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Abstract—An important part of the acoustic modelling problem
for automatic speech recognition (ASR) systems is to handle the
mismatch against a target environment created by time-varying
external factors such as ambient noise. One possible solution
to this problem is to introduce controllability to the underlying
acoustic model to allow an instantaneous adaptation to the under-
lying noise condition. Along this line, the continuous trajectory
of optimal, well matched model parameters against the varying
noise can be explicitly modelled using, for example, generalized
variable parameter HMMs (GVP-HMM). In order to improve
the generalization and computational efficiency of conventional
GVP-HMMs, this paper investigates a novel model complexity
control method for GVP-HMMs. The optimal polynomial degrees
of Gaussian mean, variance and model space linear transform
trajectories are automatically determined at local level. Significant
error rate reductions of 20% and 28% relative were obtained
over the multi-style training baseline systems on Aurora 2 and a
medium vocabularyMandarin Chinese speech recognition task re-
spectively. Consistent performance improvements and model size
compression of 60% relative were also obtained over the baseline
GVP-HMMsystems using a uniformly assigned polynomial degree.

Index Terms—Complexity control, generalized variable param-
eter HMMs, robust speech recognition, variable noise.

I. INTRODUCTION

A CRUCIAL task of automatic speech recognition (ASR)
systems is to robustly handle themismatch against a target

environment introduced by external factors such as environ-
ment noise. When these factors are of time-varying nature, this
problem becomes even more challenging. To handle this issue, a
range ofmodel based techniques canbeused:multi-style training
[27] exploits the implicit modelling power of mixture models, or
more recently deep neural networks [38], to obtain a good gener-
alization to unseen noise conditions; uncertainty decoding [11],
[12], [32], [22], propagates the uncertainty that varies with the
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noise represented by, for example, a conditional distribution of
the corrupted speech, into the recognizer; noise adaptive training
[17], [19], [21] techniques remove the variability introduced
to the multi-style speech data by the environment noise using,
for example, vector Taylor series (VTS) [18] expansion or joint
uncertainty decoding techniques [21].
An alternative approach to the above techniques is to directly

introduce controllability to the underlying acoustic model. It is
hoped that by explicitly learning the underlying effect imposed
by evolving acoustic factors, such as noise, on the acoustic re-
alization of speech, an instantaneous adaptation to these fac-
tors becomes possible. One class of statistical models along
this line includes multiple regression HMMs (MR-HMM) [13],
[26] and variable parameter HMMs (VP-HMM) [9], [43], [44],
[45]. They explicitly approximate the continuous trajectories of
optimal HMM model parameters against time-varying acoustic
factors using polynomial functions. Under this parameter tra-
jectory modelling framework, several forms of acoustic fac-
tors have been investigated in previous research. These include
prosody [13], environment noise condition represented by the
signal-to-noise ratio (SNR) [9], [43], [44], [45], as is also con-
sidered in this paper, and more recently articulatory features for
speech synthesis [26].
Under the MR-HMM or VP-HMM framework, Gaussian

component level polynomial modelling of mean and optionally
variance trajectories are used. This often results in a dramatic
increase in the number of free parameters in the system. In
order to robustly estimate the desired polynomial coefficients, a
large amount of multi-style speech data is usually required. As
Gaussiancomponent levelpolynomial interpolation isperformed
during recognition for each noise condition in the test data, con-
ventional MR-HMMs or VP-HMMs are also computationally
expensive touse in recognition time.Hence,morecompact forms
of parameter trajectory modelling techniques are preferred.
An extension to both MR-HMMs and VP-HMMs, generalized
variable parameter HMMs (GVP-HMMs), were proposed in [6],
[7], [23], [24]. In addition to Gaussian parameters, GVP-HMMs
can also provide a more compact trajectory modelling for model
or feature space tied linear transformations, and thus provide a
flexible formofparameter trajectorymodelling.For agivennoise
condition, present or unseen in the training data, GVP-HMMs
can instantaneously produce the matching Gaussian component
or linear transform parameters by-design without requiring any
multi-pass decoding and adaptation process. An important issue
associated with MR-HMMs, VP-HMMs and GVP-HMMs in
general is the appropriate polynomial degree to use. The under-
lyingpolynomialdegreebeinguseddetermines theprecisenature
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of the approximated effect of various factors, such as the noise
condition, on the actual acoustic realization.When higher degree
polynomials are used, an oscillation effect known as the Runge’s
phenomenon and the resulting increase in interpolation error can
occur [35]. For this reason, lower degree polynomials uniformly
assigned with the same order, for example, the second order,
were used in previous research [6], [7], [9], [13], [23], [24].
However, there are two issues with this approach. First, the

