
1438 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 8, AUGUST 2016

Two Efficient Lattice Rescoring Methods Using
Recurrent Neural Network Language Models

Xunying Liu, Member, IEEE, Xie Chen, Member, IEEE, Yongqiang Wang, Member, IEEE,
Mark J. F. Gales, Fellow, IEEE, and Philip C. Woodland, Fellow, IEEE

Abstract—An important part of the language modelling problem
for automatic speech recognition (ASR) systems, and many other
related applications, is to appropriately model long-distance con-
text dependencies in natural languages. Hence, statistical language
models (LMs) that can model longer span history contexts, for
example, recurrent neural network language models (RNNLMs),
have become increasingly popular for state-of-the-art ASR systems.
As RNNLMs use a vector representation of complete history con-
texts, they are normally used to rescore N-best lists. Motivated by
their intrinsic characteristics, two efficient lattice rescoring meth-
ods for RNNLMs are proposed in this paper. The first method
uses an n-gram style clustering of history contexts. The second
approach directly exploits the distance measure between recur-
rent hidden history vectors. Both methods produced 1-best per-
formance comparable to a 10 k-best rescoring baseline RNNLM
system on two large vocabulary conversational telephone speech
recognition tasks for US English and Mandarin Chinese. Consis-
tent lattice size compression and recognition performance improve-
ments after confusion network (CN) decoding were also obtained
over the prefix tree structured N-best rescoring approach.

Index Terms—Language model, lattice rescoring, recurrent neu-
ral network, speech recognition.

I. INTRODUCTION

A key part of the statistical language modelling problem for
automatic speech recognition (ASR) systems, and many

other related tasks, is to model the long-distance context de-
pendencies in natural languages. Directly modelling long-span
history contexts in their surface form can lead to a severe data
sparsity problem. This presents a significant challenge for con-
ventional back-off n-gram language models (LMs).

Manuscript received April 10, 2015; revised November 13, 2015, February
12, 2016, and April 3, 2016; accepted April 8, 2016. Date of publication April
27, 2016; date of current version May 27, 2016. This work was supported by
EPSRC under Grant EP/I031022/1 (Natural Speech Technology) and DARPA
under the Broad Operational Language Translation and RATS programs. The
work of X. Chen was supported by Toshiba Research Europe Ltd, Cambridge
Research Lab. The paper does not necessarily reflect the position or the policy
of US Government and no official endorsement should be inferred.The associate
editor coordinating the review of this manuscript and approving it for publication
was Dr. Bin Ma.

X. Liu is with the Department of Systems Engineering and Engineering
Management, Chinese University of Hong Kong, Shatin, Hong Kong (e-mail:
xyliu@se.cuhk.edu.hk).

Y. Wang was with the Department of Engineering, University of Cambridge,
Cambridge, CB2 1PZ U.K. He is now with Microsoft Corporation, Redmond,
WA 98052 USA (e-mail: yw293@cam.ac.uk).

X. Chen, P. C. Woodland, and M. J. F. Gales are with the Department of
Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K. (e-mail:
xc257@cam.ac.uk; pcw@eng.cam.ac.uk; mjfg@eng.cam.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASLP.2016.2558826

In order to address this issue, language modelling techniques
that can represent longer span preceding history contexts in a
continuous and lower dimensional vector space, such as neu-
ral network language models (NNLMs) [1]–[7], can be used.
NNLMs are currently widely used in state-of-the-art speech
recognition systems due to their inherently strong generaliza-
tion performance. Depending on the underlying network ar-
chitecture being used, they can be classified into two major
categories: feedforward NNLMs [1]–[3], [7], which model a
vector representation of the preceding context of a fixed num-
ber of words, and recurrent NNLMs (RNNLM) [4]–[6], which
use a recurrent vector representation of longer and potentially
variable length histories. In recent years RNNLMs have been
shown to give significant improvements over conventional back-
off n-gram LMs and feedforward NNLMs on a range of speech
recognition tasks [4]–[6], [8]–[12], as well as other related ap-
plications including spoken language understanding [13], and
machine translation [14]–[16], thus gaining increasing research
interest.

When employing RNNLMs for speech recognition tasks, an
important practical issue is the suitable decoding method to use.
As RNNLMs use a vector space representation of full history
contexts, it is non-trivial to apply these models in the early
stage of ASR systems, or to directly rescore the word lattices
produced by them. Instead, normally only a subset of the hy-
potheses encoded in a previously generated word lattice are
used and converted into a linear [4], [5], or prefix tree struc-
tured [12], [17], N-best list. This practical constraint limits the
possible improvements that can be obtained from RNNLMs for
downstream applications that favor a more compact lattice rep-
resentation, for example, when confusion network (CN) based
decoding techniques [18], [19] are used [11].

In order to address this issue, a range of techniques have been
studied in recent years [8]–[10], [20]–[23]. Among these earlier
works, a sampling based approach was used to generate text
data from an RNNLM to train a back-off n-gram LM as an ap-
proximation [8], [10]. A discrete quantization of RNNLMs into
a weighted finite state transducer (WFST) [24] representation
was proposed in [9]. An iterative lattice rescoring approach was
first proposed in [20] and further investigated in [21]. Unfor-
tunately these earlier schemes were unable to produce 1-best
error rates comparable to the conventional N-best rescoring ap-
proach [8], [9], or generate a compact lattice representation of
the hypothesis space that is suitable for downstream applica-
tions such as CN decoding [20], [21]. Several later works that
were more successful exploited the lattice internal hypothesis
ranking produced by an earlier decoding pass. This allows an

2329-9290 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html

LIU et al.: TWO EFFICIENT LATTICE RESCORING METHODS USING RNNLMs 1439

approximate partial expansion of the underlying word graph to
be performed during RNNLM rescoring [21], [22].

In contrast to the above existing methods, this paper aims to
derive alternative lattice rescoring methods for RNNLMs that
are independent of the acoustic and language model scores based
hypothesis rank ordering produced in previous decoding stages
derived using other LMs. The ultimate goals of the proposed
RNNLM rescoring methods are: producing 1-best decoding per-
formance comparable to the conventional N-best rescoring ap-
proach; and generating a compact lattice representation that is
suitable for downstream applications including CN decoding.

The two techniques proposed in this paper are inspired by
two intrinsic modelling characteristics of RNNLMs. First, the
recursion through the full history produces a gradually dimin-
ishing effect of the information represented by the most distant
contexts on the RNNLM probabilities. This allows complete
histories that are partially overlapped or similar in the more re-
cent contexts to share a similar distribution. It is thus possible to
approximate RNNLMs based on truncated histories of sufficient
length, which is similar to feedforward NNLMs. Second, in a
more general case, RNNLMs internally cluster different histo-
ries encoded by the most recent word and the hidden vector
representing the remaining context via the similarity measure
between them. Hence, it is also possible to explicitly use a hidden
history vector distance based measure to determine the sharing
of RNNLM probabilities. It is hoped that these characteristics
can be exploited during decoding to improve computational
efficiency.

Motivated by the above hypotheses, two efficient RNNLM
lattice rescoring methods are investigated in this paper. The first
uses an n-gram style clustering of history contexts [25], [26].
The second approach explicitly exploits the distance measure
between recurrent hidden history vectors [25]. The rest of the
paper is organized as follows. Recurrent neural network LMs are
reviewed in Section II. Two history contexts clustering schemes
for RNNLMs are proposed in Section III. A generalized lattice
rescoring algorithm for RNNLMs is presented in Section IV.
In Section V the proposed RNNLM lattice rescoring techniques
are evaluated on two large vocabulary conversational telephone
speech (CTS) transcription tasks for US English and Mandarin
Chinese respectively. Section VI is the conclusion and discusses
possible future work.

II. RECURRENT NEURAL NETWORK LMS

Unlike feedforward NNLMs, recurrent NNLMs [4] encode
the full, non-truncated history hi−1

1 =<wi−1 , . . ., w1> for the
current word wi being predicted using a 1-of-k encoding of the
most recent preceding word wi−1 and a continuous vector vi−2
for the remaining history context. For an empty history, this is
initialized, for example, to a vector of all ones. The topology of
the recurrent neural network used to compute LM probabilities
PRNN(wi |hi−1

1) = PRNN(wi |wi−1 ,vi−2) consists of three lay-
ers. An example RNNLM with an unclustered, full output layer
is shown in Fig. 1. The full history vector, obtained by concate-
nating those of wi−1 and vi−2 , is fed into the input layer. The
hidden layer compresses the information from these two inputs

Fig. 1. An example RNNLM with an full output layer and OOS nodes.

and computes a new representation vi−1 using a sigmoid acti-
vation to achieve non-linearity. This is then passed to the output
layer to produce normalized RNNLM probabilities using a soft-
max activation function, as well as recursively fed back into the
input layer as the “future” remaining history to compute the LM
probability for the following word PRNN(wi+1 |wi,vi−1).

