49 122,kn 2.27 1.27 1.23 0.032 0.011 0.050

be more useful for the target domain. Three Mandarin broadcast speech evaluation sets were used: bn06 of 3.4 h
BN data, bc05 of 2.5 h of BC data and the 1.8 h GALE 2006 evaluation set eval06 containing a mixture of BN and
BC data.

The 2008 CU-HTK Mandarin Chinese LVCSR system developed for the DARPA GALE phase III evaluation was
then used to evaluate performance of history context dependently adapted multi-level LMs in the final part of this
section. Compared with the first 2006 baseline system described above, additional data was used in model training.
The acoustic models were trained on 1673 h of speech. A total of 4.3 billion characters from 27 text sources were
used in LM training. These account for 2.8 billion words after a longest first based character to word segmentation. A
larger 63k word list consisting a total of 52k multiple character Chinese words, 6k single character Chinese words and
5k frequent English words was used. Information on corpus size, cut-off settings, smoothing schemes and component
weights for the top 10 heavily weighted text sources are given in Table 2.

The CU-HTK Mandarin Chinese LVCSR system uses a multi-pass recognition decoding framework (Sinha et al.,
2006). Unadapted acoustic models and the baseline word level 4-gram LM were used to the first recognition pass “P1”
to generate initial hypotheses for subsequent acoustic model adaptation. Adapted acoustic models and the baseline
4-gram LM were then used in the following “P2” lattice generation stage. This was followed by a “P3” lattice rescoring
stage using re-adapted acoustic models. Three GALE Mandarin broadcast speech development sets of mixed BN and
BC genre were used: 2.6 h dev07, 1 h dev08 and 2.6 h p2ns. Manual audio segmentation was used. The word level
baseline LM component weights were perplexity tuned on dev07, dev08, bn06 and bc05.

Table 2
Text source size, cut-off settings, smoothing scheme used and interpolation weights for top 10 heavily weighted text sources for component language
models of the 2008 CU-HTK Mandarin Chinese LVCSR system. Cut-off settings for 5-gram and 6-gram character level LMs are shown in brackets.

Comp LM #Char (M) #Word (M) Train config Interpolation weight

bcm 14.26 9.21 kn/111(11) 0.260058
bnm 12.29 7.41 kn/111(11) 0.147834
gigaxin 483.65 362.74 kn/112(22) 0.132539
phoenix 144.57 91.38 kn/112(22) 0.107920
gigacna 891.13 604.98 gt/123(33) 0.072665
voarfa 63.54 35.31 kn/112(22) 0.072299
ibmsina2 382.34 253.59 kn/112(22) 0.055601
bbndata 301.39 186.3 kn/112(22) 0.046213
galeweb 556.41 390.8 kn/122(22) 0.045918
agilece 336.78 204.5 kn/112(22) 0.031497
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Table 3
PP and lattice rescoring 1-best CER% performance of interpolated LMs on bn06, bc05 and eval06. Global interpolation weights of the baseline
LM tuned on the reference of combined bn06 + bc05 set. Equal weights initialization for all models.

LM History context nPP Reference perplexity CER%

bn06 bc05 eval06 bn06 bc05 eval06

Base – 84.0 194.6 227.1 231.7 8.4 19.0 19.1
PP – 130.8 224.5 403.8 360.7 8.6 20.7 19.9
nPP – 82.0 197.6 239.9 235.3 8.3 19.1 19.1

1g 69.7 193.3 224.1 221.9 8.1 19.1 19.1
3g 51.9 179.3 213.1 215.2 8.1 19.0 18.7

7.2. Performance of interpolated language models

The PP and nPP scores for various interpolated LMs are presented in Table 3. The first line shows the performance
of a baseline interpolated LM using global, context independent weights that were perplexity tuned on the combined
bn06 + bc05. This is the standard form of model interpolation for current ASR systems. These weights are in the
7th column of Table 1. The second line shows the performance of weights tuned using the training data perplexity.
Compared to the baseline system, there was a large degradation of 30-176 PP points on the all three test sets. Similarly
there is a large error rate increase of 0.2–1.7% absolute. This is due to the corpus size bias previously discussed in
Section 5.2. Such a bias further manifests itself in the global weights given in the 8th column of Table 1. The largest
two corpora, giga-cna (0.46) and giga-xin (0.24) were heavily weighted.