variability introduced by ambient noise manifests itself in a
locally varying fashion on different dimensions in the acoustic
space. For example, in the presence of car engine noise that are
more concentrated in the lower frequency range, lower order cep-
stral parameters,which contain richer information of speech than
higher order cepstra, are more prone to the distortion introduced
by noise. A uniformly assigned polynomial degree can cause an
under-fitting for the lower order cepstra, while at the same time
an over-fitting for the higher order cepstra that aremore related to
noise innatureand thusmore invariant to thedistortion.Such lack
ofmodelling flexibility limits the power of GVP-HMMs tomore
accurately capture the underlying effect of noise on the acoustic
realization of speech signals, and the possible improvements
that can be obtained from such systems. Secondly, over-fitting
higher degree polynomials in practice further increases the
interpolation cost during recognition. Hence, a more flexible
locally varying polynomial degree configuration is required.
In this paper the above task is converted to a classic auto-

matic model selection problem. A novel and efficient Bayesian
model complexity control method for GVP-HMMs is proposed.
The optimal polynomial degrees of Gaussian mean, variance
and model space linear transform trajectories against environ-
ment noise are automatically determined at local level. The rest
of the paper is organized as follows. The GVP-HMM frame-
work is reviewed in Section II. An efficient Bayesian model
complexity control criterion is presented in Section III. The
detailed complexity control algorithm for GVP-HMMs is pro-
posed in Section IV. In Section V various complexity controlled
GVP-HMM systems are evaluated on Aurora 2 and a medium
vocabulary Mandarin speech recognition task. Section 6 is the
conclusion and future research.

II. GENERALIZED VARIABLE PARAMETER HMMS

Generalized variable parameter HMMs (GVP-HMMs) [6],
[7], [23], [24] can explicitly model the trajectory of optimal
acoustic parameters that vary with respect to a scalar variable,
such as the underlying noise condition characterized by the
signal-to-noise ratio (SNR). The type of parameter trajectories
are not restricted to those of means and covariances of conven-
tional decision tree tied Gaussian mixture HMMs. Other more
compact forms of model parameters, such as model or feature
space linear transformations [14], [20], may also be considered.
In this paper, trajectories of Gaussian mean transforms are used.
For a dimensional observation emitted from Gaussian
mixture component , assuming th order polynomials are
used, this is given by

(1)

where is a dimensional Vandermonde vector [5],
such that . is an auxiliary feature, and in this
paper, the SNR condition [33] measured at frame .

is the mean transform that component is assigned
to at frame . , and are the th order
mean, covariance and mean transform trajectory polynomials
of component respectively. When diagonal covariances are
used for computational efficiency, the trajectories of the th di-
mension of the mean, variance, and the transform element in
row and column , are expressed as

(2)

where is a dimensional polynomial coefficient
vector such that , and the th order poly-
nomial coefficient of the parameter trajectory being considered.

is the clean speech based variance estimate. By defini-
tion, the mean transform polynomials are modelled on top of
the component mean trajectories, thus the final updated mean
vector of component at time instance is

(3)

where the dimensional extended mean vector trajectory
.

GVP-HMMs share the same instantaneous adaptation power
as standard MR-HMMs and VP-HMMs. For any noise charac-
teristics as indicated by the auxiliary feature, e.g. the SNR level
as considered in this work, present or unseen in the training data,
GVP-HMMs can instantly produce the matching Gaussian com-
ponent and mean transform parameters by-design without re-
quiring any multi-pass decoding and adaptation process. GVP-
HMMs also provide a more compact and flexible form of pa-
rameter trajectory modelling. For example, when only limited
amounts of noisy training data is available, to ensure all poly-
nomial coefficients are robustly estimated, only the trajectories
associated with the elements of a globally tied mean transform
can be considered. When large amounts of noisy training data is
used, a more refined modelling resolution can also be obtained
by increasing the number of tied transformations, or modelling
the trajectories of multiple parameter types simultaneously. The
use of locally optimized polynomial degree for different model
parameters is expected to further improve their modelling flex-
ibility and generalization performance.

III. MODEL COMPLEXITY CONTROL

A standard problem in speech recognition, and statistical
modelling in general, is how to select a model structure, ,
that generalizes well to unseen data, from a set of candidate
model structures . In classic Bayesian complexity control
techniques, it is assumed that by increasing the likelihood on
some unseen data, the underlying ASR system’s error rate on
the same data will decrease. When no prior knowledge over
individual model structures is available, the optimal model
structure or complexity, is determined by maximizing the
following Bayesian evidence integral,

(4)
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where denotes a parameterization of ,
is a training data set of frames and the reference
transcription.
For conventional HMMs and their extended forms such as

MR-HMMs, VP-HMMs and GVP-HMMs, it is computation-
ally intractable to directly compute the evidence integral in
equation (4). To handle this problem, a variety of approximation
schemes can be used: a first order asymptotic expansion based
Bayesian Information Criterion (BIC) [37], a second order
asymptotic expansion based Laplace’s approximation [3], [29],
[30], [31], variational approximation [40], and Markov Chain
Monte Carlo (MCMC) based sampling schemes [34]. Among
these, BIC (or equivalently MDL [4]) is the most widely used
technique. It is expressed in terms of a penalized log likelihood
evaluated at the maximum likelihood (ML) estimate of model
parameters . The model selection is based on the following
approximation

