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Mandarin Chinese is based on characters which are syllabic in nature and morphological in mean-

ing. All spoken languages have syllabiotactic rules which govern the construction of syllables and

their allowed sequences. These constraints are not as restrictive as those learned from word sequen-

ces, but they can provide additional useful linguistic information. Hence, it is possible to improve

speech recognition performance by appropriately combining these two types of constraints. For the

Chinese language considered in this paper, character level language models (LMs) can be used as a

first level approximation to allowed syllable sequences. To test this idea, word and character level

n-gram LMs were trained on 2.8 billion words (equivalent to 4.3 billion characters) of texts from a

wide collection of text sources. Both hypothesis and model based combination techniques were

investigated to combine word and character level LMs. Significant character error rate reductions

up to 7.3% relative were obtained on a state-of-the-art Mandarin Chinese broadcast audio recogni-

tion task using an adapted history dependent multi-level LM that performs a log-linearly combina-

tion of character and word level LMs. This supports the hypothesis that character or syllable

sequence models are useful for improving Mandarin speech recognition performance.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4768800]

PACS number(s): 43.72.Ne [MHJ] Pages: 519–528

I. INTRODUCTION

The Chinese language is based on characters which are

syllabic in nature and morphological in meaning.1 There are

many characters which have the same pronunciations. The

presence of these homographs makes it difficult to know

what the spoken word is without context or what the charac-

ter sequence is. This ambiguity is demonstrated, for exam-

ple, by the practice of signing that Chinese people use to

show how to spell their names when they are introduced. By

showing their names in written form using characters, the lis-

tener knows how their names are spelled, otherwise it would

be difficult to determine which characters constituted the

spelling of the name. As Chinese characters have a broad

meaning in themselves, knowing the character sequence in a

name, named entity, or sentence can evoke the underlying

meaning.

Written Chinese has no word boundaries marked by

spaces or other symbols, making the task of finding the cor-

rect word sequence difficult. The reader must infer the word

boundaries from the context. In this process ambiguity can

occur, even among native speakers. In tests of word bound-

ary marking by native speakers, agreement on the boundary

locations occurs approximately 75% of the time.2 Therefore,

the character error rate (CER) is the commonly used evalua-

tion metric for state-of-the-art Mandarin speech recognition

systems.3–5

All languages have constrained syllable constructions

and syllable sequence rules which enhance intelligibility.6

These phonological and pragmatic constraints can be

exploited for Chinese speech recognition. Syllable level con-

straints are not as restrictive as word sequences, but they can

provide additional useful linguistic information. It is thus

possible to leverage both types of constraints by appropri-

ately combining the two. It is hoped that the combined sys-

tem will reflect the Chinese language better and improve

speech recognition performance. This paper examines this

proposition.

In order to implement Mandarin syllable sequence mod-

eling, it is necessary to be able to estimate the probability for

each possible syllable sequence. In a speech recognition sys-

tem, the resulting statistical models assign the prior probabil-

ity of a syllable sequence. They are commonly referred to as

language models (LMs) at the syllable level. One issue with

this method is that syllable segmented and labeled Chinese

speech is expensive to produce and generally unavailable in

large quantities. An alternative is to use character level LMs

as an indirect way of modeling syllable sequences.7–12

This approach is motivated by two factors. First, ordinary

character level texts are already available in the large quanti-

ties required for LM training. They are far more accessible

than syllable level annotated texts. Second, the maximum

onset principle, which allows onset extension by attaching
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the previous syllable’s final consonants to the following one,

is mostly blocked for Mandarin. Mandarin Chinese has no

consonant clusters and the syllable structure is

ðCÞVðNÞðRÞ;

where C is an optional consonant, V is a vowel, and N is an

optional final nasal consonant /n/ or /ng/ and R is an optional

rhotic coda /r/. The nasal /ng/ can only be a final consonant.

As a result the majority of Mandarin syllables should have

only one segmentation and phonetic realization associated

with their natural character boundaries in continuous speech,

except for those ending in /n/ or /r/ followed by others begin-

ning with a vowel. Phonotactically this is very different from

other syllabic languages, for example, English, which uses

complex prevocallic and postvocallic consonant clusters and

thus onset extension can occur more often.

Language models play a crucial role in automatic speech

recognition (ASR) systems. They assign the prior probability

to a hypothesized word sequence in a speech recognizer.

Back-off n-gram models remain the dominant language mod-

eling approach for state-of-art ASR tasks.13 In these systems,

LMs are often, as in this paper, constructed by combining

component n-gram models trained on a diverse collection of

text sources prior to probability interpolation in the form of a

mixture model.14–16 Individual data sources are considered to

be more appropriate for different tasks or genres, for exam-

ple, broadcast news or conversational telephone speech. The

interpolation weights indicate the “usefulness” of each source

for a particular task. To further improve robustness to varying

styles or tasks, unsupervised test-set adaptation to, for exam-

ple, a particular broadcast show, may be used.10,17–21

As directly adapting n-gram word probabilities is

impractical on limited amounts of data, conventional LM ad-

aptation schemes only involve updating the context independ-

ent, linear interpolation weights associated with component

models.14,16 However, this approach can only adapt LMs to a

particular genre, epoch or other higher level attributes. Local

factors that determine the contribution of sources on a context

dependent basis, including the modeling resolution, general-

ization ability, topic coverage, and style, are poorly modeled.