Using the nPP metric in context independent weight estimation, this bias was greatly reduced, as given in the third
line of Table 3. The corresponding global weights are in the last column of Table 1. Large sized corpora no longer
dominate the weight assignment. As discussed in Sections 1 and 5.2, the weights are determined by a combination
of global factors, such as source of collection, epoch and genre, and local factors including modeling resolution,
generalization, topics and styles. During the nPP estimation, if a particular component model is both under-fitting to
its own training data and generalizing poorly to other sources, its weight is likely to be low. For example, the biggest
newswire source, giga-cna, is of Taiwanese origin and different in style from other broadcaster sources, trained using
aggressive cut-offs and simple GT discounting, is now weighted by 0.082. In contrast, the acoustic transcription source
bnm, collected from major mainland Chinese broadcasters, is similar in genre, topics and style to most of other data
sources in the table, and trained with minimum cut-offs and more robust KN smoothing, is weighted by 0.17. It is
also interesting to note that if minimum cut-offs and KN smoothing were used to build all source specific models
and no conscious bias is introduced, a much smoother weight distribution can be obtained. For example, the weight
assigned to bnm is decreased to 0.13. This is expected as an improved modelling resolution and smoothing scheme
would help certain sources to be more useful during nPP estimation, and therefore be more competitive against other
sources. Using the “nPP” system with context independent LM interpolation weights, perplexity and CER performance
comparable to the baseline LM was obtained. These results suggest the nPP criterion may be used as an alternative
LM interpolation technique.

For robust estimation of context dependent interpolation weights on the training data, the nPP based approach
becomes even more useful. The performance of two context dependent systems are shown in the last two lines of
Table 3. Due to memory constraints in weight estimation, the three word history based “3g” nPP model was built by
extracting word level contexts from the single word history based “1g” nPP model after being pruned at 1.0e−9. A
total of 58k single word, 5.2M two word and 1.9M three word history contexts were retained to have their own weights.
These were trained using the nPP estimation with hierarchical weight smoothing given in Eq. (21). Using 1-gram
word level weights, there are more than 10 points of PP improvement on eval06, and an absolute CER reduction of
0.3% over the baseline on bn06. Increasing the context span to 3-gram word based history gave the best PP and CER
performance. Compared with the baseline LM, 14–16 points of PP improvements (7% relative) were obtained over all
test sets. This system also outperformed the baseline LM on bn06 and eval06 with a statistically significant2 CER

2 For all results presented in this paper, matched pairs sentence-segment word error (MAPSSWE) based statistical significance test was performed
at a significance level α = 0.05.
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Table 4
CER and PP performance of ML adapted 4-gram LMs on bn06, bc05 and eval06. Equal weight initialization for all adapted models. Context
dependent adaptation uses a hierarchical smoothing prior.

LM adapt History context Reference perplexity CER%

bn06 bc05 eval06 bn06 bc05 eval06

Base-adapt – 150.0 201.1 200.9 8.1 18.9 18.8
ML 1g 138.5 188.3 187.7 8.1 18.9 18.7

3g 132.9 176.0 184.2 8.0 18.8 18.7

improvements of 0.3–0.4% absolute. Overall, there is a consistent and strong correlation between training data nPP
and test set PP scores in Table 3.

7.3. Performance of adapted language models

The performance of adapted LMs using context dependent interpolation weights was evaluated next. LM adaptation
was performed at the audio document level. Both bn06 and bc05 consist of a number of 0.5 h long broadcast shows,
while eval06 is made up of broadcast snippets of five minutes on average. Equal weight initialization was used. The
smoothing constant setting τ = 2.5 were used in the MAP adaptation given in Eq. (18). The MBR smoothing constant
D is set as D = E × NW, where NW is the number of speech segments in the supervision data, and E = 50. A total
of 8 iterations of weight re-estimation were performed. The 4-gram lattice 1-best output generated by the baseline
LM with global, context independent weights (first line of Table 3) was used as the adaptation supervision. The top
1000 hypotheses were extracted for MBR adaptation. During decoding component language models were combined
on-the-fly using adapted interpolation weights and the WFST based on-the-fly lattice expansion algorithm described
in Section 6. As discussed in Section 5, an important issue during MAP estimation of context dependent weights is the
form of the smoothing prior. Experiments in this section only consider using the hierarchical weight smoothing given
in Eq. (18) to serve as baseline context dependent adaptation configuration. In practice this was found to consistently
outperform a global, context independent prior.

