Publications (DBLP

Home | Journal Papers | Conference Papers | Book Chapters | Tutorials 

Journal Papers

  1. Chengzhi Piao, Weiguo Zheng, Yu Rong, Hong Cheng. Maximizing the Reduction Ability for Near-maximum Independent Set Computation. Proceedings of the VLDB Endowment (PVLDB), 13(11): 2466-2478, 2020.
  2. Hao Zhang, Jeffrey Xu Yu, Yikai Zhang, Kangfei Zhao, Hong Cheng. Distributed Subgraph Counting: A General Approach. Proceedings of the VLDB Endowment (PVLDB), 13(11): 2493-2507, 2020.
  3. Yuanyuan Zhu, Lu Qin, Jeffrey Xu Yu, Hong Cheng. Answering Top-k Graph Similarity Queries in Graph Databases. IEEE Transactions on Knowledge and Data Engineering (TKDE), 32(8): 1459-1474, 2020.
  4. Weiguo Zheng, Hong Cheng, Jeffrey Xu Yu, Lei Zou, Kangfei Zhao.  Interactive Natural Language Question Answering over Knowledge Graphs. Information Sciences, 481:141-159, 2019.
  5. Yingfan Liu, Hao Wei, Hong Cheng. Exploiting Lower Bounds to Accelerate Approximate Nearest Neighbor Search on High-Dimensional Data. Information Sciences, 465:484-504, 2018.
  6. Weiguo Zheng, Jeffrey Xu Yu, Lei Zou, Hong Cheng.  Question Answering Over Knowledge Graphs: Question Understanding Via Template Decomposition. Proceedings of the VLDB Endowment (PVLDB), 11(11):1373-1386, 2018.
  7. Yihan Wang, Shaoxu Song, Lei Chen, Jeffrey Xu Yu, Hong Cheng. Discovering Conditional Matching Rules. ACM Transactions on Knowledge Discovery from Data (TKDD), 11(4):46, 2017.
  8. Miao Qiao, Hao Zhang, Hong Cheng. Subgraph Matching: on Compression and Computation. Proceedings of the VLDB Endowment (PVLDB), 11(2):176-188, 2017.
  9. Shaoxu Song, Boge Liu, Hong Cheng, Jeffrey Xu Yu, Lei Chen. Graph Repairing under Neighborhood Constraints. The VLDB Journal (VLDBJ), 26(5):611-635, 2017.
  10. Qiankun Zhu, Hong Cheng, Xin Huang. I/O-efficient Algorithms for Top-k Nearest Keyword Search in Massive Graphs. The VLDB Journal (VLDBJ), 26(4):563-583, 2017.
  11. Ji-Bing Gong, Xiaoxia Gao, Hong Cheng, Jihui Liu, Yanqing Song, Mantang Zhang, Yi Zhao. Integrating a Weighted-Average Method into the Random Walk Framework to Generate Individual Friend Recommendations. Science China Information Sciences, 60(11):110104, 2017.
  12. Yuanyuan Zhu, Hao Zhang, Lu Qin, Hong Cheng. Efficient MapReduce Algorithms for Triangle Listing in Billion-scale Graphs. Distributed and Parallel Databases, 35(2):149-176, 2017.
  13. Wei Shi, Weiguo Zheng, Jeffrey Xu Yu, Hong Cheng, Lei Zou. Keyphrase Extraction Using Knowledge Graphs. Data Science and Engineering, 2(4):275-288, 2017.
  14. Xin Huang, Hong Cheng, Jeffrey Xu Yu. Attributed Community Analysis: Global and Ego-centric Views. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering. 39(3):29-40, 2016.
  15. Yuanyuan Liu, Fanhua Shang, Wei Fan, James Cheng, Hong Cheng. Generalized Higher Order Orthogonal Iteration for Tensor Learning and Decomposition. IEEE Transactions on Neural Networks and Learning Systems, 27(12):2551-2563, 2016.
  16. Siyuan Zhang, Lu Qin, Yu Zheng, Hong Cheng. Effective and efficient: Large-scale Dynamic City Express. IEEE Transactions on Knowledge and Data Engineering (TKDE), 28(12):3203-3217, 2016.
  17. Jianbin Huang, Xuejun Huangfu, Heli Sun, Hui Li, Peixiang Zhao, Hong Cheng, Qinbao Song. Backward Path Growth for Efficient Mobile Sequential Recommendation. IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(1):46-60, 2015.
  18. Xiaofei Zhang, Hong Cheng, Lei Chen. Bonding Vertex Sets Over Distributed Graph: A Betweenness Aware ApproachProceedings of the VLDB Endowment (PVLDB), 8(12): 1418-1429, 2015.
  19. Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, Hong Cheng. Approximate Closest Community Search in Networks. Proceedings of the VLDB Endowment (PVLDB), 9(4):276-287, 2015.
  20. Zhixu Li, Lu Qin, Hong Cheng, Xiangliang Zhang, Xiaofang Zhou. TRIP: An Interactive Retrieving-Inferring Data Imputation ApproachIEEE Transactions on Knowledge and Data Engineering (TKDE), 27(9): 2550-2563, 2015.
  21. Yuanyuan Liu, Fanhua Shang, Licheng Jiao, James Cheng, Hong Cheng. Trace Norm Regularized CANDECOMP/PARAFAC Decomposition with Missing Data. IEEE Transactions on Cybernetics, 45(11):2437-2448, 2015.
  22. Xin Huang, Hong Cheng, Rong-Hua Li, Lu Qin, Jeffrey Xu Yu. Top-K structural diversity search in large networks. The VLDB Journal (VLDBJ), 24(3):319-343, 2015.
  23. Xin Huang, Hong Cheng, Jeffrey Xu Yu. Dense community detection in multi-valued attributed networksInformation Sciences, Vol. 314, Pages 77-99, 2015.
  24. Fanhua Shang, Yuanyuan Liu, Hanghang Tong, James Cheng, Hong Cheng. Robust bilinear factorization with missing and grossly corrupted observationsInformation Sciences, Vol. 307, Pages 53-72, 2015.
  25. Ji-Bing Gong, Hong Cheng, Li-Li Wang. Individual Doctor Recommendation in Large Networks by Constrained Optimization. International Journal of Web Services Research (IJWSR), 12(4):16-28, 2015.
  26. Shaoxu Song, Lei Chen, Hong Cheng. Efficient Determination of Distance Thresholds for Differential Dependencies. IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol. 26, No. 9, Pages 2179-2192, 2014.