To handle this issue, context dependent LM interpolation and

adaptation can be used.10,17,20,21

One key issue with incorporating character level LMs

into a word based recognition system is the appropriate form

of combination technique to use. The LIMSI-CNRS speech

research group recently constructed a Mandarin character

based recognition system.11 They experimented with three

techniques: (1) using character based recognition alone, (2)

ROVER (Ref. 22) based character level hypothesis combina-

tion with a word based system, and (3) using character level

LMs to rescore hypothesis candidates previously generated

by a word based system as an implicit form of combination.

However, these methods were unsuccessful in improving the

character error rate (CER) performance against the word

based standard recognition system.

In this paper two major categories of techniques are

investigated: hypothesis level, and model level combination.

The former exploits the consensus among component sys-

tems using voting as well as confidence measures, as used in

ROVER (Ref. 22) and confusion network combination.23 The

second category uses linear or log-linear model combination

to combine standard word and character based LMs at the

distribution level instead of the hypothesis level. In machine

learning, these two methods are often in turn referred to as a

mixture of experts (MoE), equivalent to a probabilistic union
that improves generalization, and a product of experts (PoE),

a probabilistic intersection that increases discrimination.24 A

combination of these two methods can also be used to lever-

age the strengths of both.

As the underlying LM configuration becomes more com-

plex, extensive software changes to special purpose tools, for

example, SRILM or HTK toolkit,25,26 is often required. An alter-

native approach to combine and adapt LMs is to use weighted

finite state transducers (WFSTs).10,27–30 As this approach is

entirely based on a set of well-defined automaton operations,

minimal changes to decoding tools are required. It is highly

flexible and can be used for a wide range of combination con-

figurations. It not only supports the use of global, context in-

dependent weights in LM combination, but also a more

general case when context dependent weights are employed.

Thus LM adaptation using history context dependent interpo-

lation and adaptation can be conveniently implemented.

The precise nature of component language models

determines which of the two combination schemes is more

appropriate. Since character LMs represent additional sylla-

ble sequence constraints that word based models cannot pro-

vide, a log-linear combination is thought to be more

appropriate rather than a linear combination for this purpose.

This hypothesis is confirmed by experimental results pre-

sented later in this paper. A carefully constructed WFST

based log-linear model combination consistently gave the

lowest character error rate among all the schemes investi-

gated in the paper.

The rest of the paper is organized as follows. First,

ROVER based hypothesis level combination is reviewed in

section II. Model level combination schemes to incorporate

character sequence level information into word based LMs

are then introduced in Sec. III. Generic WFST based LM

combination methods are proposed in Sec. IV. Context de-

pendent LM adaptation is then presented in Sec. V. An effi-

cient on-the-fly WFST decoding approach is proposed in

Sec. VI. Experimental results on a state-of-the-art Mandarin

broadcast speech transcription task using the CU-HTK Man-

darin large vocabulary continuous speech recognition system

are presented and analyzed in Sec. VII, together with the

implications which can be drawn from them. Section VIII

gives the conclusion and suggests possible future work.

II. HYPOTHESIS LEVEL SYSTEM COMBINATION

One commonly used form of hypothesis level combina-

tion is ROVER.22 Hypotheses from a total of S component

systems are iteratively aligned to create word transition net-

works. An interpolation between voting counts and confi-

dence scores is then used to find the optimal word sequence

within the network. For any set of confusions in the network

this is given by
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ŵ ¼ arg max
ws

a
N1:SðwsÞ

S
þ ð1� aÞcðsÞw

� �
; (1)

where N1:SðwsÞ is number of systems that output word ws,

c
ðsÞ
w is the confidence score assigned by the sth system, and a

is a tunable parameter to balance the contribution between

voting counts and confidence scores. When component sys-

tems use different word segmentation schemes, a direct com-

bination between their outputs is problematic, for example,

in Chinese where different character to word segmentations

are used. Hence, for the Mandarin speech recognition tasks

considered here, the most successful approach is to perform

a character level combination,3–5,11 as is also considered in

this paper. This requires the mapping of outputs from a

standard word based system to sub-word, character level.

The confidence score of each word is assigned to each char-

acter it contains. One major issue with character level

ROVER is it does not preserve a consistent character to

word segmentation in the final outputs, and thus affects fur-

ther processing of the recognition outputs, for example, in

speech translation tasks.4 In general, hypothesis level combi-

nation methods such as ROVER also require the error rate

performance of the component sub-systems to be close in

order to be effective in combination.4,11

III. LANGUAGE MODEL COMBINATION

As discussed in Sec. I, model level combination techni-

ques may be used to incorporate character sequence level

constraints into a word based recognition system. These tech-

niques can be further classified into MoE based linear,15,16

and PoE based log-linear model combination.24,31,32 While

each has its own characteristics, it is possible to leverage

from the strength of both methods. The rest of this section

discusses various forms of model level combination schemes.

A. Linear model combination

As a union of all the individual probabilistic experts, lin-

ear model combination tends to give a broader distribution

than individual components alone. Hence, this form of

model combination may help overcome the sparsity issue

when training individual component models and thus

improve generalization. Let wi denote the ith word of a L
word long sequence W ¼ hw1;w2;…;wi;…;wLi. The LM

log-probability for the complete word sequence is given by

ln PðWÞ ¼
XL

i¼1

ln
XM

m¼1

kmPmðwijhn�1
i Þ

 !
; (2)

where hn�1
i represents the ith word’s history of at most n� 1

words, hwi�nþ1;…;wi�1i, and km is the global, context inde-

pendent weight for the mth component under a positive and

sum-to-one constraint. These weights indicate the “usefulness”

of each source for a particular task. To reduce the mismatch

relative to the target domain, these weights may be tuned to

minimize the perplexity on held-out data.