The performance of ML adaptation is shown in Table 4. Using global, context independent PP based adaptation,
there are 26 to 45 points of PP improvements (12–23% relative) for all sets over the unadapted baseline system in
the first line of Table 3. Absolute CER gains of 0.3% on bn06 and eval06 were obtained. Using context dependent
adaptation, a further PP reduction of 13 points (8% relative) was obtained by the word level 1-gram weights. However,
the CER gains were marginal. Using longer 3-gram word context based weights gave the best adaptation performance.
On average for each audio document, approximately 0.9k single word, 2.2k two word and 2.5k three word history
contexts were adapted to have their own weights. This system gave a PP reduction of 17–25 points (8–12% relative)
on all test sets against the baseline context free adaptation configuration, but only transformed into marginal CER
gains of 0.1% absolute. These results suggest a weak correlation between PP and error rate3. ML based language
model adaptation may improve PP on the common contexts observed in both the supervision and reference, but is not
necessarily helpful in generalization and discrimination. Hence, it would be interesting to evaluate the performance of
MBR adaptation.

The results of MBR adaptation are shown in Table 5. Improved performance was obtained using MBR estimated
3-gram word level context based weights, as is shown in the bottom line of the table. Consistent CER improvements
of 0.1–0.3% absolute were obtained over the ML adapted context independent baseline and the context dependent
system. In total, this system gave statistically significant CER reductions of 0.4% on bn06, 0.4% on bc05 and 0.5%
on eval06 over the system without LM adaptation shown in the first line of Table 3.

3 It is expected than when LM adaptation uses information from the recognition hypotheses, the adapted LM no longer provides an “independent”
prior information when combined with acoustic models. Hence, the improvement in perplexity may not necessarily lead to lower error rates.
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Table 5
CER performance of MBR adapted 4-gram LMs on bn06, bc05 and eval06.

LM adapt History context CER%

bn06 bc05 eval06

Base-adapt – 8.1 18.9 18.8
ML 3g 8.0 18.8 18.7
MBR 3g 8.0 18.6 18.6

Table 6
PP performance of adapted 4-gram LMs on bn06, bc05 and eval06.

History context Wgt comb PP (reference)

Prior Adapt bn06 bc05 eval06

Base-adapt – 150 201 201
– 3g – 133 176 184
3g map 128 176 179

3g map + union 120 168 171
log 126 180 180
log + union 118 166 169

7.4. Combined use of interpolation and adaptation weights

As discussed in Section 5.3, when adapting LMs using context dependent interpolation, two sets of weights are
available. These are obtained from the training data nPP estimation and test data adaptation respectively. The trade-off
between using domain independent, longer span context weights estimated on the training data, and in-domain, shorter
context weights adapted using recognition hypotheses is an important issue. In this section experiments are conducted
to evaluate a range of weight combination methods proposed in Section 5.3. The PP and CER performance of various
language models are shown in Tables 6 and 7. The first line in both tables is the baseline adapted system shown in the
first line of Table 4 using context independent weights. The performance of the three word history context dependent,
perplexity adapted LM without using training set information is also shown in the second line of Tables 6 and 7. The
CER and perplexity performance of this system was also previously shown in the bottom line of Table 4.

The values of perplexity and CER performance of combining training set nPP and test adapted weights using the
methods proposed in Section 5.3 are shown in the last four lines of Tables 6 and 7 respectively. The MAP estimation
and log-linear composition approaches gave similar performance when only adapting weights for contexts observed in
the training data. Using the MAP estimation with union, a further PP reduction was obtained but there were no further
CER gains. Note that the map + union system did not outperform the second system in the two tables where a simpler
hierarchical smoothing was applied to all contexts and no combination with training set nPP weights was performed.
This may be caused by the mismatch of the nPP priors used in Eq. (23) against the target domain during adaptation. As
discussed in Section 5.3, such a mismatch may be partially retained during MAP estimation. The log-linear composition

Table 7
CER performance of adapted 4-g LMs on bn06, bc05 and eval06.