Training and decoding using RNNLMs are both computation-
ally expensive. A major part of the computation is required at
the output layer. In order to reduce computational cost, a short-
list based output layer vocabulary limited to the most frequent
words can be used. This approach was previously proposed for
feedforward NNLMs [2], [27]. A similar approach may also be
used at the input layer when a large vocabulary is used. An ad-
ditional OOV input node can also be used to model words that
are not in the input layer vocabulary, as is shown in Fig. 1.

A. Modelling Full Output Layer Vocabulary

Two issues arise when using a shortlist vocabulary at the out-
put layer for RNNLMs. First, RNNLM parameters are trained
only using the statistics of in-shortlist words thus introduces an
undue bias to them. Secondly, as there is no explicit modelling
of probabilities of out-of-shortlist (OOS) words in the output
layer, statistics that are associated with these words are also
discarded during RNNLM training. In order to address these
issues, two alternative RNNLM network architectures that can
model a full vocabulary at the output layer are preferred.

The first RNNLM architecture explicitly models the prob-
ability mass of OOS words using an additional output layer
node [3], [7], as is shown in the example RNNLM in Fig. 1.
This ensures that all training data are used in training. It also
allows the probabilities of in-shortlist words are smoothed by
the OOS probability mass during RNNLM training to obtain a
more robust parameter estimation.

The second architecture uses a class based factorized output
layer structure [28]. Each word in the output layer vocabulary is
attributed to a unique class based on frequency counts. The LM
probability assigned to a word is factorized into two individual

1440 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 8, AUGUST 2016

Fig. 2. An example RNNLM with a class-based output layer and OOS nodes.

terms as

PRNN(wi |wi−1 ,vi−2) = PRNN(wi |vi−1) (1)

= P (wi |ci,vi−1)P (ci |vi−1).

As the number of classes are normally significantly smaller
than the output layer vocabulary size, training time speed-
ups can be achieved for both feedforward NNLMs [28] and
RNNLMs [5].

It is also possible to draw from the strengths of both of these
RNNLM architectures. Along this line, RNNLMs with a fac-
torized class based output layer for in-shortlist words and a
separate output node to represent the probability mass of OOS
word can be used. An example of such an RNNLM is shown
in Fig. 2. This form of class based RNNLM and the full output
based RNNLM shown in Fig. 1 are considered in the rest of this
paper.

B. Efficient Training of RNNLMs

RNNLMs can be trained using an extended form of the stan-
dard back propagation algorithm, back propagation through time
(BPTT) [29], [30]. During BPTT based training, the error is
propagated through recurrent connections back in time for a
specific number of time steps, for example, 4 or 5 [5]. This
allows the recurrent network to record information for several
time steps in the hidden layer.

The above BPTT method based RNNLM training is compu-
tationally expensive. This practical issue limits the quantity of
data and the number of possible application areas for RNNLMs.
In order to solve this problem, recently there has been increasing
research interest in deriving efficient parallel training algorithms
for RNNLMs [31]–[34]. In particular, RNNLMs with a full out-
put layer were efficiently trained on a graphics processor unit
(GPU) using a spliced sentence bunch based parallel training
algorithm in [34]. A training speedup of 27 times was obtained
over class based RNNLMs trained on a CPU. In [35] this tech-
nique is further extended and applied to class based RNNLMs.
A modified version of the RNNLM toolkit [36] supporting the
above GPU based parallel RNNLM training method and the

RNNLM architectures shown in Figs. 1 and 2 is used in this
paper.

C. Combination Between n-gram LMs and RNNLMs

In state-of-the-art speech recognition systems, NNLMs are
often linearly interpolated with n-gram LMs to obtain both a
good coverage of contexts and strong generalisation ability [2]–
[4], [6], [7], [27]. For RNNLMs, the interpolated LM prob-
ability of the current word wi given the full history context
hi−1

1 =<wi−1 , . . ., w1> is given by

P (wi |hi−1
1) = λPNG(wi |hi−1

1) + (1 − λ)PRNN(wi |hi−1
1)

(2)
where λ is the linear interpolation weight assigned to the back-
off n-gram LM distribution PNG(·), and kept fixed at 0.5 in all
experiments of this paper.

In the above interpolation scheme, the probability mass of
OOS words assigned by the RNNLM component needs to be re-
distributed among all OOS words [3], [7]. This can be achieved
using the n-gram LM statistics PNG(·) as,

P̃RNN (wi |hi−1
1) =

⎧
⎨

⎩

PRNN (wi |hi−1
1) wi ∈ Vsl

β(wi |hi−1
1)PRNN (woos |hi−1

1) otherwise

β(wi |hi−1
1) =

PNG (wi |hi−1
1)

∑
w̃ i /∈V s l

PNG (w̃i |hi−1
1)

(3)

where Vsl is output shortlist vocabulary, and woos the OOS
word. The above form of OOS probability normalization is used
throughout this paper for RNNLM perplexity evaluation.

The above normalisation can be very expensive for LVCSR
tasks. In order to improve decoding efficiency, assuming that
the OOS probability mass assigned by the RNNLM and n-gram
LM are equal, an approximate form of normalisation can be
used [3]. The following form of OOS probability normalization
is used throughout this paper during RNNLM lattice rescoring:

P̃RNN(wi |hi−1
1) ≈

{
PRNN(wi |hi−1

1) wi ∈ Vsl

PNG(wi |hi−1
1) otherwise.

(4)

III. HISTORY CONTEXT CLUSTERING FOR RNNLMS

In current speech recognition systems, an efficient use of lan-
guage model information requires that the context dependent
states representing different histories during search can be ap-
propriately shared among multiple hypotheses [24], [37], [38].
This principle applies to both conventional back-off n-gram
LMs and feedforward NNLMs. For these language models, the
underlying LM context state used to predict the current word is
represented by a truncated, fixed length history of a maximum
N − 1 preceding words,

ΨNG(hi−1
1) = hi−1

i−N +1 =< wi−1 , . . ., wi−N +1 > . (5)

The resulting n-gram LM distribution shared among multiple
decoding paths is thus computed as

PNG(·|ΨNG(hi−1
1)) ≡ P(·|wi−1 , . . ., wi−N +1). (6)

LIU et al.: TWO EFFICIENT LATTICE RESCORING METHODS USING RNNLMs 1441

Fig. 3. Example parts of a prefix tree structured n-best list (a) and lattice (b).

In contrast, the context state of an RNNLM to predict a given
word is represented by an ordered pair that encodes the full,
complete history hi−1

1 =<wi−1 , . . ., w1>

ΨRNN(hi−1
1) = hi−1

1 =< wi−1 ,vi−2 > . (7)

For this reason, the number of distinct RNNLM context states
can grow exponentially as the sentence length increases. Hence,
it is generally non-trivial to apply RNNLMs in the early stage of
speech recognition systems, or to directly rescore word lattices
previously generated using these systems. Instead, a large part
of the previous research has been focused on using a N-best
list rescoring based framework for RNNLM performance eval-
uation [4]–[6], [11], [12]. For efficiency, prefix tree structured
n-best lists [12] can be used to represent partial histories that
are identical among different hypotheses. Example parts of a
prefix tree structured n-best list and a word lattice are shown in
Fig. 3(a) and (b). As is shown in the figure, prefix tree structured
n-best lists require distinct nodes associated with word “the” to
be created once the preceding histories along the two associated
paths differ from each other. In contrast, a more compact lattice
structure allows these two paths to be merged when a 2-gram
language model is used.

In this paper, a general solution adopted to solve the above
problem is to derive appropriate history clustering methods for
RNNLMs to allow a compact sharing of context states [25].
Once a suitable form of equivalence between different com-
plete histories is established, a discrete, finite state represen-
tation of RNNLMs becomes possible. An optimal clustering
method that merges two full histories, hi−1

1 =<wi−1 , . . ., w1>

and h̃j−1
1 =<w̃j−1 , . . ., w̃1> together, is expected to minimize

Fig. 4. An example of 3-gram based RNNLM history clustering.

the Kullback-Leibler (KL) divergence between the associated
RNNLM distributions PRNN(·|hi−1

1) and PRNN(·|h̃j−1
1).

