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ABSTRACT

Computing the shortest path for any two given vertices is an im-

portant problem in road networks. Since real road networks are

dynamically updated due to real-time traffic conditions and it is

costly to recompute the oracle O in use from scratch, O needs to

be updated to reflect the changes in the network using incremental

algorithms. An incremental algorithm is said to be bounded if its

cost is polynomial in |CHANGED|, where CHANGED comprises

both the changes to the graph and the resulting changes to O . An

incremental problem is bounded if it has a bounded algorithm and

is unbounded otherwise. We study the boundedness of the incre-

mental counterparts of two state-of-the-art oracles, namely con-

traction hierarchy (CH) and hierarchical 2-hop index (H2H). We

prove that under specific computational models, bothCH andH2H

are unbounded to maintain. Despite this fact, we introduce rela-

tive subboundedness as an alternative to boundedness. We prove

that the state-of-the-art incremental algorithm for CH is relatively

subbounded, and moreover, we propose a relatively subbounded

algorithm forH2H. Our experimental study on real road networks

shows that the algorithms studied are faster than recomputing from

scratch even when 10% of the index needs to be updated, thereby

verifying the effectiveness of relative subboundedness.
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1 INTRODUCTION

As an important class of graphs in graph analytics, road networks

have attracted much attention from both academic and industrial

communities. Specifically, a road network is a weighted graphG =
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(V ,E,ϕ), where a vertex v ∈ V represents an intersection, an edge

e ∈ E represents a road, and the weight ϕ(e) of an edge e may rep-

resent the transit time, physical distance or any other metric of the

road. Given a road network, the problem of efficiently computing

the shortest path or distance between two given vertices is impor-

tant in that it benefits many applications such as route planning,

POI recommendation and GPS navigation. Because of its signifi-

cance, many path and distance oracles (oracles for short) for road

networks have been proposed, such as contraction hierarchy (CH)

[26], arterial hierarchy (AH) [52], hierarchical 2-hop index (H2H)

[37] and projected vertex separator based 2-hop index (P2H) [13],

each with a different tradeoff among indexing time, index space

and query time. All these oracles are for static networks.

However, in real road networks, while the vertices and edges

can be reasonably assumed to be intact (since road construction

and destruction are rare in practice), the weights (e.g., transit time)

of the edges may continuously change over time due to real-time

traffic conditions. Accordingly, the shortest path and distance be-

tween two vertices may also change. As a result, it is required that

the oracle in use be updated to reflect the changes in the road net-

work. Formally, letO(G) be the oracle currently in use, ∆G be a set

of weight updates toG andG ⊕ ∆G be the resulting network after

applying ∆G to G. Given ∆G, the problem of oracle maintenance

is to updateO , thereby obtaining O(G ⊕ ∆G).

Obviously, it is too costly to computeO(G ⊕ ∆G) starting from

scratch where G is large and ∆G is small. After all, the state-of-

the-art oracles all require a non-trivial amount of computation to

construct. In light of this, it is more practical to maintain O incre-

mentally by using an incremental algorithm. Specifically, fed with

G, ∆G and O(G), an incremental algorithmA∆ forO computes an

update ∆O to O(G) such that O(G ⊕ ∆G) = O(G) ⊕ ∆O . Such an

algorithm is usually more efficient because (1) when ∆G is small

(e.g., a single weight update), ∆O is also likely to be small; and (2)

A∆ can effectively capitalize on the previous oracleO(G), thereby

avoiding some duplicate computation when dealing with ∆G.

An incremental algorithmA∆ forO is desired to be bounded [8,

41]. Specifically, A∆ is bounded if there exists a polynomial func-

tion f such that the cost ofA∆ is bounded byO(f (|CHANGED|)),

where |CHANGED| = |∆G |+ |∆O | is the amount of changes in the

input and output after applying ∆G toG. Intuitively, |CHANGED|

represents the minimum amount of work that any incremental al-

gorithm for O needs to do in order to handle ∆G and is likely to

be small when |∆G | is small. Therefore, a bounded A∆ guaran-

tees the efficient updatability ofO , compared with recomputingO

from scratch. The problem of maintaining oracleO is bounded if a

boundedA∆ for O exists and is unbounded otherwise.

We study the boundedness of contraction hierarchy (CH) [26]

and hierarchical 2-hop index (H2H) [37] in this paper. We select
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these two oracles for the following reasons: (1) CH is a successful

oracle with outstanding performance in practice, and efficient in-

cremental algorithms [39, 48] have been proposed to update CH;

however, the (un)boundedness of incremental CH has not been in-

vestigated yet; and (2) H2H is one of the state-of-the-art oracles

and has been a building block for other applications such as near-

est neighbor search [31, 38]; the incremental counterpart of H2H,

however, has not been well studied in the literature. In view of

these facts, we would like to close these gaps in this paper.

Contributions. Our main contributions are as follows.

Theoretical Results. This paper is one of few works [8, 21, 22, 41]

that study boundedness. Under the class of locally persistent (LP)

algorithms, which is the standard model of computation to study

boundedness [8, 21, 22, 41], we prove both the problem ofmaintain-

ingCH and that ofmaintainingH2H are unbounded even for single

weight updates (i.e., only one edge has weight changed). We also

consider two classes of incremental algorithms, denoted INCCH

and INCH2H , that include practically efficient algorithms [39, 48]

for CH and H2H, respectively. We prove that the algorithms in

INCCH and INCH2H are also unbounded for single weight updates.

Relative Subboundedness. In spite of the impossibility results, we

show that both CH and H2H can still be maintained more effi-

ciently than recomputing from scratch. Specifically, as an alterna-

tive to boundedness, we propose relative subboundedness for CH

and H2H. In detail, letQ be either the problem of constructing CH

or the problem of constructingH2H on a graphG. LetQ(G) denote

the result of Q on G (e.g., the CH oracle constructed on G). Then

the incremental counterpart ofQ is to update the result fromQ(G)

toQ(G ⊕∆G)when an update ∆G is applied toG. The introduction

of relative subboundedness is to characterize the efficiency of an

incremental algorithmA∆ that maintains Q(·).

Let D(G) and D(G ⊕ ∆G) denote the data that every algorithm

for Q needs to inspect when computing Q(G) and Q(G ⊕ ∆G), re-

spectively. AFF is defined as the part of D(G ⊕ ∆G) that differs

from D(G). Intuitively, it captures the part affected by ∆G. Let A

be any algorithm for Q . We define ‖AFF‖ as the part of time spent

on AFF by A when computing Q(G ⊕ ∆G) and say an incremen-

tal algorithm A∆ that updates the result fromQ(G) to Q(G ⊕ ∆G)

is subbounded relative to A if its cost is ofO(‖AFF‖ log ‖AFF‖). By

definition, we have ‖AFF‖ ≤ TA , whereTA is the cost ofA to com-

puteQ(G ⊕∆G), i.e., the cost to deal with ∆G by recomputing from

scratch. Hence, an incremental algorithmA∆ subbounded relative

toA is likely to outperform recomputing from scratch using A.

Compared with relative boundedness [21], the definition of rel-

ative subboundedness employs a different characterization of af-

fected area (i.e., ‖AFF‖) and requires that an algorithm be linearith-

mically dependent on ‖AFF‖ instead. Therefore, in general, neither

of them can dominate the other. Ideally, an incremental algorithm

is desired to be both relatively subbounded and relatively bounded.

However, our study onCH andH2H shows that relative subbound-

edness alone is enough to warrant efficiency.

We prove that the state-of-the-art incremental algorithm DCH

[39] for CH (1) is subbounded relative to CHIndexing under weight-

increase updates, where CHIndexing [39, 48] is the state-of-the-art

algorithm to constructCH, and (2) is both subbounded and bounded

relative to CHIndexing under weight-decrease updates. Therefore,

CH can still be maintained more efficiently than recomputing from

scratch, although no bounded algorithms are known.

New Algorithms. In addition, we propose a new incremental algo-

rithm IncH2H to maintain H2H. We prove that IncH2H (1) is sub-

bounded relative to H2HIndexing under weight-increase updates,

where H2HIndexing [37] is the state-of-the-art algorithm to con-

struct H2H, and (2) is both subbounded and bounded relative to

H2HIndexing under weight-decrease updates.

Experimental Evaluation. We conducted experiments to verify the

effectiveness of relative subboundedness on nine road networks.

Our experiments show thatDCH and IncH2H respectively are able

to outperform CHIndexing and H2HIndexing even if 10% of the

index needs to be updated, indicating the superiority of relatively

subbounded algorithms over recomputing from scratch. Therefore,

relative subboundedness is an effective alternative to boundedness

and may be used to characterize the update efficiency of other un-

bounded incremental problems. We also conducted experiments

to compare CH and H2H in dynamic networks. From the experi-

ments, we find that CH and H2H show different tradeoffs between

query time and update time.WhileH2H takes more time to update,

it provides striking query performance in practice.

RelatedWork. We classify the related work as follows.

Static Road Networks. Many oracles have been proposed for static

road networks where the weights of the edges are fixed. Dijkstra’s

algorithm is a classic algorithm for computing shortest path. Many

different techniques, such as ALT [28], REACH [30] and arc-flag

[32], have been proposed to reduce the search space of Dijkstra’s

algorithm, thereby gaining performance improvement. Highway

Hierarchy (HH) [43] exploits the hierarchical nature of road net-

works so that queries can be answered by searching the sparse

high levels. Contraction Hierarchy (CH) [26] is an oracle with out-

standing overall performance. Its efficiency relies heavily on the

notion of shortcut, which represents a shortest path in the graph.

Arterial Hierarchy (AH) [52] is similar to CH except that it fur-

ther exploits spatial information. Spatial-coherence-based meth-

ods such as Spatially Induced Linkage Cognizance (SILC) [42] and

Path-Coherent Pair Decomposition (PCPD) [44] exploit the spatial

coherence among shortest paths. Both indices require the precom-

putation of all-pairs shortest paths and thus are prohibitively ex-

pensive to construct. Hierarchical Labeling (HL) [2] and Pruned

Highway Labeling (PHL) [4] are two indices based on hub labeling

[15]. Such methods permit efficient query evaluation since they do

not need to do any search when answering a query. Hierarchical 2-

Hop Index (H2H) [37] combines the merits of hierarchical methods

and hub labeling methods to provide striking query performance.