(5)

where denotes the number of free parameters in and is
a penalization coefficient which may be tuned for the specific
task [8], [28]. When , BIC was shown to be a first order
asymptotic expansion of the evidence integral [37].
One issue with the BIC based complexity control of equa-

tion (5) is that the log-likelihood for each model structure is re-
quired. For HMMs and their variants such as GVP-HMMs this
can be computationally expensive. One method to avoid this is
to derive a lower bound that may be assumed to be applicable
for multiple different structures during model selection. Let
denote the current parameterization for . Using the EM algo-
rithm the following inequality may be derived [10]

(6)

where the auxiliary function, , is given by

(7)

indicates that an acoustic observation was gener-
ated by a Gaussian component , and the component posterior

.
For acoustic model training of ASR systems, the majority

of the time is spent accumulating these sufficient statistics to
estimate the model parameters. Thus, accumulating the above
statistics for all possible systems is infeasible. To handle this
problem, a range of model structures can use the same set of
statistics generated using a single system. This allows the lower
bound in (6) to be efficiently computed [29], [30], [31]1. For
example, when determining the appropriate order of a Gaussian

1Computing the difference between the left and right hand side of equa-
tion (6), expressed as the KL divergence term between the posterior distributions
computed using and respectively, requires explicitly computing the former
posterior distribution over the entire training data set using each possible
GVP-HMM structural configuration and its associated parameterization. Given
the vast number of candidate GVP-HMM models to consider, this would be
computationally infeasible. Hence, an approximation is required.

component mean’s trajectory polynomial on a particular dimen-
sion in equation (2) for a GVP-HMM system, the sufficient sta-
tistics to be used for a range of candidate polynomial
degree settings can be derived from a common baseline HMM
system, or a conventional GVP-HMM system that uses a glob-
ally assigned polynomial order across all dimensions for every
single Gaussian mean vector in the system. In the same way,
sufficient statistics can also be shared when determining the de-
grees of Gaussian variance or mean transformation trajectory
polynomials in equation (2).
It is clear that the only term in the lower bound of equation (6)

dependent on the model parameters, , is the auxiliary function
. When multiple model structures use the same set

of statistics, the rank ordering derived from the marginalization
of is equivalent to that of 2.

(8)

To further reduce the computational cost, the above integral over
the auxiliary function in equation (8) is efficiently computed
using a BIC style approximation in this paper. Under these con-
ditions, the optimal model complexity is finally determined by

(9)

IV. MODEL COMPLEXITY CONTROL FOR GVP-HMMS

When using the lower bound based BICmetric of equation (9)
for the complexity control of GVP-HMMs, the computation of
the ML auxiliary function of equation (7) is required. For the
form of GVP-HMMs of equation (1) introduced in Section II,
the associated ML auxiliary function is given by [6], [7], [10],
[24],

(10)

where is the posterior probability of frame being
emitted from component at a time instance .
Combining the above with equations (1) and (2), the corre-

sponding parts of the above auxiliary function associated with
the polynomial coefficient vectors of the Gaussian mean, vari-
ance scaling and mean transform element trajectories respec-
tively can be re-arranged into convex quadratic forms,

(11)

2When multiple sets of statistics are used, the other terms in the lower bound
cannot be ignored and must be computed.
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where the constant terms independent of the coefficient vectors
can be ignored.
After setting the above gradients against the respective poly-

nomial coefficient vectors to zero, the following ML solutions
of the coefficient vectors can then be derived,

(12)

where is a dimensional meta poly-
nomial coefficient vector spanning across all elements of row
of transform , and the sufficient statistics are

(13)

is a meta
Vandermonde matrix,

(14)

and a dimensional meta regression
target vector. This is given by

(15)

The sub-matrix and sub-vector in the above
that are associated with transform element are computed
as

(16)

where the dimensional extended mean vector trajectory
is given by , as previously defined in
Section II.

When determining the optimal order for a particular poly-
nomial associated with the th dimension of the th Gaussian
component in the system, , for example, the above statis-
tics in equations (13) and (16) are accumulated for the highest
order being considered. The corresponding statistics for
any other order can be derived by taking
the associated submatrices or subvectors from the full matrix
statistics accumulated for . Using these statistics and the
ML solutions in equation (12), the ML auxiliary function asso-
ciated with in equation (11), can be efficiently evalu-
ated at the optimum for each candidate polynomial degree. The
number of free parameters (polynomial coefficients) in the BIC
metric of equation (9) is . The number of frame
samples for the current Gaussian is computed as the component
level occupancy counts . An overview of
this algorithm is shown below.