As discussed in Section I, both the decaying effect from the
most distant history contexts and the similarity between hidden
history vectors are exploited by RNNLMs during training to
acquire their strong generalization. These underlying modelling
characteristics allow statistics to be distributed among different
sequences that are “similar” or “related” by either their surface
form or recurrent hidden vector representations. Both useful
features can be be exploited to derive suitable history clustering
schemes for RNNLMs in decoding.

A. n-gram Based History Clustering

This is an intuitive history context clustering method for de-
coding using RNNLMs. It is motivated by the fact that the recur-
sion through the full preceding history gradually diminishes the
effect of the information represented by the most distant history
contexts on the RNNLM probabilities. It is thus possible to clus-
ter full, complete histories based on the common, most recent
truncated contexts of at most N − 1 words. The approximate
RNNLM state for the complete history hi−1

1 is given by

Ψ̃RNN(hi−1
1) =

⎧
⎪⎪⎨

⎪⎪⎩

ΨRNN(h̃j−1
1) if ∃ h̃j−1

1 in cache and

hi−1
1 ∩ h̃j−1

1 = ΨNG(hi−1
1)

ΨRNN(hi−1
1) otherwise

(8)

where the shared n-gram style truncated history based LM state
ΨNG(hi−1

1) was previously defined in equation (5). It is equiva-
lent to the intersection (common most recent truncated n-gram
histories) between two full histories hi−1

1 =<wi−1 , . . ., w1>

and h̃j−1
1 =<w̃j−1 , . . ., w̃1>. For example, when a 3-gram his-

tory clustering is used, two complete histories sharing the com-
mon most recent two words “see” and “the” are considered
equivalent. This is illustrated in Fig. 4.

As the truncated history length increases, the approximate
RNNLM probabilities are expected to be increasingly closer
to the true ones. In this paper, the above history clustering
algorithm is implemented as a hash table based cache dur-
ing lattice rescoring. This cache stores the RNNLM proba-
bilities associated with a set of distinct context histories, as
well as the associated recurrent hidden vectors encoding these
histories. When accessing the cache for a given full history
hi−1

1 =<wi−1 , . . ., w1> using the n-gram history clustering

1442 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 8, AUGUST 2016

in equation (8), the aim to find in the cache a history
h̃j−1

1 =<w̃j−1 , . . ., w̃1> that shares the common truncated n-
gram context given in equation (5) with the given history hi−1

1 . If
such history h̃j−1

1 is found in the cache, its associated RNNLM
probabilities and recurrent hidden vectors are used as an ap-
proximation to those associated with hi−1

1 . Otherwise the given
history hi−1

1 is used to compute the necessary RNNLM proba-
bilities and recurrent vectors and create new entries in the cache.

As this clustering algorithm directly uses the surface form
information, it can be used by beam search decoders [37], [38],
where RNNLM probabilities can be computed on-the-fly by re-
quest and accessed via the cache. In a similar way, a cache based
RNNLM first pass decoding technique [26] was also success-
fully applied to a weighted finite state transducer [24] based
speech recognizer.

B. History Vector Based Clustering

For both feedforward and recurrent NNLMs, their strong gen-
eralization power is rooted in a continuous vector representation
of history contexts. When clustering histories, it is thus possible
to directly exploit the similarity in their vector representation
measured by the underlying RNNLM being used. The cluster-
ing method proposed here for RNNLMs aims to find the equiv-
alence between two complete histories hi−1

1 =<wi−1 , . . ., w1>

and h̃j−1
1 =<w̃j−1 , . . ., w̃1> by comparing the identity of the

most recent word wi−1 and w̃j−1 , and the distance measure
D(vi−2 , ṽj−2) between their respective recurrent hidden his-
tory vectors vi−2 and ṽj−2 . A related beam pruning approach
was previously used for variable length category based n-gram
LMs [39]. The approximate RNNLM state for the complete
history hi−1

1 is computed as

Ψ̃RNN(hi−1
1) =

⎧
⎪⎪⎨

⎪⎪⎩

ΨRNN(h̃j−1
1) if ∃ h̃j−1

1 , wi−1 = w̃j−1

and D(vi−2 , ṽj−2) ≤ γ

ΨRNN(hi−1
1) otherwise

(9)

where γ is a hidden history vector distance beam. It can be tuned
to flexibly adjust the trade-off between modelling precision and
the compactness of the underlying RNNLM state representation.

When sharing the common most recent word, full histories
that have a minimum hidden vector difference below the dis-
tance beam are considered equivalent. For example, when two
complete histories are sharing the most recent word “the,” and
their respective recurrent vectors representing the remaining his-
tory contexts “we see” and “he sees” are also sufficiently close,
they are considered equivalent. This is illustrated in Fig. 5.

As with the n-gram history based history clustering scheme
of Section III-A, this hidden vector distance based clustering
method is also implemented as a cache during lattice rescor-
ing in this paper. A cache access scheme similar to that of the
n-gram history clustering in Section III-A is used. Using the
form of history vector clustering in equation (9), a cache hit is
determined by the availability of a history h̃j−1

1 that shares the
most recent word with the given history hi−1

1 , and the distance
measure D(vi−2 , ṽj−2) between their respective recurrent hid-
den vectors vi−2 and ṽj−2 is below the distance beam γ. This

Fig. 5. An example of hidden vector based RNNLM history clustering.

method can also be used by beam search based decoders [37],
[38]. However, due to the introduction of the distance beam
γ, this technique is non-trivial to be directly used in generic
WFST [24] based decoding approaches.

A range of distance measures may be considered for the dis-
tance measure D(vi−2 , ṽj−2). The selection of the appropriate
metric to use in general can be determined based on the corre-
lation between the underlying candidate metric and the KL di-
vergence between the two RNNLM distributions to be merged.
Sigmoid activation functions are used at the hidden layer for all
RNNLMs in this paper. As they provide a well bounded dynamic
range for the recurrent hidden history vector representation, the
distance measure used in this paper is based on the Euclidean
distance between vi−2 and ṽj−2 . This is given by

D(vi−2 , ṽj−2) =

√∑
k (vi−2,k − ṽj−2,k)2

d
(10)

where d is the dimensionality of the hidden history vectors.

C. Lattice Node Score Ranking Conditioned Cache Update

Both the n-gram and hidden vector based clustering schemes
presented in this paper are implemented using an efficient cache
based approach during lattice rescoring. One strength of this
approach is that no explicit knowledge of existing acoustic and
language model scores based rank ordering of the lattice paths
is required during rescoring. Such generic feature allows the
proposed RNNLM history clustering algorithms to be used also
in first pass recognition. For example, the n-gram based history
clustering approach was successfully applied to a weighted fi-
nite state transducer [24] based first pass decoding [26]. On the
other hand, it may also introduce a performance sensitivity to the
network traversing order during lattice rescoring. In this paper,
lattice nodes are accessed in a topologically sorted order dur-
ing rescoring in all experiments. Such traversing order does not
guarantee the cached RNNLM histories to be sufficiently rep-
resentative of the lattice paths of higher acoustic and language
model scores. Hence, it introduces a performance sensitivity to
the lattice traversing order during rescoring. Such sensitivity is
expected to be more prominent when decreasing the truncated
history length in n-gram based history clustering in equation (8),

LIU et al.: TWO EFFICIENT LATTICE RESCORING METHODS USING RNNLMs 1443

or increasing the recurrent vector distance beam for the hidden
vector based based history clustering in equation (9).

In order to address this issue, a lattice node scores rank order-
ing conditioned cache update scheme can be used. In addition
to satisfying the respective cache hit conditions for the above
two history clustering schemes, an additional constraint is intro-
duced that the cached RNNLM probabilities must be computed
using the history of a lattice node whose posterior probability
(computed using lattice internal existing acoustic and n-gram
LM scores) is equal or higher than that of the current lattice node
being rescored. Otherwise, the cached RNNLM probabilities are
updated using the current lattice node’s history contexts. This
allows the cached history clusters to be more representative of
the lattice paths of higher rank ordering. The performance sen-
sitivity to the lattice traversing order during rescoring can thus
be reduced.

For example, consider the case of computing the RNNLM
probability of a lattice node for word “bed” at the end of a
sentence “I see the bed,” when a 3-gram history clustering is used
and additional lattice node score ranking conditioning enforced.
If there is already a cached RNNLM history context “see the”
previously computed using a different node for word “red” at
the end of an alternative path “we see the red,” but with a lower
node posterior probability than the current lattice node “bed,”
an update of the cached RNNLM probabilities is required even
if both histories “I see the” and “we see the” share the common
most recent two words “see” and “the.”