History context Wgt comb CER%

Prior Adapt bn06 bc05 eval06

Base-adapt – 8.1 18.9 18.8
– 3g 8.0 18.8 18.7
3g map 8.1 18.9 18.7

3g map + union 8.0 18.9 18.7
log 8.0 19.0 18.7
log + union 7.9 18.8 18.5
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Table 8
The hit rate statistics measured on the reference transcription of bn06, bc05 and eval06 for word level context dependent interpolation weight
vectors of varying length. These three sets were obtained from the nPP prior, adapting to the recognition hypotheses, or the combined weight set
derived using option D respectively.

History context Reference hit rate% (1g/2g/3g)

bn06 bc05 eval06

Train 16.9/55.4/27.7 16.1/55.2/28.8 19.2/53.5/27.3
Test 15.7/10.0/69.6 26.7/19.4/49.8 25.4/13.3/53.7
Comb 17.5/12.5/70.1 28.4/21.7/50.4 28.4/17.6/54.4

Table 9
CER performance of MBR adapted 4-gram LMs on bn06, bc05 and eval06.

History context Wgt comb CER%

Prior Adapt bn06 bc05 eval06

Base-adapt – 8.1 18.9 18.8
3g 3g-ML log + union 7.9 18.8 18.5

3g-MBR 7.9 18.6 18.5

and union approach gave the best performance among the four. More than 30 points of PP reduction (17–22% relative)
and 0.1–0.3% absolute CER reduction were obtained over the “base-adapt” baseline system using context free weights
(1st line of Tables 6 and 7). The associated hit rate statistics on the reference transcription for this system on various
test sets are shown in the bottom line of Table 8. The first line of the table shows the history context hit rates using the
nPP prior model alone. Compared to the hit rates using the weights obtained from test set adaptation alone shown in the
second line, the combined weight set derived from the union operation of option D consistently improved the context
coverage on the reference transcriptions for all three sets. In addition to the perplexity and CER results Tables 6 and 7,
these statistics further suggest sufficient coverage of contexts in test set supervision is important when adapting LMs
using context dependent interpolation.

As previously shown in Table 5, MBR adaptation gave improved discrimination and CER performance over MAP
adaptation. Hence, it is now interesting to investigate the performance of MBR discriminative adaptation with a nPP
weight prior, as is shown in Table 9. The log-linear composition and union based approach (option D) to combine with
the “3g” nPP weights of Table 3 gave a further small CER improvement of 0.2% on bc05 against a comparable ML
adaptation configuration. The total CER gains over the unadapted baseline system (also shown in first line of Table 3)
are 0.5% (6% relative) on bn06, 0.4% on bc05 and 0.6% on eval06, all being statistically significant.

7.5. Multi-level LM combination and adaptation

As discussed in Section 6, in order to incorporate richer linguistic constraints, it is possible to train and combine
LMs that model different unit sequences, for example, syllables and words (Hieronymus et al., 2009; Liu et al., 2010).
Context dependent interpolation was used to build LMs at the word and syllable level before intersected to yield a
final combined multi-level LM. This LM leverages both linear and log-linear forms of model combination and aims
to achieve a good balance between generalization and discrimination. The use of context dependent weights within
each layer of the modelling hierarchy also allows a multi-level LM to be adapted using the methods proposed in this
paper. The performance of this adapted multi-level LM was evaluated on the 2008 CU-HTK Mandarin Chinese LVCSR
system described in Section 7.1.

The confusion network (CN) decoding performance of the baseline word level LM is shown in the first line of
Table 10. In order to incorporate additional sub-word level constraints in LMs, syllable level LMs can be constructed
and combined with word level LMs. One issue with this method is that syllable segmented and labelled Chinese
texts are expensive to produce and generally unavailable in large quantities. The difficulty arises from the fact that
many Chinese characters have multiple pronunciations. Since Chinese characters are syllabic in nature, an alterna-
tive is to use character level LMs as an indirect way of modeling syllable sequences (Hieronymus et al., 2009; Liu
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Table 10
Performance of language models on dev07, dev08 and p2ns. “‘◦” denotes the WFST composition operation.

P2 system LM adapt CER%

dev07 dev08 p2ns

w.4g – 9.7 9.6 9.6
c.6g – 10.9 10.0 10.3
w.4g ◦ c.6g – 9.5 9.1 9.3

w.4g CI 9.6 9.3 9.4
w.4g CD 9.5 9.2 9.3
w.4g ◦ c.6g CD 9.4 8.9 9.1

Table 11
CN performance of P3 acoustic rescoring of P2 lattices generated by various language models on dev07, dev08 and p2ns.