  27. Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, James Cheng. GBAGC: A General Bayesian Framework for Attributed Graph Clustering. ACM Transactions on Knowledge Discovery from Data (TKDD), 9(1), Article 5, August 2014.
  28. Shaoxu Song, Lei Chen, Hong Cheng. On Concise Set of Relative Candidate Keys. Proceedings of the VLDB Endowment (PVLDB), 7(12), 2014.
  29. Shaoxu Song, Hong Cheng, Jeffrey Xu Yu, Lei Chen. Repairing Vertex Labels under Neighborhood Constraints. Proceedings of the VLDB Endowment (PVLDB), 7(11), 2014.
  30. James Cheng, Zechao Shang, Hong Cheng, Haixun Wang, Jeffrey Xu Yu. Efficient Processing of K-Hop Reachability Queries. The VLDB Journal (VLDBJ), Vol. 23, Issue 2, pages 227-252, 2014.
  31. Miao Qiao, Hong Cheng, Lijun Chang, Jeffrey Xu Yu. Approximate Shortest Distance Computing: A Query-Dependent Local Landmark Scheme. IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol. 26, No. 1, Pages 55-68, 2014.
  32. Rong-Hua Li, Jeffrey Xu Yu, Xin Huang, Hong Cheng, Zechao Shang. Measuring the Impact of MVC Attack in Large Complex Networks. Information Sciences, Vol. 278, Pages 685-702, 2014.
  33. Xin Huang, Hong Cheng, Rong-Hua Li, Lu Qin, Jeffrey Xu Yu. Top-K Structural Diversity Search in Large Networks. Proceedings of the VLDB Endowment (PVLDB), 6(13):1618-1629, 2013.
  34. Miao Qiao, Lu Qin, Hong Cheng, Jeffrey Xu Yu, Wentao Tian.Top-K Nearest Keyword Search on Large Graphs. Proceedings of the VLDB Endowment (PVLDB), 6(10):901-912, 2013.
  35. Miao Qiao, Hong Cheng, Lu Qin, Jeffrey Xu Yu, Philip S. Yu, Lijun Chang. Computing Weight Constraint Reachability in Large Networks. The VLDB Journal (VLDBJ), Vol. 22, Issue 3, pages 275-294, 2013.
  36. Xiaofeng Zhu, Zi Huang, Hong Cheng, Jiangtao Cui, Heng Tao Shen. Sparse Hashing for Fast Multimedia Search. ACM Transactions on Information Systems (TOIS), 31(2):9, May 2013.
  37. Rong-Hua Li, Jeffrey Xu Yu, Xin Huang, Hong Cheng. A Framework of Algorithms: Computing the Bias and Prestige of Nodes in Trust Networks. PLOS ONE, 7(12), 2012.
  38. Lijun Chang, Jeffrey Xu Yu, Lu Qin, Hong Cheng, Miao Qiao. The Exact Distance to Destination in Undirected World. The VLDB Journal (VLDBJ), Vol. 21, Issue 6, pages 869-888, 2012.
  39. James Cheng, Zechao Shang, Hong Cheng, Haixun Wang, Jeffrey Xu Yu, K-Reach: Who is in Your Small World, Proceedings of the VLDB Endowment (PVLDB), 5(11):1292-1303, 2012.
  40. Hong Cheng, Yang Zhou, Xin Huang, Jeffrey Xu Yu. Clustering Large Attributed Information Networks: An Efficient Incremental Computing Approach. Data Mining and Knowledge Discovery (DMKD), Vol. 25, Issue 3, pages 450-477, 2012.
  41. Wei Zheng, Xuanhui Wang, Hui Fang, Hong Cheng. Coverage-based Search Result Diversification. Information Retrieval, 15(5): 433-457, 2012.
  42. Wei Zheng, Hui Fang, Hong Cheng, Xuanhui Wang. Diversifying Search Results through Pattern-Based Subtopic Modeling. International Journal on Semantic Web and Information Systems, 8(4): 37-56, 2012.
  43. Zheng Liu, Jeffrey Xu Yu, Hong Cheng. Approximate Homogeneous Graph Summarization. Journal of Information Processing, Vol. 20, No. 1, Pages 1-12, 2012.
  44. Hong Cheng, Yang Zhou, Jeffrey Xu Yu. Clustering Large Attributed Graphs: A Balance Between Structural and Attribute Similarities. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(2), Article 12, Pages 1-33, February 2011.
  45. Jae-Gil Lee, Jiawei Han, Xiaolei Li, Hong Cheng. Mining Discriminative Patterns for Classifying Trajectories on Road Networks, IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol. 23, No. 5, Pages 713-726. May 2011.
  46. Zi Huang, Bo Hu, Hong Cheng, Heng Tao Shen, Hongyan Liu, Xiaofang Zhou. Mining Near-duplicate Graph for Cluster-based Reranking of Web Video Search Results. ACM Transactions on Information Systems (TOIS), 28(4), Pages 1-27, Nov. 2010. 
  47. Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans-Peter Kriegel, Alexander J. Smola, Le Song, Philip S. Yu, Xifeng Yan, Karsten M. Borgwardt. Discriminative Frequent Subgraph Mining with Optimality Guarantees. Statistical Analysis and Data Mining 3(5), Pages 302-318, Oct. 2010.
  48. Hector Gonzalez, Jiawei Han, Hong Cheng, Xiaolei Li, Diego Klabjan, Tianyi Wu. Modeling Massive RFID Datasets: A Gateway-Based Movement-Graph Approach, IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol. 22, No. 1, Pages 90-104. Jan. 2010.
  49. Yang Zhou, Hong Cheng, Jeffrey Xu Yu. Graph Clustering Based on Structural/Attribute SimilaritiesProceedings of the VLDB Endowment (PVLDB), 2(1), 718-729, 2009.
  50. Qiaozhu Mei, Dong Xin, Hong Cheng, Jiawei Han, ChengXiang Zhai. Semantic Annotation of Frequent Patterns, ACM Transactions on Knowledge Discovery from Data (TKDD) 1(3), 2007.
  51. Jiawei Han, Hong Cheng, Dong Xin, Xifeng Yan. Frequent Pattern Mining: Current Status and Future Directions. Data Mining and Knowledge Discovery, 15(1):55-86, 2007.
  52. Dong Xin, Jiawei Han, Xifeng Yan, Hong Cheng, On Compressing Frequent Patterns,  Data & Knowledge Engineering, special issue on Intelligent Data Mining, Vol 60-1, 2007, 5-29.