Projected Vertex Separator Based 2-Hop Index (P2H) [13] improves

on H2H by further reducing the hubs to inspect during query pro-

cessing. Customizable Route Planning (CRP) [19] is an oracle sup-

porting any metric in a unified manner.

Dynamic Road Networks. The weights of the edges in real road net-

works may change over time (e.g., from normal condition to con-

gestion). For this reason, several algorithms have been proposed to

update oracles in dynamic road networks. In [19], an algorithm to



maintain CRP is presented. Ouyang et al. [39] proposed a shortcut-

centric algorithm called DCH to update CH and showed its supe-

riority over both CRP [19] and the vertex-centric algorithm pro-

posed in [27]. Independently in [48], Wei et al. proposed another

algorithmUE tomaintainCH. As baselines, the authors of [48] also

proposed algorithms such as PCPDAdapt, SILCAdapt, H2HAdapt

and so on for the corresponding oracles. Their experiments show

that CH + UE has the best overall performance. It is worth men-

tioning that the aforementioned H2HAdapt may fail to correctly

update H2H even in some trivial cases (please refer to the full ver-

sion [46] for a counterexample). In [13], an algorithm, denoted

DynH2H, for maintaining H2H is shown. Independently, in [51],

Zhang et al. proposed an algorithm, DTDHL, which can be consid-

ered as an optimized version of DynH2H and thus is the state of

the art to maintain H2H. Still, DTDHL may take seconds even if

only one edge has weight changed.

Boundedness. The notion of boundedness has been used to evaluate

incremental algorithms for problems such as single source reach-

ability [41], graph pattern matching [24] and so on [8, 21]. All

unboundedness results in these works are under the model of lo-

cally persistent algorithms. Since the notion of boundedness is of-

ten too strict, several alternative measures have been proposed. In

[24], Fan et al. showed that incremental graph simulation has semi-

bounded algorithms. Specifically, let AFF∀ be the changes in the

result and in auxiliary structures that are necessarily maintained

for any incremental algorithms for the problem. An incremental

algorithm is semibounded if its cost is bounded by a polynomial in

|∆G |, |AFF∀ | and the size |P | of pattern. In [21], Fan et al. proposed

two new standards, namely, localizable computation and relative

boundedness: (1) localizable computation is to restrict incremental

computation to a bounded neighborhood around ∆G, and (2) rela-

tive boundedness is to characterize the efficiency of an algorithm

obtained by incrementalization. We shall discuss their differences

with relative subboundedness in detail in Section 4. In [23], it is

proved that for a contracting and monotonic fixpoint algorithm, a

relatively bounded incremental algorithm can be deduced if one

can identify a bounded scope function. However, for both CH and

H2H, we are unable to identify such a scope function for the case

of weight increase despite our efforts. Therefore, it remains open

if relatively bounded incremental algorithms exist.

Organization. The rest of the paper is organized as follows. Sec-

tion 2 provides the preliminaries. We show our theoretical results

in Section 3 and introduce relative subboundedness in Section 4.

The incremental algorithms for H2H are in Section 5. Section 6 re-

ports the experimental results and Section 7 discusses algorithms

for edge insertion/deletion. Section 8 concludes the paper.

2 PRELIMINARIES

We first introduce some notations, following which we review con-

traction hierarchy [39, 48] and hierarchical 2-hop index [37].

Notations. Let G = (V , E) be a connected road network, where V

is the vertex set and E ⊆ V × V is the edge set. For each vertex

v ∈ V , let nbr(v,G) be the neighbors ofv inG. For each edge e ∈ E,

let ϕ(e,G) ≥ 0 be the weight of e in G. A path p from vertex s to

vertex t is defined as a sequence of vertices (s = v1,v2, . . . ,vℓ = t)
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Figure 1: Demonstration of CH and H2H

such that (vi ,vi+1) ∈ E for ∀1 ≤ i < ℓ. The weight of p, denoted

by ϕ(p,G), is defined as ϕ(p,G) =
∑ℓ−1
i=1 ϕ((vi ,vi+1),G). A path

from s to t is shortest if its weight is no larger than any other path

from s to t . The shortest distance between s and t inG, denoted by

sdG (s, t), is defined to be the weight of the shortest paths between

s and t . For notational convenience, we omit theG in the notations

when the context is clear. Hereafter, we assume thatG is undirected

for ease of exposition, emphasizing that our results and algorithms

can be extended to the directed case. We focus on weight updates

and discuss edge insertions/deletions in Section 7.

Contraction Hierarchy (CH). CH is defined as follows.

Indexing. Given a road network G and a total order π over V , CH

constructs a shortcut graph sc(G) of G as the underlying index.

Specifically, for a vertex v , let π (v) be the position of v in the or-

dering π . A vertex u is said to have a higher rank than another

vertex v if π (u) > π (v). A path p = (v1,v2, . . . ,vℓ) between v1
and vℓ is said to be a valley path [48] if π (vi ) < min{π (v1),π (vℓ )}

for ∀2 ≤ i < ℓ; that is, any intermediate vertex of p has a lower

rank than the endpoints. As a special case, an edge inG is also a val-

ley path. The shortcut graph sc(G) is constructed such that for any

two distinct vertices u and v , there is an edge (u,v) in sc(G) if and

only if there exists a valley path between u and v in G. Following

conventions, we refer to the edges in sc(G) as shortcuts and to the

edges in G as edges. Hereafter, we use 〈u,v〉 to denote a shortcut

in sc(G) and use (u,v) to denote an edge inG.

Each shortcut e = 〈u,v〉 in sc(G) is associated with a weight

ϕ(e, sc(G)) (or ϕ(e)), which is defined to be the weight of the short-

est valley path between u and v in G. For each vertex u , its up-

ward neighbors, denoted by nbr+(u), in sc(G) are the neighbors

that are ranked higher than u . That is, nbr+(u) = {v | 〈u,v〉 ∈

sc(G) ∧ π (v) > π (u)}. The downward neighbors of u , denoted by

nbr−(u), is defined as nbr−(u) = {v | 〈u,v〉 ∈ sc(G)∧π (v) < π (u)}.

For a shortcut 〈u,v〉, a pair of shortcuts (〈t ,u〉, 〈t ,v〉) is said to be

a downward shortcut pair of 〈u,v〉 if π (t) < min{π (u),π (v)}. We

denote by scp−(〈u,v〉) all the downward shortcut pairs of 〈u,v〉.



Input :G: the road network; π : an ordering over V
Output : the shortcut graph sc(G) ofG under π

1 sc(G) ← G;
2 for each u in the order π do
3 for distinctv,w ∈ nbr(u, sc(G)) with π (v), π (w) > π (u) do
4 if 〈v,w〉 < sc(G) then
5 insert shortcut 〈v,w〉 to sc(G);
6 ϕ(〈v,w〉) ← ϕ(〈u,v〉) + ϕ(〈u,w〉);

7 else if ϕ(〈v,w〉) > ϕ(〈u,v〉) + ϕ(〈u,w〉) then
8 ϕ(〈v,w〉) ← ϕ(〈u,v〉) + ϕ(〈u,w〉);

9 return sc(G);

Algorithm 1: CHIndexing

For any shortcut e , as shown in [39], we have

ϕ(e) = min{ϕ(e,G),ϕ(e ′1) + ϕ(e
′′
1 ), . . . ,ϕ(e

′
k
) + ϕ(e ′′

k
)} (✸)

where (1) (e ′i , e
′′
i ) is the i-th downward shortcut pair of e , and (2)

ϕ(e,G) is the weight of edge e if e exists in G and is ∞ otherwise.

An ordered pair of shortcuts (〈u,w〉, 〈w,v〉) is an upward shortcut

pair of 〈u,v〉 if π (w) > π (u) and π (v) > π (u). Note that 〈u,v〉

and 〈u,w〉 make up a downward shortcut pair of 〈w,v〉. The set of

upward shortcut pairs of 〈u,v〉 is denoted by scp+(〈u,v〉).

Example 2.1: For the graph G in Figure 1a, its shortcut graph

sc(G) under the ordering π = (v1, v2, . . . , v9) is shown in Fig-

ure 1b. There is a shortcut 〈v7,v8〉 in sc(G) because valley paths

(e.g., p = (v7,v3,v5,v8)) between v7 and v8 exist inG. The weight

ϕ(〈v7,v8〉) = 8 since the weight of the shortest valley path (i.e., p)

is 8. As can be seen, for v7, nbr
+(v7) = {v8,v9} and nbr−(v7) =

{v2,v3,v4,v5}. The pair (〈v5,v7〉, 〈v5,v8〉) is a downward short-

cut pair of 〈v7,v8〉 because π (v5) < min{π (v7),π (v8)}. No other

downward shortcut pairs exist for 〈v7,v8〉. Hence, scp
−(〈v7,v8〉) =

{(〈v5,v7〉, 〈v5,v8〉)}. Regarding the upward shortcut pairs, it can

be shown that scp+(〈v7,v8〉) = {(〈v7,v9〉, 〈v8,v9〉)}. ✷

Algorithm 1 shows CHIndexing [39, 48], which is the state of

the art to construct sc(G). Following the ordering π , it performs

iterative vertex contractions (lines 3-8). Although CHIndexing as-

sumes π is given beforehand, π can be constructed on-the-fly. For

example, theminimum degree heuristic [12] iteratively chooses the

vertex u with the least number of uncontracted neighbors for con-

traction. Following [39], we use minimum degree heuristic.

The definition of CH above is a variant of the original one [26].

Under the definition of [26], a shortcut 〈u,v〉 is generated only

if the distance between u and v cannot be preserved after vertex

contraction. This way, the number of shortcuts generated can be

greatly reduced. However, such a definition is hard to maintain

under weight changes [27]. Indeed, under this definition, the pres-

ence of a shortcut is weight dependent, indicating that when some

weights change, new shortcuts or existing shortcuts may need to

be added or deleted, respectively. By contrast, the variant we use

is amenable to weight changes in that changing weights only af-

fects the weights of the shortcuts. The state-of-the-art algorithms

DCH[39] and UE[48] for updating CH both use the variant above.

Query. Given a query (s, t), CH reports the distance sd(s, t) by per-

forming a variant of bidirectional Dijkstra’s algorithm on sc(G)

from s and t . During the search, a shortcut is relaxed only if it leads

to a vertex with a higher rank. When one search settles a vertex

which has been settled by the other search, the tentative distance

between s and t is updated. The algorithm terminates when the

keys in the priority queues of the searches are not smaller than

the tentative distance. Finally, the tentative distance is reported.