P3 system LM adapt CER%

dev07 dev08 p2ns

w.4g – 9.3 8.7 9.1
w.4g CI 9.1 8.6 9.1
w.4g CD 9.0 8.5 8.8
w.4g ◦ c.6g CD 8.8 8.4 8.6

et al., 2010). 6-gram character level LMs were built and linearly interpolated. Their cut-off settings are shown in
brackets of Table 2. On average the word based system produces approximately 1.5 characters per word. Hence,
a 6-gram character level LM has a comparable context span to word level 4-gram LMs. The performance of this
system is shown in the second line of Table 10. As expected, with a stronger constraint, the word level 4-gram
baseline significantly outperformed the character 6-gram LM alone by 0.4–1.2% absolute. When combining sylla-
ble and word constraints using an equal weighted log-linear interpolation of Eq. (3) and the WFST representation
of Eq. (26), consistent performance improvements were obtained over the word level baseline. This is shown in
the 3rd line of Table 10. It gave statistically significant CER reductions of 0.5% and 0.3% on dev08 and p2ns
respectively.

The second section of Table 10 shows the performance of three adapted LMs using the WFST representation
in Eq. (25). The 1-best output from the un-adapted word level baseline system was used as the supervision in per-
plexity based LM adaptation. Standard LM adaptation using context independent interpolation weights gave CER
reductions of 0.1–0.3% absolute across three test sets (4th line of Table 10). Using the context dependent adaptation
of Eq. (15) with a hierarchical smoothing prior, and intersected with a high resolution training data nPP prior (the
log-linear combination and union approach discussed in Section 5.3), a further CER improvement of 0.1% absolute
was obtained for all test sets (5th line of Table 10). Adapting both the word and character level LMs using con-
text dependent weights before a final log-linear combination gave the best performance in the table. Absolute CER
reductions of 0.4% and 0.3% on dev08 and p2ns were obtained over the baseline word level LM adapted using
context independent interpolation. The total performance improvements over the unadapted word level baseline are
0.3% on dev07, 0.7% dev08 (7.3% relative) and 0.5% on p2ns (5.2% relative) respectively, all being statistically
significant.

Table 10 shows the performance of multi-level combined and adapted LMs at the lattice generation stage. Now
it’s interesting to examine if the performance improvements can be maintained at a later pass of the recognition sys-
tem where re-adapted acoustic models are used to rescoring lattices generated by various LMs in Table 10. These
are shown in Table 11. The performance gains from the adapted multi-level combined LM (last line of Table 11)
over the word level baseline (first line of Table 11) were largely maintained. Statistically significant CER reduc-
tions of 0.3–0.5% absolute were obtained over all test sets, in particular, 0.5% absolute (5.5% relative) for dev07
and p2ns.



Author's personal copy

320 X. Liu et al. / Computer Speech and Language 27 (2013) 301–321

7.6. Discussion

A range of experiments were conducted to evaluate the performance of context dependent LM interpolation and
adaptation techniques presented in this paper. Experimental results lead to the following findings:

• it is possible to build a domain or task neutral LM on the training data using context dependent interpolation weights
that are estimated using the normalized perplexity criterion presented in Section 5.2;

• the context dependent LM adaptation techniques proposed in Sections 5.1 and 5.3 are useful to improve the
performance of state-of-the-art LVCSR systems;

• the MBR based discriminative LM adaptation scheme presented in Section 3 gave further improvements over
conventional maximum likelihood based approaches.

8. Conclusion

A context dependent form of language model interpolation and adaptation was investigated in this paper. A novel
LM interpolation technique using normalized perplexity was proposed to robustly estimate context dependent language
model interpolation weights on the training data. MAP estimation of back-off weights was also used to address the data
sparsity problem. Several forms of smoothing priors were proposed. A range of schemes to use weight estimates from
both training data and test data hypothesis were proposed to improve robustness in LM adaptation. A WFST based
on-the-fly decoding algorithm for context dependent LM interpolation is also presented. Experimental results on a
state-of-the-art Mandarin Chinese broadcast speech transcription task suggest that context dependent language model
interpolation and adaptation may be useful for speech recognition. Future research will focus on improving robustness
of LM adaptation. A continuous representation (Bengio and Ducharme, 2003; Schwenk, 2007) of the history weighting
function will also be investigated.
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