B. Log-linear model combination

In contrast, log-linear interpolation provides an intersec-
tion of individual probabilistic experts. It yields a high likeli-

hood only when all component models agree. This form of

model combination exploits the consensus among product

experts. Hypotheses with very different log-likelihood rank-

ing among component models will be penalized. For the

above example, the log-linearly interpolated LM probability

on word sequence level is

lnPðWÞ ¼
XL

i¼1

XM

m¼1

kmln Pmðwijhn�1
i Þ � ln ðZÞ; (3)

where Z is a normalization term to ensure the sequence level

interpolated probability to be a valid distribution. Its exact

computation for general forms of log-linear models is non-

trivial. Analytical solutions are available only for certain

forms of density functions used for component models. It

may be ignored when the interpolation is performed at com-

plete word sequence level under a discriminative framework,

for example, maximum entropy models and logistic regres-
sion,31,32 as implemented in this paper. Here, km is the con-

text free log-linear weight for the mth component. They are

no longer subject to a positive and sum-to-one constraint.

They may be optimized under a discriminative framework as

in maximum entropy models.31 For a simple two way log-

linear combination between word and character based LMs

considered in this paper, these weights are fixed as equal in

all experiments.

C. Multi-level model combination

As discussed in Sec. I, the precise nature of component

language models determines which of the two combination

schemes is more appropriate. For example, when building

word level LMs, in order to improve context coverage and

generalization, a linear interpolation between component

LMs trained over a diverse set of text sources can be used.

When introducing additional sub-word, character level lin-

guistic constraints to increase discrimination, word and char-

acter level LMs can be log-linearly combined.8,10 In order to

achieve a good balance between generalization and discrimi-

nation, it is also possible to leverage both forms of combina-

tion using a product between mixtures of experts.

IV. LANGUAGE MODEL COMBINATION USING
WEIGHTED FINITE STATE TRANSDUCERS

As discussed in Sec. I, in current ASR systems language

models are often constructed by training n-gram component

models13 from a set of diverse sources representing data

from different genre, epoch, or other higher level attributes.

In order to incorporate more linguistic constraints, it is also

possible to train and combine LMs that model different unit

sequences, for example, syllables and words.8,10 Interpolated

LMs with context independent weights are normally con-

structed using special purpose tools, for example, the SRILM

or HTK toolkits.25,26 In order to capture local variations in

modeling resolution, generalization, topics, and style among
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component LMs, history context dependent LM interpola-

tion and adaptation can be used.10,20,21 These techniques of-

ten require extensive software changes.

An alternative approach considered in this paper is to

combine and adapt LMs using WFSTs.10,27–30 As this

approach is entirely based on well-defined WFST operations,

minimal changes to the decoding tools are required. It is

highly flexible and can be used for a wide range of combina-

tion configurations. It not only supports the use of global,

context independent weights in LM combination, but also a

more general case when context dependent weights are

employed. Thus LM adaptation using history context de-

pendent interpolation can be conveniently implemented.

A WFST is a finite state machine that associates weights

such as probabilities, durations, penalties, or any other quan-

tity that accumulates linearly along paths within a directed

graph, to each pair of input and output symbol sequences. A

set of classic finite automaton operations to combine, opti-

mize, and compact WFSTs during search are available.

Many types of modeling information used in speech recogni-

tion systems, such as HMM topology, lexicon, and n-gram

LMs, involve a stochastic finite-state mapping between sym-

bol sequences. WFSTs provide a generic and well-defined

framework to represent and manipulate them. Unless other-

wise stated, tropical semi-ring based WFSTs (Refs. 27–30)

are used in this paper.

More precisely, n-gram LMs can be represented by

weighted finite state acceptors. These are special cases of

WFSTs when the input and output symbol sequences are

identical. Consider two simple back-off bigram language

model fragments that are associated with a three word sub-

vocabulary {A, B, C} and trained on two different text sour-

ces. Their WFST representations, Lð1ÞG and Lð2ÞG , are shown in

Figs. 1(a) and 1(b). In both transducers, n-gram log probabil-

ities appear as negated arc weights. The 1-gram back-off

weights are represented by non-emitting epsilon arcs without

output symbols, as marked with “<e>” in the figure.

Assuming component LMs model the same type of sym-

bol sequences, for example, words, the WFST representation

of the linearly combined LM given in Eq. (2) of Sec. III A

can be derived using a component level composition
between the n-gram and interpolation weight transducers

prior to a final log semi-ring based n-gram level union opera-

tion. Hence,

L¼
�
Lð1ÞG �L

ð1Þ
/

�
[���

�
LðmÞG �L

ðmÞ
/

�
[���

�
LðMÞG �LðMÞ/

�
;

where LðmÞG is the n-gram model transducer, and LðmÞ/ the

interpolation weight transducer for the mth component. Here

“�” and “[” denote the composition and union operations,

respectively. Taking the component LMs of Figs. 1(a) and

1(b) as examples, their context independent interpolation

weights, k1 ¼ 0:3, k2 ¼ 0:7 (1.220 and 0.360 as negated nat-

ural log) may be represented by the two transducers in Fig. 2.