Example 2.2: Consider sc(G) in Figure 1b and a query (v6,v7).

Starting from each of v6 and v7, a variant of Dijkstra’s algorithm

is conducted. Only the shortcuts 〈v7,v8〉 and 〈v7,v9〉 are relaxed

in the search from v7 since only them lead to vertices with higher

ranks than v7. Similarly, only 〈v6,v8〉 and 〈v6,v9〉 are relaxed in

the other search. v9 is the only vertex settled by both searches.

Therefore, sd(v6,v7) = ϕ(〈v6,v9〉) + ϕ(〈v7,v9〉) = 6. ✷

Incremental CH. Since we use minimum degree heuristic to gener-

ate π , which is weight independent, CHANGED comprises ∆G and

the shortcuts whose weights change, when ∆G is applied toG.

Hierarchical 2-Hop Index (H2H).H2H exploits the fact that road

networks are of bounded treewidth. It is based on CH.

Indexing. Suppose the shortcut graph sc(G) has been constructed.

For each vertex u whose nbr+(u) is not empty, we define x(u) as

the vertex in nbr+(u) with the lowest rank; that is, x(u) ∈ nbr+(u)

and π (x(u)) ≤ π (v) for ∀v ∈ nbr+(u). The vertex with the highest

rank is the only vertex that x(·) is undefined, since it has no up-

ward neighbors. By letting x(u) be the parent of u , we obtain a tree

decomposition T of G, whose root is the vertex with the highest

rank. For each u , let depth(u) denote the depth of u in T such that

the root has depth 1. T has the following nice properties [37]: (1)

Consider two vertices s and t . Let a be the lowest common ances-

tor of s and t in T . Then, all shortest paths between s and t pass

through X (a) = {a} ∪ nbr+(a). (2) For each vertex u , the vertices

in nbr+(u) are also ancestors of u in T .

H2H computes for each vertex u the following information.

• Ancestor array anc(u): For each ancestor a of u , anc(u) is defined

such that anc(u)[depth(a)] = a. Particularly, for notational con-

venience, u is included in anc(u) such that anc(u)[depth(u)] =

u . In other words, (anc(u)[1],anc(u)[2], . . . , anc(u)[depth(u)]) is

the path from the root to u in T . Hereafter, for each ancestor a

of u , the pair 〈〈u,a〉〉 is called a super-shortcut.

• Distance array dis(u): dis(u)[i] stores the distance betweenu and

its i-th ancestor; that is, dis(u)[i] = sd(u, anc(u)[i]).

• Position array pos(u): Let X (u) = nbr+(u) ∪ {u} = {v1, . . . ,vk }.

pos(u) is defined such that pos(u)[i] = depth(vi ) for ∀1 ≤ i ≤ k .

Example 2.3: Figure 1c shows a tree decomposition T of G that

is constructed on sc(G) (Figure 1b). For each of v2,v6 and v8, we

show its upward neighbors (dotted arcs), distance array and posi-

tion array. Take v2 as an example. Because nbr+(v2) = {v5,v7}

and π (v5) < π (v7), v5 is the parent of v2 in T . By definition,

anc(v2) = (v9,v8,v7,v5,v2). Accordingly, dis(v2) = (5, 9, 1, 5, 0)

because the distances from v2 to v9, v8, v7, v5 and v2 are 5, 9, 1, 5

and 0, respectively. We have pos(v2) = {3, 4, 5} because depth(v7),

depth(v5) and depth(v2) are 3, 4 and 5, respectively. ✷

Query. Consider a query (s, t) with s , t . By properties (1) and (2)

of T mentioned above, with a being the least common ancestor of



Notation Description

sc(G) the shortcut graph ofG

ϕ(·) the weight of an edge or a shortcut

〈u,v〉 a shortcut between u and v

nbr+(u) the upward neighbors of u

nbr−(u) the downward neighbors of u

scp+(e) the upward shortcut pairs of shortcut e

scp−(e) the downward shortcut pairs of shortcut e

T a tree decomposition ofG

depth(u) the depth of u in T

anc(u) the ancestor array of u

dis(u) the distance array of u

〈〈u,a〉〉 a super-shortcut where a is an ancestor of u in T

Table 1: Frequently Used Notations

s and t , we have (1) sd(s, t) = minv ∈X (a) sd(s,v) + sd(t ,v), and (2)

all the vertices X (a) are in anc(·) of s and t . As a result, we have

sd(s, t) = mini ∈pos(a) dis(s)[i] + dis(t)[i].

Example 2.4: Consider a query (v2,v6). In T (Figure 1c), v8 is

the least common ancestor of v2 and v6. Therefore, sd(v2,v6) =

mini ∈pos(v8) dis(v2)[i] + dis(v6)[i] = min{5 + 2, 9 + 6} = 7. ✷

Incremental H2H. Given weight updates ∆G, the ancestor arrays

and position arrays do not need to be updated since they are con-

structed in a weight-independent manner. Therefore, CHANGED

consists of ∆G and the super-shortcuts whose dis(·) values change.

We summarize the notations frequently used in Table 1.

Remark.CH andH2H are not appropriate for scale-free networks

in light of the core-periphery structure inherent in such networks.

Specifically, a scale-free network typically contains a core which is

a dense subgraph of high treewidth. Hence, for scale-free networks,

it is inevitable that the resulting indices have much more shortcuts

and super-shortcuts generated, degrading the performance.

3 THEORETICAL RESULTS

In this section, we show the unboundedness of incremental CH

and incremental H2H. Like all prior works on boundedness [21,

22, 24, 41], the results presented are conditional in that they pre-

specify a model of computation. In Section 3.1, we focus on the

class of locally persistent algorithms, which is the standard model

used to prove unboundedness in previous works. In Sections 3.2

and 3.3, we prove the unboundedness under two practical classes

of algorithms, INCCH and INCH2H , for CH and H2H, respectively.

3.1 Unboundedness under LP Algorithms

Locally Persistent (LP) Algorithms. In an LP algorithm, each

vertex v and edge e ofG is allowed to use (1) an arbitrary amount

of status information, denoted by status(v) and status(e), respec-

tively, and (2) pointers to adjacent vertices and edges in G. How-

ever, no global information is maintained between successive calls

of the algorithm. Moreover, auxiliary pointers to non-adjacent ver-

tices and edges are not allowed. An LP algorithm handles ∆G by

starting from the vertices and edges contained in ∆G. It works in

a deterministic manner; that is, both the choice of which pointer

to follow next and the way to update status(·) depend determinis-

tically on the status of the vertices and edges visited so far.

The main theorem of this section is shown in the following.

Theorem 3.1: Under the class of LP algorithms, the problems of

maintaining CH and H2H under weight changes are unbounded

even for single weight decrease and single weight increase.

Proof: We show the key idea here and the complete proof can be

found in [46]. Let A∆ be an LP algorithm and trace(G, ∆G) be the

edges and vertices thatA∆ inspects when handling ∆G. We inten-

tionally construct a graphG and two updates ∆1 and ∆2 such that,

if A∆ is bounded, both |trace(G, ∆1)| and |trace(G, ∆2)| are O(1),

but |trace(G, ∆1)| + |trace(G, ∆2)| = Ω(ℓ) for some non-constant

integer ℓ, thereby leading to a contradiction. ✷

Limitation of LP Algorithms. The class of LP algorithms is not

practical for incremental CH and H2H, although it has been the

standard model of computation in the study of boundedness. In-

deed, it disallows graph traversal via shortcuts or super-shortcuts,

which are the most important components in CH and H2H. There-

fore, the class fails to include many practically efficient algorithms

for incremental CH and H2H. For this reason, we next consider

computational models that are more realistic.

3.2 Unboundedness under INCCH Algorithms

Many efficient incremental algorithms are obtained by incremen-

talizing the static counterpart. Therefore, in this section, we fo-

cus on a more practical class of incremental algorithms, denoted

INCCH, for CH, which models (at least a part of) incremental algo-

rithms obtainable by incrementalizing CHIndexing (Algorithm 1).

The state-of-the-art algorithms DCH [39] and UE [48] are two in-

stances of INCCH. The class INCCH is defined as follows.

The Class of INCCH Algorithms. An INCCH algorithm works

on the shortcut graph sc(G) of G. For each vertex v of sc(G), its

status information status(v) contains only immutable information

such as π (v). For each shortcut e , status(e) = s(e, scp+(e), scp−(e)),

where s can be any function which takes the edge e (if e exists in

G), the upward shortcut pairs scp+(e) and the downward shortcut

pairs scp−(e) of e as input, and determines the output solely based

on the weights of the input. Intuitively, status(e) keeps track of the

information about the edges and shortcuts that e depends on and

the information about the shortcuts that depend on e (see Equa-

tion (✸)). Each vertex and shortcut is allowed to use pointers to

adjacent vertices and shortcuts in sc(G). As in LP algorithms, no

global information is maintained between successive calls of the

algorithms. INCCH algorithms behave deterministically according

to the status(·) of the vertices and shortcuts visited.

INCCH algorithms differ from LP algorithms in two fundamen-

tal aspects. (1) Unlike LP algorithms, INCCH allows traversal via

shortcuts. (2) INCCH restricts the status information that an in-

cremental algorithm can use. The restriction, however, does not

indicate inefficiency. The two practical algorithms DCH and UE

both belong to this class. For example, in DCH, for each shortcut

e , status(e) contains (1) the number of terms in Equation (✸) that

lead to ϕ(e) and (2) all the downward shortcut pairs scp−(e).



The main theorem is as follows. It shows that the notion of

boundedness fails to characterize the efficiency of DCH and UE.

Theorem 3.2: Under the class of INCCH algorithms, the problem

of maintaining CH under weight changes is unbounded even for

single weight decrease and single weight increase.

Proof: We show the key idea of our proof. The complete proof

can be found in Appendix A of [46]. LetA∆ be an algorithm from

INCCH. We first construct a graph G and an update ∆G such that

applying ∆G to G results in CHANGED of constant size. We next

show that a correct algorithmA∆ needs to update the status infor-

mation for Ω(ℓ) shortcuts for some non-constant ℓ when process-

ing ∆G. Hence, A∆ cannot be bounded. ✷

3.3 Unboundedness under INCH2H Algorithms

In this section, we focus on a class of incremental algorithms, de-

noted INCH2H, for H2H, which models algorithms obtainable by

incrementalizing the construction algorithm H2HIndexing [37] of

H2H. The class INCH2H is defined as follows.