IV. LATTICE RESCORING USING RNNLMS

All the RNNLM lattice rescoring experiments in this paper
used an on-the-fly lattice expansion algorithm. A precursor of
this algorithm was originally proposed for lattice rescoring us-
ing an interpolation between multiple n-gram LMs with context
free or dependent interpolation weights [40], [41]. The lattice
expansion process during an interpolated LM based rescoring
uses a union between component n-gram LM context states.
This allows the longest available distinct context histories mod-
elled by the interpolated model to be preserved in the resulting
expanded lattices.

The original algorithm proposed in [40] can not be directly
applied to RNNLM based lattice rescoring. In this paper, this
algorithm is further extended to support a much wider range of
language models including back-off n-gram LMs, feedforward
NNLMs, recurrent NNLMs and various forms of interpolation
between them. A central part of the algorithm requires the LM
state representation for the underlying LM being used. For ex-
ample, for back-off n-gram LMs and feedforward NNLMs, this
was previously defined in equation (5). For RNNLMs, the LM
state was based on either equation (8) or (9) depending on the un-
derlying history clustering technique being used. The LM state
representation for an interpolated LM is again derived from a
union between those of its component LMs. The correspond-
ing pseudo-code algorithm for this on-the-fly lattice expansion
method is given below. It was implemented and released in the
current HTK version 3.5 [42] lattice processing tools.

1: for every node ni in the network do
2: initialize its expanded node list N ′

i = {};
3: initialize its expanded outbound arc list A′

i = {};
4: end for
5: add n0 to its expanded node list, N ′

0 = {n0};
6: add n0’s outbound arcs to its expanded arc list,

A′
0 = A0 ;

7: Start depth first network traversal from the initial node
n0 ;

8: for every node ni being visited do
9: for every expanded node n′

j ∈ N ′
i of node ni do

10: for every outbound arc ak from ni do
11: find the destination node nk of arc ak ;

12: find the LM state Ψ(h
n ′

j
n0) of expanded node

n′
j ;

13: compute LM probability P (nk |Ψ(h
n ′

j
n0));

14: find a new LM state Ψ(hnk
n0

) for node nk ;
15: if ∃ node n′

l ∈ N ′
k representing state Ψ(hnk

n0
)

then
16: Ψ(hnk

n0
) ← n′

l ;
17: else
18: add a new node n′

l to N ′
k for state

Ψ(hnk
n0

);
19: Ψ(hnk

n0
) ← n′

l ;
20: end if
21: create a new arc a′

l from n′
j to n′

l ;

22: assign score ln P (nk |Ψ(h
n ′

j
n0)) to a′

l ;
23: add arc a′

l to the expanded outbound arc list
A′

i .
24: end for
25: end for
26: end for
27: Rebuild new network using {N ′

i} and {A′
i}.

In the above algorithm, depending on the underlying LM
being applied in rescoring, the generic LM context state for a
given history associated with a lattice path from node n0 to nk ,
Ψ(hnk

n0
), may take one of the following forms: a) the n-gram

LM context state ΨNG(·) in equation (5) for back-off LMs; b)
the RNNLM context state ΨRNN(·) approximated via equation
(8) or (9) depending on the RNNLM history clustering scheme
being used; c) or a union between the context states of an n-gram
LM and RNNLM when a linear interpolation between them is
used in rescoring. Line 9 of the pseudo code visits the expanded
set of nodes n′

j ∈ N ′
i associated with an original lattice node

ni , while line 10 visits the original node ni itself to access its
outbound arcs.

V. EXPERIMENTS AND RESULTS

In this section the performance of the proposed RNNLM
lattice rescoring methods are evaluated using two HTK-based
large vocabulary speech recognition systems. The first was de-
veloped for English conversational telephone speech used in the

1444 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 8, AUGUST 2016

2004 DARPA EARS evaluation [43]. The second system for
Mandarin Chinese conversational speech was used in the 2014
DARPA BOLT evaluation [44]. A series of experiments were
conducted on these two tasks.

A. Experiments on English CTS Data

The 2004 CU English CTS LVCSR system [43] was trained
on approximately 2000 hours of Fisher conversational speech
released by the LDC. A 59 k recognition word list was used
in decoding. The system uses a multi-pass recognition frame-
work. The initial lattice generation used gender dependent cross-
word triphone acoustic models. These acoustic models include
conversation side level normalization of PLP [45] features;
HLDA [46], [47] projection; HMM parameter estimation us-
ing MPE [48]; and unsupervised MLLR [49] speaker adapta-
tion. For efficiency, a pruned interpolated 3-gram LM was used
in lattice generation prior to rescoring using a large unpruned
4-gram LM. The resulting lattices are then used in rescoring
experiments to evaluate performance of various LMs. A more
detailed description of the baseline system can be found in [43].
The 3 hour dev04 set, which includes 72 Fisher conversation
sides and contains on average 10.8 words per segment, was used
as a test set. The 3 hour eval04 set of a comparable number of
Fisher conversations was also used.

The baseline 4-gram back-off LM “w4g” was trained using
a total of 545 million words from 2 text sources: the LDC
Fisher acoustic transcriptions, Fisher, of 20 million words
(weight 0.75), and the University Washington conversational
web data [50], UWWeb, of 525 million words (weight 0.25).
The 20 M words of Fisher data, which contains on average
12.7 words per sentence, was used to train a feedforward 4-
gram NNLM “nnw4g” using the OOS output layer architecture
proposed in [3], and an RNNLM “rnn” using the comparable
class-based OOS architecture in Fig. 2 of Section II with 500
output layer classes. A 38 k word input layer vocabulary and
20 k word output layer shortlist selected using 1-gram frequency
counts with respective cut-offs of 1 and 2 were used for both
the feedforward NNLM and RNNLM. Both NNLMs used a
total of 500 hidden layer nodes. A total of 1 billion words of
text data were generated from the baseline RNNLM “rnn” us-
ing the sampling technique described in [8] to train a 4-gram
back-off LM “rnn.sample.4g” as an approximation to the origi-
nal RNNLM. These three LMs (the feedforward 4-gram NNLM
“nnw4g ,” RNNLM “rnn” and sampling technique approximated
4-gram back-off LM “rnn.sample.4g”) were then interpolated
with the baseline 4-gram LM “w4g.”

The 1-best and CN word error rates (WER) of various base-
line LMs together with their perplexity performance are shown
from the 1st to the 7th line in Table I. These include the
back-off 4-gram LM “w4g,” the feedforward NNLM system
“w4g+nnw4g ,” the RNNLM system “w4g+rnn.∗best” evaluated
by re-ranking N-best lists of various depth from top 50 up to 10
k unique entries, and the RNNLM sampled data trained 4-gram
LM “w4g+rnn.sample.4g.” The RNNLM re-ranked N-best lists
were then converted to prefix tree structured lattices [12] and
used for CN decoding. The lattice density (Arcs/Sec) measure

of the HTK formatted lattices for all the above baseline systems
are also shown in the last column of Table I. For the RNNLM
N-best rescoring baseline systems, the lattice density measure
before and after N-best list prefix tree structuring (shown in
brackets in the last column of Table I) are both given.

Consistent with the previous research reported in [8], the
RNNLM sampled 1 billion word data trained 4-gram LM
“w4g+rnn.sample.4g” (line 7 in Table I) gave comparable per-
formance to the feedforward NNLM system “w4g+nnw4g” (line
2 in Table I). Both systems obtained less than half of the total
WER reductions produced by the 10 k-best RNNLM rescor-
ing (line 6 in Table I) during 1-best and CN decoding over the
4-gram LM baseline “w4g” (1st line in Table I). Similarly a
much reduced perplexity reduction of 0.9 points over the 4-
gram LM baseline “w4g” was obtained using the sampling data
trained 4-gram LM “w4g+rnn.sample.4g”, in contrast of the 5.5
point perplexity reduction obtained using the non-approximated
RNNLM (line 2 to 5 in Table I) .

Applying prefix tree structuring to N-bests lists [12] signifi-
cantly reduced the size of the converted lattices. These are shown
in brackets in the last column of Table I from line 3 to 6. As
discussed in Section I, CN decoding requires a more compact
lattice representation that encodes rich alternative hypotheses.
In order to obtain the largest improvements from CN decoding,
RNNLM rescored N-best lists need to be as deep as 10 k (line 6
in Table I). On the dev04 set, this 10 k-best RNNLM rescoring
baseline gave the lowest 1-best and CN WER of 15.3% and
15.0% respectively. It has a density of 10.2 k arcs/sec measured
on the lattices converted from the prefix tree structured 10 k-best
lists.