They proportionately reflect the probability contribution from

the two component LMs on a context independent basis, as

the second model has more 2-grams than the first one. In

order to improve the efficiency of the combined LM WFST

during search, it may be further compressed via standard

WFST determinization and minimization operations.

It is also possible to linearly combine LMs modeling

sequences of different linguistic units, for example, sylla-

bles, or characters, and words. In order to have compatible

transducer symbols during combination, the syllable, or

character level component WFSTs must be first composed
with a lexicon transducer, which provides the character to

word mapping, and then projected onto the word level. Take

the three word vocabulary {A, B, C} associated with the two

2-gram LMs shown in Figs. 1(a) and 1(b) as an example.

Assuming word A has only a single character a1, while word

B is made up of two characters b1 and b2, and C a three

character word containing c1, c2 and c3, the WFST repre-

sentation of such lexicon is shown in Fig. 3 below.

In contrast, the log-linear model combination given in

Eq. (3) of Sec. III B may be efficiently implemented using a

sequence of WFST composition operations between compo-

nent n-gram model transducers after an arithmetic scaling of

arc costs by their respective log-linear weights. This is given

by

L ¼
�
Lð1ÞG � k1

�
� � � �

�
LðmÞG � k2

�
� � � �

�
LðMÞG � kM

�
:

FIG. 1. (Color online) WFST representation of two 2-g back-off LMs.

FIG. 2. (Color online) WFST representation of context independent linear

interpolation weights for component LMs in Figs. 1(a) and 1(b).
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The multi-level combination described in Sec. III C may

be represented as composition between union-ed LM WFSTs.

V. LANGUAGE MODEL ADAPTATION

In order to improve robustness to varying style or tasks,

unsupervised test-time LM adaptation to a particular broad-

cast show, for example, may be used.18,19 As directly adapt-

ing n-gram probabilities is impractical on limited amounts of

data, standard LM adaptation schemes only involve updating

the context independent, linear interpolation weights of

Eq. (2).14,16

However, this approach can only adapt LMs to a partic-

ular genre, epoch or other higher level attributes. Local fac-

tors that determine the contribution of sources on a context

dependent basis, such as modeling resolution, generalization,

topic coverage, and style, are poorly modeled. Take the 2-

gram distribution PðCjBÞ in Fig. 1 as an example, the first

component LM of Fig. 1(a) gives a 2-gram log-probability

of �8.5, while a lower score of �15.5 is assigned by the sec-

ond one via a back-off path in Fig. 1(b). In this case the

probability contribution from the two component LMs

clearly contradicts the assignment of context independent

interpolation weights of 0.3 and 0.7 in Fig. 2. To handle this

issue, context dependent LM interpolation and adaptation

can be used.10,17,20,21 A set of discrete context dependent

back-off weights are used to dynamically adjust the contri-

bution from component LMs. Thus Eq. (2) is extended to

lnPðWÞ ¼
XL

i¼1

ln
XM

m¼1

/mðhn�1
i ÞPmðwijhn�1

i Þ
 !

; (4)

where /mðhn�1
i Þ is the mth component’s context dependent

weight for history hn�1
i .

Both maximum likelihood and discriminative schemes

are available to robustly estimate context dependent interpo-

lation weights.20,21 Considering the maximum a posteriori
based adaptation as an example, this is given by

/̂mðhn�1
i Þ ¼

CML
m ðhn�1

i Þ þ s/̂mðhn�2
i ÞP

m
CML

m ðhn�1
i Þ þ s

; (5)

where CML
m ðhn�1

i Þ is maximum likelihood (ML) counts for

history context hn�1
i , and s controls the contribution from a

hierarchical prior, /̂mðhn�2
i Þ, before log-linearly combined

with a high resolution training data prior.21

To improve robustness to the supervision quality, it is

possible to use confidence score weighted sufficient statistics

when estimating context independent, and dependent inter-

polation weights.10,33 The log-likelihood in Eq. (4) is thus

modified as

lnP
^

ðWÞ ¼
XL

i¼1

ciln
XM

m¼1

/mðhn�1
i ÞPmðwijhn�1

i Þ
 !

; (6)

where ci is the confidence score for word wi. By default,

when using a null history the above simplifies to confidence

score based adaptation of context independent weights in

Eq. (2). To further improve robustness during context de-

pendent LM adaptation, it is also possible to impose a count

cut-off for different histories, for example, the average word

level confidence score computed over the supervision

hypotheses. Contexts which do not have sufficient counts

will be pruned in weight estimation.

The WFST representation of Sec. III A also holds for

LMs constructed using context dependent interpolation

weights. The difference between context independent and

dependent LM interpolation lies in the precise nature of the

weight transducers. Again taking the two component LMs of

Figs. 1(a) and 1(b) as examples, the WFST representation of

their context dependent interpolation weights are shown in

Figs. 4(a) and 4(b). As is shown in the figure, when the his-

tory varies, more flexibility is allowed in component LM

weighting than for the context independent case of Fig. 2.

For the 2-gram PðCjBÞ, a duly higher weight of 0.8 (0.219 as

negated natural log) is now assigned to the first component

LM.

VI. IMPLEMENTATION ISSUES

In this section implementation issues that can affect the

performance of multi-level LM combination and adaptation

are discussed.