Algorithm 1 Complexity control of GVP-HMM mean
polynomials locally for each dimension of all Gaussian
components.

accumulate sufficient statistics and those of
Eq. (13) using a baseline system with no complexity control;

for each Gaussian component in the system do

for each dimension of component ’s mean vector do

for each polynomial degree do

evaluate the model selection metric in equation (9)

for the current degree mean polynomial

using the auxiliary function

of equation (11) and sufficient statistics, ,

in equation (13) and in
equation (12).

end for

select that maximizes the above criterion;

take the ML estimate associated with ;

end for

end for

output coefficients for all mean polynomials in
the system with a locally varying polynomial degree.

The same approach can also be used to determine the op-
timal degree of Gaussian variance and mean transform poly-
nomials, by evaluating the respective auxiliary functions with
their respective sufficient statistics to compute the BIC metric
in equation (9). Unless otherwise stated, in all experiments of
this paper, the sufficient statistics and those of equa-
tion (13) required for the above complexity control algorithm
are accumulated using a baseline HMM system.

V. EXPERIMENTAL RESULTS

In this section, complexity controlled GVP-HMM systems
are evaluated on two tasks: the Aurora 2 speaker independent
digit sequence recognition task and a medium vocabulary
Mandarin Chinese In-car navigation command recognition
task. In all experiments utterance level SNR features are used
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TABLE I
DESCRIPTION OF VARIOUS GVP-HMMS ON AURORA 2: PARAMETER
POLYNOMIAL TYPES AND THE AVERAGE NUMBER OF POLYNOMIAL
COEFFICIENTS ACROSS SUBWAY, BABBLE, CAR AND EXHIBITION

for GVP-HMM systems. For all GVP-HMM parameter polyno-
mials the range of candidate degree to consider is from 0 to 5.

A. Experiments on Aurora 2

The multi-style training data provided by the Aurora 2
speaker independent digit sequence recognition database [16],
[36] covers 4 different types of noisy types: subway, babble, car
and exhibition noise. For each of these 4 training noise types,
a total of 420 utterances from four different SNR conditions
( 5 dB, 5 dB, 15 dB, 25 dB) were used to train both the baseline
multi-style HMM baseline system and a range of GVP-HMM
systems with different modelling configurations associated
with each particular noise type. 39 dimensional MFCC plus log
energy features including their 1st and 2nd order differentials
were used in acoustic model training. Word error rate (WER)
evaluation was performed on two standard Aurora 2 test sets:
test set A which is based on the same four noise types as the
multi-style training data, and test set B which is based on four
unseen noise types: restaurant, street, airport and station. For
the both test sets, a total 1001 utterances selected from each of
five different test SNR conditions: 0 dB, 5 dB, 10 dB, 15 dB,
20 dB, were used in recognition performance evaluation.
Description of Aurora 2 GVP-HMM Systems: As discussed

in Section II, in order to adjust the trade-off between model-
ling resolution, robustness in estimation and computational
efficiency, a wide rage of GVP-HMM configurations may be
considered for different purposes. The description of various
GVP-HMM systems and the number of polynomial coefficients
used on the Aurora 2 data is shown in Table I.
This table is partitioned into three sections. In the first sec-

tion, there are two standard VP-HMM systems, which model
the mean, and optionally variance, of each Gaussian compo-
nent, shown as “mean” and “mv” systems respectively. In the
second section of Table I, two transform based GVP-HMM
systems “tran2” and “tran8” are given. In these two systems the
polynomial trajectories of 2 or 8 mean transforms are modelled
respectively. In the bottom section of Table I, the most complex
GVP-HMM system configuration is presented. This “mvt2”
GVP-HMM system models the trajectories of both Gaussian
means and variances, and those of 2 mean transforms. In the last
2 columns, the number of polynomial coefficients for various
GVP-HMM systems are given. All the baseline GVP-HMMs
with no complexity control using 2nd degree polynomials
for all parameter trajectories are shown as “base” in the 5th
column. The average number of polynomial coefficients of
complexity controlled GVP-HMM systems computed over the
four training noise types with varying settings, , are
in the 6th column of Table I.

TABLE II
WER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM SYSTEM,
BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY ASSIGNED PARAMETER
POLYNOMIAL DEGREE, AND COMPLEXITY CONTROLLED GVP-HMM SYSTEMS
USING A LOCALLY VARYING POLYNOMIAL DEGREE ON SUBWAY NOISE DATA

TABLE III
WER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM SYSTEM,
BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY ASSIGNED PARAMETER
POLYNOMIAL DEGREE, AND COMPLEXITY CONTROLLED GVP-HMM SYSTEMS
USING A LOCALLY VARYING POLYNOMIAL DEGREE ON BABBLE NOISE DATA