The performance of using the n-gram style approxima-
tion based RNNLM lattice rescoring method presented in
Section III-A are shown from line 8 to 12 in Table I. Using these
n-gram history approximated RNNLMs, perplexities compara-
ble to the non-approximated baseline RNNLM (line 3 to 4 in
Table I) were obtained. When the truncated history is increased
to 5 words, the resulting 6-gram approximate RNNLM system
produced 1-best and CN error rates of 15.4% and 15.0% respec-
tively on dev04. Both results are comparable to the baseline
10 k-best RNNLM rescoring system (line 6 in Table I). Com-
pared with the baseline 10 k-best RNNLM rescoring system,
this 6-gram approximate RNNLM also gave a 70% relative re-
duction in lattice density from 10.2 k down to 3 k arcs/sec.
Similar trends are also found on the eval04 data. The 6-gram
approximation gave the same CN error rate as the 10 k-best
RNNLM rescoring baseline as well as a consistent reduction in
lattice density by 70% relative. Further increasing the truncated
history length to 6 words via a 7-gram approximation gave no
further improvement while only increased the size of the result-
ing lattices. This confirms the hypothesis suggested in Sections I
and III of the decaying effect from the remote history contexts
on the true RNNLM probabilities.

The performance of using the recurrent hidden history vec-
tor distance based RNNLM lattice rescoring method proposed
in Section III-B is shown in the bottom section of Table I
from lines 13 to 20. By adjusting the hidden vector distance
beam γ in equation (9), a range of approximate RNNLMs

LIU et al.: TWO EFFICIENT LATTICE RESCORING METHODS USING RNNLMs 1445

TABLE I
PERPLEXITY, 1-BEST, CN DECODING PERFORMANCE AND HTK LATTICE DENSITY MEASURED IN ARCS PER SECOND

OBTAINED USING LMS ON FISHER DEV04 AND EVAL04 SETS

dev04 eval04

LM PPlex 1best CN LatDensity PPlex 1best CN LatDensity

1. w4g 51.8 16.7 16.1 421 52.1 19.1 18.7 430
2. w4g+nnw 4 g 50.0 16.3 15.8 555 50.9 18.7 18.2 574
3. w4g+rnn.50best 46.3 15.4 15.4 188(97) 46.6 17.9 17.9 200(98)
4. w4g+rnn.100best 15.3 15.3 365(175) 17.9 17.7 389(177)
5. w4g+rnn.1000best 15.3 15.1 3416(1298) 17.8 17.6 3607(1313)
6. w4g+rnn.10000best 15.3 15.0 32 277(10 212) 17.8 17.5 33 607(10 275)
7. w4g+rnn.sample.4g 50.9 16.2 15.9 462 51.1 18.9 18.4 472
8. w4g+rnn.approx3g 46.4 15.8 15.4 428 46.7 18.4 17.9 478
9. w4g+rnn.approx4g 46.3 15.7 15.2 555 46.6 18.1 17.6 574
10. w4g+rnn.approx5g 46.3 15.6 15.1 1266 46.6 18.2 17.7 1305
11. w4g+rnn.approx6g 46.3 15.4 15.0 3025 46.6 17.9 17.5 3068
12. w4g+rnn.approx7g 46.3 15.4 15.0 7140 46.6 17.9 17.5 7146
13. w4g+rnn.hvd0.00450 46.4 15.8 15.4 465 46.6 18.4 17.6 478
14. w4g+rnn.hvd0.00300 46.3 15.6 15.2 539 46.6 18.1 17.7 556
15. w4g+rnn.hvd0.00200 46.3 15.6 15.1 699 46.6 18.1 17.6 720
16. w4g+rnn.hvd0.00100 46.3 15.6 15.1 1345 46.6 18.1 17.6 1367
17. w4g+rnn.hvd0.00075 46.3 15.5 15.1 1842 46.6 18.1 17.5 1857
18. w4g+rnn.hvd0.00050 46.3 15.4 15.0 2818 46.6 18.1 17.5 2762
19. w4g+rnn.hvd0.00025 46.3 15.4 15.0 4725 46.6 17.9 17.5 4500
20. w4g+rnn.hvd0.00001 46.3 15.4 15.0 6836 46.6 17.9 17.4 6705

“w4g” is a 4-gram back-off LM and “w4g+nnw 4 g ” an interpolated LM combining “w4g” with a 4-gram feedforward NNLM. “w4g+rnn” interpolates “w4g” with an
RNNLM “rnn.” “w4g+rnn .∗best” used N-best rescoring. “w4g+rnn .sample.4g” combines “w4g” with a 4-gram back-off LM trained on 1 billion words of texts sampled
from “rnn.” “w4g+rnn .approx∗g” and “w4g+rnn .hvd∗” used n -gram and hidden vector distance based RNNLM history clustering respectively.

comparable in both perplexity and error rate to the truncated
history based approach, but also giving more compact lattices,
were produced. On the dev04 set, for example, setting γ = 0.002
(line 15 in Table I) produced 1-best and CN error rates of 15.6%
and 15.1% that are equivalent to the 5-gram history approximate
“w4g+rnn.approx5g” system (line 10 in Table I), and a 45% re-
duction in lattice size from 1266 arcs/sec down to 699 arcs/sec.
The best WER performance on the dev04 data was obtained by
setting γ = 0.00050 (line 18 in Table I). It gave 1-best and CN
error rates of 15.4% and 15.0%, with a 72.4% and 7% reduc-
tion in lattice size over the 10 k-best rescoring system (line 6 in
Table I), and the best n-gram history clustering rescoring system
“w4g+rnn.approx6g” (line 11 in Table I) respectively. In prac-
tice, this “w4g+rnn.hvd0.00050” system can be used to rescore
more heavily pruned lattices at a speed over 10 times faster than
the 10 k-best rescoring system while producing comparable 1-
best and CN error rates of 15.4% and 15.1% on dev04. On the
eval04 set, the best CN decoding performance was obtained by
setting a larger hidden vector distance beam γ = 0.00001 (line
20 in Table I). It outperformed the 10 k-best rescoring system
(line 6 in Table I) by 0.1% and reduced the lattice density by
35% relative from 10.2 k arcs/sec down to 6705 arcs/sec.

As discussed in Section III-C, in order to reduce the perfor-
mance sensitivity to the lattice traversing order during rescor-
ing, a lattice node score ranking conditioned cache update
scheme can be used. The performance of a total of 8 differ-
ent n-gram history clustering and hidden vector distance clus-
tering based RNNLM scoring systems with the additional lat-
tice node score ranking condition enforced in cache access are
shown in Table II. Compared with the 3-gram based approx-
imation “w4g+rnn.approx3g,” and the hidden vector distance

TABLE II
1-BEST, CN DECODING PERFORMANCE AND LATTICE DENSITY MEASURED IN

ARCS PER SECOND OBTAINED USING RNNLMS WITH A LATTICE NODE

POSTERIOR RANKING CONDITIONED CACHE UPDATE

ON FISHER DEV04 AND EVAL04

dev04 eval04

LM 1best CN LDen 1best CN LDen

8. w4g+rnn.approx3g 15.6 15.2 428 18.2 17.8 478
9. w4g+rnn.approx4g 15.6 15.2 555 18.1 17.6 574
10. w4g+rnn.approx5g 15.6 15.1 1266 18.1 17.6 1305
11. w4g+rnn.approx6g 15.4 15.0 3025 17.9 17.5 3068
13. w4g+rnn.hvd0.00450 15.7 15.1 566 18.1 17.6 587
14. w4g+rnn.hvd0.00300 15.6 15.2 612 18.1 17.6 636
15. w4g+rnn.hvd0.00200 15.6 15.1 748 18.0 17.6 774
16. w4g+rnn.hvd0.00100 15.6 15.1 1379 18.1 17.6 1406

Naming convention same as Table I.

approximation “w4g+rnn.hvd0.00450” systems of Table I
where no such score ranking condition is enforced, consis-
tent 1-best and CN decoding WER reductions of 0.1%–0.3%
were obtained for both systems. When higher oder n-gram his-
tory clustering or similarly tighter hidden vector distance beam
settings are used, for example, using a 6-gram approximation
or setting γ = 0.00200 and above, no further performance im-
provements were obtained. This is expected as the history clus-
tering sensitivity to lattice traversing order has a larger impact
on shorter n-gram context and larger vector distance beam based
history clustering. Such sensitivity is reduced when higher order
n-gram approximation or tighter vector distance beams increase
the modelling precision over different context histories.