Conference Papers

1.     Jia Li, Honglei Zhang, Zhichao Han, Yu Rong, Hong Cheng, Junzhou Huang. Adversarial Attack on Community Detection by Hiding Individuals. In Proceedings of the 2020 World Wide Web Conference (WWW¡¯20), Taipei, April 2020.

2.     Tiantian Liu, Zijin Feng, Huan Li, Hua Lu, Muhammad Aamir Cheema, Hong Cheng, Jianliang Xu. Shortest Path Queries for Indoor Venues with Temporal Variations. In Proceedings of the 2020 IEEE International Conference on Data Engineering (ICDE¡¯20), April 2020.

3.     Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, Lujia Pan. Predicting Path Failure in Time-Evolving Graphs. In Proceedings of the 2019 International Conference on Knowledge Discovery and Data Mining (KDD¡¯19), Anchorage, AK, USA, August 2019.

4.     Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, Junzhou Huang. Semi-supervised Graph Classification: A Hierarchical Graph Perspective. In Proceedings of the 2019 World Wide Web Conference (WWW¡¯19), San Francisco, CA, USA, May 2019.

  1. Weiguo Zheng, Chengzhi Piao, Hong Cheng, Jeffrey Xu Yu. Computing A Near-Maximum Independent Set in Dynamic Graphs. In Proceedings of the 2019 IEEE International Conference on Data Engineering (ICDE¡¯19), Macau, April 2019.
  2. Weiguo Zheng, Qichen Wang, Jeffrey Xu Yu, Hong Cheng, Lei Zou. Efficient Computation of a Near-Maximum Independent Set Over Evolving Graphs. In Proceedings of the 2018 IEEE International Conference on Data Engineering (ICDE¡¯18), Paris, France, April 2018.
  3. Yuli Jiang, Xin Huang, Hong Cheng, Jeffrey Xu Yu. VizCS: Online Searching and Visualizing Communities in Dynamic Graphs. In Proceedings of the 2018 IEEE International Conference on Data Engineering (ICDE¡¯18), Paris, France, April 2018.
  4. Jia Li, Yu Rong, Helen Meng, Zhihui Lu, Timothy Kwok, Hong Cheng. TATC: Predicting Alzheimer's Disease with Actigraphy Data. In Proceedings of the 2018 International Conference on Knowledge Discovery and Data Mining (KDD¡¯18), London, UK, August 2018.
  5. Siyuan Zhang, Hong Cheng. Exploiting Context Graph Attention for POI Recommendation in Location-Based Social Networks. In Proceedings of the 23th International Conference on Database Systems for Advanced Applications (DASFAA¡¯18), Gold Coast, QLD, Australia, May 2018.
  6. Siyuan Zhang, Yu Rong, Yu Zheng, Hong Cheng, Junzhou Huang. Exploiting Ranking Consistency Principle in Representation Learning for Location Promotion. In Proceedings of the 23th International Conference on Database Systems for Advanced Applications (DASFAA¡¯18), Gold Coast, QLD, Australia, May 2018.
  7. Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, Licheng Jiao. Accelerated First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS¡¯17), Long Beach, CA, USA, December 2017.

12. Lujia Pan, Jianfeng Zhang, Patrick P. C. Lee, Hong Cheng, Cheng He, Caifeng He, Keli Zhang. An Intelligent Customer Care Assistant System for Large-Scale Cellular Network Diagnosis. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD¡¯17), Halifax, NS, Canada, August 2017.

13. Hao Zhang, Yuanyuan Zhu, Lu Qin, Hong Cheng, Jeffrey Xu Yu. Efficient Local Clustering Coefficient Estimation in Massive Graphs.  In Proceedings of the 22nd International Conference on Database Systems for Advanced Applications (DASFAA¡¯17), Suzhou, China, March 2017.