A. Decoding with multi-level LMs

When character and word based LMs are combined to

form a multi-level LM, two decoding strategies can be consid-

ered. The first starts from a standard word based recognition

and lattice generation stage. A word level LM constructed

using a linear combination between component LMs trained

FIG. 3. (Color online) WFST representation of a lexicon which provides a

mapping from character sequences to words.

FIG. 4. (Color online) WFST representation of context dependent linear

interpolation weights of component LMs shown in Figs. 1(a) and 1(b).
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on different text sources is used in decoding. This is followed

by expanding the resulting word lattices into sub-word, i.e.,

character level lattices, via a composition with the inverse of

the lexicon transducer of Fig. 3 (obtained by swapping input

and output symbols), which provides word to character

sequence mapping. A final composition with a character level

LM leads to a log-linear combination between the two and

produces the most likely hypothesis.

In contrast, the second option starts from character recog-

nition using a linearly interpolated multi-source character

level LM. This is followed by a transduction of the resulting

lattices from the sub-word, character level, to the word level

by a composition with the lexicon WFST shown in Fig. 3.

The character-level LM is then log-linearly combined with a

word-level language model via a composition operation to

produce the best hypothesis. As discussed in Sec. I, character-

level LMs provide weaker linguistic constraint than word-

based LMs. As a result, when using this decoding approach,

the character lattices generated in the initial stage are prone to

have higher lattice oracle error rates34 due to the necessity of

pruning. The increase in lattice error rate can also affect the

final recognition performance when the character LM is fur-

ther combined with a word based LM, as is confirmed in the

experimental results presented later in this paper.

B. On-the-fly WFST network expansion

When using context dependent interpolation in LM ad-

aptation and decoding, every broadcast show or snippet, for

example, may have its own set of interpolation weights.

When modeling a large number of contexts using the trans-

ducer topology of Fig. 4, the composition operation between

component n-gram and their weight WFSTs can lead to a

significant network expansion. This is highly inefficient and

makes the subsequent network compression operations very

expensive. The same issue exists during the composition

between component n-gram transducers in the log-linear

combination of Sec. III B. Hence, it is preferable to dynami-

cally perform the composition, union, and compression oper-

ations in one single on-the-fly step. Related approaches have

been previously shown to be effective for the composition

between one single back-off n-gram LM and a lexicon.35

The basic idea is to only create a new path on request during

search, if and only if it carries context information different

from others. For context dependent adaptation, the LM state

associated with context history is jointly determined by com-

ponent n-gram models and interpolation weights in the form

of a context pair. Using this on-the-fly lattice expansion

algorithm, redundant paths representing unused lower order

back-off distributions will be automatically filtered out.

VII. EXPERIMENTS AND RESULTS

A. Baseline system description

The CU-HTK Mandarin ASR system36 was used to

evaluate the performance of multi-level language models.

Two versions of the speech recognition system were used.

One used words as the basic recognition unit (as is usually

done) and the other used characters. This was done to deter-

mine whether character based recognition, followed by

applying the word level LM and then breaking the words

into characters again would be better than word based recog-

nition with word level LM’s, then breaking the words into

characters and applying character level LM constraints.

In theory the results should be comparable, but in practice

they are not due to the increase in lattice error rate when per-

forming character recognition first, as discussed earlier in

Sec. VI A.

1. Acoustic model training

Context dependent phone models, for example, tri-

phones, are the most common acoustic unit used in state-of-

the-art speech recognition systems. The CU-HTK Mandarin

system uses 46 base phones to which five tones (four tones

and the neutral tone) are added to the vowels. The result is

124 tonal phones. A recognition dictionary of 63 k words

with an average of 1.02 pronunciations per word is used.

There are 52 k multiple character Chinese words, 6 k single

character words, and 5 k frequent English words.

Speech data for acoustic model training consisted of

1673 hours of broadcast news (BN) and broadcast conversa-

tion (BC) data released under the DARPA GALE program.

Human transcribed speech is first force-aligned with a stand-

ard word based speech recognition system using a dictionary

to assign phone sequences to each word. ML and then later

discriminative training techniques,37 were used to train three

state left to right Gaussian mixture hidden Markov (HMM)

based triphone models.

To handle the data sparsity issue, phonetic decision

trees38 were used in HMM state tying for the CU-HTK Man-

darin ASR system. MLLR speaker adapted,39 gender depend-

ent, MPE discriminatively trained37 cross-word triphone

HMM acoustic models were used in decoding. The acoustic

models were trained on 39 dimensional HLDA (Refs. 40 and

41) projected PLP (Ref. 42) features with cepstral mean nor-

malization and appended log pitch parameters.

2. Language model training

A total of 4.3 billion characters from 27 text sources

were used in LM training. After a left to right longest first

based character to word segmentation, 2.8 billion words of

texts in total were used to train a word level interpolated 4-

gram back-off LM.13 Information on corpus size, cut-off set-

tings, and smoothing or discounting schemes for text sources

are given in Table I. The context independent linear interpo-

lation weights of the word level 4-gram LM were perplexity

tuned on the reference transcription of the GALE develop-

ment set dev07 combined with two additional held out sets,

bn06 of 3.4 h of BN data, and bc05 of 2.5 h of BC data.

These are shown in the fifth column of Table I. A similar

rank ordering of sources weights was also obtained for the

character level language model. Due to data sparsity, only 5-

gram and 6-gram LMs were built for character level models.