Performance on Set A of Matched Noise Types: For the four
different noise types in test set A, the WER performance of
the baseline multi-style HMM systems, a range of standard
GVP-HMM systems of no complexity control using a uniform
parameter polynomial degree, and a comparable set of com-
plexity controlled GVP-HMM systems using a locally varying
polynomial degree as described in Table I, are shown from
Table II to V. The “mv” GVP-HMM system in 3rd line of each
table, which models both Gaussian mean and variance poly-
nomials consistently outperformed a simpler “mean” system
across all four noise types. On the subway data, for example,
the associated “mv” system (3rd line in Table II) outperformed
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TABLE IV
WER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM SYSTEM,
BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY ASSIGNED PARAMETER
POLYNOMIAL DEGREE, AND COMPLEXITY CONTROLLED GVP-HMM SYSTEMS
USING A LOCALLY VARYING POLYNOMIAL DEGREE ON CAR NOISE DATA

TABLE V
WER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM
SYSTEM, BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY
ASSIGNED PARAMETER POLYNOMIAL DEGREE, AND COMPLEXITY
CONTROLLED GVP-HMM SYSTEMS USING A LOCALLY VARYING

POLYNOMIAL DEGREE ON EXHIBITION NOISE DATA

the comparable “mean” system (2nd line in Table II) by 0.58%
absolute (8.5% relative).
For both the standard BIC penalty setting and more

aggressive configurations or 3, complexity controlled
GVP-HMMs were also found to consistently outperform their
comparable GVP-HMM baselines using a uniformly assigned
2nd degree from Table II to V across all four noise types. Take
themost complexGVP-HMMconfiguration “mvt2” (previously
also shown in the last line of Table I) as an example, a significant
WER reduction of 15.44% relative was obtained across all four

noise types on average using the BIC complexity control method
proposed in Section IV. On the exhibition noise data in Table V,
for example, the BIC ( ) complexity controlled “mvt2”
GVP-HMM system (highlighted in bold, last line Table V)
reduced the WER from 8.81% produced by the comparable
baseline (6th line in Table V) down to 7.06% (19.86% rela-
tive). This system gave the best performance on the exhibition
noise data and outperformed the comparable multi-style HMM
baseline “mcond.base” system by 1.83% absolute (20.58%
relative). For the other three noise types, the complexity con-
trolled GVP-HMM systems with the lowest error rate are also
highlighted in bold in each table. An average WER reduction
of 7.5% absolute (19% relative) over the multi-style baseline
“mcond.base” HMM systems was obtained. All these results
confirms the hypothesis raised in Section I that a more flexible
locally optimized polynomial degree improves the underlying
power of GVP-HMMs to accurately capture the effect of noise
on the acoustic representation of speech. The setting of the BIC
penalty was also found to have only a small impact on WER
performance in these four tables.
As discussed in Sections III and IV, in order to improve the

efficiency during complexity control for GVP-HMMs, a range
of GVP-HMM model structures can share the same set of sta-
tistics generated using a single system. This allows the lower
bound in (6) to be efficiently computed. So far in all experiments
of this paper, these sufficient statistics are accumulated using a
baseline HMM system. In practice, the choice of the system to
generate these shared sufficient statistics was found to havemin-
imum effect on the recognition performance of GVP-HMM sys-
tems. A set of contrast experiments were conducted using base-
line GVP-HMM systemswith no complexity control to generate
these sufficient statistics, as are shown in Tables VI, VII, VIII
and IX. Compared with those results shown in Tables II, III, IV
and V, only a marginal error rate reduction of 0.1%-0.2% was
obtained for the best GVP-HMM systems (highlighted in bold)
across 4 noise types.
Compared with the baseline GVP-HMM systems using

no complexity control, a consistent reduction in model
complexity was also obtained by using BIC complexity con-
trolled GVP-HMM systems. A series of contrasts for various
GVP-HMM system configurations are shown in the 5th and 6th
columns of Table I. As expected, when increasing the setting
of , the average size of the resulting complexity controlled
GVP-HMM system decreases. For example, using a setting

, the average number of polynomial coefficients of com-
plexity controlled “mv” system in the 2nd line of Table I was
reduced by 60% relative from 240 K in the baseline GVP-HMM
system down to 95.53 K.
As discussed in Section I, a locally varying polynomial de-

gree is preferred when the variability introduced by noise man-
ifests itself on a dimension by dimension basis in the acoustic
space. This is shown in Fig. 1 to 4 for the mean and variance
polynomials of BIC complexity controlled GVP-HMM “mv”
systems ( ) trained on each of the four noise types across
different dimensions in feature space. The standard 39 dimen-
sional Aurora 2 acoustic frontends were derived by augmenting
1st to 12th order MFCC parameters plus log energy augmented
with their 1st and 2nd order differentials. For both the static
and differential features, a general trend can be found that lower
order cepstra of up to the 3rd order and the log energy, which
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TABLE VI
WER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM SYSTEM,
BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY ASSIGNED PARAMETER
POLYNOMIAL DEGREE, AND COMPLEXITY CONTROLLED GVP-HMM SYSTEMS
USING A LOCALLY VARYING POLYNOMIAL DEGREE ON SUBWAY NOISE DATA:
BASELINE GVP-HMM SYSTEM WITHOUT COMPLEXITY CONTROL USED TO