The Class of INCH2H Algorithms. Given G, H2HIndexing con-

structsH2H by capitalizing on the shortcut graph sc(G). In light of

this, it is natural that an algorithm obtained by incrementalizing

H2HIndexing maintains sc(G) in the course of computation. We

thus define INCH2H to include all incremental algorithms of H2H

that update sc(G) as a subtask. DTDHL [51] and our algorithm for

incremental H2H belong to this class. Regarding INCH2H , we have:

Theorem 3.3: Under the class of INCH2H algorithms, the problem

of maintaining H2H under weight changes is unbounded even for

single weight decrease and single weight increase.

Proof:We construct a graphG and an update∆G toG such that ap-

plying ∆G toG results inO(1) changes in dis(·) butΩ(ℓ) changes in

sc(G). Therefore, any INCH2H algorithm cannot be bounded. The

detailed proof can be found in Appendix A of [46]. ✷

Remark. The results proved in this section are conditional in that

each of them assumes a specific model of computation. So far, we

are still unable to classify the problems unconditionally. Specifi-

cally, we are neither able to prove unconditionally that the prob-

lems are unbounded nor able to propose bounded algorithms to

show that they are bounded, despite our efforts. This is a common

limitation of all existing studies on boundedness [8, 21, 22, 24, 41].

4 RELATIVE SUBBOUNDEDNESS

Although bounded incremental algorithms are unavailable at the

moment, we introduce relative subboundedness and show that the

incremental counterparts of CH and H2H are still efficiently solv-

able under this new characterization of efficiency; that is, they can

still be solved more efficiently than recomputing from scratch.

4.1 Relative Subboundedness

Let Q be either the problem of constructing CH or the problem of

constructing H2H for a graph G. Let Q(G) denote the result. The

incremental counterpart of Q is to update the result from Q(G) to

Q(G ⊕∆G)when an update ∆G toG is given. Relative subbounded-

ness is to characterize the efficiency of an incremental algorithm

A∆ that updatesQ(·) fromQ(G) to Q(G ⊕ ∆G).

Let D(G) and D(G ⊕ ∆G) denote the data that every algorithm

for Q needs to inspect when computing Q(G) and Q(G ⊕ ∆G), re-

spectively. Intuitively, D(·) captures only the essential data for Q

and thus is algorithm-invariant. We define AFF to be the difference

of D(G ⊕ ∆G) with D(G), i.e., the part of data affected by ∆G.

Let A be any algorithm for Q . For ∀x ∈ AFF, we denote by

amt(x) the amount of work done by A on x . That is, amt(x) rep-

resents the part of time spent on x by A when A is invoked to

computeQ(G ⊕∆G). We define ‖AFF‖ =
∑

x ∈AFF amt(x) to denote

the total time spent on AFF byA. It is important to emphasize that

‖AFF‖ is defined with respect to A. We illustrate these concepts

using CH as an example in the following.

Example 4.1: For CH, D(G) consists ofG and the shortcut graph

sc(G), since every algorithm needs to readG as input and compute

sc(G) as output. Therefore, the corresponding AFF comprises (1)

AFF1: the edges in G with weights changed, i.e., ∆G (changes in

input) and (2) AFF2: the shortcuts in sc(G) with weights changed

after applying ∆G (changes in output). Hence, AFF = AFF1 ∪AFF2
happens to be exactly CHANGED. We next compute ‖AFF‖ =
∑

x ∈AFF amt(x) for A = CHIndexing. For ∀e ∈ AFF1, amt(e) =

Θ(1) because reading an edge takes constant time. For any shortcut

e ∈ AFF2, amt(e) = Θ(|scp−(e)|+ |scp+(e)|+1). Indeed, (1) for each

downward shortcut pair (e ′, e ′′) ∈ scp−(e) of e , ϕ(e) is inspected

once (Equation (✸)) in CHIndexing; and (2) for each upward short-

cut pair (e ′, e ′′) ∈ scp+(e) of e , ϕ(e ′)+ϕ(e) is evaluated once to up-

date ϕ(e ′′), since (e, e ′) is a downward shortcut pair of e ′′. Hence,

‖AFF‖ = Θ
(

|CHANGED| +
∑

e ∈AFF2 |scp
−(e)| + |scp+(e)|

)

. This is

the time spent by CHIndexing related to AFF. ✷

Let TA be the time taken by A to handle ∆G starting from

scratch. That is, TA is the time cost by A to compute Q(G ⊕ ∆G).

By definition, we have ‖AFF‖ ≤ TA . Moreover, it is likely that

‖AFF‖ ≪ TA when ∆G is of small size (e.g., only one edge has

weight changed), since smaller ∆G usually results in smaller af-

fected area and thus smaller AFF. In view of these, we define rel-

ative subboundedness such that an incremental algorithm A∆ that

updates the result fromQ(G) toQ(G⊕∆G) is said to be subbounded

relative toA only if its cost to handle ∆G is ofO(‖AFF‖ log ‖AFF‖).

Here the factor log ‖AFF‖ is to allow the use of auxiliary structures

such as priority queues. Intuitively, the near linear dependence on

‖AFF‖ requires that a relatively subbounded algorithm focus on

AFF, which is exactly the part affected by ∆G. Therefore, an un-

bounded but relatively subbounded incremental algorithm is still

likely to be more efficient than recomputing from scratch by A.

Note that the definition of relative subboundedness does not as-

sume specific A. Ideally, A∆ is desired to be subbounded relative

to an optimal A. However, that is usually technically infeasible,

since for many problems, their optimality has not yet been stud-

ied and thus it cannot be determined whether a given A is opti-

mal. Therefore, instead, we desire an A∆ that is subbounded rel-

ative to the state-of-the-art A, which is the fastest algorithm in

hand to compute from scratch. We stress that our proposed incre-

mental algorithms are subbounded relative to the state-of-the-arts

CHIndexing and H2HIndexing for CH and H2H, respectively.



We stress that (1) for A∆ and A′
∆
which are respectively sub-

bounded relative toA andA′, they are not necessarily equally ef-

ficient though both relatively subbounded, since they are relative

to different algorithms; and (2) though relative subboundedness is

introduced in the context of CH and H2H, we believe that it can

also be extended to analyze the efficiency of algorithms for other

problems; we consider this our future work.

Difference with Relative Boundedness [21]. For a graphG and

a graph problem Q , let G(A,Q ) be the data inspected by A when

computing Q(G). For updates ∆G to G, let DIFF be the difference

between G(A,Q ) and (G ⊕ ∆G)(A,Q ). An incremental algorithm

A∆ for Q is said to be bounded relative to A if its cost can be ex-

pressed as a polynomial function in |DIFF|. Intuitively, |DIFF| cap-

tures the amount of work that every A∆ obtained by incremen-

talizing A needs to do. Therefore, relative boundedness guaran-

tees the effectiveness of incrementalization. Relative subbounded-

ness has two fundamental differences with relative boundedness:

(1) for CHIndexing and H2HIndexing, we have |DIFF| ≤ ‖AFF‖;

although greater, ‖AFF‖ is still upper bounded by TA , the cost of

A; and (2) while relative boundedness requires only polynomial

dependence on |DIFF|, relative subboundedness requires linearith-

mic dependence on ‖AFF‖ (i.e., ‖AFF‖ log ‖AFF‖) so that even for

large ‖AFF‖, ‖AFF‖ log ‖AFF‖ ≤ TA is still likely to hold, thereby

warranting efficiency. Therefore, in general, neither of relative sub-

boundedness and relative boundedness can dominate the other. Ide-

ally, it is desired that an incremental algorithm be both relatively

subbounded and relatively bounded. However, as will be shown

for DCH (Section 4.2) and IncH2H (Section 5), relative subbound-

edness alone is enough to warrant efficiency.

Example 4.2:Continuingwith Example 4.1, we useCHIndexing to

illustrateDIFF and |DIFF|.DIFF consists of two parts: (1) obviously,

the edges and shortcuts in CHANGED and (2) the upward short-

cut pairs of each shortcut in CHANGED. Indeed, for any short-

cut e in CHANGED and any upward shortcut pair (e ′, e ′′) of e ,

ϕ(e) + ϕ(e ′) is evaluated to different values in CHIndexing(G) and

CHIndexing(G ⊕ ∆G). Hence, we have |DIFF| = Θ(|CHANGED| +
∑

e ∈AFF2 |scp
+(e)|). We can find that |DIFF| ≤ ‖AFF‖. ✷

Difference with Local Computation [21]. By definition, an in-

cremental problem is localizable only if the part of index that needs

to be updated locates in the c-hop neighborhood of the update for

some constant c . For CH and H2H, they do not possess such a lo-

cality property. Hence, localizability does not apply here.

Difference with Semiboundedness [24]. As shown in the re-

lated work (Section 1), semiboundedness is tailored for graph pat-

tern matching and thus does not apply to CH and H2H.

4.2 DCH Revisited

DCH [39] comprises two parts: DCH+ for weight increase and

DCH− for weight decrease. The corresponding ‖AFF‖ and |DIFF|

have been derived in Example 4.1 and 4.2, respectively. We prove:

Theorem 4.1: DCH+ and DCH− are subbounded and bounded

relative to CHIndexing, respectively; specifically, they run in

O(‖AFF‖ log ‖AFF‖) andO(|DIFF| log |DIFF|) time, respectively.

1 Q ← an empty priority queue;

2 for each (e,w) ∈ ∆G do // the new weight of e is w
3 if ϕ(e,G) = ϕ(e, sc(G)) then
4 sup(e) ← sup(e) − 1;

5 if sup(e) = 0 then insert e into Q;

6 ϕ(e,G) ← w ;

7 while Q is not empty do
8 e = 〈u,v〉 ← the one in Q with min π (u); remove e from Q;

9 for each upward shortcut pair (e ′, e ′′) ∈ scp+(e) of e do
10 if ϕ(e ′′) = ϕ(e) + ϕ(e ′) then
11 sup(e ′′) ← sup(e ′′) − 1;

12 if sup(e ′′) = 0 then insert e ′′ into Q;

13 compute ϕ(e) and sup(e);

14 return sc(G);

Algorithm 2: DCH+

Note that DCH− is also bounded by O(‖AFF‖ log ‖AFF‖) be-

cause |DIFF| ≤ ‖AFF‖. As a result, DCH− is both subbounded and

bounded relative to CHIndexing. In contrast, DCH+ is only sub-

bounded but not bounded relative to CHIndexing. It remains open

whether a relatively bounded algorithm for weight increase exists.