Their cut-off settings are shown in brackets. For data sources

that are closer in genre to the test data, minimum cut-offs

and modified KN smoothing43 were used. These include two

audio transcription sources, bcm and bnm, and additional
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web data from major TV channels such as Phoenix TV and

Voice of America. For example, a cut-off of “111” were

used for the bnm and bcm sources. This setting implies that

there has to be one occurrence of any bigram, trigram or

fourgram if any of them were to be retained. For the largest

corpora of newswire genre and Taiwanese origin, giga-cna,

more aggressive cut-offs and good Turing discounting were

used.

3. Character recognition system

A character based speech recognition system was also

implemented by using a character dictionary with multiple

pronunciations and a character level LM sequence model

during decoding. There are 6 k characters in the dictionary

and 5 k frequent English words with approximately 1.1 pro-

nunciations per character. The resulting character lattices

were then converted into word lattices using a dictionary

mapping character sequences to words before a word level

LM is applied, as previously described in Sec. VI A. The

word level LM, which provides more constraints, is used to

refine the ranking of hypotheses. Finally the words are bro-

ken into characters and a character error rate is determined.

4. Test sets

Three Mandarin Chinese broadcast speech test sets of

mixed BN and BC genre were used in the experiments: 2.6 h

dev07, 1 h dev08, and 2.6 h p2ns. For all results presented in

this paper, statistical significance tests were performed at a

significance level a¼ 0.05.

B. Performance of character and word level LMs

The model sizes of the final interpolated 4-gram word

and 6-gram character level LMs are shown in Table II. The

total log-probability scores on the combined held out data

reference bn06 þ bc05 þ dev07 assigned by these two LMs

are shown in the sixth column of the table. On average the

word based system produces approximately 1.5 characters

per word. Hence, a 6-gram character based LM would be

appropriate to compare with a 4-gram word level baseline.

As expected, with a stronger constraint, the word based

model gave a better log-probability than the character based

one. The perplexity metric is commonly used to measure the

predictive power of LMs. However, as these two LMs con-

sidered here model different linguistic units, a direct com-

parison between word and sub-word level perplexity scores

is not meaningful. One possible solution is to approximate

the sub-word, or character, level perplexity for the word

based LM. The number of sub-word units, instead of the

word level sequence length, is used in perplexity computa-

tion. This approximate character level perplexity score is in

the last column of the first line for the word based system.

Consistent with the trend observed on log-likelihood, the

word based model also has a lower approximated character

level perplexity by 9% relative.

A similar error rate performance difference between the

4-gram word baseline and the 6-gram character level LM

can also be found in the second and fifth line of Table III.

The word level LM outperformed the character based LM by

statistically significant 0.7%–1.1% absolute (7.3%–11.2%

relative) across all test sets. The CER performance of vari-

ous other systems on dev07, dev08, and p2ns is shown in Ta-

ble III. The performance of the 3-gram word based model,

the 4-gram and 5-gram character based models are shown in

the first, third, and fourth lines of the table. For the word

based LM, increasing the n-gram context length from 3-

gram to 4-gram gave further CER reductions of 0.2%–0.4%

absolute (2.0%–4.0% relative) on all test sets. In contrast,

the relative gains on the character based system, for exam-

ple, between 5-gram to 6-gram models, are only 0.1%–0.2%

on dev07 and p2ns.

The weaker constraints of character level LMs can also

be shown by measuring the oracle error rate of the lattices it

produces. In this process, lattices from the word 4-gram and

character 6-gram based systems are examined to test whether

TABLE I. Text source size, 2/3/4-gram cut-off settings, smoothing scheme

used in training (5/6-gram cut-offs for character level LMs in brackets), per-

plexity tuned interpolation weights using held-out data.

Comp. LM #Char. (M) #Word (M) Train config. Intplt. weight

bcm 14.26 9.21 kn/111(11) 0.260058

bnm 12.29 7.41 kn/111(11) 0.147834

gigaxin 483.65 362.74 kn/112(22) 0.132539

phoenix 144.57 91.38 kn/112(22) 0.107920

gigacna 891.13 604.98 gt/123(33) 0.072665

voarfa 63.54 35.31 kn/112(22) 0.072299

ibmsina2 382.34 253.59 kn/112(22) 0.055601

bbndata 301.39 186.3 kn/112(22) 0.046213

galeweb 556.41 390.8 kn/122(22) 0.045918

agilece 336.78 204.5 kn/112(22) 0.031497

ntdtv 36.44 24.75 kn/112(22) 0.010216

ibmsina1 78.39 51.89 kn/112(22) 0.003814

papersjing 197.75 135.69 kn/112(22) 0.003220

tdt4 2.98 1.76 kn/112(22) 0.003005

tdt2þ3 15.87 9.35 kn/112(22) 0.001689

xinhuachina 105.88 76.57 kn/112(22) 0.001587

sriwebconv 163.16 114.6 kn/112(22) 0.001081

gigaafp 40.28 27.24 kn/112(22) 0.000770

cctvcnr 47.31 29.59 kn/112(22) 0.000751

hub4m 0.38 0.22 kn/111(11) 0.000533

chradio 91.55 54.86 kn/112(22) 0.000468

papersyue 52.48 34.14 kn/112(22) 0.000275

gigalhzb 29.16 19.73 kn/112(22) 0.000019

papershu 50.67 34.85 kn/112(22) 0.000012

pdaily 114.51 68.89 kn/112(22) 0.000012

papersning 51.99 33.9 kn/112(22) 0.000006

dongailbo 12.82 8.02 kn/112(22) 0.000000

TABLE II. Model sizes of word and character level LMs, their total log-

probability and character level perplexity scores on the combined reference

of bn06 þ bc05 þ dev07.