GENERATE SUFFICIENT STATISTICS

TABLE VII
WER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM SYSTEM,
BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY ASSIGNED PARAMETER
POLYNOMIAL DEGREE, AND COMPLEXITY CONTROLLED GVP-HMM SYSTEMS
USING A LOCALLY VARYING POLYNOMIAL DEGREE ON BABBLE NOISE DATA:
BASELINE GVP-HMM SYSTEM WITHOUT COMPLEXITY CONTROL USED TO

GENERATE SUFFICIENT STATISTICS

contain more information of speech, tend to use more com-
plex polynomial trajectories than higher order cepstra. In all
four figures, Gaussian variance polynomials use consistently
lower degrees than those of component mean vectors. As dis-
cussed in Section I, the underlying polynomial degree being
used represents the approximated effect of different noise types
on the actual acoustic realization. For example, complexity con-
trolled GVP-HMM “mv” system trained on the car noise data
of Fig. 3 favored higher order polynomials for both Gaussian

TABLE VIII
WER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM SYSTEM,
BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY ASSIGNED PARAMETER
POLYNOMIAL DEGREE, AND COMPLEXITY CONTROLLED GVP-HMM SYSTEMS
USING A LOCALLY VARYING POLYNOMIAL DEGREE ON CAR NOISE DATA:
BASELINE GVP-HMM SYSTEM WITHOUT COMPLEXITY CONTROL USED TO

GENERATE SUFFICIENT STATISTICS

TABLE IX
WER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM SYSTEM,
BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY ASSIGNED PARAMETER
POLYNOMIAL DEGREE, AND COMPLEXITY CONTROLLED GVP-HMM SYSTEMS
USING A LOCALLY VARYING POLYNOMIAL DEGREE ON EXHIBITION NOISE
DATA: BASELINE GVP-HMM SYSTEM WITHOUT COMPLEXITY CONTROL

USED TO GENERATE SUFFICIENT STATISTICS

means and variances compared with the comparable three other
“mv” systems trained on other noise types. The locally varying
polynomial degree over feature space dimensions for an ex-
ample Gaussian component in this BIC ( ) optimized
GVP-HMM “mv” system trained on the car noise data is also
shown in Fig. 5.
As discussed in Section I, the use of uniformly assigned higher

degree polynomials for GVP-HMMs in practice increases the
interpolation cost during recognition. A detailed comparison
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Fig. 1. Avg. polynomial degree over feature dimensions in BIC ( )
optimized GVP-HMM “mv” system trained on subway noise data.

Fig. 2. Avg. polynomial degree over feature dimensions in BIC ( )
optimized GVP-HMM “mv” system trained on babble noise data.

of total computational cost (decoding time and optionally in-
terpolation cost for GVP-HMMs) incurred during recognition
between the baseline HMM system and various GVP-HMM
systems measured on the Aurora 2 test set A is shown in Fig. 6.
The standard cost of using the baseline HMM “mcond.base”
is taken as the reference (100% shown in the figure), to be
contrasted with the relative costs of using various baseline and
complexity controlled GVP-HMM systems. As expected, the
use of complexity control reduced the decoding time by up to
40% relative for the GVP-HMM “mv” system in the figure. The
more compact transform based “trans2” GVP-HMM systems
with complexity control increased the total run time only by
6%-7% over the baseline HMM “mcond.base” system.
Performance on Test B of Mismatched Noise Types: In all

the experiments presented so far, the performance of complexity
controlled GVP-HMM systems were evaluated on test data of
noise types well-matched to the training data. In order to fur-
ther evaluate their generalization performance, complexity con-

Fig. 3. Avg. polynomial degree over feature dimensions in BIC ( )
optimized GVP-HMM “mv” system trained on car noise data.

Fig. 4. Avg. polynomial degree over feature dimensions in BIC ( )
optimized GVP-HMM “mv” system trained on exhibition noise data.

trolled GVP-HMM systems were then used on the mismatched
noise test set B, which covers four unseen types different from
those used in model training.
As discussed in Section I, the variability introduced by

background noise on acoustic realization and the resulting
spectral characteristics can vary significantly between different
types of noisy data. The underlying effect on the production
of speech signals is jointly determined by both the particular
noise type and the SNR condition. One approach to acquire
generalization to noisy data of both unknown noise types and
SNR conditions is to construct the multi-style training set by
including noisy data associated with multiple noise types and
SNR conditions.
An alternative approach used in this paper is to exploit the

similarity and commonality between training and test data noise
types. An unsupervised maximum likelihood noise type detec-
tion procedure is first performed to find a training noise type
as the closest approximation to the unknown test data noise
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Fig. 5. Locally varying polynomial degree over feature dimensions for an
example Gaussian component in the BIC ( ) optimized GVP-HMM
“mv” system trained on the car noise data.