Relative Subboundedness of DCH+. We start by introducing

DCH+. InDCH+, each shortcut e is associated with scp−(e) and an

integer sup(e), called the support of e , which is equal to the number

of terms in Equation (✸) that lead toϕ(e). For example, in Figure 1b,

sup(〈v5,v7〉) = 1 since (v5,v7) < G and (〈v3,v5〉, 〈v3,v7〉) is the

only pair such thatϕ(〈v3,v5〉)+ϕ(〈v3,v7〉) = ϕ(〈v5,v7〉); similarly,

we have sup(〈v3,v5〉) = 1 and sup(〈v7,v8〉) = 1.

DCH+ is shown in Algorithm 2. It uses a priority queue Q and

guarantees that only shortcuts whose weights need to be updated

can be pushed to Q. The use of Q ensures that for the shortcut

being handled, the weights of all shortcuts it depends on have been

correctly updated. At lines 2-6, it deals with ∆G. Specifically, for

an edge e ∈ ∆G, before increasing ϕ(e,G) to w (line 6), DCH+

tests whether the old ϕ(e,G) is equal to ϕ(e, sc(G)) (line 3). If so, it

means that there will be one less term in Equation (✸) to support

ϕ(e, sc(G)) after updating ϕ(e,G) and thus sup(e) is decreased by

one (line 4). If sup(e) becomes 0, ϕ(e, sc(G)) necessarily increases

and DCH+ pushes it to Q for later processing (line 5). Lines 7-13

work in a similar manner. At line 13, the new ϕ(e, sc(G)) and sup(e)

of shortcut e are computed from scratch using Equation (✸).

Example 4.3: Consider an update ∆G which increases the weight

of (v3,v5) from 2 to 3 (Figure 1a). Because ϕ((v3,v5),G) is the only

term supportingϕ(〈v3,v5〉) in Equation (✸), sup(〈v3,v5〉) becomes

0 after the update. Hence, 〈v3,v5〉 is inserted into Q (line 5). To il-

lustrate lines 7-13, take as an example the iteration for 〈v3,v5〉.

In line 9, the only upward shortcut pair (〈v3,v7〉, 〈v5,v7〉) is in-

spected. It is found that ϕ(〈v5,v7〉) = ϕ(〈v3,v5〉) + ϕ(〈v3,v7〉).

Therefore, sup(〈v5,v7〉) is decreased from 1 to 0 and 〈v5,v7〉 is in-

serted into Q accordingly. At line 13, the new ϕ(〈v3,v5〉) = 3 and

sup(〈v3,v5〉) = 1 are computed. ✷

Assuming the shortcuts can be inspected in O(1) time using

hashing, (1) lines 2-6 take O(|AFF1 | · log |CHANGED|) time, in

which the factor log |CHANGED| is due to Q; and (2) since each



1 Q ← an empty priority queue;

2 for each (e,w) ∈ ∆G do
3 ϕ(e,G) ← w ;
4 if ϕ(e,G) < ϕ(e, sc(G)) then
5 ϕ(e, sc(G)) ← ϕ(e,G);
6 if e < Q then insert e into Q;

7 while Q is not empty do
8 e = 〈u,v〉 ← the one in Q with min π (u); remove e from Q;

9 for each upward shortcut pair (e ′, e ′′) ∈ scp+(e) of e do
10 if ϕ(e) + ϕ(e ′) < ϕ(e ′′) then
11 ϕ(e ′′) ← ϕ(e) + ϕ(e ′);
12 if e ′′ < Q then insert e ′′ into Q;

13 return sc(G);

Algorithm 3: DCH−

shortcut in AFF2 is inserted into Q exactly once, lines 7-13 in to-

tal take O
( (
∑

e ∈AFF2 |scp
+(e)| + |scp−(e)| + 1

)

· log |CHANGED|
)

time. Hence, DCH+ takesO(‖AFF‖ · log |CHANGED|) ∈ O(‖AFF‖ ·

log ‖AFF‖) time and thus is subbounded relative to CHIndexing.

Relative BoundednessofDCH−.DCH− is shown inAlgorithm 3.

Like inDCH+, only shortcuts in CHANGED can be added to prior-

ity queue Q. In lines 2-6, for each edge e involved in ∆G, it updates

ϕ(e,G) (line 3). If the new ϕ(e,G) is smaller than ϕ(e, sc(G)), the

weight of shortcut e changes. Hence, DCH− sets ϕ(e, sc(G)) to the

new ϕ(e,G) and pushes e to Q. Lines 7-12 follow a similar idea.

It can be verified lines 2-6 takeO(|AFF1 | · log |CHANGED|) time

and lines 7-12 take O
( (
∑

e ∈AFF2 |scp
+(e)| + 1

)

· log |CHANGED|
)

time. As a result,DCH− costsO(|DIFF| · |CHANGED|) ∈ O(|DIFF| ·

log |DIFF|) time and thus is bounded relative to CHIndexing.

4.3 UE Revisited

Independently of DCH, Wei et al. proposed UE [48] to maintain

CH. UE can be considered as an unoptimized version of DCH. To

see this, consider a shortcut e ∈ CHANGED. Unlike DCH, for each

upward shortcut pair (e ′, e ′′) of e , UE computes the weight of e ′′

from scratch no matter if the weight of e ′′ needs to be updated or

not. Consequently, UE does more work than DCH. In particular,

UE is neither bounded nor subbounded relative to CHIndexing.

5 INCREMENTAL H2H

Next, we propose a new incremental algorithm IncH2H with per-

formance guarantee for H2H by incrementalizing the state-of-the-

art construction algorithmH2HIndexing [37]. Such an algorithm is

also a necessary routine to maintain indices that are built on H2H,

e.g., TEN [38] for the task of nearest neighbor search. IncH2H com-

prises two parts, i.e., IncH2H+ for weight increase and IncH2H− for

weight decrease. The main theorem of this section is as follows.

Theorem 5.1: IncH2H+ and IncH2H− are subbounded and

bounded relative to H2HIndexing, respectively; specifically, they

run in O(‖AFF‖ log ‖AFF‖) and O(|DIFF| log |DIFF|) time, re-

spectively, where ‖AFF‖ and |DIFF| are defined with respect to

H2HIndexing.

Analogous to DCH−, because |DIFF| ≤ ‖AFF‖, IncH2H− can

also be bounded by O(‖AFF‖ log ‖AFF‖). Therefore, IncH2H− is

both subbounded and bounded relative to H2HIndexing. As for

IncH2H+, it is only relatively subbounded.

To start with, we revisit H2HIndexing forH2H, following which

the corresponding AFF and DIFF are identified.

AlgorithmH2HIndexingRevisited.To constructH2H for a graph

G, H2HIndexing first calls CHIndexing to construct the shortcut

graph sc(G) ofG. After that, it constructs a tree decomposition T

of G with the help of the ordering π and the upward neighbors

nbr+(u) of each vertex u (Section 2). Based on T , three arrays are

constructed for each vertex u , namely ancestor array anc(u), posi-

tion array pos(u) and distance array dis(u). Given T , both anc(u)

and pos(u) are easy to construct. As for dis(u), it can be computed

as follows. Let Hu be the subgraph of sc(G) induced by u and its

ancestors. Hu is distance preserving in that the distance from u to

any ancestor a in Hu is the same as that in G [37]. Therefore,

dis(u)[depth(a)] = sd(u,a) = min
v ∈nbr+(u)

ϕ(〈u,v〉) + sd(v,a) (⋆)

where depth(a) is the depth of a in T . Furthermore, because both

v and a in Equation (⋆) are ancestors of u , when v , a,

sd(v,a) =

{

dis(v)[depth(a)], if depth(v) > depth(a)

dis(a)[depth(v)], if depth(v) < depth(a)
(▽)

In other words, dis(u) can be computed by inspecting dis(·) of ver-

tices with higher ranks. Hence, H2HIndexing iteratively computes

dis(u) for each u in the reverse order of π . Recall that for each an-

cestor a of u , the pair 〈〈u,a〉〉 is called a super-shortcut.

Characterization of AFF and DIFF. For H2H, the corresponding

D(G) consists of graph G itself, the shortcut graph sc(G) and the

three arrays (i.e., anc(·), pos(·) and dis(·)). Here, sc(G) is included

in D(G) because the three arrays are defined over sc(G) and thus

every algorithm needs to first construct sc(G) to guide the con-

struction of H2H. Let AFFCH and DIFFCH be the corresponding

AFF and DIFF for CH, respectively. We have:

AFF: Because (1)AFFCH has included the changes in both the graph

and the shortcut graph and (2) anc(·) and pos(·) remain unchanged

under ∆G, we have AFF = AFFCH ∪ AFF3 where AFF3 comprises

the super-shortcuts whose dis(·) values change after applying ∆G.

‖AFF‖: Let A = H2HIndexing. Consider 〈〈u,a〉〉 ∈ AFF3. By defi-

nition, dis(u)[depth(a)] changes under ∆G. With des(u) denoting

the descendants of u in T , we have amt(〈〈u,a〉〉) = Θ(|nbr+(u)| +

|nbr−(u)|+ |nbr−(a) ∩ des(u)|). Indeed, (1) dis(u)[depth(a)] is eval-

uated using Equation (⋆) by iterating over the upward neighbors

nbr+(u) of u; (2) for each downward neighbor v ∈ nbr−(u), a is

an ancestor of v ; to compute dis(v)[depth(a)], dis(u)[depth(a)] is

accessed exactly once since u ∈ nbr+(v); and (3) for each v ∈

nbr−(a) ∩ des(u) (i.e., v is both a descendant of u and a downward

neighbor of a), dis(u)[depth(a)] is inspected once when evaluat-

ing dis(v)[depth(u)]. Having calculated the amount of work done

on AFF3, we next examine AFF2 (Example 4.1), which comprises

the shortcuts that change under ∆G. Besides the work counted

in ‖AFFCH‖, a shortcut 〈u,v〉 ∈ AFF2 is additionally inspected

once in H2HIndexing to evaluate dis(u)[depth(a)] (Equation (⋆))



for each ancestor a of u . Therefore, we have

‖AFF‖ = Θ(‖AFFCH‖ + ‖AFF3‖ +K)

where ‖AFF3‖ =
∑

〈〈u,a〉〉∈AFF3
|nbr+(u)| + |nbr−(u)| + |nbr−(a) ∩

des(u)| and K =
∑

〈u,v 〉∈AFF2 |anc(u)|. Here, |anc(u)| is the length

of the ancestor array anc(u) of u .