  1. Yu Rong, Hong Cheng. Minimizing Dependence between Graphs. In Proceedings of the 26th ACM International on Conference on Information and Knowledge Management (CIKM¡¯17), Singapore, November 2017.
  2. Weiguo Zheng, Hong Cheng, Lei Zou, Jeffrey Xu Yu, Kangfei Zhao. Natural Language Question/Answering: Let Users Talk with The Knowledge Graph. In Proceedings of the 26th ACM International on Conference on Information and Knowledge Management (CIKM¡¯17), Singapore, November 2017.
  3. Yingfan Liu, Hong Cheng, Jiangtao Cui. PQBF: I/O-Efficient Approximate Nearest Neighbor Search by Product Quantization. In Proceedings of the 26th ACM International on Conference on Information and Knowledge Management (CIKM¡¯17), Singapore, November 2017.
  4. Wei Shi, Weiguo Zheng, Jeffrey Xu Yu, Hong Cheng, Lei Zou. Keyphrase Extraction Using Knowledge Graphs. In Proceedings of Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data, Beijing, China, July 2017.
  5. Hongxia Du, Heli Sun, Jianbin Huang, Zhongbin Sun, Liang He, Hong Cheng. Mining Cohesive Clusters with Interpretations in Labeled Graphs. In Proceedings of the 2017 Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD¡¯17), Jeju, South Korea, May 2017.
  6. Zechao Shang, Feifei Li, Jeffrey Xu Yu, Zhiwei Zhang, Hong Cheng. Graph Analytics Through Fine-Grained Parallelism. In Proceedings of the 2016 ACM SIGMOD International Conference on Management of Data (SIGMOD¡¯16), San Francisco, California, USA, June 2016.
  7. Tianyi Lin, Siyuan Zhang, Hong Cheng. Understanding Sparse Topical Structure of Short Text via Stochastic Variational-Gibbs Inference. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (CIKM¡¯16), Indianapolis, Indiana, USA, October 2016.
  8. Zhixu Li, Lu Qin, Hong Cheng, Xiangliang Zhang, Xiaofang Zhou. TRIP: An interactive retrieving-inferring data imputation approach. In Proceedings of the 2016 IEEE International Conference on Data Engineering (ICDE¡¯16), Helsinki, Finland, May 2016.
  9. Ji-Bing Gong, Xiaoxia Gao, Yanqing Song, Hong Cheng, Jingjing Xu. Individual Friends Recommendation Based on Random Walk with Restart in Social NetworksThe 5th Chinese National Conference on Social Media Processing (SMP), Nanchang, China, October 2016.
  10. Hao Zhang, Yuanyuan Zhu, Lu Qin, Hong Cheng, Jeffrey Xu Yu. Efficient Triangle Listing for Billion-scale Graphs. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, December 2016.
  11. Yu Rong, Qiankun Zhu, Hong Cheng. A Model-Free Approach to Infer the Diffusion Network from Event Cascade. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (CIKM¡¯16), Indianapolis, Indiana, USA, October 2016.
  12. Siyuan Zhang, Lu Qin, Yu Zheng, Hong Cheng. Effective and efficient: Large-scale Dynamic City Express. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL¡¯15), Seattle, Washington, November 2015.
  13. Yu Rong, Hong Cheng, Zhiyu Mo. Why It Happened: Identifying and Modeling the Reasons of the Happening of Social Events. In Proceedings of the 2015 International Conference on Knowledge Discovery and Data Mining (KDD¡¯15), Sydney, NSW, Australia 2015.
  14. Xiao Wen, Linbo Qiao, Shiqian Ma, Wei Liu, Hong Cheng. Sparse Subspace Clustering for Incomplete Images. In Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCV¡¯15), Santiago, Chile, December 2015.
  15. Fanhua Shang, Yuanyuan Liu, James Cheng, Hong Cheng. Recovering Low-Rank and Sparse Matrices via Robust Bilateral Factorization. In Proceedings of the 2014 IEEE International Conference on Data Mining (ICDM¡¯14), Shenzhen, China, December 2014.
  16. Yuanyuan Liu, Fanhua Shang, Wei Fan, James Cheng, Hong Cheng. Generalized Higher-Order Orthogonal Iteration for Tensor Decomposition and Completion. In Proceedings of the 2014 Neural Information Processing Systems (NIPS¡¯14). Montreal, Quebec, Canada, December 2014.
  17. Fanhua Shang, Yuanyuan Liu, James Cheng, Hong Cheng. Robust Principal Component Analysis with Missing Data.In Proceedings of the 2014 ACM International Conference on Information and Knowledge Management (CIKM¡¯14). Shanghai, China, November 2014.
  18. Yinqing Xu, Tianyi Lin, Wai Lam, Zirui Zhou, Hong Cheng, Anthony Man-Cho So. Latent Aspect Mining via Exploring Sparsity and Intrinsic Information.In Proceedings of the 2014 ACM International Conference on Information and Knowledge Management (CIKM¡¯14). Shanghai, China, November 2014.