Fig. 6. Comparison of computational cost during recognition between the base-
line HMM system and various GVP-HMM systems on Aurora 2 test set A. The
standard cost of using the baseline HMM “mcond.base” is taken as the reference
(100% shown in the figure), to be contrasted with the relative costs of using var-
ious baseline and complexity controlled GVP-HMM systems.

type. The associated baseline HMM system, GVP-HMM sys-
tems and complexity controlled GVP-HMM systems trained on
such selected noise type are then used in recognition. A base-
line HMM system multi-style constructed on all four types of
noisy training data is first used to generate the initial recogni-
tion outputs for the test data. Four noise dependent HMM base-
line systems produced by maximum a-posteriori (MAP) [15]
adapting this baseline multi-style HMM system (noise type and
SNR condition both vary) were then used to force-align the ini-
tial recognition outputs. The noise type of the particular noise
dependent system giving the highest log-likelihood score was
selected as the closest approximation to the unknown test data
noise. In practice this approach was found to produce the same
noise detection results as using the WER based manually de-
rived ground truth noise labels, as are shown in Table X. Some

TABLE X
NOISE TYPE DETECTION: SELECT THE CLOSEST TRAINING NOISE TYPE FOR

EACH UNSEEN NOISE TYPE IN AURORA 2 TEST SET B.

TABLE XI
WER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM
SYSTEM, BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY
ASSIGNED PARAMETER POLYNOMIAL DEGREE, AND COMPLEXITY
CONTROLLED GVP-HMM SYSTEMS USING A LOCALLY VARYING

POLYNOMIAL DEGREE ON RESTAURANT NOISE DATA

interesting observations can be made from Table X with respect
to the noise selection. For instance, the closest training noise
type for “restaurant” and “airport” in test set B is “babble”, while
for “street” and “station” noise data, “car” noise was selected.
Using the above noise detection method, the WER perfor-

mance of baseline HMM systems, GVP-HMM systems with
no complexity control and complexity controlled GVP-HMM
systems are evaluated on test set B. These are shown from
Table XI to 14. In common with the previous results presented
on test A of matched noise types from Table II to V, a consistent
WER reduction was also obtained by using the BIC complexity
controlled GVP-HMM systems over their comparable baseline
GVP-HMM systems with no complexity control. For example,
for the airport noise data in Table XIII, the BIC ( )
complexity controlled “mv” GVP-HMM systems (8th line of
Table XIII) outperformed the baseline HMM “mcond.base”
system (1st line in Table XIII) by 2.59% absolute (26.5% rela-
tive). When a more complex modelling configuration was used
for GVP-HMM systems of no complexity control, the over-fit-
ting issue and the resulting poor generalization discussed in
Section I can be clearly found on test data of mismatched noise
types.
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TABLE XII
WER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM SYSTEM,
BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY ASSIGNED PARAMETER

POLYNOMIAL DEGREE, AND COMPLEXITY CONTROLLED GVP-HMM SYSTEMS

USING A LOCALLY VARYING POLYNOMIAL DEGREE ON STREET NOISE DATA

TABLE XIII
WER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM SYSTEM,
BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY ASSIGNED PARAMETER
POLYNOMIAL DEGREE, AND COMPLEXITY CONTROLLED GVP-HMM SYSTEMS
USING A LOCALLY VARYING POLYNOMIAL DEGREE ON AIRPORT NOISE DATA

B. Experiments on Mandarin In-Car Task

A set of experiments similar to those for Aurora 2 presented
from Table II to XIV were then conducted on the medium
vocabulary Mandarin In-Car navigation command recognition
task. The baseline HMM system was developed using 25 hours
of clean training data. A multi-style training data set was then
constructed by artificially corrupting the clean speech data
with added car engine noise. Noise corrupted speech data
generated under six sentence level SNR conditions: 0 dB,
4 dB, 8 dB, 12 dB, 16 dB and 20 dB, were used in training,

TABLE XIV
WER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM SYSTEM,
BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY ASSIGNED PARAMETER
POLYNOMIAL DEGREE, AND COMPLEXITY CONTROLLED GVP-HMM SYSTEMS
USING A LOCALLY VARYING POLYNOMIAL DEGREE ON STATION NOISE DATA