DIFF: By definition, DIFF contains CHANGED and DIFFCH obvi-

ously. In addition, it contains all such pairs (〈u,v〉, (v,a)), where v

is an upward neighbor of u and a is an ancestor of u , that the term

ϕ(〈u,v〉) + sd(v,a) in Equation (⋆) is evaluated to different values

in H2HIndexing(G) and H2HIndexing(G ⊕ ∆G).

|DIFF|: With DIFF, it can be shown that |DIFF| = Θ(|DIFFCH | +

|CHANGED| + K ′ + K ′′), where K ′ =
∑

〈u,v 〉∈AFF2 |anc(u)| and

K ′′ =
∑

〈〈u,a〉〉∈AFF3
|nbr−(u)|+ |nbr−(a) ∩ des(u)|. This is because

(1) for each 〈u,v〉 ∈ AFF2, the valueϕ(〈u,v〉)+sd(v,a) changes for

each ancestor a of u; and (2) for each 〈〈u,a〉〉 ∈ AFF3, the distance

between u and a changes; therefore, the value ϕ(〈v,u〉) + sd(u,a)

changes for each v ∈ nbr−(u) and the value ϕ(〈v, a〉) + sd(u,a)

changes for each v ∈ nbr−(a) ∩ des(u).

Algorithm Overview.We give an overview of IncH2H before we

get into the details. According to Equations (⋆) and (▽), a super-

shortcut 〈〈u,a〉〉 has dis(u)[depth(a)] changed only if ϕ(〈u,v〉) +

sd(v,a) changes for some v ∈ nbr+(u). Specifically, (1) if ϕ(〈u,v〉)

changes, dis(u)[depth(a)] for each ancestor a of u may change; (2)

if dis(v)[depth(a)] changes, both dis(u)[depth(a)] for u ∈ nbr−(v)

and dis(u)[depth(v)] for u ∈ nbr−(a) ∩ des(v) may be affected.

In view of these, starting from the shortcuts and super-shortcuts

whose weights are known to have changed, IncH2H further iden-

tifies super-shortcuts that may change. To make this process effi-

cient, IncH2H employs several auxiliary structures.

Auxiliary Structures. IncH2H uses the following auxiliary struc-

tures. (1) For each vertex u , let u .d and u . f be the discovery time

and finishing time of u in a depth-first search from the root of T ,

respectively [16]. Note that given two vertices u and v , u is an

ancestor of v if and only if u .d < v .d and v . f < u . f . (2) For

each vertex u , the downward neighbors nbr−(u) are kept in an ar-

ray and sorted in ascending order of discovery time. (3) For each

super-shortcut 〈〈u,a〉〉, we store first(〈〈u,a〉〉), which is the small-

est index i such that the i-th downward neighbor in nbr−(a) has

greater discovery time than u . (4) For each super-shortcut 〈〈u,a〉〉,

let the support of 〈〈u,a〉〉, denoted sup(〈〈u,a〉〉), be the number of

terms in Equation (⋆) that lead to dis(u)[depth(a)]; in other words,

sup(〈〈u,a〉〉) is the number of upward neighbors v of u such that

dis(u)[depth(a)] = ϕ(〈u,v〉) + sd(v,a). All these can be obtained

by adapting H2HIndexing without affecting its complexity.

Example 5.1: Consider sc(G) and the tree decompositionT in Fig-

ures 1b and 1c. In Figure 1c, the discovery time and finishing time

[vi .d,vi . f ] are shownnext to each vertexvi . The downward neigh-

bors nbr−(v9) of v9, when sorted in ascending order of discovery

time, are (v8,v6,v7,v4). Therefore, for the super-shortcut 〈〈v6,v9〉〉,

we have first(〈〈v6,v9〉〉) = 3 because the 3rd downward neighbor

(i.e.,v7) in nbr
−(v9) is the first that has greater discovery time than

v6. We have sup(〈〈v6,v9〉〉) = 1 because among the upward neigh-

bors ofv6, onlyv9 satisfies ϕ(〈v6,v9〉)+sd(v9,v9) = 2 = sd(v6,v9),

while for v8, ϕ(〈v6,v8〉) + sd(v8,v9) = 7 + 4 = 11. ✷

1 Q ← an empty priority queue;

2 call DCH+ and denote by C the shortcuts that are updated;

3 for each shortcut 〈u,v〉 ∈ C with π (u) < π (v) do
4 for each ancestor a of u do
5 tmp← w ; // the original weight of 〈u,v〉

6 if depth(v) > depth(a) then // a is ancestor of v
7 tmp += dis(v)[depth(a)];
8 else if depth(v) < depth(a) then // v is ancestor

9 tmp += dis(a)[depth(v)];

10 if tmp = dis(u)[depth(a)] then
11 sup(〈〈u,a〉〉) ← sup(〈〈u,a〉〉) − 1;
12 if sup(〈〈u,a〉〉) = 0 then insert 〈〈u,a〉〉 into Q;

13 while Q is not empty do
14 〈〈u,a〉〉 ← the one in Q with max π (u); remove it from Q;
15 for each downward neighbor v ∈ nbr−(u) of u do
16 if ϕ(〈v,u〉) + dis(u)[depth(a)] = dis(v)[depth(a)] then
17 sup(〈〈v,a〉〉) ← sup(〈〈v,a〉〉) − 1;

18 if sup(〈〈v,a〉〉) = 0 then insert 〈〈v,a〉〉 into Q;

19 for each v ∈ nbr−(a) ∩ des(u) do
20 if ϕ(〈v, a〉) + dis(u)[depth(a)] = dis(v)[depth(u)] then
21 sup(〈〈v,u〉〉) ← sup(〈〈v,u〉〉) − 1;

22 if sup(〈〈v,u〉〉) = 0 then insert 〈〈v,u〉〉 into Q;

23 compute new dis(u)[depth(a)] and sup(〈〈u,a〉〉);

24 return dis(·);

Algorithm 4: IncH2H+

5.1 IncH2H+ for Weight Increase

We show IncH2H+ in Algorithm 4. IncH2H+ maintains a priority

queue Q (line 1) such that only super-shortcuts in CHANGED can

be inserted into Q. At line 2, DCH+ is called to update sc(G), with

all shortcuts changed kept in C . At lines 3-12, in light of Equa-

tion (⋆), for each shortcut 〈u,v〉 ∈ C , all super-shortcuts 〈〈u,a〉〉

thatmay be affected by the change ofϕ(〈u,v〉) are inspected. Specif-

ically, for each 〈〈u,a〉〉, a value tmp = w + sd(v,a) is obtained using

the original weight w of 〈u,v〉 and the original distance between

v and a. If tmp = dis(u)[depth(a)], it means there is one term

less in Equation (⋆) to support the value dis(u)[depth(a)] after the

weight of 〈u,v〉 changes. Therefore, sup(〈〈u,a〉〉) is decreased by 1

at line 11. If sup(〈〈u,a〉〉) becomes zero, dis(u)[depth(a)]necessarily

changes, thus 〈〈u,a〉〉 is inserted intoQ for later processing (line 12).

At lines 13-23, super-shortcuts 〈〈u,a〉〉 that change are processed in

non-ascending order of π (u). This way, for each 〈〈u,a〉〉 being pro-

cessed, all super-shortcuts that 〈〈u,a〉〉 depends on in Equation (⋆)

have been correctly updated. Therefore, at line 23, we can correctly

compute the new dis(u)[depth(a)] and sup(〈〈u,a〉〉) from scratch us-

ing Equation (⋆). Before that, at lines 15-22, all super-shortcuts that

depend upon 〈〈u,a〉〉 are identified and processed accordingly in a

manner similar to lines 3-12. It is worth mentioning that, at line 19,

nbr−(a)∩des(u) can be obtained inO(|nbr−(a)∩des(u)|) time by us-

ing nbr−(a) and first(〈〈u,a〉〉). Indeed, by construction, the vertices

in nbr−(a)∩des(u) reside exactly in the range [first(〈〈u,a〉〉), last] of



nbr−(a), where last is the largest index such thatv = nbr−(a)[last]

has finish time earlier than u , i.e., v . f < u . f .

Example 5.2: Continuing with Example 5.1, consider increasing

the weight of the edge (v6,v9) from 2 to 3 (Figure 1a). As a result,

〈v6,v9〉 is the only shortcut whose weight changes (Figure 1b) and

thus C = {〈v6,v9〉}. In lines 4-12, for ancestors v8 and v9 of v6,

it is found that both sup(〈〈v6,v8〉〉) and sup(〈〈v6,v9〉〉) decrease to

0 after the change of ϕ(〈v6,v9〉). Hence, super-shortcuts 〈〈v6,v8〉〉

and 〈〈v6,v9〉〉 are inserted into Q for later processing (line 12). We

demonstrate lines 15-22 using 〈〈v6,v9〉〉. v1 is inspected in line 15,

since the weight of the super-shortcut 〈〈v1,v9〉〉 may be affected by

super-shortcut 〈〈v6,v9〉〉. With the old sd(v6,v9) = 2, ϕ(〈v1,v6〉) +

sd(v6,v9) = dis(v1)[depth(v9)]. Thus, sup(〈〈v1,v9〉〉) is decreased,

becoming 0. Hence, 〈〈v1,v9〉〉 is pushed to Q. No vertices are in-

spected in line 19 because nbr−(v9) ∩ des(v6) is empty. In line 23,

the new value of 〈〈v6,v9〉〉 (i.e., dis(v6)[depth(v9)]) is evaluated. ✷

Correctness. We prove by contradiction. Assume that IncH2H+

fails to handle ∆G. LetW be the super-shortcuts that are not cor-

rectly updated and let 〈〈u,a〉〉 ∈ W be the one with the maximum

π (u), breaking ties arbitrarily. By construction, all shortcuts and

super-shortcuts that 〈〈u,a〉〉 depends on in Equation (⋆) are cor-

rectly updated. In view of this, we conclude that 〈〈u,a〉〉 is not in-

serted into Q since otherwise, dis(u)[depth(a)] has been updated

correctly at line 23. Let v1,v2, . . . ,vk ∈ nbr
+(u) be all the upward

neighbors of u such that dis(u)[depth(a)] = ϕ(〈u,vi 〉) + sd(vi ,a)

for ∀i ∈ [1,k] before applying ∆G. For convenience, we assume

π (vi ) < π (a). Since dis(u)[depth(a)] increases after applying ∆G,

the values of ϕ(〈u,vi 〉) + dis(vi )[depth(a)] for ∀i ∈ [1,k] also in-

crease. Without loss of generality, we assume that ϕ(〈u,vk 〉) +

dis(vk )[depth(a)] is the last that is updated by IncH2H+ and that

it is caused by the update of dis(vk )[depth(a)]. Then, when pro-

cessing 〈〈vk , a〉〉, 〈〈u,a〉〉 is inspected with its support decreased to

0, resulting in 〈〈u,a〉〉 inserted into Q. A contradiction.