  19. Yuanyuan Liu, Fanhua Shang, Hong Cheng, James Cheng. Nuclear Norm Regularized Least Squares Optimization on Grassmannian Manifolds.In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI¡¯14). Quebec City, Quebec, Canada, July 2014.
  20. Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, Jeffrey Xu Yu. Querying K-Truss Community in Large and Dynamic Graphs.In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD¡¯14). Snowbird, Utah, June 2014.
  21. Lu Qin, Jeffrey Xu Yu, Lijun Chang, Hong Cheng, Chengqi Zhang, Xuemin Lin. Scalable Big Graph Processing in MapReduce. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD¡¯14). Snowbird, Utah, June 2014.
  22. Yu Rong, Xiao Wen, Hong Cheng. A Monte Carlo Algorithm for Cold Start Recommendation. In Proceedings of the 23rd International World-Wide Web Conference (WWW¡¯14), Seoul, Korea, April 2014.
  23. Tianyi Lin, Wentao Tian, Qiaozhu Mei, Hong Cheng. The Dual-Sparse Topic Model: Mining Focused Topics and Focused Terms in Short Text. In Proceedings of the 23rd International World-Wide Web Conference (WWW¡¯14), Seoul, Korea, April 2014.
  24. Yuanyuan Liu, Fanhua Shang, Hong Cheng, James Cheng, Hanghang Tong. Factor Matrix Trace Norm Minimization for Low-Rank Tensor Completion.In Proceedings of the 2014 SIAM International Conference on Data Mining (SDM¡¯14), Philadelphia, PA, April 2014.
  25. Rong-hua Li, Jeffrey Xu Yu, Xin Huang, Hong Cheng. Random-walk Domination in Large Graphs. In Proceedings of the 2014 IEEE International Conference on Data Engineering (ICDE¡¯14), Chicago, IL, April 2014.
  26. Jihang Ye, Hong Cheng, Zhe Zhu, Minghua Chen. Predicting Positive and Negative Links in Signed Social Networks by Transfer Learning. In Proceedings of the 22nd International World-Wide Web Conference (WWW¡¯13), Rio de Janeiro, Brazil, May 2013
  27. Jihang Ye, Zhe Zhu, Hong Cheng. What's Your Next Move: User Activity Prediction in Location-based Social Networks. In Proceedings of the 2013 SIAM International Conference on Data Mining (SDM¡¯13), Austin, TX, May 2013.
  28. Jiajun Liu, Zi Huang, Hong Cheng, Yueguo Chen, Heng Tao Shen, Yanchun Zhang. Presenting Diverse Location Views with Real-time Near-duplicate Photo Elimination. In Proceedings of the 2013 IEEE International Conference on Data Engineering (ICDE¡¯13), Brisbane, Australia, Apr. 2013.
  29. Zheng Liu, Ruoming Jin, Hong Cheng, Jeffrey Xu Yu. Frequent Subgraph Summarization with Error Control. In Proceedings of the 2013 International Conference on Web-Age Information Management (WAIM¡¯13), Beidaihe, China, June 2013. Invited paper.
  30. Didi Surian, Yuan Tian, David Lo, Hong Cheng, Ee-Peng Lim. Predicting Project Outcome Leveraging Socio-Technical Network Patterns. In Proceedings of the 17th European Conference on Software Maintenance and Reengineering (CSMR¡¯13), Genova, Italy, March 2013.
  31. Wing Kwan Chan, Hong Cheng, David Lo. Searching Connected API Subgraph via Text Phrases. In Proceedings of the 2012 International Symposium on the Foundations of Software Engineering (FSE¡¯12). Cary, NC, Nov. 2012.
  32. Yuanyuan Zhu, Jeffrey Xu Yu, Hong Cheng, Lu Qin. A Diversified Discriminative Feature Selection Approach. In Proceedings of the 2012 ACM International Conference on Information and Knowledge Management (CIKM¡¯12), Maui, Hawaii, Oct. 2012.
  33. Rong-Hua Li, Jeffrey Xu Yu, Xin Huang, Hong Cheng, Zechao Shang. Measuring Robustness of Complex Networks under MVC Attack. In Proceedings of the 2012 ACM International Conference on Information and Knowledge Management (CIKM¡¯12), Maui, Hawaii, Oct. 2012.
  34. Wenting Song, Jeffrey Xu Yu, Hong Cheng, Hongyan Liu, Jun He, Xiaoyong Du. Bayesian Network Structure Learning from Attribute Uncertain Data. In Proceedings of the 2012 International Conference on Web-Age Information Management (WAIM¡¯12). Harbin, China, Aug. 2012.
  35. Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, James Cheng. A Model-based Approach to Attributed Graph Clustering. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (SIGMOD¡¯12). Scottsdale, AZ, May 2012.
  36. Yuanyuan Zhu, Lu Qin, Jeffrey Xu Yu, Hong Cheng. Finding Top-K Similar Graphs in Graph Databases. In Proceedings of the 2012 International Conference on Extending Database Technology (EDBT¡¯12). Berlin, Germany, Mar. 2012.