TABLE XV
DESCRIPTION OF VARIOUS GVP-HMMS ON THE MANDARIN
IN-CAR TASK: PARAMETER POLYNOMIAL TYPES AND

THE NUMBER OF POLYNOMIAL COEFFICIENTS

while a corrupted 5 hour test set consists of five sentence level
SNR conditions: 2 dB, 6 dB, 10 dB, 14 dB, and 18 dB, was
used for character error rate (CER) evaluation. The baseline
HMM acoustic models were ML trained using HTK [42] on
42-dimensional HLDA projected PLP features augmented with
smoothed pitch parameters. Decision tree clustered cross-word
tonal triphones HMMs were used. A total of 2.4k tied states
with 12 components per state were used. A 5k word list
and a tri-gram language model was used in decoding. A set
of GVP-HMM configurations similar to those described in
Table I were used for the In-Car data. These are shown in
Table XV. Consistent with the model compression obtained on
the Aurora 2 data previously shown in Table I, a significant
model size reduction was obtained on the In-Car data using the
proposed complexity control scheme. These are shown in 5th
and 6th columns of Table XV.
The WER performance of the baseline multi-style and

GVP-HMM systems, are shown in Table XVI. Consistent with
the trend found on the test A and B of Aurora 2 task in sections
5.1.2 and 5.1.3, every BIC complexity controlled GVP-HMM
system in Table XVII outperformed its comparable GVP-HMM
baseline in Table XVI. For example, the complexity controlled
mean based GVP-HMM system, “mean”, (1th, 6th and 11th
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TABLE XVI
CER PERFORMANCE OF MULTI-STYLE TRAINED BASELINE HMM SYSTEM AND

BASELINE GVP-HMM SYSTEMS WITH A UNIFORMLY ASSIGNED PARAMETER
POLYNOMIAL DEGREE ON MANDARIN IN-CAR TASK

TABLE XVII
CER PERFORMANCE OF BIC COMPLEXITY CONTROLLED GVP-HMM

SYSTEMS USING A LOCALLY VARYING POLYNOMIAL
DEGREE ON MANDARIN IN-CAR TASK

lines in Table XVII) gave an average CER reduction of 5.12%
absolute (21% relative) over the baseline “mean” GVP-HMM
system (2nd line in Table XVI), and a 54% relative reduction
in model complexity, as is shown in the 1st line in Table XV.
The two highlighted BIC GVP-HMM systems, “mv” ( )
and “mvt2” ( ), both outperformed the multi-style trained
baseline “mcond.base” system in the 1st line of Table XVI by
7.12% absolute (28% relative). They gave the lowest average
error rate among all GVP-HMM systems in Table XVII, and
a 52%-55% relative reduction in the number of polynomial
coefficients against their respective baselines, as are shown
the 2nd and bottom line, 5th and 6th columns in Table XV.
The performance comparison of this BIC GVP-HMM “mvt2”
system against its comparable baseline GVP-HMM system of
no complexity control, and the HMM baseline “mcond.base”
system is intuitively shown in Fig. 7. The BIC complexity con-
trolled “mvt2” system in Fig. 7 consistently outperformed its
comparable GVP-HMM baseline system by 7%-15% relative,
and the baseline HMM “mcond.base” system by 11%-40%
relative under various SNR conditions.

VI. CONCLUSION

An efficient BIC based model complexity control technique
was investigated for GVP-HMMs in this paper. The optimal
polynomial degrees of Gaussianmean, variance andmean trans-
form trajectories were automatically determined at local level.
The proposed technique was shown to improve both the gen-
eralization and computational efficiency of GVP-HMM based
acoustic models. Significant error rate reductions of 20%-28%

Fig. 7. CER performance of “mvt2” system on Mandarin In-Car Task.

relative obtained on Aurora 2 and a medium vocabulary Man-
darin speech recognition task suggest the proposed method may
be useful for speech recognition. These results show the appli-
cability of complexity controlled GVP-HMMs to multiple lan-
guages and tasks, and their strong generalization performance to
noisy speech data of both well-matched and mismatched noise
types and SNR conditions. Future research will focus on dis-
criminative training and modelling multiple sources of acoustic
variability.
To date automatic model complexity control remains a

challenging statistical modelling problem for many practical
applications. This is particularly true for speech and language
processing systems. As human language is so varied and com-
plex, many aspects of it, for example, the effect imposed by
environment noise on the acoustic model parameters as con-
sidered in this work, are often investigated using sophisticated
computational models. This results in a very large number
of possible system configurations to consider. The desired
complexity control techniques suitable for these systems there-
fore should provide a good trade-off between performance and
computational feasibility. The EM lower bound based Bayesian
complexity control approach proposed for GVP-HMMs in this
paper is inspired by a range of precursor techniques derived
for conventional HMMs in early research to determine, for
example, the optimal phonetic context dependent state tying
[41], the number of Gaussian components and feature space
dimensions [29], [30], [31]. In order to improve the robustness
of the proposed technique, an iterative complexity control ap-
proach that enforces a maximum structural mutation constraint
at each model selection iteration will also be investigated in
future research. By restricting the number of possible systems
to share the same set of sufficient statistics, this approach is
expected to tighten the underlying lower bound being used.
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