Relative Subboundedness of IncH2H+. With Õ(ψ ) as a short-

hand forO(ψ logψ ), (1) line 2 takes Õ(‖AFFCH‖) time; (2) lines 3-12

take Õ(
∑

〈u,v 〉∈AFF2 |anc(u)|) time since C is exactly AFF2; and (3)

lines 13-23 in total take Õ(‖AFF3‖) time since only super-shortcuts

inAFF3 can be inserted intoQ. Therefore, IncH2H
+ takes Õ(‖AFF‖)

time and thus is subbounded relative to H2HIndexing.

5.2 IncH2H− for Weight Decrease

We show IncH2H− in Algorithm 5. Like IncH2H+, IncH2H− main-

tains a priority queue Q (line 1) such that only super-shortcuts in

CHANGED can be added to Q. At line 2, DCH− is called to update

sc(G) and all shortcuts changed are kept inC . At lines 3-12, in light

of Equation (⋆), for each shortcut 〈u,v〉 ∈ C , all super-shortcuts

〈〈u,a〉〉 thatmay be affected by the change ofϕ(〈u,v〉) are inspected.

Specifically, for each ancestor a of u , a new value tmp of 〈〈u,a〉〉

is obtained using the latest ϕ(〈u,v〉). If tmp < dis(u)[depth(a)],

dis(u)[depth(a)] is updated (line 11). Accordingly, 〈〈u,a〉〉 is inserted

into Q for later processing (line 12). At lines 13-22, as in IncH2H+,

super-shortcuts 〈〈u,a〉〉 are processed in non-ascending order of

π (u). This way, it is guaranteed that, for each 〈〈u,a〉〉 being pro-

cessed, its valuedis(u)[depth(a)] has been updated to its final value.

1 Q ← an empty priority queue;

2 call DCH− and denote by C the shortcuts that are updated;
3 for each shortcut 〈u,v〉 ∈ C with π (u) < π (v) do
4 for each ancestor a of u do
5 tmp← ϕ(〈u,v〉);
6 if depth(v) > depth(a) then // a is ancestor of v
7 tmp += dis(v)[depth(a)];

8 else if depth(v) < depth(a) then // v is ancestor

9 tmp += dis(a)[depth(v)];

10 if tmp < dis(u)[depth(a)] then
11 dis(u)[depth(a)] ← tmp;

12 if 〈〈u,a〉〉 < Q then push 〈〈u,a〉〉 to Q;

13 while Q is not empty do
14 〈〈u,a〉〉 ← the one in Q with max π (u); remove it from Q;
15 for each downward neighbor v ∈ nbr−(u) of u do
16 if ϕ(〈v,u〉) + dis(u)[depth(a)] < dis(v)[depth(a)] then
17 dis(v)[depth(a)] ← dis(u)[depth(a)] + ϕ(〈v,u〉);
18 if 〈〈v,a〉〉 < Q then push 〈〈v, a〉〉 to Q;

19 for each v ∈ nbr−(a) ∩ des(u) do
20 if ϕ(〈v, a〉) + dis(u)[depth(a)] < dis(v)[depth(u)] then
21 dis(v)[depth(u)] ← dis(u)[depth(a)] + ϕ(〈v, a〉);
22 if 〈〈v,u〉〉 < Q then push 〈〈v,u〉〉 to Q;

23 return dis(·);

Algorithm 5: IncH2H−

Due to the change of dis(u)[depth(a)], at lines 15-22, all super-

shortcuts that may be affected by 〈〈u,a〉〉 are identified and updated

accordingly. Though not presented in Algorithm 5, IncH2H− ad-

ditionally needs to maintain sup(·) of each super-shortcut so that

later calls of IncH2H+ canwork correctly.We stress that this can be

done on-the-fly without affecting the complexity. The correctness

of IncH2H− can be proved similarly to how IncH2H+ is proved.

Relative Boundedness of IncH2H−. Let Õ(ψ ) denote O(ψ logψ ).

We show that IncH2H− runs in Õ(|DIFF|) time. Specifically, (1)

line 2 takes Õ(|DIFFCH |) time; (2) since C is exactly AFF2, lines 3-

12 take Õ(
∑

〈u,v 〉∈AFF2 |anc(u)|) time; and (3) because only AFF3

can be inserted intoQ, lines 13-22 take Õ(
∑

〈〈u,a〉〉∈AFF3
|nbr−(u)|+

|nbr−(a) ∩ des(u)|+ 1) time. Therefore, we conclude that IncH2H−

is bounded relative to H2HIndexing.

5.3 Parallelizing IncH2H

Recall that in IncH2H, the super-shortcuts that change are pro-

cessed in non-ascending order of π (u) so that when processing

a super-shortcut 〈〈u,a〉〉, all the super-shortcuts that 〈〈u,a〉〉 relies

on, i.e., those contributing to its weight in Equation (⋆), have been

correctly updated. For each such super-shortcut 〈〈u ′,a′〉〉, we have

depth(u ′) < depth(u). Therefore, without affecting the correctness

of IncH2H, the super-shortcuts in CHANGED can be processed in

non-descending order of depth(u). Let h = maxu depth(u) be the

maximum depth. For ∀1 ≤ i ≤ h, let CHANGEDi be the super-

shortcuts 〈〈u,a〉〉 ∈ CHANGED with depth(u) = i . The super-

shortcuts in CHANGEDi are processed in parallel such that for

two super-shortcuts 〈〈u,a〉〉 and 〈〈u ′,a′〉〉, they are assigned to the



Name Description |V | |E | # of SCs # of SSCs

NY New York City 0.26 M 0.37 M 1.22 M 99.48 M

COL Colorado 0.43 M 0.53 M 1.23 M 166.30 M

FLA Florida 1.07 M 1.35 M 3.13 M 282.93 M

CAL California and Nevada 1.89 M 2.33 M 5.76 M 1.02 B

EUS Eastern US 3.60 M 4.39 M 11.00 M 2.63 B

WUS Western US 6.26 M 7.63 M 18.49 M 4.60 B

CUS Central US 14.08 M 17.15 M 46.32 M 23.25 B

US Full US 23.95 M 29.17 M 76.87 M 40.22 B

ENG England 2.35 M 2.71 M 6.07 M 1.71 B

Table 2: Datasets (M = 106 and B = 109)

same processor if u = u ′. This way, it is guaranteed that the super-

shortcuts inspected by the processors are independent of each other.

More details can be found in Appendix C of [46].

5.4 DTDHL Revisited

For completeness, we discuss DTDHL [51], which also is an incre-

mental algorithm to maintainH2H.DTDHL is neither subbounded

nor bounded relative to H2HIndexing. Indeed, (1) DTDHL+ (for

weight increase) needs to inspect all members in nbr−(u)∪nbr−(a)

for each super-shortcut 〈〈u,a〉〉 ∈ CHANGED to identify the super-

shortcuts affected; and (2) DTDHL− (for weight decrease) may re-

calculate dis(u)[depth(a)] even for some 〈〈u,a〉〉 < CHANGED.

6 EXPERIMENTAL STUDY

We conducted experiments to verify the effectiveness of relative

subboundedness. The experiments were carried out on a Linux ma-

chine with Intel Xeon E5-2697 CPU and 500 GB main memory.

Datasets. We used nine publicly available road networks, where

the ENG network was downloaded from Geofabrik1 and the rest

were downloaded from DIMACS2. The statistics of the networks

are shown in Table 2, where the columns “# of SCs” and “# of SSCs”

show the # of shortcuts and super-shortcuts in CH and H2H, re-

spectively. In each network, the weights represent the estimated

transit time of the edges. We treated all networks as undirected.

Algorithms. We implemented and evaluated the following algo-

rithms in our experiments: (1) DCH [39], (2) UE [48], (3) IncH2H,

(4) DTDHL [51], (5) ParIncH2H (Section 5.3), (6) CHIndexing [39,

48] and (7)H2HIndexing [37]. The code ofDCH and that ofDTDHL

were kindly provided by the authors of [39] and [51], respectively.

We excludedH2HAdapt [48] and DynH2H [13] due to the reasons

mentioned in the related work (Section 1). All algorithms were im-

plemented in C++ and compiled by g++ at -O3 optimization level.

ParIncH2H used OpenMP for parallelism.

6.1 Effectiveness of Relative Subboundedness

Exp-1: Efficiency of IncH2H. In this experiment, we compared

IncH2H and H2HIndexing with varied |∆G |. To generate ∆G, we

randomly sampled 200 to 1,800 edges from each road network. In

practice, initially, the weight of an edge is usually set to an esti-

mated value (e.g., the median transit time of historical data) and

does not need to be updated unless it changes significantly (e.g.,

1http://download.geofabrik.de/
2http://www.dis.uniroma1.it/challenge9/download.shtml

from normal condition to congestion). Therefore, for each edge e

sampled, we increased its weight to 2.0 × ϕ(e). For each ∆G, we

recorded the time taken by IncH2H+ to apply ∆G to G and the

time taken by IncH2H− to restore the weights of the edges to their

original, i.e., from 2.0 × ϕ(e) to ϕ(e). For H2HIndexing, we only

recorded the time to compute the weights of the shortcuts and

super-shortcuts from scratch, since the other parts of H2H remain

unchanged given ∆G. The results for ENG, CAL, CUS and US are

shown in Figures 2a, 2b, 2c and 2d, respectively. As can be observed,

(1) IncH2H− is consistently more efficient than IncH2H+ because

IncH2H− is both relatively subbounded and relatively bounded

while IncH2H+ is relatively subbounded only; and (2) when |∆G |

reaches 1,600, IncH2H+ outperformsH2HIndexing onlymarginally.