  37. Rong-Hua Li, Jeffrey Xu Yu, Xin Huang, Hong Cheng. Robust Reputation-Based Ranking on Bipartite Rating Networks. In Proceedings of the 2012 SIAM International Conference on Data Mining (SDM¡¯12). Anaheim, CA, Apr. 2012.
  38. Xin Huang, Hong Cheng, Jiong Yang, Jeffrey Xu Yu, Hongliang Fei, Jun Huan. Semi-Supervised Clustering of Graph Objects: A Subgraph Mining Approach. In Proceedings of the 17th International Conference on Database Systems for Advanced Applications (DASFAA¡¯12). Busan, South Korea, Apr. 2012.
  39. Miao Qiao, Hong Cheng, Lijun Chang, Jeffrey Xu Yu. Approximate Shortest Distance Computing: A Query-Dependent Local Landmark Scheme. In Proceedings of the 2012 IEEE International Conference on Data Engineering (ICDE¡¯12). Washington DC, Apr. 2012.
  40. Shaoxu Song, Lei Chen, Hong Cheng. Parameter-Free Determination of Distance Thresholds for Metric Distance Constraints. In Proceedings of the 2012 IEEE International Conference on Data Engineering (ICDE¡¯12). Washington DC, Apr. 2012.
  41. Xuezhi Wang, Jie Tang, Hong Cheng, Philip S. Yu. ADANA: Active Name Disambiguation. In Proceedings of the 2011 IEEE International Conference on Data Mining (ICDM¡¯11). Vancouver, Canada, Dec. 2011.
  42. David Lo, Hong Cheng, Xiaoyin Wang. Bug Signature Minimization and Fusion. In Proceedings of the 2011 IEEE International High Assurance Systems Engineering Symposium (HASE¡¯11). Boca Raton, FL, Nov. 2011.
  43. Miao Qiao, Hong Cheng, Jeffrey Xu Yu. Querying Shortest Path Distance with Bounded Errors in Large Graphs. In Proceedings of the 2011 Scientific and Statistical Database Management Conference (SSDBM¡¯11). Portland, OR, July 2011.
  44. Wei Zheng, Xuanhui Wang, Hui Fang, Hong Cheng. An Exploration of Pattern-based Subtopic Modeling for Search Result Diversification. In Proceedings of the ACM/IEEE Joint Conference on Digital Libraries (JCDL¡¯11). Poster paper. Ottawa, Canada, June 2011.
  45. David Lo, Hong Cheng, Lucia. Mining Closed Discriminative Dyadic Sequential Patterns. In Proceedings of the 2011 International Conference on Extending Data Base Technology (EDBT¡¯11). Uppsala, Sweden, Mar. 2011.
  46. Yang Zhou, Hong Cheng, Jeffrey Xu Yu. Clustering Large Attributed Graphs: An Efficient Incremental Approach. In Proceedings of the 2010 IEEE International Conference on Data Mining (ICDM¡¯10). Sydney, Australia, Dec. 2010.
  47. Wenzhi Zhou, Hongyan Liu, Hong Cheng. Mining Closed Episodes from Event Sequences Efficiently. In Proceedings of the 2010 Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD¡¯10). Hyderabad, India, June 2010.
  48. Qi Pan, Hong Cheng, Di Wu, Jeffrey Xu Yu, Yiping Ke. Stock Risk Mining by News.  In Proceedings of the 21st Australasian Database Conference (ADC¡¯10). Brisbane, Australia, Jan. 2010. (Best Paper Award)
  49. David Lo, Hong Cheng, Jiawei Han, Siau-Cheng Khoo, Chengnian Sun. Classification of Software Behaviors for Failure Detection: A Discriminative Pattern Mining Approach. In Proceedings of the 2009 International Conference on Knowledge Discovery and Data Mining (KDD¡¯09). Paris, France, June 2009. (Full presentation paper)
  50. Hong Cheng, David Lo, Yang Zhou, Xiaoyin Wang, Xifeng Yan. Identifying Bug Signatures Using Discriminative Graph Mining. In Proceedings of the 2009 International Symposium on Software Testing and Analysis (ISSTA¡¯09), Chicago, IL, July 2009. 
  51. Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans-Peter Kriegel, Alexander J. Smola, Le Song, Philip S. Yu, Xifeng Yan, Karsten M. Borgwardt. Near-Optimal Supervised Feature Selection among Frequent Subgraphs. In Proceedings of the 2009 SIAM International Conference on Data Mining (SDM¡¯09), Sparks, NV, April 2009.
  52. Yizhou Sun, Jiawei Han, Peixiang Zhao, Zhijun Yin, Hong Cheng, Tianyi Wu. RankClus: Integrating Clustering with Ranking for Heterogeneous Information Network Analysis. In Proceedings of the 2009 International Conference on Extending Data Base Technology (EDBT¡¯09). Saint-Petersburg, Russia, Mar. 2009.
  53. Wei Fan, Kun Zhang, Hong Cheng, Jing Gao, Xifeng Yan, Jiawei Han, Philip S. Yu, Olivier Verscheure. Direct Mining of Discriminative and Essential Graphical and Itemset Features via Model-based Search Tree. In Proceedings of the 2008 International Conference on Knowledge Discovery and Data Mining (KDD¡¯08). Las Vegas, NV, Aug. 2008.
  54. Xifeng Yan, Hong Cheng, Jiawei Han, Philip S. Yu. Mining Significant Graph Patterns by Leap Search. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD¡¯08). Vancouver, Canada, June 2008.