1446 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 8, AUGUST 2016

TABLE III
PERPLEXITY, 1-BEST, CN DECODING CHARACTER ERROR RATE AND HTK LATTICE DENSITY MEASURED IN ARCS PER SECOND OBTAINED USING LMS ON

CONVERSATIONAL MANDARIN DEV14 AND EVAL97 SETS

dev14 eval97

LM PPlex 1best CN LatDensity PPlex 1best CN LatDensity

1. w4g 151.4 35.7 35.3 273 140.0 31.3 31.1 273
2. w4g+rnn.50best 127.1 34.7 34.6 185(102) 125.0 30.5 30.5 238(128)
3. w4g+rnn.100best 34.6 34.5 360(187) 30.5 30.5 458(232)
4. w4g+rnn.1000best 34.5 34.4 3329(1417) 30.5 30.4 3861(1610)
5. w4g+rnn.10000best 34.6 34.3 30 597(11 007) 30.5 30.4 31 423(10 848)
6. w4g+rnn.sample.4g 140.6 35.2 34.8 310 135.0 31.2 30.9 326
7. w4g+rnn.approx3g 127.5 34.8 34.5 305 130.0 30.9 30.5 295
8. w4g+rnn.approx4g 127.1 34.8 34.4 554 125.3 30.7 30.4 476
9. w4g+rnn.approx5g 127.1 34.7 34.3 1285 124.9 30.7 30.4 995
10. w4g+rnn.approx6g 127.1 34.7 34.2 2852 124.8 30.6 30.3 2026
11. w4g+rnn.approx7g 127.1 34.6 34.3 6012 124.9 30.7 30.4 3884
11. w4g+rnn.approx8g 127.1 34.7 34.2 12 695 124.8 30.6 30.3 7317
12. w4g+rnn.hvd0.00900 127.3 34.8 34.5 500 125.4 30.8 30.5 432
13. w4g+rnn.hvd0.00800 127.1 34.8 34.4 564 125.3 30.9 30.5 477
14. w4g+rnn.hvd0.00700 127.1 34.9 34.3 658 125.3 30.8 30.5 539
15. w4g+rnn.hvd0.00600 127.1 34.8 34.4 802 125.3 30.8 30.5 636
16. w4g+rnn.hvd0.00500 127.1 34.8 34.3 1034 125.2 30.7 30.5 781
17. w4g+rnn.hvd0.00400 127.1 34.7 34.3 1430 125.2 30.6 30.4 1020
18. w4g+rnn.hvd0.00300 127.1 34.7 34.3 2112 125.1 30.6 30.5 1440
19. w4g+rnn.hvd0.00195 127.1 34.6 34.2 3501 125.1 30.6 30.3 2287
20. w4g+rnn.hvd0.00185 127.1 34.6 34.2 3705 125.1 30.6 30.3 2404
21. w4g+rnn.hvd0.00175 127.1 34.6 34.2 3905 125.1 30.5 30.3 2533
22. w4g+rnn.hvd0.00150 127.1 34.6 34.2 4427 125.1 30.6 30.4 2895
23. w4g+rnn.hvd0.00100 127.1 34.6 34.2 5652 125.0 30.6 30.3 3603
24. w4g+rnn.hvd0.00010 127.1 34.6 34.2 8098 125.0 30.5 30.3 5916
25. w4g+rnn.hvd0.00001 127.1 34.6 34.2 8215 125.0 30.6 30.3 6052

Naming convention the same as Table I.

B. Experiments on Mandarin Chinese CTS Data

The 2014 CU CTS Mandarin Chinese LVCSR system [44]
was then used to further evaluate the two proposed RNNLM
lattice rescoring methods. The system was trained on 300 hours
of Mandarin Chinese conversational telephone speech data re-
leased by the LDC for the DARPA BOLT program. A 63 k recog-
nition word list was used in decoding. The system uses the same
multi-pass recognition framework as described in Section V-A.

The initial lattice generation stage used CMLLR [51] based
speaker adaptively trained cross-word triphone tandem [52]
HMM acoustic models with MPE [48] based parameter es-
timation and unsupervised MLLR [49] speaker adaptation.
HLDA [46], [47] projected and speaker level normalized
PLP [45] features augmented with pitch features were used.
26 dimensional DNN bottle neck features [53] extracted from
a deep neural network [54] consisting of 4 hidden layers of 1 k
nodes each and modelling 6 k context dependent states at the
output layer, were also used. An interpolated 4-gram baseline
LM was used. A 4.5 hour test set of Mandarin Chinese conversa-
tional telephone speech data used in the BOLT program, dev14,
consisting of 57 speakers from 19 conversations, was used for
performance evaluation. An additional 1.6 hour test set, eval97,
consisting of 49 speakers from 20 conversations, was also used.
Manual audio segmentation was also used to allow translation
outputs to be accurately scored.

The baseline 4-gram back-off LM “w4g” was trained using
a total of 1 billion words from the following two types of text

sources: 2.6 M words of acoustic transcripts including the LDC
Call Home Mandarin (CHM), Call Friend Mandarin (CFM) and
HKUST collected conversational Mandarin telephone speech
data (weight 0.78); 1 billion words of additional web data col-
lected under the DARPA EARS and GALE programs (weight
0.22). The acoustic transcripts contain on average 7.5 words per
sentence. This baseline 4-gram LM has a total of 48 M 2-grams,
133 M 3-grams and 143 M 4-grams. It gave a perplexity score
of 151.4, 1-best and CN character error rates (CER) of 35.7%
and 35.3% respectively on dev14. These results are shown in
the 1st line in Table III.

In order to further improve the RNNLM’s coverage and gener-
alization, the 2.6 M words of acoustic transcripts data were aug-
mented with 15 M words of its paraphrase variants. These were
automatically produced using the statistical paraphrase induc-
tion and generation method described in [55]. The above com-
bined data set was then used to train a paraphrastic RNNLM [56]
“rnn” on a GPU in bunch mode [34]. The full output layer
with an OOS node based RNNLM architecture in Fig. 1 of
Section II was used. A total of 512 hidden layer nodes were
used. A 27 k word input layer vocabulary and 20 k word output
layer shortlist were also used. In common with the previous ex-
periments of Section V-A, a total of 1 billion words of text data
were also generated from the RNNLM “rnn” using the same
sampling technique described in [8] to train a 4-gram back-off
LM “rnn.sample.4g” as an approximation. Both the RNNLM
and the sampled data trained 4-gram LM were then interpolated
with the baseline 4-gram LM “w4g” for performance evaluation.

LIU et al.: TWO EFFICIENT LATTICE RESCORING METHODS USING RNNLMs 1447

The perplexity, 1-best and CN decoding CER performance of
the baseline RNNLM and various approximation schemes are
shown in Table III. Consistent with the trend previously found in
Table I, the sampling approach based RNNLM approximation
“w4g+rnn.sample.4g” (line 6 in Table III) only retained a part of
the improvement of the original RNNLM (line 2 to 5 in Table III)
over the baseline 4-gram LM in terms of both perplexity and
error rate. Using the prefix tree structured N-bests lists again
significantly reduced the density of the resulting lattices. The
best CN decoding performance was obtained using a 10 k-best
RNNLM rescoring baseline system (line 5 in Table III). On the
dev14 data, it gave a 1-best and CN CER of 34.6% and 34.3%
respectively. It has a density of 11 k arcs/sec measured on the
lattices converted from the prefix tree structured 10 k-best lists.

The performance of the n-gram history clustering based
RNNLM lattice rescoring of Section III-A are shown from line
7 to 11 in Table III. A 6-gram approximate RNNLM system
produced 1-best and CN error rates of 34.7% and 34.2% respec-
tively on dev14. Both results are comparable to the baseline
10 k-best RNNLM rescoring (line 5 in Table III). It also gave a
significant 74% reduction in lattice density from 11 k to 2852
arcs/sec. Further increasing the truncated history to 6 words or
more gave no improvement while only increased the resulting
lattice size. A similar trend is also found on the eval97 data.

The performance of using the recurrent hidden history vec-
tor distance based RNNLM lattice rescoring method proposed
in Section III-B with varying distance beam settings are also
shown in Table III from line 12 to 25. On the dev14 set, set-
ting the hidden vector distance beam γ = 0.00195 (line 19 in
Table III) gave the best CER performance among all systems in
Table III. This approximate system gave a 1-best and CN error
rates of 34.6% and 34.2% respectively. It also gave a 68.2% rel-
ative reduction in lattice density over the prefix tree structured
10 k-best rescoring system (line 5 in Table III) from 11 k down
to 3501 arcs/sec. On the eval97 set, the best performance was
obtained by setting the vector distance beam γ = 0.00175 (line
21 in Table III). It outperformed the 10 k-best rescoring system
by 0.1% in CN decoding. It also reduced the lattice density by
77% relative from 11 k arcs/sec down to 2533 arcs/sec.