We emphasize that this does not imply IncH2H is inefficient. To see

this, we show in Figure 2e for each ∆G the ratio of the number of

super-shortcuts whose dis(·) values change to the total number of

super-shortcuts in H2H (see the column “# of SSCs" of Table 2). As

can be seen, H2H is sensitive to changes. Indeed, a ∆G whose size

is of hundreds can result in a non-trivial proportion of the index

being affected. For example, even when |∆G | is only 1, 600 (CUS)

and 1, 600 (US), 10.2% and 9.7% of the super-shortcuts are affected

by ∆G and need to be updated, respectively. An update of larger

size will make the situation worse. Note that it is an issue caused

by the nature ofH2H rather than the algorithm. In view of this, no

incremental algorithm for H2H is likely to outperform recomput-

ing from scratch when the size of the updates becomes large, since

the amount of data to be updated becomes too huge. Our IncH2H

is efficient in the sense that it is able to outperform recomputing

from scratch even if more than 10% of the index needs to be up-

dated, indicating the effectiveness of relative subboundedness.

In addition, we observe that IncH2H performs better on net-

works of medium size (ENG and CAL) than those of large size

(CUS and US) in terms of |∆G |/|G |. Consider ENG. Figure 2a sug-

gests that IncH2H can outperform recomputing from scratch even

if there come 200 to 1,800 weight updates per minute. This is suf-

ficient most of the time in practice. To see this, below we show

our analysis of a copy of historical traffic data of England, which

was kindly provided by the authors of [48]. The data contain infor-

mation about 600 major highways over the course of March, 2015.

For each road e , we used the 10th percentile of its historical tran-

sit times as its reference weight ω(e). That is, 90% of the historical

transit times have values higher than ω(e). Therefore, ω(e) is an

optimistic estimation of the traffic condition of e . As mentioned in

last paragraph, the weight of an edge does not need to be updated

usually unless it changes significantly (e.g., from normal condition

to congestion). We say e is in normal condition if its current transit

time is ≤ c · ω(e) and is in congestion otherwise. We define an up-

date as either a change from normal condition to congestion or the

reverse. For example, for c = 2, if the reference transit time ω(e)

corresponds to a speed of 60 mph, an update is triggered when the

speed drops from 60 mph to below 30 mph. We show the average

# of updates per minute per road in Figure 2f. As can be seen, the

# of updates is low (≤ 0.0004) most of the time.

Exp-2: Efficiency of DCH. We conducted a similar experiment

onDCH by varying |∆G | from 20, 000 to 180, 000. For CHIndexing,

the value reported is the time taken to compute the weights of the

http://download.geofabrik.de/
http://www.dis.uniroma1.it/challenge9/download.shtml
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Figure 2: Performance Evaluation

shortcuts from scratch. The results are shown in Figures 2g-2h.We

also show the proportion of the index affected by ∆G in Figure 2i.

As can be seen, (1) CH is much less sensitive to changes than H2H;

and (2) when |∆G | is 60, 000 and 80, 000, DCH+ is 1.18 and 1.18

times faster than CHIndexing for CUS and US, respectively; that

is, even when 9.6% and 8.1% of the shortcuts need to be updated,

DCH+ is still more efficient than reconstructing CH from scratch,

again verifying the effectiveness of relative subboundedness.

6.2 Comparison between CH and H2H

We conducted experiments to compare CH and H2H in dynamic

networks. As explained in Section 4.3, UE is an unoptimized ver-

sion of DCH and thus is less efficient (see Figures 2j and 2k whose

settings are the same as Exp-4). We omit UE in the following.

Exp-3: Query Time. In this experiment, we tested the query ef-

ficiency of CH and H2H. Following [49], for each network tested,

we generated 10 groups of queries, denotedQ1,Q2, . . . ,Q10, as fol-

lows: given a network, we first obtained an estimation about the

maximum distancedmax between two vertices; then, we randomly

generated 10,000 pairs of vertices (si , ti ) for Qi such that the dis-

tance between si and ti is in the range [2
i−11dmax , 2

i−10dmax ). As

a result, for ∀1 ≤ i < 10, a pair (si , ti ) in Qi has a smaller distance

than a pair (si+1, ti+1) in Qi+1. For each Qi , we recorded the aver-

age time taken to evaluate the queries in Qi . The results forWUS,

CUS and US are shown in Figures 2l, 2m and 2n, respectively. The

results for other networks are similar. We have: (1) As the distance

between two query vertices increases, while the query efficiency

of H2H does not vary too much, the query time of CH tends to
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increase in all networks. (2) H2H is about one to three orders of

magnitude faster than CH, especially for distant queries, because

H2H can avoid searching G or sc(G) when evaluating a query.

Exp-4: Update Time. Following [39], we sampled eight groups of

updates, each with 1,000 edges. For the i-th group, we increased the

weights of the edges from ϕ(e) to (i + 1)×ϕ(e) and recorded the av-

erage time taken byDCH+/IncH2H+/DTDHL+ to deal with the up-

dates one by one. Then, we restored theweights from (i+1)×ϕ(e) to

ϕ(e) and recorded the average time by DCH−/IncH2H−/DTDHL−.

We show the results for WUS, CUS and US in Figures 2o, 2p and

2q, respectively. As can be observed, (1) IncH2H+ takes about 110,

320 and 420 milliseconds per update on average for WUS, CUS

and US, respectively, and IncH2H− is slightly better; (2) DTDHL+

and DTDHL− are 6 times and 2 times slower than IncH2H+ and

IncH2H−, respectively; (3) DCH+ takes about 0.10, 0.65 and 0.87

milliseconds separately per update on average; and (4) DCH is

two to three orders of magnitude faster than IncH2H. This gap

in update time, however, does not imply IncH2H is inefficient. Af-

ter all, DCH and IncH2H maintain different oracles. Unlike CH,

H2H caches abundant distance information in its index in order to

provide striking query performance, and thus is more sensitive to

updates. For example, on US, the average sizes of CHANGED per

update for CH and H2H are 181.5 and 26.8× 105, respectively. It is

this difference that leads to the huge gap in update time between

DCH and IncH2H. In addition, it is important to note that for in-

dices that are built onH2H, e.g., the state-of-the-art TEN index [38]

for the task of nearest neighbor search, IncH2H is a necessary rou-

tine to maintain those indices while DCH is not.

Exp-5: Indexing Time and Index Space.We show the indexing

time and index space ofH2H and CH for all networks in Figures 3a

and 3b. We have the following observations. (1) Regarding index-

ing time, H2H is 2 to 5 times slower than CH to construct. On the

other hand, even for the road network of whole United States,H2H

can be constructed in half an hour. (2)H2H requires a large amount

of memory, compared withCH. This is because (a) in order to do ef-

ficient incremental computation, IncH2H additionally needs sup(·)

and first(·) for each super-shortcut; as a result, incremental H2H

needs about two times the memory of static H2H; and (b) due to

the large number of super-shortcuts (see Table 2), staticH2H itself

already consumes a large amount of memory; for example, on the

road network US, static H2H requires more than 150GB memory.

|∆G | 100 1,000 10,000 100,000 1,000,000

Proportion 0.17% 6.59% 48.01% 91.63% 98.75%

Table 3: The Proportion Updated w.r.t. |∆G |

6.3 Scalability

Exp-6: Scalability w.r.t. # of Cores. Under the same settings as

Exp-1 and Exp-2, we tested ParIncH2H on the largest two net-

works, namely CUS and US, by varying the # of cores from 1 to

16. We report the speedup relative to one core on US in Figures 2r-

2s. The results for CUS are similar and thus are omitted. As can be

seen, ParIncH2H shows near linear speedup with respect to # of

cores, especially when |∆G | becomes larger.

Exp-7: Scalability w.r.t. |∆G |. We also tested the scalability of

IncH2H on US with respect to the size of the update workload.

We varied |∆G | from 100 to 1,000,000. The results are shown in

Figure 2t. As can be seen, IncH2H scales well even when |∆G | be-

comes large. This is because the performance of IncH2H is largely

affected by the # of super-shortcuts to be updated. In Table 3, we

show for each |∆G | the ratio of the # of super-shortcuts that need to

be updated to the total # of super-shortcuts. We can see that when

|∆G | becomes large, the growth of the proportion to be updated

becomes slower, explaining Figure 2t.

7 EXTENSION: EDGE INSERTION/DELETION

Edge updates are infrequent in road networks since road construc-

tion and destruction are rare. In [39], an algorithm for edge updates

has been proposed for CH. Thus, we focus on H2H below.

For edge deletions, they can be dealt with by increasing the

weights of the deleted edges to ∞. As for edge insertions, we first

update the underlying shortcut graph sc(G) by invoking the algo-

rithm of [39]. Note that after the update, both the upward neigh-

bors of the vertices and the weights of the shortcuts may change.

As a result, the tree decomposition T is reorganized. Let S1 be the

set of vertices whose parents (in T ) or incident shortcuts change,

and let S2 ⊆ S1 be the vertices whose ancestors in T contain no

vertices from S1. Then, starting from each v ∈ S2, we update the

arrays of its descendants in a top-downmanner as inH2HIndexing.

8 CONCLUSIONS

For CH and H2H, we show their unboundedness under specific

models of computation. As an alternative to boundedness, we pro-

pose relative subboundedness. Despite the unboundedness of CH

andH2H, we prove that the state-of-the-art incremental algorithm

DCH for CH is relatively subbounded and propose for H2H an in-

cremental algorithm IncH2H that is relatively subbounded. Our

experimental results show that both DCH and IncH2H are able

to outperform recomputing from scratch even when a non-trivial

portion of the index needs to be updated. Our study deepens the

understanding of CH and H2H in dynamic road networks.
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