  55. Yizhou Sun, Tianyi Wu, Zhijun Yin, Hong Cheng, Jiawei Han, Xiaoxin Yin, Peixiang Zhao. BibNetMiner: Mining Bibliographic Information Networks. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD¡¯08). Vancouver, Canada, June 2008. (System Demo).
  56. Ding Yuan, Kyuhyung Lee, Hong Cheng, Gopal Krishna, Zhenmin Li, Xiao Ma, Yuanyuan Zhou, Jiawei Han. CISpan: Comprehensive Incremental Mining Algorithms of Closed Sequential Patterns for Multi-Versional Software Mining. In Proceedings of the 2008 SIAM International Conference on Data Mining (SDM¡¯08). Atlanta, Georgia, April 2008.
  57. Jiangtao Ren, Zhengyuan Qiu, Wei Fan, Hong Cheng, Philip S. Yu. Forward Semi-supervised Feature Selection. In Proceedings of the 2008 Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD¡¯08). Osaka, Japan, May 2008.
  58. Hong Cheng, Xifeng Yan, Jiawei Han, Philip S. Yu. Direct Discriminative Pattern Mining for Effective Classification. In Proceedings of the 2008 IEEE International Conference on Data Engineering (ICDE¡¯08). Cancun, Mexico, April 2008.
  59. Hong Cheng, Xifeng Yan, Jiawei Han, Chih-Wei Hsu. Discriminative Frequent Pattern Analysis for Effective Classification. In Proceedings of the 2007 IEEE International Conference on Data Engineering (ICDE¡¯07). Istanbul, Turkey, April 2007.
  60. Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, Hong Cheng. Mining Colossal Frequent Patterns by Core Pattern Fusion. In Proceedings of the 2007 IEEE International Conference on Data Engineering (ICDE¡¯07). Istanbul, Turkey, April 2007. (Best Student Paper Award)
  61. Hong Cheng, Philip S. Yu, Jiawei Han. AC-Close: Efficiently Mining Approximate Closed Itemsets by Core Pattern Recovery. In Proceedings of the 2006 IEEE International Conference on Data Mining (ICDM¡¯06). Hong Kong, Dec. 2006.
  62. Dong Xin, Jiawei Han, Hong Cheng, Xiaolei Li. Answering Top-k Queries with Multi-Dimensional Selections: The Ranking Cube Approach. In Proceedings of the 2006 International Conference on Very Large Data Bases (VLDB¡¯06). Seoul, Korea, Sept. 2006.
  63. Dong Xin, Hong Cheng, Xifeng Yan, Jiawei Han. Extracting Redundancy-aware Top-k Patterns. In Proceedings of the 2006 International Conference on Knowledge Discovery and Data Mining (KDD¡¯06). Philadelphia, PA, Aug. 2006.
  64. Qiaozhu Mei, Dong Xin, Hong Cheng, Jiawei Han, Chengxiang Zhai. Generating Semantic Annotations for Frequent Patterns with Context Analysis. In Proceedings of the 2006 International Conference on Knowledge Discovery and Data Mining (KDD¡¯06). Philadelphia, PA, Aug. 2006. (Best Student Paper Runner-up Award)
  65. Xifeng Yan, Hong Cheng, Jiawei Han, Dong Xin. Summarizing Itemset Patterns: A Profile-Based Approach. In Proceedings of the 2005 International Conference on Knowledge Discovery and Data Mining (KDD¡¯05). Chicago, IL, Aug. 2005 (Best Student Paper Runner-up Award)
  66. Dong Xin, Jiawei Han, Xifeng Yan, Hong Cheng. Mining Compressed Frequent-Pattern Sets. In Proceedings of the 2005 International Conference on Very Large Data Bases (VLDB¡¯05). Trondheim, Norway, Aug. 2005.
  67. Hong Cheng, Xifeng Yan, Jiawei Han. SeqIndex: Indexing Sequences by Sequential Pattern Analysis. In Proceedings of the 2005 SIAM International Conference on Data Mining (SDM¡¯05). Newport Beach, CA, April 2005.
  68. Hong Cheng, Xifeng Yan, Jiawei Han. IncSpan: Incremental Mining of Sequential Patterns in Large Database. In Proceedings of the 2004 International Conference on Knowledge Discovery and Data Mining (KDD¡¯04). Seattle, WA, Aug. 2004.
  69. Qiang Yang, Hong ChengMining Plans for Customer-Class Transformation. In Proceedings of the 2003 IEEE International Conference on Data Mining (ICDM¡¯03).  Florida, USA, November 2003.  
  70. Qiang Yang, Hong ChengCase Mining from Large Databases.  In Proceedings of the 5th International Conference on Case based Reasoning (ICCBR¡¯03).  Trondheim, Norway.  June 2003.  Pages 691-702.
  71. Qiang Yang, Hong ChengPlanning for Marketing Campaigns.  In Proceedings of the 2003 International Conference on Automated Planning and Scheduling (ICAPS¡¯03), Trento, Italy, June 2003. Pages 174--184.
  72. Qiang Yang, Hong ChengCase Mining for Action Recommendations. In Proceedings of the IEEE International Conference on Data Mining (ICDM¡¯02).  Maebachi, Japan, December 2002.