VI. CONCLUSION AND FUTURE WORK

Two efficient lattice rescoring methods for RNNLMs were
investigated in this paper. The proposed techniques produced 1-
best and confusion network decoding performance comparable
with a 10 k-best rescoring RNNLM baseline systems on two
large vocabulary conversational telephone speech recognition
tasks for US English and Mandarin Chinese. These methods also
produced highly compact lattice representation after RNNLM
rescoring. Consistent compression in lattice size was obtained
over the prefix tree structured n-best rescoring RNNLM base-
line systems. These results demonstrate the advantages of the
proposed techniques over the standard N-best rescoring frame-
work, as well as their strong generalization and applicability
to multiple languages and tasks. Future research will focus on
further improving efficiency in decoding using RNNLMs.

REFERENCES

[1] Y. Bengio and R. Ducharme, “A neural probabilistic language model,” J.
Mach. Learn. Res., vol. 3, pp. 1137–1155, 2003.

[2] H. Schwenk, “Continuous space language models,” Comput. Speech
Lang., vol. 21, no. 3, pp. 492–518, 2007.

[3] J. Park, X. Liu, M. J. F. Gales, and P. C. Woodland, “Improved neural
network based language modelling and adaptation,” in Proc. Int. Conf.
Spoken Lang. Process. Interspeech, Makuhari, Japan, 2010, pp. 1041–
1044.

[4] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur, “Re-
current neural network based language model,” in Proc. Int. Conf. Spoken
Lang. Process. Interspeech, Makuhari, Japan, 2010, pp. 1045–1048.

[5] T. Mikolov, S. Kombrink, L. Burget, J. H. Cernocky, and S. Khudanpur,
“Extensions of recurrent neural network language model,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., Prague, 2011, pp. 5528–5531.

[6] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural networks for lan-
guage modeling,” in Proc. Int. Conf. Spoken Lang. Process. Interspeech,
Portland, OR, USA, 2012, pp. 194–197.

[7] H.-S. Le, I. Oparin, A. Allauzen, J. Gauvain, and F. Yvon, “Struc-
tured output layer neural network language models for speech recog-
nition,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 21, no. 1,
pp. 197–206, Jan. 2013.

[8] A. Deoras, T. Mikolov, S. Kombrink, M. Karafiat, and S. Khudanpur,
“Variational approximation of long-span language models for LVCSR,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Prague, Czech
Republic, 2011, pp. 5532–5535.

[9] G. Lecorvé and P. Motlicek, “Conversion of recurrent neural network
language models to weighted finite state transducers for automatic speech
recognition,” in Proc. ISCA Interspeech, Portland, OR, USA, pp. 1668–
1671, 2012.

[10] A. Deoras, T. Mikolov, S. Kombrink, and K. Church, “Approximate
inference: A sampling based modeling technique to capture complex
dependencies in a language model,” Speech Commun., vol. 55, no. 1,
pp. 162–177, 2013.

[11] M. Sundermeyer, I. Oparin, J. L. Gauvain, B. Freiberg, R. Schlüter, and
H. Ney, “Comparison of feedforward and recurrent neural network lan-
guage models,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
Vancouver, Canada, 2013, pp. 8430–8434.

[12] Y. Si, Q. Zhang, T. Li, J. Pan, and Y. Yan, “Prefix tree based n-best list
re-scoring for recurrent neural network language model used in speech
recognition system,” in Proc. ISCA Interspeech, Lyon, France, 2013,
pp. 3419–3423.

[13] K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu, “Recurrent neural
networks for language understanding,” in Proc. ISCA Interspeech, Lyon,
France, 2013, pp. 2524–2528.

[14] M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint language and trans-
lation modeling with recurrent neural networks,” in Proc. ACL Conf.
Empirical Methods Natural Lang. Process., Seattle, WA, USA, 2013,
pp. 1044–1054.

[15] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation mod-
els,” in Proc. ACL Conf. Empirical Methods Natural Lang. Process., 2013,
pp. 1700–1709.

[16] J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and J. Makhoul, “Fast
and robust neural network joint models for statistical machine translation,”
in Proc. 52nd Annu. Meeting Assoc. Comput. Linguistics, Baltimore, MD,
USA, 2014, pp. 1370–1380.

[17] T. Hori, Y. Kubo, and A. Nakamura, “Real-time one-pass decoding with
recurrent neural network language model for speech recognition,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., Florence, Italy, 2014,
pp. 6414–6418.

[18] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus in speech recog-
nition: Word error minimization and other applications of confusion net-
works,” Comput. Speech Lang., vol. 14, no. 4, pp. 373–400, 2000.

[19] G. Evermann and P. C. Woodland, “Posterior probability decoding, confi-
dence estimation and system combination,” in Proc. Speech Transcription
Workshop, College Park, MD, USA, 2000.

[20] A. Deoras, T. Mikolov, and K. Church, “A fast re-scoring strategy to cap-
ture long-distance dependencies,” in Proc. ACL Conf. Empirical Methods
Natural Lang. Process., Edinburgh, U.K., 2011, pp. 1116–1127.

[21] S. Jalalvand and D. Falavigna, “Direct word graph rescoring us-
ing A∗ search and RNNLM,” in Proc. ISCA Interspeech, 2014,
pp. 2630–2634.

[22] M. Sundermeyer, Z. Tüske, R. Schlüter, and H. Ney, “Lattice decoding
and rescoring with long-span neural network language models,” in Proc.
ISCA Interspeech, Singapore, 2014, pp. 661–665.

1448 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 8, AUGUST 2016

[23] M. Sundermeyer, H. Ney, and R. Schlüter, “From feedforward to recurrent
LSTM neural networks for language modeling,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 23, no. 3, pp. 517–529, Mar. 2015.

[24] M. Mohri, “Finite-state transducers in language and speech processing,”
Comput. Linguistics, vol. 23, no. 2, pp. 269–311, 1997.

[25] X. Liu, Y. Wang, X. Chen, M. J. F. Gales, and P. C. Woodland, “Efficient
lattice rescoring using recurrent neural network language models,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., Florence, Italy, 2014,
pp. 4941–4945.

[26] Z. Huang, G. Zweig, and B. Dumoulin, “Cache based recurrent neural
network language model inference for first pass speech recognition,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Florence, Italy,
2014, pp. 6404–6408.

[27] A. Emami and L. Mangu, “Empirical study of neural network language
models for Arabic speech recognition,” in Proc. IEEE Workshop Autom.
Speech Recog. Understanding, Kyoto, Japan, 2007, pp. 147–152.

[28] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network lan-
guage model,” in Proc. Int. Workshop Artif. Intell. Statist., Barbados, 2005,
pp. 246–252.

[29] D. E. Rumelhart, G. E. Hintont, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Nature, vol. 323, no. 6088,
pp. 533–536, 1986.

[30] M. Boden, “A guide to recurrent neural networks and backpropagation,”
The Dallas project, SICS technical report (2002).

[31] Y. Shi, M.-Y. Hwang, K. Yao, and M. Larson, “Speed up of recurrent
neural network language models with sentence independent subsampling
stochastic gradient descent,” in Proc. ISCA Interspeech, Lyon, France,
2013, pp. 1203–1207.

[32] Z. Huang, G. Zweig, M. Levit, B. Dumoulin, B. Oguz, and S. Chang,
“Accelerating recurrent neural network training via two stage classes and
parallelization,” in Proc. IEEE Workshop Autom. Speech Recog. Under-
standing, Olomouc, Czech Republic, 2013, pp. 326–331.

[33] B. Li, E. Zhou, B. Huang, J. Duan, Y. Wang, N. Xu, J. Zhang, and
H. Yang, “Large scale recurrent neural network on GPU,” in Proc.
IEEE Int. Joint Conf. Neural Netw., Beijing, China, 2014, pp. 4062–
4069.

[34] X. Chen, Y. Wang, X. Liu, M. J. F. Gales, and P. C. Woodland, “Efficient
GPU-based training of recurrent neural network language models using
spliced sentence bunch,” in Proc. ISCA Interspeech, Singapore, 2014,
pp. 641–645.

[35] X. Chen, X. Liu, M. J. F. Gales, and P. C. Woodland, “Improving the
training and evaluation efficiency of recurrent neural network language
models,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Bris-
bane, 2015, pp. 5401–5405.

[36] T. Mikolov, S. Kombrink, L. Burget, J. H. Cernocky, and S. Khudan-
pur, “RNNLM—Recurrent neural network language modeling toolkit,” in
Proc. IEEE Autom. Speech Recognition Understanding Workshop, 2011.