Model size (M)

LM 2g 3g 4g 5g 6g Log prob. Char. PPlex

word 60 228 56 — — �511524 25.61

char. 10 148 111 130 122 �524473 27.91
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the correct characters are present. This measure would serve

as a performance upper bound for the underlying recognition

system. As discussed in Sec. III, for the baseline system that

uses a word level LM, this requires expanding the lattices

onto the character level, via a composition with the inverse

of the lexicon transducer of Fig. 3. The lattice oracle CER

performance of these two systems are shown in Table IV.

Again, the word level LM, which provides a stronger con-

straint during search, consistently produced lower lattice

error rates.

As discussed in Secs. I and VI A, the higher lattice oracle

error rates that resulted from the weak constraints of character

level LMs can also affect the final recognition performance

when the they are further combined with a word based LM.

This is confirmed by the error rate performance of the

“c:6g � w:4g” system shown in the sixth line of Table III,

derived by a sequence of composition operations between the

character level lattices, the lexicon WFST shown in Fig. 3,

and finally the baseline word level 4-gram LM WFST, as dis-

cussed in Sec. VI A. These effectively provide a log-linear

combination between the 6-gram character level and 4-gram

word level LMs. Despite using both word and character level

constraints, this system is consistently outperformed by using

the 4-gram word baseline LM alone across all test sets. In

particular, a statistically significant increase in CER of 0.7%

and 0.5% absolute were observed on dev07 and p2ns, respec-

tively. These results suggest that using character level LMs to

generate initial recognition hypotheses is unsuitable due to its

weak constraints. The pruning during recognition seems to

remove the correct character sequences and has increased the

number of search errors. Instead the sub-word level con-

straints they provide should be applied in later recognition

stages, for example, after standard word level recognition is

performed.

C. Performance of ROVER combination

The rest of Table III shows the performance of various

other methods combining information from word and char-

acter LMs based recognition systems. Performance of three

character level ROVER systems combining the 4-gram word

LM based system with various character LM based ones are

shown in the third section of Table III. The best ROVER

configuration is between the 4-gram word and the 6-gram

character LM based systems, but it is still outperformed by

the 4-gram word level LM by 0.2%–0.4% absolute on dev07

and p2ns. As previously discussed in Sec. II, hypothesis

level combination methods such as ROVER require that the

error rate of component systems be similar in order to be

effective in combination. However, this condition is not sat-

isfied given the significant performance difference between

the word and character LM based systems of Table III. Fur-

thermore, as there are only two component systems used in

ROVER, the combination decision is purely based on confi-

dence scores as voting now has no effect. Poor confidence

scores generated by the character LM based systems can

introduce additional errors in combination.

D. Performance of multi-level LMs

The performance of model level combination techniques

discussed in Sec. III were then evaluated. Based on the lat-

tice oracle error rates shown in Table IV, the lattices pro-

duced by the word based LM are used in a later rescoring

stage where various combined LMs are used. As discussed

previously in Sec. III, the precise nature of the sub-word,

character level LM determines whether a linear or log-linear

model level combination would be appropriate to use. A

MoE model uses linear interpolation between the word and

sub-word n-gram models. Rather than increasing the com-

bined model’s discrimination, it broadens the underlying sta-

tistical distribution and improves its generalization. This was

confirmed by the error rate performance of using a linear

model combination between character and word level LMs,

which was consistently outperformed in practice by the

standard word based 4-gram LM. Exhaustive tuning of linear

interpolation weights on dev08, for example, between the 4-

gram word and 6-gram character level LMs showed that the

best linear weighting is to use the word based LM’s proba-

bility only.

In contrast, a PoE model,24 which uses a log-linear

model combination, tends to sharpen the underlying distribu-

tion and increase its power of discrimination. As character

level LMs provide additional sub-word, syllable level infor-

mation, it is expected that a log-linear, rather than linear,

interpolation would be more suitable for incorporating char-

acter level constraints. An equally weighted log-linear inter-

polation between the 4-gram word and character based LMs

using a WFST composition operation described in Sec. III B

gave consistent CER reductions of 0.1%–0.2% on all test

TABLE IV. Oracle character level error rate for lattices generated using

word or character level LMs on dev07, dev08, and p2ns.

Lattice Oracle CER%

LM dev07 dev08 p2ns

word 1.71 1.70 1.89

char. 2.04 1.89 2.02

TABLE III. 1-best CER performance of various LMs on dev07, dev08, and

p2ns. � denotes hypothesis level ROVER and “�” denotes WFST composi-

tion operations.

CER%

System dev07 dev08 p2ns

w.3 g 10.0 10.0 9.8

w.4 g 9.8 9.6 9.6

c.4 g 11.5 10.4 10.8

c.5 g 11.1 10.3 10.6

c.6 g 10.9 10.3 10.5

c.6 g � w.4 g 10.5 9.9 10.1

w.4 g � c.4 g 10.4 9.8 10.0

w.4 g � c.5 g 10.2 9.7 9.9

w.4 g � c.6 g 10.2 9.6 9.8

w.4 g � c.4 g 9.7 9.4 9.5

w.4 g � c.5 g 9.7 9.4 9.4

w.4 g � c.6 g 9.7 9.4 9.4
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sets over the word based standard system. These are shown

in the bottom section of Table III. These results suggest

including a character level LM provides additional sub-word

level linguistic constraints and increased discrimination for

Mandarin speech recognition.