Book Chapters and Other Contributions

1.     Hong Cheng, Philip S. Yu, and Jiawei Han.  Approximate Frequent Itemset Mining In the Presence of Random Noise. Soft Computing for Knowledge Discovery and Data Mining.  Oded Maimon and Lior Rokach.  Springer, 2008. Pages 363--389.

2.     Hector Gonzalez, Jiawei Han, Hong Cheng, and Tianyi Wu.  Warehousing RFID and Location-based Sensor Data.  Intelligent Techniques for Warehousing and Mining Sensor Network Data. Edited by Alfredo Cuzzocrea, IGI Global, 2009.

3.     Hong Cheng, Jiawei Han. Frequent Itemsets and Association Rules. Encyclopedia of Database Systems 2009 (Liu, Ling and Özsu, M. Tamer eds.). 1184-1187, Springer Science+Business Media, LLC, 2009.

4.     Hong Cheng, Jiawei Han. Pattern-Growth Methods. Encyclopedia of Database Systems 2009 (Liu, Ling and Özsu, M. Tamer eds.). 2051-2054, Springer Science+Business Media, LLC, 2009.

5.     Hong Cheng, Xifeng Yan and Jiawei Han. Mining Graph Patterns. Managing and Mining Graph Data (Charu Aggarwal and Haixun Wang eds.). 365-392, Springer, Feb. 2010.

6.     Hong Cheng, Xifeng Yan and Jiawei Han. Discriminative Frequent Pattern-Based Graph Classification. Link Mining: Models, Algorithms, and Applications (Philip S. Yu, Jiawei Han, and Christos Faloutsos eds.), 237-264, Springer, 2010.

7.     Hong Cheng, Jiawei Han, Xifeng Yan and Philip S. Yu. Efficient Direct Mining of Selective Discriminative Patterns for Classification. Contrast Data Mining: Concepts, Algorithms, and Applications (Guozhu Dong and James Bailey eds.), Chapman and Hall/CRC, 2012.

8.     Hong Cheng, Xifeng Yan, Jiawei Han. Mining Graph Patterns. Frequent Pattern Mining(Charu C. Aggarwal and Jiawei Han eds.), 307-338, 2014.

Tutorials and Talks

1.     Hong Cheng. Processing Reachability Queries with Realistic Constraints on Massive Networks. Keynote talk at the 2nd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Programming Models and Applications (BigMine'13). Slides download

2.     Hong Cheng, Jiawei Han, Xifeng Yan and Philip S. Yu.  Integration of Classification and Pattern Mining: A Discriminative and Frequent Pattern-based Approach. ICDM'08 Conference Tutorial, Pisa, Italy, Dec. 2008. Slides download

¡¡