[37] J. J. Odell, V. Valtchev, P. C. Woodland, and S. J. Young, “A one pass
decoder design for large vocabulary recognition,” in Proc. ACL Workshop
Human Lang. Technol., Stroudsburg, PA, USA, 1994, pp. 405–410.

[38] H. Ney and S. Ortmanns, “Dynamic programming search for continuous
speech recognition,” IEEE Signal Process. Mag., vol. 16, no. 5, pp. 64–83,
Sep. 1999.

[39] T. R. Niesler and P. C. Woodland, “A variable-length category-based n-
gram language model,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Atlanta, GA, USA, 1996, vol. 1, pp. 164–167.

[40] X. Liu, M. J. F. Gales, and P. C. Woodland, “Use of contexts in lan-
guage model interpolation and adaptation,” Comput. Speech Lang., vol. 27,
no. 1, pp. 301–321, 2013.

[41] X. Liu, M. J. F. Gales, J. L. Hieronymus, and P. C. Woodland, “Language
model combination and adaptation using weighted finite state transduc-
ers,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Dallas,
TX, USA, 2010, pp. 5390–5393.

[42] S. Young G. Evermann, M. J. F. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey, A. Ragni, V. Valtchev, P. C.
Woodland, and C. Zhang, “The HTK BookVersion 3.5a,” Speech Research
Group, Cambridge University Engineering Department, 2015.

[43] G. Evermann, H. Y. Chan, M. J. F. Gales, B. Jia, D. Mrva, P. C. Woodland,
and K. Yu, “Training LVCSR systems on thousands of hours of data,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Philadelphia, PA,
USA, 2005, vol. 1, pp. 209–212.

[44] X. Liu, F. Flego, L. Wang, C. Zhang, M. J. F. Gales, and P. C. Wood-
land, “The cambridge university 2014 BOLT conversational telephone
Mandarin Chinese LVCSR system for speech translation,” in Proc. ISCA
Interspeech, Dresden, Germany, 2015, pp. 3145–3149.

[45] P. C. Woodland, M. J. F. Gales, D. Pye, and S. J. Young, “The development
of the 1996 HTK broadcast news transcription system,” in Proc. DARPA
Speech Recog. Workshop, Harriman, NY, USA, 1996, pp. 73–78.

[46] N. Kumar, “Investigation of silicon-auditory models and generalization
of linear discriminant analysis for improved speech recognition,” Ph.D.
dissertation, John Hopkins Univ., Baltimore, MD, USA, 1997.

[47] X. Liu, M. J. F. Gales, and P. C. Woodland, “Automatic complexity control
for HLDA systems,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Hong Kong, China, 2003, vol. 1, pp. 132–135.

[48] D. Povey and P. C. Woodland, “Minimum phone error and I-smoothing
for improved discriminative training,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., Orlando, FL, USA, 2002, vol. 1, pp. 105–108.

[49] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear re-
gression for speaker adaptation of continuous density HMMs,” Comput.
Speech Lang., vol. 9, pp. 171–186, 1995.

[50] I. Bulyko, M. Ostendorf, and A. Stolcke, “Getting more mileage from web
text sources for conversational speech language modeling using class-
dependent mixtures,” in Proc. Conf. North Amer. Ch. Assoc. Comput.
Linguistics Human Lang. Technol., Stroudsburg, PA, USA, 2003, vol. 2
pp. 7–9.

[51] M. J. F. Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition,” Comput. Speech Lang., vol. 12, no. 2,
pp. 75–98, 1998.

[52] H. Hermansky, D. Ellis, and S. Sharma, “Tandem connectionist feature
extraction for conventional HMM systems,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., Istanbul, Turkey, 2000, vol. 3, pp. 1635–
1638.

[53] D. Yu and M. L. Seltzer, “Improved bottleneck features using pretrained
deep neural networks,” in Proc. ISCA Interspeech, Florence, Italy, pp.
237–240, 2011.

[54] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 20, no. 1,
pp. 30–42, Jan. 2012.

[55] X. Liu, M. J. F. Gales, and P. C. Woodland, “Paraphrastic language mod-
els,” Comput. Speech Lang., vol. 28, no. 6, pp. 1298–1316, 2014.

[56] X. Liu, M. J. F. Gales, and P. C. Woodland, “Paraphrastic recurrent neural
network language models,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., Brisbane, Australia, 2015, pp. 5406–5410.

Xunying Liu received the bachelor’s degree from
Shanghai Jiao Tong University, the Ph.D. degree in
speech recognition, and the M.Phil. degree in com-
puter speech and language processing both from the
University of Cambridge, Cambridge, UK. He has
been a Senior Research Associate at the Machine
Intelligence Laboratory, Cambridge University En-
gineering Department, and from 2016 an Associate
Professor in the Department of Systems Engineering
and Engineering Management, the Chinese Univer-
sity of Hong Kong. He received the Best Paper Award

at ISCA Interspeech 2010. His current research interests include large vocab-
ulary continuous speech recognition, language modelling, noise robust speech
recognition, speech synthesis, speech and language processing. He is a Member
of ISCA.

Xie Chen received the bachelor’s degree at Xiamen
University, Fujian, China, in 2009 and the M.Phil. de-
gree in electronic engineering from Tsinghua Univer-
sity, Beijing, China, in 2012. He is currently working
toward the PhD degree at the Machine Intelligence
Laboratory, working on automatic speech recogni-
tion, supervised by Prof. M. Gales. He joined the
Cambridge University Engineering Department in
2012. His current research interests include large
vocabulary continuous speech recognition, meeting
transcription, and language modelling. He is a Stu-

dent Member of ISCA.

LIU et al.: TWO EFFICIENT LATTICE RESCORING METHODS USING RNNLMs 1449

Yongqiang Wang received the B.Eng. degree in elec-
tronic engineering from the University of Science
and Technology of China, Hefei, China, the M.Phil.
degree in computer science from the University of
Hong Kong, Pok Fu Lam, Hong Kong, and the Ph.D.
degree in engineering from the University of Cam-
bridge, Cambridge, U.K. He is currently a Senior
Speech Scientist with Microsoft. His research inter-
ests include robust speech recognition and large-scale
deep learning.

Mark J. F. Gales received the B.A. degree in elec-
trical and information sciences from the University
of Cambridge, Cambridge, U.K., from 1985 to 1988.
Following graduation, he was a Consultant at Roke
Manor Research Ltd. In 1991, he took up a position
as a Research Associate in the Speech Vision and
Robotics group in the Engineering Department, Cam-
bridge University. In 1995, he completed his doctoral
thesis: Model-Based Techniques for Robust Speech
Recognition supervised by Professor S. Young. From
1995 to 1997, he was a Research Fellow at Emmanuel

College Cambridge. He was then a Research Staff Member in the Speech group
at the IBM T.J.Watson Research Center until 1999 when he returned to the
Cambridge University Engineering Department as a University Lecturer. He
was appointed Reader in information engineering in 2004. He is currently a
Professor of information engineering and a College Lecturer and Official Fel-
low of Emmanuel College. He a member of the Speech and Language Processing
Technical Committee (2015–2017, previously a member from 2001–2004). He
was an Associate Editor for the IEEE SIGNAL PROCESSING LETTERS from 2008
to 2011 and the IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PRO-
CESSING from 2009 to 2013. He is currently on the Editorial Board of Computer
Speech and Language. He received a number of paper awards, including a 1997
IEEE Young Author Paper Award for his paper on Parallel Model Combination
and a 2002 IEEE Paper Award for his paper on Semi-Tied Covariance Matrices.

Philip C. Woodland is a Professor of information en-
gineering at the University of Cambridge Engineer-
ing Department, where he leads the Speech Group,
and a Professorial Fellow of Peterhouse. He has pub-
lished almost 200 papers in speech technology, in-
cluding the most cited paper in Computer Speech
and Language. He developed techniques for speaker
adaptation and discriminative training that have now
become standard in speech recognition. His research
team developed speech recognition systems which
have frequently been the most accurate in interna-

tional research evaluations organised by the US Government. He is well known
as one of the original coauthors of the widely used HTK toolkit and has con-
tinued to play a major role in its development. He has been a member of the
editorial board of Computer Speech and Language (1994–2009), and a current
editorial board member of Speech Communication. One of his current major
interests is developing flexible systems that can adapt to a wide range of speak-
ers, acoustic conditions, and speaking styles with relatively limited training
resources. His current work also includes techniques for improved language
modelling and confidence estimation. An increasing trend in his work is the use
of deep neural networks for both acoustic models and language models.He is a
Fellow of ISCA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