E. Performance of adapted multi-level LMs

As discussed in Sec. III C, when using the above multi-

level LM combination frame-work, in order to improve con-

text coverage and generalization, both the word and charac-

ter level LMs are constructed by a linear combination of

component n-gram LMs trained over a diverse set of text

sources shown in Table I, prior to a log-linear combination

between word and character level mixture models. In order

to improve robustness to varying styles or tasks, unsuper-

vised LM adaptation can be used, as discussed in Sec. V.

Hence, it would be interesting to investigate the gains from

the log-linear combination based multi-level LM shown in

Table III are retained after LM adaptation. This is evaluated

and shown in Table V using confusion network (CN) (Ref.

23) decoding at the lattice generation stage of the CU-HTK

Mandarin ASR system. The CN outputs and associated con-

fidence scores generated by the unadapted baseline LM, and

the confidence score weighted log-likelihood criterion in Eq.

(6) presented in Sec. V were used to adapt various LMs.

The CER performance of the baseline word level 4-

gram LM is shown in the first line of Table V. The perform-

ance of using the character level 6-gram model is shown in

the second line of Table V. Consistent with the 1-best decod-

ing results shown in Table III, with a stronger constraint, the

word level 4-gram baseline significantly outperformed the

character 6-gram LM by 0.4%–1.2% absolute. When com-

bining character and word level constraints using an equally

weighted log-linear interpolation of Eq. (3) and the WFST

representation presented in Sec. III B, consistent perform-

ance improvements were obtained over the word level base-

line. This is shown in the third line of Table V. It gave a

statistically significant CER reductions of 0.5%–0.3% on

dev08 and p2ns, respectively.

The second section of Table V shows the performance

of three adapted LMs using the estimation scheme and

WFST representation given in Secs. III and V. The 1-best

outputs from the un-adapted word level baseline system was

used as the supervision in perplexity based LM adaptation.

Standard LM adaptation using context independent interpo-

lation weights gave CER reductions of 0.1%–0.3% absolute

across three test sets (fourth line of Table V). Using three-

word history based context dependent adaptation of Eq. (4),

further CER improvements of 0.1% absolute were obtained

for all test sets (fifth line of Table V). Context dependent ad-

aptation of both word and character level LMs before a final

log-linear combination gave the best performance in the

table. Absolute CER reductions of 0.4% and 0.3% on dev08

and p2ns were obtained over the baseline word level LM

adapted using context independent interpolation. The total

performance improvements over the unadapted word level

4-gram LM baseline are 0.3% on dev07, 0.7% on dev08

(7.3% relative), and 0.5% on p2ns (5.2% relative), respec-

tively, all being statistically significant.

Table V shows the performance of multi-level combined

and adapted LMs at the lattice generation stage. It would also

be interesting to examine if the performance improvements

can be maintained at the following stage of the CU ASR sys-

tem where re-adapted acoustic models are used to rescoring

the lattices generated by various LMs in Table V. These are

shown in Table VI. The performance improvements from the

adapted multi-level combined LM (last line of Table VI)

over the word level baseline (first line of Table VI) were

largely maintained. Statistically significant CER reductions

0.3%–0.5% absolute were obtained over all test sets, in

particular, 0.5% absolute (5.5% relative) for dev07 and p2ns.

VIII. CONCLUSION

In this paper character level language models were used

as an approximation of allowed syllable sequences that follow

Mandarin Chinese syllabiotactic rules. A range of combina-

tion schemes were investigated to integrate character sequence

level constraints into a standard word based speech recogni-

tion system. A generic and flexible weighted finite state trans-

ducer based language model combination and adaptation

framework was also proposed. Significant error rate gains up

to 7.3% relative were obtained on a state-of-the-art Mandarin

Chinese broadcast audio recognition task using a history

dependently adapted multi-level LM that performs a log-

linear combination of character and word level LMs. These

results suggest character sequence models are useful for

improving Mandarin speech recognition performance. Future

research will focus on incorporating character sequence con-

straints into more complex forms of language models, for

example, neural network based LMs.44 Syllable based acous-

tic modeling and the use of additional prosodic information,

such as stress, will also be investigated.

TABLE V. CN performance of language models on bn06, bc05, dev07,

dev08, and p2ns. “�” denotes the WFST composition operation.

CER%

P2 system LM adapt. dev07 dev08 p2ns

w.4g — 9.7 9.6 9.6

c.6g — 10.9 10.0 10.3

w.4g � c.6g — 9.5 9.1 9.3

w.4g CI 9.6 9.3 9.4

w.4g CD 9.5 9.2 9.3

w.4g � c.6g CD 9.4 8.9 9.1

TABLE VI. CN performance of acoustic rescoring of the lattices generated

by various language models on dev07, dev08, and p2ns using re-adapted

acoustic models.

CER%

P3 system LM adapt dev07 dev08 p2ns

w.4g — 9.3 8.7 9.1

w.4g CI 9.1 8.6 9.1

w.4g CD 9.0 8.5 8.8

w.4g � c.6g CD 8.8 8.4 8.6
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